

iii

DEDICATION

This thesis is dedicated to

My Parents

Quazi Wahidur Rahman & Mosammat Noor Banu

iv

Acknowledgments

All praise and thanks are due to Allah, the Greatest, the most Merciful, the

Creator and Lord of everything. I am thankful to King Fahd University of

Petroleum and Minerals for the support in my research.

I am grateful to Dr. Jarallah Al-Ghamdi, my thesis advisor for all his support

throughout my thesis. My deepest appreciation goes to him for his

constructive criticism and continuous encouragement. Besides his busy

schedule, he always showed his interest in my thesis work. Especially I

would like to thank him for motivating me to actively participate in Software

Metrics Research Group (SMRG) which was a continuous source of research

discussion and valuable feedbacks. I am really indebted to my co-advisor Dr.

Moataz Ahmed for all his scholarly suggestions and critical review of each

stage in my thesis progress. He showed real interest and motivated me from

the very beginning of this work. Hours of discussion with him were the best

learning experience in my life. My thanks also go to my committee members

– Dr. Krishna Rao, Dr. Muhammad Shafique and Dr. Mohammad Al-

Shayeb. All of them provided me with valuable feedbacks and guidelines to

improve the quality of my work.

I appreciate all the members of SMRG specially Abubakar, Rufai and Sohel

who were my good friends and guide in all the discussions of my thesis.

v

Finally, I believe all my success came due to the prayers of my parents and

my wife. They were my continuous source of inspiration in all the hardship

and struggle. They made me to realize that having a nice family back home is

a real blessing from Allah.

vi

Table of Contents

Table of Contents.. vi

List of Figures... viii

List of Tables ... x

Thesis Abstract ... xi

...ملخص الرسالة xii

Chapter 1 Introduction.. 1

1.1 Quality Models .. 3

1.2 Imprecision and Uncertainty in Quality Models.. 7

1.3 Problem Statement... 12

1.4 Main Contributions .. 13

1.5 Organization of the Thesis ... 14

Chapter 2 Literature Survey.. 15

2.1 Algorithmic Approach ... 15

2.2 Non-Algorithmic Approach... 17

Chapter 3 Imprecision, Uncertainty and Fuzzy Logic Systems.......................... 19

3.1 Imprecision and Type-1 Fuzzy Logic Systems.. 21

3.1.1 Fuzzy Sets and Linguistic Variables... 21

3.1.2 Fuzzy Logic Systems .. 23

3.1.3 Adaptive Fuzzy Logic... 25

3.2 Uncertainty in Fuzzy Logic Systems ... 26

3.3 Uncertainty and Type-2 Fuzzy Sets... 28

3.4 Uncertainty and Type-2 Fuzzy Logic System ... 33

3.4.1 Probabilistic Models vs. Type-2 Fuzzy Logic Systems 34

3.5 Fuzzification in Type-2 Fuzzy Logic System.. 35

Chapter 4 Framework for Building Software Quality Models 40

4.1 Type-2 Fuzzy Logic and Four types of Uncertainties.................................... 41

4.1.1 Uncertainty about the meanings of the words that are used in a rule 41

vii

4.1.2 Uncertainty about the consequent that is used in a rule 43

4.1.3 Uncertainty about the measurements that activate the FLS.................... 45

4.1.4 Uncertainty about the data used to tune the parameters of a FLS........... 46

4.2 Type-2 fuzzy Logic based Framework to Build Software Quality Model..... 47

4.2.1 Initializing the Framework.. 49

4.2.2 Training the Framework ... 53

4.2.3 Using the Framework.. 55

4.3 Experimental Design and Validation ... 55

4.4 Validation of the Training Algorithm.. 56

Chapter 5 Experimental Results ... 63

5.1 Experiments with NASA Dataset .. 63

5.1.1 Results from OO Dataset .. 66

5.1.2 Results from Procedural Dataset... 74

5.2 Experiments with Apache Dataset ... 80

Chapter 6 Conclusion ... 82

6.1 Contributions ... 82

6.2 Limitations ... 83

6.3 Future Work... 84

References.. 86

Nomenclature... 89

viii

List of Figures

Figure 1: Different sources of knowledge in Software Quality Models 9
Figure 2: Membership functions for LCOM.. 23
Figure 3: Fuzzy logic system with fuzzifier and defuzzifier 24
Figure 4: A Type-1 triangular membership function ... 29
Figure 5: Blurred triangular membership function .. 30
Figure 6: Type-1 fuzzy sets.. 31
Figure 7: FOU s for the Figure 6 membership functions. .. 31
Figure 8: FOU for Gaussian primary membership function with uncertain mean... 32
Figure 9: FOU for Gaussian primary membership function with uncertain standard

deviation ... 33
Figure 10: Type -2 FLS ... 35
Figure 11: Different types of FLS – (a) singleton type-1, (b) non-singleton type-1,

(c) singleton type-2, (d) non-singleton type-2 with type-1 inputs, (e) non-

singleton type-2 with type-2 inputs... 38
Figure 12: Different fuzzy sets which need to be combined [29] 42
Figure 13: Union operation to form a Type-2 fuzzy set [29]................................... 42
Figure 14: Type-2 FLS based framework to build software quality models 48
Figure 15: Training with means (Type-2) and testing with CAMC (step size = 0.01)

.. 58
Figure 16: Error Function .. 59
Figure 17: Training with means (Type-2) and testing with CAMC (step size = 0.1)

.. 59
Figure 18: Training with means (Type-2) and testing with LCC (step size=0.1) 60
Figure 19: Training with means (Type-2) and testing with TCC (step size=0.1) 61
Figure 20: Training with means (Type-2) and testing with CCM (step size=0.1) ... 62
Figure 21: Average Testing MSE of OO project for 15 experiments with step size

0.01 ... 68

ix

Figure 22: Standard Deviation of Testing MSE of OO project for 15 experiments

with step size 0.01... 69
Figure 23: Average Testing MSE of OO project for 15 experiments with step size

0.2 ... 70
Figure 24: Standard Deviation of Testing MSE of OO project for 15 experiments

with step size 0.2... 71
Figure 25: Comparison of Regression based models with FLS based models for OO

Testing Data.. 73
Figure 26: Average Training MSE of procedural project for 15 experiments with

step size 0.01... 76
Figure 27: Standard Deviation of Training MSE of procedural project for 15

experiments with step size 0.01 .. 77
Figure 28: Comparison of Regression based models with FLS based models for

Procedural Testing Data.. 79
Figure 29: Comparison with the results from the paper [8] 81

x

List of Tables

Table 1: Different Fuzzy Logic Systems to handle different types of noise39

Table 2: Uncertainties in FLS and Software Quality Model41

Table 3: Survey of experts’ opinion on linguistic relationship45

Table 4: Training Dataset for one Attribute ...51

xi

Thesis Abstract

NAME: Quazi Abidur Rahman

TITLE: Handling Imprecision and Uncertainty in Software Quality

Models

MAJOR FIELD: COMPUTER SCIENCE

DATE OF DEGREE: JUNE 2005

Imprecision and Uncertainty are two important issues that surround the

different sources of knowledge to build software quality model. These issues

have been discussed in details in this thesis. Four types of uncertainty have

been identified surrounding four sources of knowledge. None of the existing

approaches can handle imprecision and these four types of uncertainty

together. This thesis developed a framework that is based on Type-2 fuzzy

logic system to handle imprecision and uncertainty in software quality

models. Experiments have been carried out to validate the framework.

Software fault prediction model has been built as an instance of the

framework using historical dataset. Experimental results have shown the

superiority of Type-2 fuzzy logic based framework over regression based

approach.

xii

 ملخص الرسالة

قاضي عابد الرحمن: الاسم

 ة عدم الدقة و الارتياب في نماذج جودة البرامججلامع: عنوان الرسالة

علوم الحاسب الآلي: التخصص

1426ربيع الثاني : تاريخ التخرج

ء تحيطان بالمصادر المختلفة للمعرفة اللازمة لبنانعدم الدقة و الارتياب قضيتان رئيسيتا عتبرت

تحديد وقد بدأت الرسالة ب.هذه الرسالةلذلك تم إختيار معالجتهما موضوعاً ل. نماذج جودة البرامج

 والجدير بالذآر أنه حتى آتابة هذه الرسالة . مصادر المعرفةبأربعة أنواع من الارتياب تحيط

ولقد تم في . معا التعامل مع عدم الدقة و تلك الأنواع الأربعة من الارتياب عتستطيلاتوجد طريقة

 للتعامل الغائم من نظام المنطق تطوير هيكل مبني على النوع الثانيهذه الرسالة البحث المؤدي إلى

نجاح أجريت بعض التجارب للتحقق من وقد . مع عدم الدقة و الارتياب في نماذج جودة البرامج

هذا الهيكل على ء البرامج آتطبيقموذج للتنبؤ بأخطا بناء ن في هذه الرسالة تم وآذلك. المطورلالهيك

 المطور والذي بُني على النوع الثاني أثبتت نتائج التجارب تفوق الهيكل وقد. بيانات سابقةمباستخدا

 . على الطرق المبنية على تمثيل البيانات بالدوالالغائممن نظام المنطق

Chapter 1

Introduction

Achieving a high level of software quality is the objective of most

developers. It is no longer accepted to deliver poor quality products and then

repair problems and deficiencies after they have been delivered to the

customer. Accordingly, quality planning begins at an early stage in the

software development process. A quality plan sets out the desired product

qualities (a.k.a., external quality attributes). It should also define how they

are to be assessed. It therefore defines what “high quality” software actually

means for the product being developed. Software quality models provide

such definitions along with means for prediction and assessment. Without a

quality model, different engineers may work on in an opposing way so that

different external quality attributes are optimized. There is a wide range of

potential software external quality attributes, e.g., Safety, Security,

Reliability, Understandability, Adaptability, Reusability, and Robustness

[35]. In general, it is not possible for any system to be optimized for all

potential attributes. A corresponding quality model is meant to define the

critical and most significant quality attributes and show how they can be

achieved. It may be that reliability is paramount and other attributes have to

be scarified to achieve this.

2

It is often impossible to measure software external quality attributes directly.

