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Imprecision and Uncertainty are two important issues that surround the 

different sources of knowledge to build software quality model. These issues 

have been discussed in details in this thesis. Four types of uncertainty have 

been identified surrounding four sources of knowledge. None of the existing 

approaches can handle imprecision and these four types of uncertainty 

together. This thesis developed a framework that is based on Type-2 fuzzy 

logic system to handle imprecision and uncertainty in software quality 

models. Experiments have been carried out to validate the framework. 

Software fault prediction model has been built as an instance of the 

framework using historical dataset. Experimental results have shown the 

superiority of Type-2 fuzzy logic based framework over regression based 

approach. 
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 ملخص الرسالة
 
 
 

قاضي عابد الرحمن: الاسم  

  ة عدم الدقة و الارتياب في نماذج جودة البرامججلامع: عنوان الرسالة

علوم الحاسب الآلي: التخصص  

1426ربيع الثاني :  تاريخ التخرج  

 
ء  تحيطان بالمصادر المختلفة للمعرفة اللازمة لبنانعدم الدقة و الارتياب قضيتان رئيسيتا عتبرت

تحديد  وقد بدأت الرسالة ب.هذه الرسالةلذلك تم إختيار معالجتهما موضوعاً ل. نماذج جودة البرامج

 والجدير بالذآر أنه حتى آتابة هذه الرسالة . مصادر المعرفةبأربعة أنواع من الارتياب  تحيط 

ولقد تم في . معا التعامل مع عدم الدقة و تلك الأنواع الأربعة من الارتياب عتستطيلاتوجد طريقة 

 للتعامل الغائم من نظام المنطق تطوير هيكل مبني على النوع الثانيهذه الرسالة البحث المؤدي إلى 

نجاح أجريت بعض التجارب للتحقق من  وقد . مع عدم الدقة و الارتياب في نماذج جودة البرامج

هذا الهيكل على  ء البرامج آتطبيقموذج للتنبؤ بأخطا بناء ن في هذه الرسالة تم  وآذلك. المطورلالهيك

  المطور والذي بُني على النوع الثاني أثبتت نتائج التجارب تفوق الهيكل  وقد. بيانات سابقةمباستخدا

  .              على الطرق المبنية على تمثيل البيانات بالدوالالغائممن نظام المنطق 

                   
 

 



Chapter 1  

Introduction 

Achieving a high level of software quality is the objective of most 

developers. It is no longer accepted to deliver poor quality products and then 

repair problems and deficiencies after they have been delivered to the 

customer.  Accordingly, quality planning begins at an early stage in the 

software development process.  A quality plan sets out the desired product 

qualities (a.k.a., external quality attributes).  It should also define how they 

are to be assessed. It therefore defines what “high quality” software actually 

means for the product being developed.  Software quality models provide 

such definitions along with means for prediction and assessment.  Without a 

quality model, different engineers may work on in an opposing way so that 

different external quality attributes are optimized.  There is a wide range of 

potential software external quality attributes, e.g., Safety, Security, 

Reliability, Understandability, Adaptability, Reusability, and Robustness  

[35]. In general, it is not possible for any system to be optimized for all 

potential attributes.  A corresponding quality model is meant to define the 

critical and most significant quality attributes and show how they can be 

achieved.  It may be that reliability is paramount and other attributes have to 

be scarified to achieve this.   
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It is often impossible to measure software external quality attributes directly.  

External attributes such as maintainability, understandability, and complexity 

are affected by many different factors and there are no straightforward 

metrics for them.  Rather, we have to measure some internal attribute of 

software (such as its size) and assume that a relation exists between what we 

can measure and what we want to know.  Ideally, there should be a clear and 

validated relationship between the internal and the external software 

attributes. External attributes are visible to the stakeholders (e.g., customers, 

users, and development project managers) of the product; internal attributes 

concern the developer of the product.  In general, stakeholders (other than 

the developers) of software products care only about external quality 

attributes, but it is the internal attributes—which deal largely with the 

structure of the software—that help developers achieve the external qualities.  