External attributes such as maintainability, understandability, and complexity

are affected by many different factors and there are no straightforward

metrics for them. Rather, we have to measure some internal attribute of

software (such as its size) and assume that a relation exists between what we

can measure and what we want to know. Ideally, there should be a clear and

validated relationship between the internal and the external software

attributes. External attributes are visible to the stakeholders (e.g., customers,

users, and development project managers) of the product; internal attributes

concern the developer of the product. In general, stakeholders (other than

the developers) of software products care only about external quality

attributes, but it is the internal attributes—which deal largely with the

structure of the software—that help developers achieve the external qualities.

For example, the internal quality of verifiability is necessary for achieving

the external quality of reliability. In many cases, however, the qualities are

related closely, and the distinction between internal and external is not sharp.

A software quality model is meant to define the different external attributes

that are of interest to the customer along with their level of contributions; and

the functional relationship between the external attributes that are to be

predicted and assessed and the internal attributes which we can measure.

3

A major challenge that faces quality planners would be in building that part

of the quality model that defines the contribution of the different internal

attributes to the achievement of an external quality attribute. In other words,

the challenge lies in building models which would predict/assess some

external attribute based on the measurements of different internal attributes.

The challenge is even amplified when trying to consider the imprecision and

uncertainty issues surrounding the internal attributes measurements and the

functional relationships between the attributes within the quality model.

Unfortunately, well-known techniques such as regression analysis, artificial

neural network, and Bayesian belief network etc cannot assist in dealing with

these two issues.

1.1 Quality Models

The term Quality Model is defined in [15] as “the set of characteristics and

relationship between them, which provides the basis for specifying quality

requirements and evaluation quality”. This set of characteristics has been

defined in different ways by different quality model developers. Basically as

we discussed in the previous section, quality models try to explore the

relationship between internal and external attributes of software product,

process or resources. Two of the earliest quality models are due to McCall

[26] and Boehm [4] et al. In these models, the characteristics are quality

4

factors and quality criteria. The quality factors are high level external

attributes which are the key attributes of the quality from the user’s

perspective. As these high-level quality factors are difficult to measure or

predict, those are decomposed to measurable quality criteria. Quality models

can be divided in two categories based on the approach which is used to

build those [13]. These two approaches are defined in [13] as follows.

 “The fixed model approach: We assume that all important quality

factors needed to monitor a project are a subset of those is a

published model. To control and measure each attribute, we accept

the model’s associated criteria and metrics. Then we use data

collected to determine the quality of the product

 The ‘define your own quality model’ approach: We accept the

general philosophy that quality is composed of many attributes, but

we do not adopt a given model’s characterization of quality. Instead,

we meet with prospective users to reach a consensus on which quality

attributes are important for a given product. Together we decide on a

decomposition (possibly guided by an existing model) in which we

agree on specific relationships between them. Then we measure the

quality attributes objectively to see if they meet specified, quantified

targets.”

5

Boehm and McCall models are typical examples of fixed quality models.

Trendowicz and Punter [37] has done an excellent survey of different

approaches of modeling quality. They have discussed three main

requirements for appropriate quality modeling- flexibility, reusability and

transparency. These three requirements are discussed here.

 Flexibility: The quality models should be flexible because it is

context dependent. The possible contexts are company context,

project context and process context. As each company has its own

characteristics and requirements and different quality objectives, so

the quality models need to be flexible enough to be applicable across

different companies. Similarly different projects and processes have

different quality requirements. Embedded systems may need a

different quality model than the web application. Similarly process

context reflects the characteristics of a software development process

like its stability or availability of measurable objects in different

process phases. Another important aspect of flexibility is the need of

experts’ assessment and people’s experience to build quality models

together with quantitative data.

 Reusability: Depending on the projects’ similarity level, quality

model should support the reuse of measurement data as well as

6

quality characteristics and their relationship. It enhances the accuracy

and efficiency if the quality models incorporates experiences from

past.

 Transparency: The quality model should be transparent so that the

relationships between the characteristics have some rationale. And it

also should allow the expert to directly interfere to model structure

for any necessary modification.

 [37] has done some critical review of fixed model approach and define-

your-own-model approach based on these three requirements. It is very much

evident that the fixed model approaches lack flexibility as the characteristics

and their relationships are defined as constant. Fixed model approach also

lacks transparency because it usually provides no logic behind how the

characteristics are decomposed into sub-characteristics. Another main

drawback of these models is their reliance only on quantitative

measurements. These models are usually unable to make benefit from the

qualitative data i.e., expert judgment.

Define-your-own-model approach has more flexibility in the sense that it

does not impose any prescriptive set of characteristic. [37] has also defined

the quality models as directly-defined and indirectly-defined. Project

stakeholders define the characteristics and their sub-characteristics and their

7

relationship in the form of dependency graph in the directly-defined models.

On the other hand, indirectly–defined models are usually generated

automatically from the measurement data. The experts can control these

quality models by selecting the appropriate techniques and some parameters

to explore the relationship between internal and external attributes. Although

in most of the cases, the quality relationships are represented in too complex

way to understand. Bayesian Belief Network is an example of directly

defined models. Statistical models and some artificial intelligence technique

based models are examples of indirectly-defined models. We shall present a

literature survey on different types of models in Chapter 2.

1.2 Imprecision and Uncertainty in Quality Models

As Wang noted [38], for most engineering systems, there are two important

information sources: sensors which provide numerical measurements of

variables, and human experts who provide linguistic instructions and

descriptions about the system. Quality models are no exceptions in this

sense. On the one hand, the sources of knowledge regarding the relationships

between the different quality attributes (characteristics) are numerical

knowledge from statistical analysis, and linguistic knowledge from human

experts. For example, COCOMO provides a numerical knowledge about the

relationship between the internal attribute that is the number of lines of code,

8

and the external attribute that is the effort; including the mode of the product

as a factor. While experts may give similar knowledge but in linguistic form

such as [2]

IF mode is Organic AND size is High THEN cost is Medium

IF mode is Semi-detached AND size is High THEN effort is a Little-High

IF mode is Embedded AND size is High THEN effort is High

IF mode is Organic AND size is Medium THEN effort is Low

…

Or in general,

IF mode is jm AND size is is THEN effort is jic ()31,1 ≤≤≤≤ jni

Where mj are the fuzzy values for the fuzzy variable mode, si ()ni ≤≤1 are

the fuzzy values for the fuzzy variable size, and Cji ()31,1 ≤≤≤≤ jni are

the fuzzy values for fuzzy variable cost (effort).

On the other hand, the information used to assess/predict quality using the

quality model has also two sources: numerical information that is coming

form the corresponding metrics, and linguistic information coming form the

experts’ judgment. Figure 1 shows the different sources of knowledge in

software quality models.

9

Figure 1: Different sources of knowledge in Software Quality Models

 Obviously, traditional statistical regression analysis approaches can only

make use of numerical information and have difficulty incorporating

linguistic knowledge. Because so much human knowledge is available and

valuable with regard to quality aspects as with other engineering systems,

incorporating it into engineering systems in a systematic and efficient

manner is very important.

However, as seen in the above COCOMO example, human knowledge is

imprecise in nature and human being likes to represent knowledge using

words i.e. linguistic variables. As another example, an expert would describe

the relationship between coupling and reliability as “high coupling may

produce high number of faults”, as opposed to saying that “coupling values

of 10 to 20 will produce 5 to 10 faults”. One of the earlier works that talks

about imprecision in software quality models is due to Ebert [9] [10]. Ebert

mentioned that the metric values are usually continuous in nature and it is

10

hard to distinguish between good or bad measurement although these values

are precise. He also suggested that the expert comments on the relation

between internal and external attributes may cover these problems with the

use of words rather than using precise numerical relation. Accordingly,

successful quality models should take experts knowledge into consideration.

Therefore, we propose a framework for building models based on both

expert knowledge as well as historical data.

Another issue that would arise when trying to develop such a framework is

that historical data as well as expert knowledge are surrounded by

uncertainty. Uncertainty, however, has not been addressed by many of the

previous works. Fenton and Nell [11] [12] raised this issue but did not

discuss in details about the nature and cause of uncertainty.

As discussed earlier, expert knowledge with regard to the relationships that

forms the quality model is represented in an imprecise way. Along with this

imprecision, there are two associated uncertainties: relationship uncertainty

and assessment uncertainty. The relationship uncertainty verily exists in the

expert judgments regarding the nature of the relation between internal and

external attributes. People generally differ in their judgments on the impact

of certain internal attributes on a particular external attribute. For example,

one expert may assert that “high coupling produces high number of faults”

11

while another may assert that “high coupling produces very high number of

faults”. So, the impact of internal attributes is also uncertain. In other words,

the “relationships” are not certain. With regard to the assessment uncertainty,

experts may have slightly different optioning when judging artifacts’ quality.

For example, considering the cohesion of a software component; one expert

may rate it as highly cohesive, while another may rate it as moderately

cohesive. For both types of uncertainty surrounding the expert knowledge,

the definition or meaning of the words may be uncertain too. In the examples

we have used words like low and high etc. Expert may mean different thing

for the same word.

Uncertainty is not only surrounding the experts’ knowledge, as we have

seen; it also surrounds the knowledge extracted from statistical analysis and

measurements as well. Similar to the experts’ knowledge, numerical

knowledge suffer from both relationships uncertainty and assessment

uncertainty. As for the relationships uncertainty, it is mainly due to the

laziness/ignorance and to some extent to the accuracy of the regression

model used.

On the other hand, for the assessment uncertainty, there have been typically

more than one metric proposed for assessing each quality attribute. Each

metric tries to capture the correct measurement of an attribute considering

12

different factors. The accuracy of prediction models greatly depends on how

the existing metrics capture which aspect of an attribute measurement. For

example, there are different metrics proposed to calculate cohesion such as

LCOM1, LCOM2, TCC, and DCI. We may never know which one of these

exactly calculates cohesion. This sort of uncertainty in the measurements

occurs mainly because, in most cases the definition of the metric itself is

abstract and people try to instantiate this abstraction based on their own

understanding. In summary, we can say that the two categories of

uncertainty—the relationships uncertainty and the assessment uncertainty—

surround both sources of knowledge. Accordingly, handling uncertainties is

necessary for establishing more effective quality models.

1.3 Problem Statement

In the previous section, we have discussed the importance of the issues of

imprecision and uncertainty in the domain of software quality. We shall see

in Chapter 2 that some algorithmic and non-algorithmic approaches have

been previously used to build software quality prediction models. Statistical

models rely totally on historical data and so transparency is not present in

this models. We can not explain the nature of relations between the internal

and external attributes. Fuzzy logic based models are transparent but can not

handle uncertainty and probabilistic models can deal with uncertainty but can

13

not build transparent models. Due to these shortcomings, none of these

approaches can be used as a general framework to build software quality

models where both imprecision and uncertainty will be handled together.

We investigated these problems in the existing approaches and set the

objective of this thesis is to develop a framework which should be

 General: can be used to determine functional relation between

arbitrary internal and external attributes

 Able to build transparent models: experts can incorporate their

knowledge and modify the model based on some rationale

 Able to handle four types of uncertainty

1.4 Main Contributions

The main contributions of this work are as follows.

i) Defining four types of uncertainty in software quality models

ii) Developing a general framework which is able to build

transparent models and can handle imprecision and four types of

uncertainty in software quality models.

iii) Conducting experiments which compare some of the existing

approaches with our proposed framework.

14

1.5 Organization of the Thesis

The rest of this thesis is organized as follows. Chapter 2 presents the

literature survey done to investigate other techniques for building software

quality models. Chapter 3 discusses the preliminaries of type-1 and type-2

fuzzy logic. Chapter 4 presents our framework. Chapter 5 shows the

experimental results. At the end, Chapter 6 concludes this thesis mentioning

the contributions, limitations and future work.

Chapter 2

Literature Survey

Previously both algorithmic and non algorithmic techniques have been used

to build quality models. Algorithmic approach uses the historical data to

come up with a functional relationship. Non algorithmic approaches use

expert judgment, probabilistic models and some other soft computing

techniques to approximate the functional relation. Regression analysis is the

most widely used algorithmic approach. The other algorithmic techniques are

discriminant analysis, principal component analysis etc. Among non

algorithmic techniques, probabilistic and soft-computing approaches are

common. We tried to look at different techniques from the perspectives of

imprecision, uncertainty, transparency and generality.

2.1 Algorithmic Approach

We found many works where different types of statistical regression analysis

have been used to build software quality models. Most of the works

concentrated on building software fault prediction models, where number of

faults is predicted for individual software modules based on some internal

attribute measurement. Some work on software cost estimation is also found

in literature. [2] can be used as a nice summary of the works in this

16

direction. Basilli et al. tried to validate some OO metrics to use a quality

indicator. They applied statistical univariate and multivariate analysis to

conclude that some OO metrics can be useful to predict class fault proneness.

Briand et al. used univariate and multivariate logistic regression to explore

the relationship between design measures and software quality in object

oriented systems [5]. They tried to predict the probability of fault in OO

software module. From their developed models, the best model showed a

percentage of correct classification higher than 80% and finds more than

90% of faulty classes. Chidamber, Darcy and Kemerer used some statistical

correlation based exploratory analysis to conduct empirical investigation [7].

They reported that some OO metrics may be very useful to explain the

variations in some external attributes like productivity, rework effort, design

effort. Denaro and Pezze applied some multivariate regression analysis

techniques to build fault prediction models [8]. They used data from Apache

1.3 as training set and Apache 2.0 as testing set. They tested the

performance of the models and concluded that if the models are applied on

software from homogeneous environment, they can perform well. Briand et

al. has shown that MARS (Multivariate Adaptive Regression Analysis)

based techniques can be very good candidate for building fault proneness

models across object oriented software projects [6].

17

2.2 Non-Algorithmic Approach

Lanubile et al. applied Artificial Neural Network (ANN) with some other

techniques like principal component analysis, logistic regression, logical

classification, and discriminant analysis to classify fault prone software

components [25]. But from their experiment, they found that no model is

sound enough to discriminate between faulty and non-faulty modules. In

1994, Khoshgoftaar et al. introduced a neural network classification model

for identifying high risk program modules [24]. They concluded that neural

network provides a better management tool in software engineering

environment. There are also other works in literature that use ANN to predict

different software quality attributes [18]- [23].

Fenton and Nell first proposed using Bayesian Belief Net (BBN) for

predicting software quality [11], [12]. Their research successfully pointed

out some limitations of the existing prediction models. One of the limitations

they reported is that none of the existing models care about the uncertainty

factor. However, Fenton and Nell did not discuss the nature and types of

uncertainty in software quality models.

Ebert in 1993 successfully focused on the imprecision issue in quality

prediction models [10]. He proposed to use fuzzy logic based prediction

model as it has the superiority over crisp classification techniques to deal

18

with imprecision. He also argued in favor of a fuzzy logic based model

because it can incorporate expert knowledge in the model along with

historical data. Ebert in 1997 published his experiment results in comparing

among different techniques and the fuzzy classification technique [9]. He

found that fuzzy classification outperforms some other techniques such as

classification trees and factor based discriminant analysis. He also argued

against using neural net because the neural nets rely only on experimental

data. In the same line, Cha and Kwon have proposed fuzzy logic based

model to predict error-prone software modules from inspection data [34].

Chapter 3

Imprecision, Uncertainty and Fuzzy Logic Systems

Definition of fuzziness and imprecision in this section are extracted from

[14]. Fuzziness should not be confused with other forms of imprecision and

uncertainty. There are several types of imprecision and uncertainty and

fuzziness is just one aspect of it. Imprecision and uncertainty may be in the

aspects of measurement, probability, or descriptions. Imprecision in

measurement is associated with a lack of precise knowledge. Imprecision in

description is the type of imprecision addressed by fuzzy logic. It is the

ambiguity, vagueness, qualitativeness, or subjectivity in natural language

(linguistic, lexical, or semantic uncertainty). It is the ambiguity found in the

definition of a concept or the meaning of terms such as "tall building" or

"low scores". It is also the ambiguity in human thinking, that is, perceptions

and interpretations. Examples of statements that are fuzzy in nature are

"Hemoglobin count is very low." And "Teddy is rather heavy compared to

Ike." The nature of fuzziness and randomness are therefore quite different.

They are different aspects of imprecision and uncertainty. The former

conveys subjective human thinking, feelings, or language, and the latter

indicates an objective statistic in the natural sciences. From the modeling

20

point of view, fuzzy models and statistical models also possess

philosophically different kinds of information: fuzzy memberships represent

similarities of objects to imprecisely defined properties, while probabilities

convey information about relative frequencies. Thus, fuzziness deals with

deterministic plausibility and not nondeterministic probability.

Uncertainty is a very important aspect of real human life. By the dictionary

definition, it means "Not knowing with certainty, doubtful; not definitely

known; such as cannot be definitely forecast; subject to chance; not to be

depended on; changeable" [32]. This definition can be extended to the

context of AI. Uncertainty in AI is "Given the knowledge base, current and

previous percepts, if the agent still cannot answer a question regarding the

domain, then this agent must act under uncertainty" [33]. This uncertainty

occurs mainly due to three reasons:

1) Volume of work: It is too much work to list all the antecedents and

consequences in the problem domain.

2) Lack of theoretical knowledge: We usually do not know enough

about the domain to list every consideration.

3) Lack of experimental results: It may be that we do not have all the

tests to run, or we do not want to run all the tests.

21

3.1 Imprecision and Type-1 Fuzzy Logic Systems

In this section, we will discuss the preliminaries of Type-1 fuzzy logic

systems and also how imprecision issue is handled by Type-1 FLS.

3.1.1 Fuzzy Sets and Linguistic Variables

L. Zadeh defined fuzzy logic in the foreword of Wang’s book [38] - "In a

broader and much significant sense, fuzzy logic is coextensive with the

theory of fuzzy sets, that is, classes of objects in which the transition from

membership to non-membership is gradual rather than abrupt". So, before

defining a fuzzy logic system, fuzzy sets and linguistic variables should be

explored first. Linguistic Variables, Linguistic Values, Linguistic Terms:

Just as numerical variables take numerical values, in fuzzy logic, linguistic

variables take on linguistic values which are words (linguistic terms) with

associated degrees of membership in the set. Thus, instead of a variable

height assuming a numerical value of 1.75 meters, it is treated as a linguistic

variable that may assume, for example, linguistic values of tall with a degree

of membership of 0.92, "very short" with a degree of 0.06, or "very tall" with

a degree of 0.7. This concept was introduced by Zadeh to provide a mean of

approximate characterization of phenomena that are too complex or too ill-

22

defined to be amenable to description in conventional quantitative terms.

Linguistic variables take on values defined in its term set - its set of linguistic

terms. Linguistic terms are subjective categories for the linguistic variable.

For example, for linguistic variable age, the term set T(age) may be defined

as follows:

T(age) = { "young", "not young", "not so young", "very young", ..., "middle

aged", "not middle aged", ..., "old", "not old", "very old", "more or less old",

"quite old", ..., "not very young and not very old", ... }

Fuzzy Sets and Membership Functions: Each linguistic term is associated

with a fuzzy set, each of which has a defined membership function (MF).

Formally, a fuzzy set A in U is expressed as a set of ordered pairs

A = {(x, mA(x))|x in U}

Here mA(x) is the membership function that gives the degree of membership

of x. This indicates the degree to which x belongs in set A. Here U can be

called the universe of discourse. Let’s illustrate these concepts using an

example. We know LCOM is a metric to measure the lack of cohesion in

object oriented system. Figure 2 illustrates a linguistic variable LCOM with

three associated linguistic terms namely "low", "medium" and "high". Each

of these linguistic terms is associated with a fuzzy set defined by a

23

corresponding membership function. Anyway, the membership functions

shown in the figure are just for illustration.

Figure 2: Membership functions for LCOM

There are many types of membership functions. Some of the more common

ones are triangular MFs (such as the functions in the Figure 1), trapezoidal

MFs, Gaussian MFs, and generalized bell MFs.

3.1.2 Fuzzy Logic Systems

Fuzzy logic systems (FLS) are name for the systems which have a direct

relationship with fuzzy concepts (e.g., fuzzy sets, linguistic variables and so

on) and fuzzy logic. The most popular fuzzy logic systems in the literature

may be classified into three types: pure fuzzy logic systems, Takagi and

Sugeno’s fuzzy system, and fuzzy logic system with fuzzifier and

defuzzifier. As most of the engineering applications produce crisp data as

input and expects crisp data as output, the last type is the most widely used

24

one. Figure 3 shows the basic configuration of a fuzzy logic system with

fuzzifier and defuzzifier. This type of fuzzy logic system was first proposed

by Mamdani. It has been successfully applied to a variety of industrial

processes and consumer products. The main fours components’ functions are

as follows.