For example, the internal quality of verifiability is necessary for achieving 

the external quality of reliability.  In many cases, however, the qualities are 

related closely, and the distinction between internal and external is not sharp.  

A software quality model is meant to define the different external attributes 

that are of interest to the customer along with their level of contributions; and 

the functional relationship between the external attributes that are to be 

predicted and assessed and the internal attributes which we can measure. 
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A major challenge that faces quality planners would be in building that part 

of the quality model that defines the contribution of the different internal 

attributes to the achievement of an external quality attribute. In other words, 

the challenge lies in building models which would predict/assess some 

external attribute based on the measurements of different internal attributes.  

The challenge is even amplified when trying to consider the imprecision and 

uncertainty issues surrounding the internal attributes measurements and the 

functional relationships between the attributes within the quality model. 

Unfortunately, well-known techniques such as regression analysis, artificial 

neural network, and Bayesian belief network etc cannot assist in dealing with 

these two issues. 

1.1 Quality Models 

The term Quality Model is defined in   [15] as “the set of characteristics and 

relationship between them, which provides the basis for specifying quality 

requirements and evaluation quality”. This set of characteristics has been 

defined in different ways by different quality model developers. Basically as 

we discussed in the previous section, quality models try to explore the 

relationship between internal and external attributes of software product, 

process or resources. Two of the earliest quality models are due to McCall   

[26] and Boehm  [4] et al. In these models, the characteristics are quality 
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factors and quality criteria. The quality factors are high level external 

attributes which are the key attributes of the quality from the user’s 

perspective. As these high-level quality factors are difficult to measure or 

predict, those are decomposed to measurable quality criteria. Quality models 

can be divided in two categories based on the approach which is used to 

build those  [13]. These two approaches are defined in   [13] as follows. 

 “The fixed model approach: We assume that all important quality 

factors needed to monitor a project are a subset of those is a 

published model. To control and measure each attribute, we accept 

the model’s associated criteria and metrics. Then we use data 

collected to determine the quality of the product 

 The ‘define your own quality model’ approach: We accept the 

general philosophy that quality is composed of many attributes, but 

we do not adopt a given model’s characterization of quality. Instead, 

we meet with prospective users to reach a consensus on which quality 

attributes are important for a given product. Together we decide on a 

decomposition (possibly guided by an existing model) in which we 

agree on specific relationships between them. Then we measure the 

quality attributes objectively to see if they meet specified, quantified 

targets.” 
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Boehm and McCall models are typical examples of fixed quality models. 

Trendowicz and Punter   [37] has done an excellent survey of different 

approaches of modeling quality. They have discussed three main 

requirements for appropriate quality modeling- flexibility, reusability and 

transparency. These three requirements are discussed here. 

 Flexibility: The quality models should be flexible because it is 

context dependent. The possible contexts are company context, 

project context and process context. As each company has its own 

characteristics and requirements and different quality objectives, so 

the quality models need to be flexible enough to be applicable across 

different companies. Similarly different projects and processes have 

different quality requirements. Embedded systems may need a 

different quality model than the web application. Similarly process 

context reflects the characteristics of a software development process 

like its stability or availability of measurable objects in different 

process phases. Another important aspect of flexibility is the need of 

experts’ assessment and people’s experience to build quality models 

together with quantitative data. 

 Reusability: Depending on the projects’ similarity level, quality 

model should support the reuse of measurement data as well as 



 

 

 

6 

 

 

quality characteristics and their relationship. It enhances the accuracy 

and efficiency if the quality models incorporates experiences from 

past. 

 Transparency: The quality model should be transparent so that the 

relationships between the characteristics have some rationale. And it 

also should allow the expert to directly interfere to model structure 

for any necessary modification. 

  [37] has done some critical review of fixed model approach and define-

your-own-model approach based on these three requirements. It is very much 

evident that the fixed model approaches lack flexibility as the characteristics 

and their relationships are defined as constant. Fixed model approach also 

lacks transparency because it usually provides no logic behind how the 

characteristics are decomposed into sub-characteristics. Another main 

drawback of these models is their reliance only on quantitative 

measurements. These models are usually unable to make benefit from the 

qualitative data i.e., expert judgment. 