 Crisp Output data

Knowledge Base
(fuzzy rule base)

& Data Base

Fuzzifier

Inference
Mechanism

Defuzzifier

Application
Area

Output fuzzy set

Crisp Input dataFuzzified Input

Figure 3: Fuzzy logic system with fuzzifier and defuzzifier

Fuzzifier: Fuzzifier does a mapping from crisp input to a fuzzy set.

Fuzzy Rule Base: Fuzzy logic systems use fuzzy IF-THEN rules. A fuzzy

IFTHEN rule is of the form

"IF X1 = A1 and X2 = A2... and Xn = An T HEN Y = B”

where Xi and Y are linguistic variables and Ai and B are linguistic terms. The

IF part is the antecedent or premise, while the THEN part is the consequence

or conclusion. An example of a fuzzy IF-THEN rule is

Engine

25

"IF LCOM = Low THEN FAULT =High".

In a fuzzy logic system, the collection of fuzzy IF-THEN rules is stored in

the fuzzy rule base which is referred to by the inference engine when

processing inputs.

Fuzzy Inference Engine: Once all crisp input values have been fuzzified

into their respective linguistic values, the inference engine will access the

fuzzy rule base of the fuzzy expert system to derive linguistic values for the

intermediate as well as the output linguistic variables. The two main steps in

the inference process are aggregation and composition. Aggregation is the

process of computing for the values of the IF (antecedent) part of the rules

while composition is the process of computing for the values of the THEN

(consequent) part of the rules.

Defuzzifier: Defuzzifier does a mapping from the fuzzy output to the crisp

output The details of the above four components can be found in Wang’s

book [38].

3.1.3 Adaptive Fuzzy Logic

The definition of adaptive fuzzy system given by Wang in his book [38] is a

good one and easy to understand - "An adaptive fuzzy system is defined as a

fuzzy logic system equipped with a training algorithm, where the fuzzy logic

26

system is constructed from a set of fuzzy IF-THEN rules using fuzzy logic

principles, and the training algorithms adjust the parameters of the fuzzy

logic system based on numerical information". Here parameters are the

necessary values to construct the membership functions. Membership

functions are adjusted by a set of input-output pairs. This is adaptive in the

sense that the necessary changes are made only locally to the affecting

membership functions whereas trainable neural networks globally adjust all

the weights. So, adaptive fuzzy logic is a nice way of combining linguistic

and numerical information, which can be done in two ways [38]-

• Use linguistic information to construct an initial fuzzy logic system,

and then adjust the parameters of the initial fuzzy logic system based

on numerical information.

• Use numerical information and linguistic information to construct

two separate fuzzy logic systems, and then average them to obtain the

final fuzzy logic system.

3.2 Uncertainty in Fuzzy Logic Systems

We discussed general concepts of uncertainty in the beginning of this

chapter. This concept has been clarified in our discussion of uncertainty in

the context of our problem domain in Section 1.2.

27

Mendel [27] has noted that uncertainty also exists while building and using

typical fuzzy logic systems. He has described four sources of uncertainty.

Those are summarized here.

i. Uncertainty about the meanings of the words that are used in a rule.

This is the uncertainty with the membership functions because

membership functions represent words in a FLS. It can be both

antecedents and consequents.

ii. Uncertainty about the consequent that is used in a rule. This is the

uncertainty with the rule itself. A rule in FLS describes the impact of

the antecedents on the consequent. Expert may vary in their opinion to

decide this nature of impact.

iii. Uncertainty about the measurements that activate the FLS. This is the

uncertainty with the crisp input values or measurements that activates

the FLS systems. These measurements may be noisy or corrupted. This

noise can again be in a certain range or totally uncertain meaning

stationary or non-stationary.

iv. Uncertainty about the data that are used to tune the parameters of a

FLS. This is the uncertainty with the measurements again. But these

measurements are used to train the FLS as opposed to that of (iii)

which are used to activate the FLS.

28

3.3 Uncertainty and Type-2 Fuzzy Sets

Mendel has proposed using Type-2 fuzzy sets and Type-2 fuzzy logic

systems to deal with the four types of uncertainty discussed in the previous

section. Type-2 fuzzy sets were first proposed by Zadeh [39] in 1975. But the

characterization of type-2 fuzzy sets was first done by Mendel and Liang in

1999 [28]. They characterized type-2 fuzzy sets using the concept of

footprint of uncertainty and upper and lower membership functions. Actually

type-2 fuzzy sets are three dimensional whereas type-1 is two dimensional.

This extra dimension lets uncertainty to be handled by type- 2 fuzzy sets. We

will now see the definition of type-2 fuzzy sets and how they can help to

model uncertainty. We use the definition and figures from Mendel’s book

[27]. Type-2 fuzzy sets help us to deal with the first source of uncertainty i.e.

uncertainty about the meaning of the words. Type-1 fuzzy sets can not deal

with this type of uncertainty because degree of membership is considered as

certain in type-1 fuzzy sets. On the other hand, the blurred area i.e. the

second dimension in a type-2 fuzzy set adapts the concept of uncertainty.

Mendel calls this blurred area as footprint of uncertainty (FOU).Actually

here the concept is to consider different degree of membership for each of

the values in the universe of discourse. Fuzzy sets are used to represent word

or linguistic variables and people really differ in how to interpret a particular

29

word. So, the concept of 2nd dimension in type-2 fuzzy set provides this

flexibility to incorporate different person’s view in a fuzzy set. We will

discuss more on this issue in the later part of this thesis.

Figure 4: A Type-1 triangular membership function

Let’s imagine blurring the type-1 membership function depicted in Figure 4

by shifting the points on the triangle either to left or to right and not

necessarily by the same amounts, as in Figure 5. Then at a specific value of

x, say x´, there no longer is a single value for the membership function;

instead the membership function takes on values wherever the vertical line

intersects the blur.

30

Figure 5: Blurred triangular membership function

Those values need not all be weighted the same; hence, we can assign an

amplitude distribution to all of those points. Doing this for all Xx∈ , we

create a three-dimensional membership function- a type-2 membership

function- that characterizes a type-2 fuzzy set. Type-2 membership functions

have same constraint of type-1 membership functions. The degree of

membership along the second dimension is always in the interval [0, 1]. The

amplitude distribution i.e. the values along the 3rd dimension also lay

between the interval [0, 1]. So, it is clear that if the blur disappears, then a

type-2 membership function must reduce to a type-1 membership function.

31

Figure 6: Type-1 fuzzy sets

Figure 7: FOU s for the Figure 6 membership functions.

Figure 6 shows some triangular membership functions and is the FOU for

those membership functions [27]. The shaded or blurred area is our FOU i.e.

the second dimension that helps to deal with uncertainty. We see in the

figure that this FOU is uniformly shaded. It means that that at each point in

the FOU, the membership degree is one. This type of membership functions

32

are called interval type-2 membership functions. Imposing this constraint

helps to build the fuzzy logic system but it also poses some limitations.

We have used Gaussian membership functions in our experiments as Mendel

used these to build the fuzzy logic systems. Now, let’s see some examples on

type-2 Gaussian membership functions. Let’s consider the case of a Gaussian

membership function having a fixed standard deviation, σ, and an uncertain

mean that takes on values in [m1, m2]. Figure 8 is an example.

Figure 8: FOU for Gaussian primary membership function with uncertain

mean

Similarly, let’s consider the case of a Gaussian membership function having

a fixed mean, m, and an uncertain standard deviation that takes on values in

[σ1, σ2]. Figure 9 is an example.

33

Figure 9: FOU for Gaussian primary membership function with uncertain

standard deviation

It is easy to see here that both the Gaussian membership functions are of

interval type-2 as the shading is uniform. Mendel developed fuzzy logic

systems using these two types of Gaussian membership function.

3.4 Uncertainty and Type-2 Fuzzy Logic System

Although Zadeh proposed the concept of type-2 fuzzy sets [39], Karnik and

Mendel [17] for the first time extended the concept of type-2 fuzzy sets to

build type-2 fuzzy logic systems. In this section, we will describe the main

components of a type-2 fuzzy logic system and we will also see how the

uncertainty issues are considered. But before that, we add a subsection here

to discuss the concept of probabilistic models vs. type-2 fuzzy logic systems

34

which is due to Mendel [27]. This discussion is essential because

probabilistic model is considered to be the best option to deal with

uncertainty.

3.4.1 Probabilistic Models vs. Type-2 Fuzzy Logic Systems

Mendel [27] discussed the similarity or differences between type-2 FLS and

probabilistic models that may help to understand more about how random

uncertainty is modeled in type-2 FLS. Probabilistic models represent random

uncertainties using probability density functions (pdf). As many moments a

pdf can use, it can model uncertainty better. For example, if the pdf is

Gaussian, it has two moments- mean and variance. This second order i.e.

variance tries to provide an understating about the dispersion about the mean.

Although it is difficult to compare a FLS with a pdf, from these moments

point of view some analogy may be found. A type-1 FLS produces a

defuzzified output which may be compared to first order moment i.e. mean

of a pdf. This defuzzified output considers the result as fully certain. On the

other hand, the output of a type-2 FLS is a type reduced set with two interval

endpoints. The second order moment of a pdf is used as a confidence interval

and similarly type reduced interval set can be thought as a linguistic

confidence interval. As the uncertainty increases, this interval set also

increases. So, conceptually type-2 FLS is analogous to the probabilistic

35

models from the perspective of the first and second order moments of a pdf.

Mendel [27] also mentioned about the superiority of type-2 FLS over

probabilistic model when data does not agree with the a priori knowledge of

the pdf. He suggests using framework of a type-2 FLS when probabilistic

models cannot be used because of system complexities such as non-linearity,

time-variability or non-stationarity.

3.5 Fuzzification in Type-2 Fuzzy Logic System

Figure 10: Type -2 FLS

A fuzzy logic system is considered to be type-2 as long as any one of its

antecedent or consequent sets is type-2. All the components of Figure 10

have been discussed in details by Mendel [27]. Fuzzifier is one of the most

important components from the aspect of uncertainty. Here we shall discuss

fuzzification because it helps to handle uncertainty.

36

Fuzzification can be done in mainly two ways- singleton and non-singleton.