Define-your-own-model approach has more flexibility in the sense that it 

does not impose any prescriptive set of characteristic.   [37] has also defined 

the quality models as directly-defined and indirectly-defined. Project 

stakeholders define the characteristics and their sub-characteristics and their 
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relationship in the form of dependency graph in the directly-defined models. 

On the other hand, indirectly–defined models are usually generated 

automatically from the measurement data. The experts can control these 

quality models by selecting the appropriate techniques and some parameters 

to explore the relationship between internal and external attributes. Although 

in most of the cases, the quality relationships are represented in too complex 

way to understand. Bayesian Belief Network is an example of directly 

defined models. Statistical models and some artificial intelligence technique 

based models are examples of indirectly-defined models. We shall present a 

literature survey on different types of models in  Chapter 2. 

1.2 Imprecision and Uncertainty in Quality Models 

As Wang noted   [38], for most engineering systems, there are two important 

information sources: sensors which provide numerical measurements of 

variables, and human experts who provide linguistic instructions and 

descriptions about the system.  Quality models are no exceptions in this 

sense.  On the one hand, the sources of knowledge regarding the relationships 

between the different quality attributes (characteristics) are numerical 

knowledge from statistical analysis, and linguistic knowledge from human 

experts.  For example, COCOMO provides a numerical knowledge about the 

relationship between the internal attribute that is the number of lines of code, 
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and the external attribute that is the effort; including the mode of the product 

as a factor.  While experts may give similar knowledge but in linguistic form 

such as   [2] 

IF mode is Organic AND size is High THEN cost is Medium 

IF mode is Semi-detached AND size is High THEN effort is a Little-High 

IF mode is Embedded AND size is High THEN effort is High 

IF mode is Organic AND size is Medium THEN effort is Low 

…  

Or in general, 

IF mode is jm  AND size is is  THEN effort is jic      ( )31,1 ≤≤≤≤ jni  

Where mj are the fuzzy values for the fuzzy variable mode, si ( )ni ≤≤1  are 

the fuzzy values for the fuzzy variable size, and Cji ( )31,1 ≤≤≤≤ jni  are 

the fuzzy values for fuzzy variable cost (effort). 

On the other hand, the information used to assess/predict quality using the 

quality model has also two sources: numerical information that is coming 

form the corresponding metrics, and linguistic information coming form the 

experts’ judgment. Figure 1 shows the different sources of knowledge in 

software quality models. 
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Figure 1: Different sources of knowledge in Software Quality Models 

 Obviously, traditional statistical regression analysis approaches can only 

make use of numerical information and have difficulty incorporating 

linguistic knowledge.  Because so much human knowledge is available and 

valuable with regard to quality aspects as with other engineering systems, 

incorporating it into engineering systems in a systematic and efficient 

manner is very important. 

However, as seen in the above COCOMO example, human knowledge is 

imprecise in nature and human being likes to represent knowledge using 

words i.e. linguistic variables. As another example, an expert would describe 

the relationship between coupling and reliability as “high coupling may 

produce high number of faults”, as opposed to saying that “coupling values 

of 10 to 20 will produce 5 to 10 faults”. One of the earlier works that talks 

about imprecision in software quality models is due to Ebert   [9]   [10]. Ebert 

mentioned that the metric values are usually continuous in nature and it is 
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hard to distinguish between good or bad measurement although these values 

are precise. He also suggested that the expert comments on the relation 

between internal and external attributes may cover these problems with the 

use of words rather than using precise numerical relation. Accordingly, 

successful quality models should take experts knowledge into consideration. 

Therefore, we propose a framework for building models based on both 

expert knowledge as well as historical data. 

Another issue that would arise when trying to develop such a framework is 

that historical data as well as expert knowledge are surrounded by 

uncertainty. Uncertainty, however, has not been addressed by many of the 

previous works. Fenton and Nell   [11]  [12] raised this issue but did not 

discuss in details about the nature and cause of uncertainty.  

As discussed earlier, expert knowledge with regard to the relationships that 

forms the quality model is represented in an imprecise way. Along with this 

imprecision, there are two associated uncertainties:  relationship uncertainty 

and assessment uncertainty. The relationship uncertainty verily exists in the 

expert judgments regarding the nature of the relation between internal and 

external attributes. People generally differ in their judgments on the impact 

of certain internal attributes on a particular external attribute. For example, 

one expert may assert that “high coupling produces high number of faults” 



 

 

 

11 

 

 

while another may assert that “high coupling produces very high number of 

faults”. So, the impact of internal attributes is also uncertain. In other words, 

the “relationships” are not certain. With regard to the assessment uncertainty, 

experts may have slightly different optioning when judging artifacts’ quality.  

For example, considering the cohesion of a software component; one expert 

may rate it as highly cohesive, while another may rate it as moderately 

cohesive. For both types of uncertainty surrounding the expert knowledge, 

the definition or meaning of the words may be uncertain too. In the examples 

we have used words like low and high etc. Expert may mean different thing 

for the same word.  

Uncertainty is not only surrounding the experts’ knowledge, as we have 

seen; it also surrounds the knowledge extracted from statistical analysis and 

measurements as well.  Similar to the experts’ knowledge, numerical 

knowledge suffer from both relationships uncertainty and assessment 

uncertainty.  As for the relationships uncertainty, it is mainly due to the 

laziness/ignorance and to some extent to the accuracy of the regression 

model used.  

On the other hand, for the assessment uncertainty, there have been typically 

more than one metric proposed for assessing each quality attribute. Each 

metric tries to capture the correct measurement of an attribute considering 
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different factors. The accuracy of prediction models greatly depends on how 

the existing metrics capture which aspect of an attribute measurement. For 

example, there are different metrics proposed to calculate cohesion such as 

LCOM1, LCOM2, TCC, and DCI. We may never know which one of these 

exactly calculates cohesion. This sort of uncertainty in the measurements 

occurs mainly because, in most cases the definition of the metric itself is 

abstract and people try to instantiate this abstraction based on their own 

understanding.  In summary, we can say that the two categories of 

uncertainty—the relationships uncertainty and the assessment uncertainty—

surround both sources of knowledge.   Accordingly, handling uncertainties is 

necessary for establishing more effective quality models. 

1.3 Problem Statement 

In the previous section, we have discussed the importance of the issues of 

imprecision and uncertainty in the domain of software quality. We shall see 

in  Chapter 2 that some algorithmic and non-algorithmic approaches have 

been previously used to build software quality prediction models. Statistical 

models rely totally on historical data and so transparency is not present in 

this models. We can not explain the nature of relations between the internal 

and external attributes. Fuzzy logic based models are transparent but can not 

handle uncertainty and probabilistic models can deal with uncertainty but can 
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not build transparent models. Due to these shortcomings, none of these 

approaches can be used as a general framework to build software quality 

models where both imprecision and uncertainty will be handled together.  

We investigated these problems in the existing approaches and set the 

objective of this thesis is to develop a framework which should be  

 General: can be used to determine functional relation between 

arbitrary internal and external attributes 

 Able to build transparent models: experts can incorporate their 

knowledge and modify the model based on some rationale 

 Able to handle  four types of uncertainty 

1.4 Main Contributions 

The main contributions of this work are as follows. 

i) Defining four types of uncertainty in software quality models  

ii) Developing a general framework which is able to build 

transparent models and can handle imprecision and four types of 

uncertainty in software quality models.  

iii) Conducting experiments which compare some of the existing 

approaches with our proposed framework. 
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1.5 Organization of the Thesis 

The rest of this thesis is organized as follows.  Chapter 2 presents the 

literature survey done to investigate other techniques for building software 

quality models.  Chapter 3 discusses the preliminaries of type-1 and type-2 

fuzzy logic.  Chapter 4 presents our framework.  Chapter 5 shows the 

experimental results. At the end, Chapter 6 concludes this thesis mentioning 

the contributions, limitations and future work. 