Singleton fuzzification considers the measurement that activates the FLS to

be certain and noise free. Non-singleton considers the input crisp

measurement to be uncertain. In singleton, the result of fuzzification is a

fuzzy singleton i.e., only at the input measurement, the membership function

has a value of 1. On the other hand, conceptually, a non-singleton fuzzifier

implies that the given input value is the most likely value to be correct one

from all the values in its immediately neighborhood; however, because the

input is corrupted by noise, neighboring points are also likely to be the

correct value, but to a lesser degree. So, fuzzy membership function is used

for fuzzification where the fuzzy membership function is centered at the

measurement value. This non-singleton fuzzification can also be done in two

ways – Type-1 and Type-2 based on the type of fuzzy sets used for

fuzzification. When the noise is stationary, we can use the type-1 non-

singleton fuzzification and when the noise is non-stationary, we can use

type-2 non-singleton. Based on different types of fuzzification and different

types of antecedent fuzzy sets, Mendel has developed 5 different fuzzy logic

systems [27]. Those five different FLS s are –

a) Singleton type-1

b) Non-singleton type-1

37

c) Singleton type-2

d) Non-singleton type-2 with type-1 inputs

e) Non-singleton type-2 with type-2 inputs

Figure 11 shows a pictorial description of these 5 different fuzzy logic

systems [27].

38

Figure 11: Different types of FLS – (a) singleton type-1, (b) non-singleton type-

1, (c) singleton type-2, (d) non-singleton type-2 with type-1 inputs, (e) non-

singleton type-2 with type-2 inputs

39

Mendel has shown in Table 1, which type of noise i.e. uncertainty can be

handled by which FLS.

Table 1: Different Fuzzy Logic Systems to handle different types of noise

Type of FLS Measurement
Noise

Training and
Testing Data

Measurements
that is used after
building the FLS

Singleton type-1 None Noise Free Noise Free

Non-singleton
type-1

Stationary Noisy Noisy

Singleton type-2 Stationary Noisy Noise Free

Type-1 non-
singleton type-2

Stationary Noisy Noisy

Type-2 non-
singleton type-2

Non-Stationary Noisy Noisy

Chapter 4

Framework for Building Software Quality Models

In this chapter we shall present our framework to build software quality

models which takes care of all types of uncertainty and imprecision. Already

we have demonstrated that fuzzy logic is good enough to handle imprecision

in software quality models and have discussed Mendel’s approach [27] to

deal with uncertainty. In Section 1.2, we discussed different types of

uncertainty that should be considered while developing software quality

models. In Section 3.2 we have discussed the four types of uncertainty

mentioned by Mendel in a fuzzy logic system. Before approaching to build

the framework, we need to show that there is a mapping between the

uncertainty discussed by Mendel and our findings in software quality

models. Table 2 shows a summary of this mapping.

It is evident from the Table 2 that if we build our framework based on Type-

2 FLS, we can solve the uncertainty problem in our software quality domain.

In the previous Chapter, we have presented the basic concepts of type-2

fuzzy logic. Now we shall see how those concepts help us to deal with four

types of uncertainty mentioned by Mendel. Then we shall present our

framework.

41

Table 2: Uncertainties in FLS and Software Quality Model

Uncertainty in Software Quality
Models

Uncertainty in FLS Example

Linguistic Assessment Meaning of the word Expert judgment on the
measurement of an internal attribute

Linguistic Relationship Consequent How the internal attributes
contribute to the external attribute

Numerical Assessment Measurement to
activate FLS

Different metrics to measure a
particular attribute

Numerical Relationship Data to build the
FLS

Rely only on historical data to build
a model

4.1 Type-2 Fuzzy Logic and Four types of Uncertainties

In this Section we shall see how the four types of uncertainty mentioned in

Section 3.2 can be solved using Mendel’s approach [27].

4.1.1 Uncertainty about the meanings of the words that are
used in a rule

From our discussion of type-2 fuzzy sets, it is evident that type-2 fuzzy sets

can help us to handle this uncertainty. Actually people interpret the same

word differently. For example, if we have a range of values 0-10 and ask

people about the word ‘LOW’, we expect to get different sub ranges for

LOW. For example, some may say 0-2 is low or some may say 0-3 is low.

We know that we can represent any interpretation of the word using a type-1

fuzzy set. Now, we need to combine different type-1 fuzzy sets to form one

42

type-2 fuzzy set to represent several expert opinions in one word. Mendel

[29] proposed to use union operation to combine different type-1 or type-2

fuzzy sets to form a type-2 fuzzy set.

Figure 12: Different fuzzy sets which need to be combined [29]

Figure 13: Union operation to form a Type-2 fuzzy set [29]

43

We can conduct a survey to get opinions from different experts. But interval

type-2 fuzzy sets with uniform shading i.e. FOU is used in the FLS

developed by Mendel. It has a problem when the expert opinions are not

uniformly distributed. And usually more experts have close opinion while

few can have opinion that is far. In this case uniform shading of type-2 fuzzy

set is a limitation. Still, considering the computational complexity of general

type-2 fuzzy sets, interval tpe-2 fuzzy set is the right choice so far. There is

another way of handling this situation—we can drop some experts’ opinion

as outliers if those are really far from most of the others.

This uncertainty is very much similar to our defined linguistic assessment

uncertainty which is the difference of opinion of experts while assessing a

software artifact. So we can collect experts’ assessment of the measure of an

artifact in form of type-1 fuzzy sets. And then union operation of those type-

1 fuzzy set can produce a type-2 fuzzy set which will represent this

assessment uncertainty.

4.1.2 Uncertainty about the consequent that is used in a rule

Survey again should be conducted among the experts to reach some

conclusion about the consequent of a rule. Mendel [27] has discussed in

details how this type of survey can be formulated. To reflect the result of the

44

survey at the output of fuzzy logic systems, he has proposed three

possibilities-

a. Keep the response chosen by the largest number of experts.

b. Find a weighted average of rule consequents for each rule

c. Preserve the distributions of the expert responses for each rule

Mendel has chosen solution (b) as the most appropriate one and derived the

defuzzification method which accomplishes this task.

If we want to formulate a fuzzy logic system to build quality models, then

the consequent is the external attribute. And the fuzzy rules are the linguistic

relationships between the internal and external attributes. As experts have

different viewpoint about the impact of a group of internal attributes on a

particular external attribute i.e. consequent, this is the linguistic relationship

uncertainty. We can conduct a survey among the experts about the fuzzy

rules to solve this problem. Let us consider a survey among 10 experts on the

relationship between the internal attributes coupling and cohesion and the

external attribute reliability. Table 3 shows an example of such survey.

45

Table 3: Survey of experts’ opinion on linguistic relationship

IF Reliability is
Low

Reliability is
Medium

Reliability is
High

Coupling is High and Cohesion is
High

6 3 1

Coupling is low and Cohesion is
medium

4 2 4

4.1.3 Uncertainty about the measurements that activate the
FLS

We have seen in Section 3.5, how non-singleton fuzzification helps us to

deal with input noise. This input noise is the uncertainty about the

measurements that we use to activate the FLS. When the noise is stationary,

we can use type-1 non-singleton fuzzification. If the noise is non-stationary,

we should use type-2 non-singleton fuzzification.

We have seen in Table 2 that this type of uncertainty is similar to the

numerical assessment uncertainty in software quality models. This

uncertainty needs some explanation and the concept of noise in fuzzy logic

system has a difference with our defined uncertainty. Numerical assessment

uncertainty comes from the different inconsistent measures of the same

internal attribute. A Master thesis work here in KFUPM has shown that

different cohesion measurements to measure class cohesion have real

inconsistency among them [1]. Noise in the fuzzy logic system defined by

46

Mendel has a basic difference with our numerical assessment uncertainty.

Noise in general sense comes from a noisy sensor i.e. if the same thing is

measured using a noisy sensor for more than once, then the sensor will give

different measurements at different times. If the metrics are our sensors, then

there is no noise because software metric always will give the same

numerical value. Our uncertainty concept lies in the existence of different

metrics for the same internal attribute. Still we can use non-singleton

fuzzification to solve this problem. Mendel modeled the input noise using

interval type-2 Gaussian fuzzy set with uncertain standard deviation. But as

in our case, we have no concept of stationary or non-stationary noise; we

shall use type-1 non-singleton fuzzification where the mean of the Gaussian

membership functions will be the mean of different metric values of a

particular internal attribute and the standard deviation will be the standard

deviation of these different metric values.

4.1.4 Uncertainty about the data used to tune the parameters
of a FLS

Here the data means the training data. Training data can be noisy or

uncertain. For example, at each data point we may have more than one value

available. This noise should be handled while building the FLS. Type-2

fuzzy sets help us to handle this type of uncertainty. Again for example, if

we consider Gaussian membership function, then uncertain mean can

47

represent this noise in the training data. Usually there are two steps of

building a FLS- initializing and training. While initializing, we should define

the type-2 fuzzy MF in such a way so that it represents the noise. While

training, the training data is used as the measurements to activate the FLS

and to adjust the type-2 membership functions. So, we can use non-singleton

fuzzification to handle the noise in this stage.

Uncertainty in the training data has different sources in software quality

model. The first one is the uncertainty we discussed in the previous section

i.e., different metric values for measuring the same attribute. Another is

laziness or ignorance i.e., there may be other factors we don’t know which

affect the relationship. The first one can be dealt with non-singleton

fuzzification. While we train the framework, we should use the mean and

standard deviation of the internal attribute measurements as input. Type-2

fuzzy set can help to deal with the second issue. We may represent different

experts’ opinion using type-2 fuzzy set or we can derive the type-2 fuzzy sets

from the uncertain numerical data.

4.2 Type-2 fuzzy Logic based Framework to Build Software

Quality Model

The core structure of our framework is based on type-2 FLS which has all

the components as in Figure 10. Internal and external attributes and their

48

relationships are the main sources of knowledge in our framework. So, we

developed the framework as in Figure 14.

Figure 14: Type-2 FLS based framework to build software quality models

The fuzzifier takes the crisp metrics values as input. These crisp metric

values are the different measurements of the internal attributes. We shall see

later how these different values can be used as input. The output of fuzzifier

is the fuzzified measurements which will be the input to the inference engine.

Expert assessment of a software artifact in a form of fuzzy set also can be

input to the inference engine. The fuzzy rules are also input to the inference

engine. In our framework, fuzzy rules are the relationship between internal

and external attributes. The resultant of the inference engine is type-2 fuzzy

output sets which can be reduced to type-1 fuzzy set by the type reducer.

This type reduced fuzzy set in our framework is an interval set which gives

the predicted external attribute measurement as a possible range of values.

49

The defuzzifier calculates the average of this interval set to produce the

predicted crisp external attribute measurement.

Developing such framework usually has three main steps. We shall also

define developing process of our framework in these three steps. The steps

are

i) Initializing the Framework

ii) Training the Framework

iii) Using the Framework

We shall discuss these three steps in details in the following three

subsections.

4.2.1 Initializing the Framework

We have discussed type-2 fuzzy logic system in the previous chapter. We

know about the components of a typical fuzzy logic system. Now to initialize

our framework, we need to define those components from the perspective of

software quality models. Initializing a FLS means initialization of its

antecedents, consequents and the fuzzy rules. These components of a fuzzy

logic system can be initialized either from the numerical dataset or from the

expert opinion. Before delving more into this, let us see what will be the

antecedents and consequents in our framework.

50

 Internal attributes are the antecedents

 External attribute is the consequent

Our framework will support one external attribute to be assessed or predicted

based on several internal attributes. If-Then rules will form the rule base

using these internal and external attributes.

First let us look at the issue of initialization from numerical data. We expect

that we shall have one or more measurements available in the dataset for

each internal or external attribute. Our framework will define the initial

fuzzy sets for both antecedents and the consequent from this dataset. To use

the FLS developed by Mendel [27], we consider our antecedent and

consequent membership functions to be type-2 Gaussian with uncertain mean

and the input membership functions will be type-2 Gaussian with uncertain

standard deviation. Let us suppose that we need to initialize F fuzzy sets for

the attribute A. Each attribute has m measurements. In the training dataset,

we have attribute measurements for n software modules. Table 4 shows the

structure of the training dataset for one attribute.

51

Table 4: Training Dataset for one Attribute

M
od

ul
e

N
o

M
ea

su
re

m
en

t 1

M
ea

su
re

m
en

t 2
 …

…

M
ea

su
re

m
en

t n

M
ea

n
of

M

ea
su

re
m

en
ts

 o
f

ea
ch

 M
od

ul
e

St
an

da
rd

D

ev
ia

tio
n

of

M
ea

su
re

m
en

ts
 o

f
ea

ch
 M

od
ul

e

1 A11 A12 A1m µ1 σ1

2 A21 A22 A2m µ2 σ2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

n An1 An2 Anm µn σn

Now, we have to calculate the followings-

M1 = Minimum (µ1, µ2….. µn)

M2 = Maximum (µ1, µ2….. µn)

M = Mean (µ1, µ2….. µn)

S = Standard Deviation (µ1, µ2….. µn)

R1 = Minimum (σ1, σ2... σn)

R2 = Maximum (σ1, σ2... σn)

52

R = Mean (σ1, σ2... σn)

T = (M2-M1) /(F-1)

Now if Ui1 and Ui2 are the uncertain means for i-th fuzzy set, then define the

means and standard deviations of F fuzzy sets as follows-

Ui1 = M1 + (i-1)T – 0.5*R

Ui2 = M1 + (i-1)T + 0.5*R

Here i = 1….F

Standard Deviation of all the fuzzy sets = K*S

Here K is a positive constant. K should be chosen such that the membership

functions cover the whole universe of discourse.

Expert comments can be used to initialize all these parameters. Whenever we

shall have more than one expert to define a fuzzy set, we can use the

approach discussed in Section 4.1.1.

The rule base can be initialized by an expert or considering all the possible

combinations of fuzzy sets of internal attributes. If we have X internal

attributes and F fuzzy sets for each internal attribute, then number of rules

can be maximum FX if in each rule we use all the internal attributes as

antecedents.

53

4.2.2 Training the Framework

After initializing the FLS, our framework supports an optional step –

training. If someone wants to rely totally on the expert comment to build the

quality model, he does not need any training. But if it is needed to use the

historical data, then training is the second step in our framework. The

historical dataset will contain the measurements of different internal and

external attributes. We have discussed in the previous section how this data

should be organized and used to initialize the FLS. The same dataset will be

used as training data. It will contain the input-output pair where the inputs

are the internal attribute measurements and the output is the external attribute

measurement. If we have more than one measurement for any attribute, then

we shall use the mean of those measurements i.e. from Table 4 we shall use

µi as the input or output measurement for a particular attribute i of a software

module. µi will be the mean of non-singleton input type-1 Gaussian

membership function. The standard deviation of the measurements i.e. σi will

be the standard deviation of the non-singleton input type-1 Gaussian

membership function. Following is the training algorithm.

 Given N input-output training samples (x(t):y(t)), t=1,…,N

 Objective is to minimize the error function for E training Epochs

 E(t) = {[f(x(t)) – y(t)]/y(t)}^2, t=1,…N

54

 The steps

 Initialize all the parameters (as we discussed before)

 Set the counter, e, of the training epoch to zero i.e. e=0

 Set the counter, t, of the training data to one. i.e., t=1

 Apply the means of the internal attribute measurements with

their corresponding standard deviation to the type-1 non-

singleton type-2 FLS (see Chapter 11 of Mendel’s book).

Mendel has used same standard deviation for all the input

MF. But in our framework, we used different standard

deviation for each input.

 While defuzzification, use average the average response from

the survey for the consequents (see section 10.12 of Mendel’s

book)

 Tune the uncertain means of the antecedent membership

functions and the consequents also using steepest descent

algorithm for the error function (see chapter 11 of Mendel’s

book). Don’t tune the input standard deviations.

 Set t=t+1. If t = N+1, go to next step otherwise apply the next

input

55

 Set e=e+1. If e=E, Stop; otherwise start a new epoch

4.2.3 Using the Framework

Using our framework is straightforward. If we want to use numerical data as

input, we shall use the mean and standard deviation of the existing

measurements for each internal attribute where this mean and standard

deviation will be the mean and standard deviation of input non-singleton

type-1 fuzzy set. If we use expert comment as the input, then the expert

comment should be given as input to the system in the form of type-2

Gaussian fuzzy set with uncertain standard deviation.

4.3 Experimental Design and Validation

Validation is a very important requirement to show that any newly proposed

framework really works. We also tried to validate our framework. For

validating the framework, we need to conduct experiments. In this section we

shall discuss how we design our experiment to validate the framework.

We want to prove mainly two things from the validation. The first one is that

our framework’s training works fine i.e., with numerical dataset, the

framework can train well to achieve a lower value of error function. The

second thing is to show that the framework gives better performance than the

other existing approaches. The second objective of validation is often

56

difficult to achieve due to the insufficiency of available data. Still, we can do

some sort of comparisons using artificial dataset. The first objective can

easily be achieved, because artificial dataset can be used to train the

framework. Actually the ultimate purpose of the framework is function

approximation i.e. approximate the functional relation between internal and

external attributes. So, if we generate artificial dataset, then still there will be

some sort of functional relation. So, if we can validate our framework using

this artificial dataset, it is expected that while actual dataset is provided, it

will also work fine.

For training the framework, we need uncertain numerical measurements of

internal attributes and the measurement of the external attribute. We have

such data from [1]. But unfortunately this dataset does not have any external

attribute measurements. So we used artificial external attributes. To compare

our framework with other approaches, we used data from NASA. But this

dataset has no uncertain measurements. We discuss the details of these

experiments and the results in Chapter 5.

4.4 Validation of the Training Algorithm

Here, we now discuss the validation of the training algorithm of the

framework. As we mentioned earlier, the dataset from [1] has uncertain

internal attribute measurements. All the measurements available there, are

57

cohesion metric values. Different cohesion metrics have been calculated for

many classes from different object oriented systems. We took 50 classes

from this dataset and for each class we considered the metric values of four

cohesion metrics. Those are CCM, TCC, LCC, CAMC. We randomly

generated the one external attribute value for each class. Then we applied our

framework on this dataset and trained with different step size. Step size is an

important parameter of steepest descent algorithm. The step size determines

how quickly or slowly the error function is minimized. Figure 15 and Figure

17 show the relative Mean Squared Error (MSE) while training with step

sizes 0.01 and 0.1 respectively. It also shows the testing MSE while we test

with CAMC metric after training with uncertain data. It is very much evident

from these figures that lower step size makes the learning procedure slow,

whereas higher step size makes it faster. Figure 15 needs some more

explanation regarding the ups and downs towards the end of learning epochs.

This may occur if the error function has some local minima or maxima and

in that case small step size may be caught in those regions. The example of

such error function is shown in Figure 16. Another important conclusion we

may draw from the figures that the uncertainty is properly handled through

our framework because when we test with one of the cohesion metrics, the

error function is also minimized. To check the same result with other metrics

we tested with LCC, TCC and CCM also. Figure 18, Figure 19 and Figure 20

58

shows the test result with the cohesion metrics LCC, TCC and CCM

respectively. All these figures agree with our conclusion that the framework

is learning the uncertainty in the dataset properly. In all cases, while testing

with a single cohesion metric, the testing curve has same pattern as the

training curve.

Figure 15: Training with means (Type-2) and testing with CAMC (step size =

0.01)

59

Figure 16: Error Function

Figure 17: Training with means (Type-2) and testing with CAMC (step size =

0.1)

60

Figure 18: Training with means (Type-2) and testing with LCC (step size=0.1)

61

Figure 19: Training with means (Type-2) and testing with TCC (step size=0.1)

62

Figure 20: Training with means (Type-2) and testing with CCM (step size=0.1)

Chapter 5

Experimental Results

We implemented our proposed framework to build software fault prediction

model. As we saw in Chapter 2, people have widely used software fault

prediction models to verify their model building approach. There is another

reason behind our choice of fault prediction. That is the availability of data.

To get historical data in public domain is not very easy and for the

experiments data should come from reliable source. We got some data which

helped us to build fault prediction models and to compare the performance of

our framework with that of other existing techniques. We have divided this

chapter in three sections based on different types of available data. Two

sources of data are used. One is NASA IV&V MDP [30] another is from the

Giovanni Denaro, author of the paper on software fault proneness models

[8].