 

 



Chapter 2  

Literature Survey 

Previously both algorithmic and non algorithmic techniques have been used 

to build quality models. Algorithmic approach uses the historical data to 

come up with a functional relationship. Non algorithmic approaches use 

expert judgment, probabilistic models and some other soft computing 

techniques to approximate the functional relation. Regression analysis is the 

most widely used algorithmic approach. The other algorithmic techniques are 

discriminant analysis, principal component analysis etc. Among non 

algorithmic techniques, probabilistic and soft-computing approaches are 

common. We tried to look at different techniques from the perspectives of 

imprecision, uncertainty, transparency and generality. 

2.1 Algorithmic Approach 

We found many works where different types of statistical regression analysis 

have been used to build software quality models. Most of the works 

concentrated on building software fault prediction models, where number of 

faults is predicted for individual software modules based on some internal 

attribute measurement. Some work on software cost estimation is also found 

in literature.   [2] can be used as a nice summary of the works in this 
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direction. Basilli et al. tried to validate some OO metrics to use a quality 

indicator. They applied statistical univariate and multivariate analysis to 

conclude that some OO metrics can be useful to predict class fault proneness. 

Briand et al. used univariate and multivariate logistic regression to explore 

the relationship between design measures and software quality in object 

oriented systems  [5]. They tried to predict the probability of fault in OO 

software module. From their developed models, the best model showed a 

percentage of correct classification higher than 80% and finds more than 

90% of faulty classes. Chidamber, Darcy and Kemerer used some statistical 

correlation based exploratory analysis to conduct empirical investigation  [7]. 

They reported that some OO metrics may be very useful to explain the 

variations in some external attributes like productivity, rework effort, design 

effort. Denaro and Pezze applied some multivariate regression analysis 

techniques to build fault prediction models   [8]. They used data from Apache 

1.3 as training set and Apache 2.0 as testing set.  They tested the 

performance of the models and concluded that if the models are applied on 

software from homogeneous environment, they can perform well. Briand et 

al. has shown that MARS (Multivariate Adaptive Regression Analysis) 

based techniques can be very good candidate for building fault proneness 

models across object oriented software projects   [6].  
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2.2 Non-Algorithmic Approach 

Lanubile et al. applied Artificial Neural Network (ANN) with some other 

techniques like principal component analysis, logistic regression, logical 

classification, and discriminant analysis to classify fault prone software 

components  [25]. But from their experiment, they found that no model is 

sound enough to discriminate between faulty and non-faulty modules. In 

1994, Khoshgoftaar et al. introduced a neural network classification model 

for identifying high risk program modules   [24]. They concluded that neural 

network provides a better management tool in software engineering 

environment. There are also other works in literature that use ANN to predict 

different software quality attributes  [18]-  [23].   

Fenton and Nell first proposed using Bayesian Belief Net (BBN) for 

predicting software quality   [11],   [12]. Their research successfully pointed 

out some limitations of the existing prediction models. One of the limitations 

they reported is that none of the existing models care about the uncertainty 

factor. However, Fenton and Nell did not discuss the nature and types of 

uncertainty in software quality models.  

Ebert in 1993 successfully focused on the imprecision issue in quality 

prediction models   [10]. He proposed to use fuzzy logic based prediction 

model as it has the superiority over crisp classification techniques to deal 
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with imprecision. He also argued in favor of a fuzzy logic based model 

because it can incorporate expert knowledge in the model along with 

historical data. Ebert in 1997 published his experiment results in comparing 

among different techniques and the fuzzy classification technique   [9]. He 

found that fuzzy classification outperforms some other techniques such as 

classification trees and factor based discriminant analysis. He also argued 

against using neural net because the neural nets rely only on experimental 

data. In the same line, Cha and Kwon have proposed fuzzy logic based 

model to predict error-prone software modules from inspection data   [34].



 

Chapter 3  

Imprecision, Uncertainty and Fuzzy Logic Systems 

Definition of fuzziness and imprecision in this section are extracted from  

[14]. Fuzziness should not be confused with other forms of imprecision and 

uncertainty. There are several types of imprecision and uncertainty and 

fuzziness is just one aspect of it. Imprecision and uncertainty may be in the 

aspects of measurement, probability, or descriptions. Imprecision in 

measurement is associated with a lack of precise knowledge. Imprecision in 

description is the type of imprecision addressed by fuzzy logic. It is the 

ambiguity, vagueness, qualitativeness, or subjectivity in natural language 

(linguistic, lexical, or semantic uncertainty). It is the ambiguity found in the 

definition of a concept or the meaning of terms such as "tall building" or 

"low scores". It is also the ambiguity in human thinking, that is, perceptions 

and interpretations. Examples of statements that are fuzzy in nature are 

"Hemoglobin count is very low." And "Teddy is rather heavy compared to 

Ike." The nature of fuzziness and randomness are therefore quite different. 