5.1 Experiments with NASA Dataset

NASA dataset has few projects developed in C and one project developed in

C++. For all the projects, there are several metrics data calculated from

different modules of the projects. The very much useful aspect of this dataset

is that the number of defects or faults detected for each module has been

64

stored in the dataset. For the OO project i.e., project developed is C++ we

have considered each class as a module. As there is only one such project,

we have divided the classes into two sets randomly. One set was used as the

training set and another for testing. For the procedural projects i.e., projects

developed in C, we could choose training set and test set from different

projects as we have more than one project. We did use only numerical data

for training and testing.

We implemented type-1 and type-2 fuzzy logic based models and compared

their performances. This comparison is important because; although both

type of fuzzy logics have the ability to take expert comments into

consideration, uncertainty is the main issue that should create a difference

between the performances. Actually in NASA data, we cannot apparently see

any type of uncertainty except only uncertainty with numerical relationship.

So, we expect type-2 FLS to perform better if we could have data that

associated all types of uncertainties. We also tried to compare the

performance with that of regression based model. But it is difficult to reach

some conclusion with this sort of comparison. Because, the underlying

shortcoming of the regression based models is the one we discussed in

 Chapter 1. Regression based models are not universal function approximator.

So, we need to define the type of the model and there could be numerous

types. In our experiments we used linear and polynomial statistical

65

regression models to compare their performance. Actually this comparison

between fuzzy logic based model and regression based models is just for

experimental purpose, because theoretically also it is evident that regression

based models can not handle imprecision and uncertainty.

For all experiments, we used the type-2 fuzzy logic system developed by

Mendel [27]. We used his source code also which is provided for free to use.

He used Gaussian membership functions with uncertain mean for

antecedents and consequents and Gaussian membership functions with

uncertain standard deviation for inputs. We also used type-1 fuzzy logic

system developed by Mendel to build the fault prediction model. We used

the same set of rules to build fault prediction model using type-1 and type-2

fuzzy logic systems. We used mean squared error as the performance

indicator of the fault prediction models. While developing this type of

adaptive models, another issue plays a vital role in the results i.e., the step

size. Higher step size may lead to worse performance rather than converging.

On the other hand very low step size may lead to a slow convergence. So, we

did experiments with different step sizes. As it is not our main objective to

find out a suitable step size, we just did experiment with several step sizes

and show some of the results that may help us to explain the performance of

the framework. Suitable step size really differs in different problems and

66

experiments with different values will be required to find the most suitable

one.

5.1.1 Results from OO Dataset

The object oriented project has several metrics data in the dataset. We used

CBO and LCOM metrics to build our fault prediction model. In the model,

CBO and LCOM are the antecedents and number of faults is the consequent.

For each antecedent, we considered 2 membership functions. So we have

total 4 rules. For each rule the consequent membership functions are

different and random. So we have 4 consequent membership functions. The

rules look like as given below.

If CBO is MF1
CBO and LCOM is MF1

LCOM then Number of Faults is MF1
NOF

If CBO is MF1
CBO and LCOM is MF2

LCOM then Number of Faults is MF2
NOF

If CBO is MF2
CBO and LCOM is MF1

LCOM then Number of Faults is MF3
NOF

If CBO is MF2
CBO and LCOM is MF2

LCOM then Number of Faults is MF4
NOF

In these rules MFi
v represents the i- th membership function for variable v.

In the object oriented project, we have total 144 classes. We chose randomly

75 classes for training and rest 69 classes for testing. As the consequent

fuzzy set is random, we conducted the experiment with training dataset 15

times and plotted the average and standard deviation of the relative Mean

67

Squared Error after testing. This gives us more confidence in the result.

Figure 21 and Figure 22 shows average and standard deviation respectively.

The result doesn’t look to be promising for type-2 fuzzy logic based

framework. Type-1 fuzzy logic is performing better. To have an explanation

on this issue, we conducted the same experiment with step size 0.2. With

step size 0.01, our framework is converging still while Type-1 has already

converged. After some more epochs, it is expected to converge totally.

Figure 23 and Figure 24 shows the average and standard deviation of MSE

with step size 0.2. It is evident from these two figures that with high step

size, after few epochs Type-2 FLS based framework converges to the same

level of Type-1. This happened mainly because we had no uncertainty in the

training or testing dataset. Type-2 FLS considers that uncertainty is there, but

if the dataset is certain, then after few epochs it starts performing same as

Type-1. If we could have data with uncertainty i.e., each attribute with

several measurements, then it was possible to show the superiority of Type-2

FLS over Type-1.

68

Figure 21: Average Testing MSE of OO project for 15 experiments with step

size 0.01

69

Figure 22: Standard Deviation of Testing MSE of OO project for 15

experiments with step size 0.01

70

Figure 23: Average Testing MSE of OO project for 15 experiments with step

size 0.2

71

Figure 24: Standard Deviation of Testing MSE of OO project for 15

experiments with step size 0.2

72

We see the same type of graphs with test data also. Our explanation

regarding the relation between the step size and the uncertainty is more

evident from Figure 23. All the figure of standard deviation also gives us

confidence that at least at higher step size, type-2 has better standard

deviation.

We built statistical regression based model also with the same training and

testing dataset. We used both linear and non-linear regression. For non linear

we used 2nd degree polynomial regression. We calculated the MSE for both

training and testing dataset. While comparing the MSE of regression based

models with that of FLS based models, we considered the minimum that we

could get from FLS based model irrespective of the step size. Figure 25

shows the comparison for the testing dataset. The result looks inspiring for

the Type-2 FLS based framework. Some may argue that we just

experimented with two types of regression based models. Actually this is the

strength of FLS based models over regression based model. Fuzzy logic

systems are universal function approximator and we discussed this issue

earlier in this chapter.

73

Figure 25: Comparison of Regression based models with FLS based models for

OO Testing Data

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Linear Non-
linear

(square)

Type-1
FLS

Type -2
FLS

R
el

at
iv

e
M

SE

74

5.1.2 Results from Procedural Dataset

As we have more than one project written in C, we could choose our training

and testing dataset from two different projects. The training and testing both

projects have more than 1000 modules. But most of them have zero faults.

So, we considered to choose only those modules which have at least 1 fault.

Now our training set contains 81 modules and test set contains 73 modules.

Halstead Error Estimate (HEE) and Cyclomatic Complexity (CC) are two

metrics that we used as our internal attribute measurements. So, in our model

HEE and CC are antecedents and Number of Faults (NOF) is the consequent.

For antecedents, we considered two membership functions and for each

consequent we considered different and random membership function. Here

are our rules.

If HEE is MF1
HEE and CC is MF1

CC then Number of Faults is MF1
NOF

If HEE is MF1
HEE and CC is MF2

CC then Number of Faults is MF2
NOF

If HEE is MF2
HEE and CC is MF1

CC then Number of Faults is MF3
NOF

If HEE is MF2
HEE and CC is MF2

CC then Number of Faults is MF4
NOF

In these rules MFi
v represents the i- th membership function for variable v.

We have conducted the same sets of experiments with step sizes 0.01 and 0.1

as we did for OO dataset. We shall present the results of average and

75

standard deviation of 15 experiments for both training and testing. Figure 26

and Figure 27 shows the average and standard deviation of MSE with

training dataset. The step size is 0.01 here. We see here that with step size

0.01, after 25 epochs, Type-2 converged at the same level with Type-2. We

did not do more experiments with high step size because with step size 0.01

we could get good performance for both Type-1 and Type-2. Here the data

has same shortcoming as the OO data had. We have no uncertainty and thats

why after some epochs Type-2 FLS should perform as good as Type-1 FLS.

76

Figure 26: Average Training MSE of procedural project for 15 experiments

with step size 0.01

77

Figure 27: Standard Deviation of Training MSE of procedural project for 15

experiments with step size 0.01

78

We also conducted some experiments on this procedural dataset to compare

our results with the results of regression based models. We did it only for test

dataset.

Figure 28 shows this comparison. FLS based models outperformed

regression based models. The explanation of this result is again the same as

we explained in the case of OO dataset. FLS based models are universal

function approximator but regression based models are not.

None of the above experiments with OO and procedural dataset uses expert

comments. We could not use it due to the lack of available data from the

experts. We hope to get better performance with our framework if we could

use different expert judgments.

79

Figure 28: Comparison of Regression based models with FLS based models for

Procedural Testing Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Type -1
FLS

Type -2
FLS

Linear
Regression

Non-Linear
(Square)

R
el

at
iv

e
M

SE

80

5.2 Experiments with Apache Dataset

All the experimental results we showed in Section 5.1, were solely based on

our own experiments. As we could not find any published result for the

NASA dataset, we are not able to compare our work with others using this

dataset. Fortunately we got the dataset used by the authors of [8]. The

authors have extracted their relevant data fields from the public data of

Apache web server. They used Data from Apache 1.3 as the training set and

Apache 2.0 as the test set. Every C file has been considered as a module.

Authors have calculated some procedural metrics for each module and

extracted number of faults from the CVS repository. They have chosen

different fault prediction models among all possible models based on some

criteria. The models are built using multivariate regression analysis. The

models differ in the use of metrics as independent variables. Different

models use different subset of metrics. For each model, they have predicted

the fault proneness as output from the test dataset. Then the modules of test

dataset are sorted in descending order based on the predicted output. The

percentage of modules from this sorted order have been calculated which are

accountable for different percentages of known faults e.g., from the sorted

order first x% modules are responsible for y% actual faults. If we want to

compare two models, for the same value of y, the model which produces

81

smaller value of x, is said to be better to predict y% of actual faults. In the

paper [8], the authors have shown the results of 8 different models. We have

built our type-2 fuzzy logic based model using the metrics that the authors

used to build the direct model with best overall completeness. Figure 29

shows the comparison between our model and the regression based model

from the paper. It is evident that our type-2 FLS based model has a consistent

better performance.

0
10
20
30
40
50
60
70
80
90

100

25 50 75 95
Percentage of Faults

Pe
rc

en
ta

ge
 o

f m
od

ul
es

Type-2 FLS
based model

Regression
Model

Figure 29: Comparison with the results from the paper [8]

Chapter 6

Conclusion

In this chapter, we summarize our contributions and limitations and conclude

the thesis with some future work directions.

6.1 Contributions

Our investigation, research and experiments conclude the following

contributions of this thesis.

i) Sources of imprecision and four different types of uncertainties

have been defined in software quality models

ii) A literature survey has been done in the domain of software

quality models

iii) Type-2 fuzzy logic has been investigated as a solution to the

uncertainty problems

iv) It has been shown that there is a nice mapping between the

uncertainties discussed by Mendel [29] and our definitions of

uncertainty in software quality models.

83

v) Type-2 fuzzy logic based general framework has been built to

handle imprecision and uncertainty in software quality models

and different steps of this framework has been discussed in

details. Conceptually it has been shown to deal with all types of

uncertainties.

vi) Validation of the framework has been done using some artificial

dataset.

vii) Software fault prediction models have been built as an instance of

the framework. Experiments have been done using this model to

compare type-2 fuzzy logic based framework with type-1 FLS

and regression based approaches.

6.2 Limitations

i) We could not conclude the performance of our framework fully

because of the lack of sufficient data. The data we used had no

uncertainty in the attribute measurements and we did not try to

build the model based on expert comments. These are the two

limitations of this work. Still, most of the results look to be

promising. Appropriate justification has been given to explain the

results.

84

ii) Mendel’s type-2 FLS has some limitations and we built our

framework based on these limitations. For example, FLS can only

deal with interval type-2 Gaussian membership functions. It

specially imposes the limitation while combining the experts

opinion to deal with linguistic assessment uncertainty.

6.3 Future Work

Here we point to some the possible future works in the same research

direction of this thesis

i. More experiments can be done if data is available with uncertain

numerical attribute measurements

ii. The framework can be validated using expert data

iii. Type-2 FLS developed by Mendel still has some limitations which

have been discussed in the previous sections. Some future work can

be directed towards this direction to make the framework more

robust

iv. Software fault prediction models have been built in this work for

experiment. Other models like cost estimation model may be built

with this framework.

85

v. We mainly focused on the framework, not on the attributes and

their relationship. This framework opens the door to work with

different software attributes to explore their relationship and thus

come up with different quality models.

References

 [1] Abubakar A., Implementation and validation of object-oriented
design level cohesion metrics, Master thesis in Computer Science,
King Fahd University of Petroleum and Minerals, Saudi Arabia,
2005.

 [2] Ahmed M., Saliu, M., and AlGhamdi J., “Adaptive Fuzzy Logic
Based Framework for Software Development Effort Prediction,”
Journal of Information and Software Technology (IST), Vol 47/1 pp
31-48, January, 2005.

 [3] Basilli V, Briand L., Melo W., “A Validation of ObjectOriented
Design Metrics as Quality Indicators”, IEEE Transactions on
Software Engineering, Vol. 22, No. 10, October 1996

 [4] Boehm, B.W., Brown, J.R., Kaspar, J.R. et al., “Characteristics of
Software Quality”, TRW Series of Software Technology, Amsterdam,
North Holland, 1978

 [5] Briand L., et al., “Exploring the relationship between design
measures and software quality in object oriented systems”, The
Journal of Systems and Software 51, pp 245-273, 2000.

 [6] Briand, L., Melo, W., And Wust, J. “Assessing the applicability of
fault-proneness models across object-oriented software projects”.
IEEE Transactions on Software Engineering vol. 28, 7 (July 2002).

 [7] Chidamber S., Darcy D., Kemerer C., “Managerial Use of Metrics for
Object-Oriented Software: An Exploratory Analysis”, IEEE
Transactions on Software Engineering, Vol.24, No. 8, August 1998

 [8] Denaro, G., And Pezze, M. “An empirical evaluation of fault-
proneness models”. In Proc. Int’l. Conf. Software Engineering
(Florida, USA, May 2002).

 [9] Ebert, C. “Experiences with criticality predictions in software
development”. ACM SIGSOFT Software Engineering Notes 22, 6
(Nov. 1997).

 [10] Ebert, C. “Rule based fuzzy classification for software quality
control”. Fuzzy Sets and Systems 63 (1993).

 [11] Fenton, N., And Nell, M. “Software metrics and risk”. In Proc. 2nd
European Software Measurement Conf. (Oct. 1999).

 [12] Fenton, N., And Nell, M. “Software metrics: Roadmap”. In Proc.
Conf. Of Software Engineering (May 2000).

 [13] Fenton, N.E., Pfleeger, S.L., Software Metrics: A rigorous and
practical approach, PWS Publishing Company, Boston, USA, 1997

87

 [14] http://www.comp.nus.edu.sg/pris/FuzzyLogic/DescriptionDetailed2.h
tml

 [15] ISO/SEC 14598 International standard, Standard for Information
technology- Software product evaluation - Part 1: General overview.

 [16] Kanmani S., et al., “Object Oriented Software Quality Prediction
Using General Regression Neural Networks”, ACM SIGSOFT
Engineering Notes, Vol. 29, No. 5, September 2004

 [17] Karnik N.N., An Introduction to Type-2 Fuzzy Logic Systems, Univ.
of Southern California, LA, CA, June 1998;
http://sipi.usc.edu/~mendel/report

 [18] Khoshgoftaar T. M, and R.M.Szabo, “Detecting Program Modules
with Low Testability”, Proceedings of the International Conference
on Software Maintenance, pp. 242-250, 1995.

 [19] Khoshgoftaar T. M, and R.M.Szabo, “Improving Neural Network
Predictions of Software Quality using Principal Components
Analysis”, Proceedings of IEEE International World Congress on
Computational Intelligence, pp. 3295- 3300, 1994.

 [20] Khoshgoftaar T. M., A.S.Pandya and H.M More, “A Neural Network
Approach for Predicting Software Development Faults”, Proceedings
of 3rd IEEE ISSRE, pp. 83-89, 1992.

 [21] Khoshgoftaar T. M., E.B.Allen, and Z.Xu, “Predicting Testability of
Program Modules using Neural Networks”, Proceedings of 3rd IEEE
Symposium on Applied Specific Systems and Software Engineering
Techniques, pp. 57-62, March, 2000.

 [22] Khoshgoftaar T. M., E.B.Allen, J.P.Hidepohl, and S.J.Aud,
“Application of Neural Networks to Software Quality Modeling of a
very Large-Scale Telecommunications Systems”, IEEE Transactions
on Neural Networks, vol 8, no 4, July pp. 902-909, 1997

 [23] Khoshgoftaar T. M., R.M.Szabo and P.J.Guasti, “Exploring the
Behavior of Neural Network Software Quality Models”, Software
Engineering Journal May, pp. 89-96, 1995.

 [24] Khoshgoftaar, T., Lanning, D., and Pandya, A. “A comparative study
of pattern recognition techniques for quality evaluation of
telecommunication software”. IEEE Journal on Selected Areas of
Communication (1994).

 [25] Lanubile, F., Lonigro, A., And Visaggio, G. “Comparing models for
identifying fault-prone software components”. In Proc. Int’l Conf.
Software Eng. and Knowledge Eng. (USA, June 1995).

 [26] McCall, J.A., Richards, P.A., and Walters, G.F., Factors in Software
Quality, RADC TR-77-369, 1977. Vols I, II, III, US Rome Air
Development Center Reports NTIS AD/A-049 014, 015, 055, 1977.

88

 [27] Mendel M., Uncertain Rule-Based Fuzzy Logic Systems: Introduction
and New Directions, Prentice Hall Inc., Upper Saddle River, NJ
07458, 2000

 [28] Mendel, J.M. and Q. Liang, “Pictorial Comparison of Type-1 and
Type-2 Fuzzy Logic Systems”, in Proc. IASTED Int’l Conference on
Intelligent Systems & Control, Santa Barbara, CA, Oct., 1999.

 [29] Mendel, J.M., “Fuzzy Sets for Words: A new Beginning”, The IEEE
conference on Fuzzy Systems, 2003

 [30] NASA IV&V Metrics Data Program.
http://mdp.ivv.nasa.gov/index.html

 [31] Quah T. S, and M.M.T.Thewin, “Application of Neural Networks for
Software Quality Prediction using Object-Oriented Metrics”,
Proceedings of the International Conference on Software
Maintenance (ICSM’03), Vol 3, 2003

 [32] Russell, Geddes, And Grosset. Webster’s New Dictionary and
Thesauru,. Geddes and Grosset Ltd, New Lanark, Scotland, 1990.

 [33] Russell, S., And Norvig, P. Artificial Intelligence: A Modern
Approach,1st ed. Prentice Hall Inc., 1995.

 [34] So, S., Cha, S., And Kwon, Y. “Empirical evaluation of a fuzzy logic
based software quality prediction model”. Fuzzy Sets and Systems
(2002).

 [35] Sommerville, Ian, Software Engineering, Addison Wesley, 2004
 [36] Thewin M. M, and T.S.Quah, “Application of Neural Networks for

Predicting Software Development Faults using O-O Design Metrics”,
Proceedings of 9th International Conference on Neural Information
Processing (ICONIP 2002), vol5, pp 2312-2316, 2003.

 [37] Trendowicz A. and Punter T., “Quality modeling for software
product lines”

 [38] Wang, L., Adaptive Fuzzy System and Control: Design and Stability
Analysis, Prentice Hall, Inc., Englewood Cliffs, New Jersey 07632,
1994.

 [39] Zadeh, L.A., “The concept of a Linguistic Variable and Its
Application to Approximate Reasoning-1”, Information Sciences,
vol. 8, pp. 199-249, 1975

Nomenclature

SQM: Software Quality Model

FLS: Fuzzy Logic System

MF: Membership Function

MSE: Mean Squared Error

LCOM: Lack of Cohesion Measure

CAMC: Cohesion among Methods of Classes

TCC: Tight Class Cohesion

LCC: Loose Class Cohesion

90

Vita

Quazi Abidur Rahman from Bangladesh has been a Master student in

Computer Science in King Fahd University of Petroleum and Minerals

(KFUPM) since September 2002. He finished his B.Sc. in Computer Science

and Engineering from Khulna University, Bangladesh in 1999. After

finishing his Bachelor, he has been in teaching profession in different

institutes. Before joining KFUPM, he had been working in the Islamic

University of Technology (IUT), Dhaka, Bangladesh as a Lecturer. He has

been in vacation from IUT while pursuing his MS at KFUPM. His research

interest includes soft computing, empirical software engineering, software

metrics and algorithms. He can be reached through his e-mail –

qabidn@ccse.kfupm.edu.sa .