They are different aspects of imprecision and uncertainty. The former 

conveys subjective human thinking, feelings, or language, and the latter 

indicates an objective statistic in the natural sciences. From the modeling 
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point of view, fuzzy models and statistical models also possess 

philosophically different kinds of information: fuzzy memberships represent 

similarities of objects to imprecisely defined properties, while probabilities 

convey information about relative frequencies. Thus, fuzziness deals with 

deterministic plausibility and not nondeterministic probability.  

Uncertainty is a very important aspect of real human life. By the dictionary 

definition, it means "Not knowing with certainty, doubtful; not definitely 

known; such as cannot be definitely forecast; subject to chance; not to be 

depended on; changeable"  [32]. This definition can be extended to the 

context of AI. Uncertainty in AI is "Given the knowledge base, current and 

previous percepts, if the agent still cannot answer a question regarding the 

domain, then this agent must act under uncertainty"  [33]. This uncertainty 

occurs mainly due to three reasons: 

1) Volume of work: It is too much work to list all the antecedents and 

consequences in the problem domain. 

2) Lack of theoretical knowledge: We usually do not know enough 

about the domain to list every consideration.  

3) Lack of experimental results: It may be that we do not have all the 

tests to run, or we do not want to run all the tests. 
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3.1 Imprecision and Type-1 Fuzzy Logic Systems 

In this section, we will discuss the preliminaries of Type-1 fuzzy logic 

systems and also how imprecision issue is handled by Type-1 FLS. 

3.1.1 Fuzzy Sets and Linguistic Variables 

 
L. Zadeh defined fuzzy logic in the foreword of Wang’s book   [38] - "In a 

broader and much significant sense, fuzzy logic is coextensive with the 

theory of fuzzy sets, that is, classes of objects in which the transition from 

membership to non-membership is gradual rather than abrupt". So, before 

defining a fuzzy logic system, fuzzy sets and linguistic variables should be 

explored first. Linguistic Variables, Linguistic Values, Linguistic Terms: 

Just as numerical variables take numerical values, in fuzzy logic, linguistic 

variables take on linguistic values which are words (linguistic terms) with 

associated degrees of membership in the set. Thus, instead of a variable 

height assuming a numerical value of 1.75 meters, it is treated as a linguistic 

variable that may assume, for example, linguistic values of tall with a degree 

of membership of 0.92, "very short" with a degree of 0.06, or "very tall" with 

a degree of 0.7. This concept was introduced by Zadeh to provide a mean of 

approximate characterization of phenomena that are too complex or too ill-
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defined to be amenable to description in conventional quantitative terms. 

Linguistic variables take on values defined in its term set - its set of linguistic 

terms. Linguistic terms are subjective categories for the linguistic variable. 

For example, for linguistic variable age, the term set T(age) may be defined 

as follows:  

T(age) = { "young", "not young", "not so young", "very young", ..., "middle 

aged", "not middle aged", ..., "old", "not old", "very old", "more or less old", 

"quite old", ..., "not very young and not very old", ... } 

Fuzzy Sets and Membership Functions: Each linguistic term is associated 

with a fuzzy set, each of which has a defined membership function (MF). 

Formally, a fuzzy set A in U is expressed as a set of ordered pairs 

A = {(x, mA(x))|x in U} 

Here mA(x) is the membership function that gives the degree of membership 

of x. This indicates the degree to which x belongs in set A. Here U can be 

called the universe of discourse. Let’s illustrate these concepts using an 

example. We know LCOM is a metric to measure the lack of cohesion in 

object oriented system. Figure 2 illustrates a linguistic variable LCOM with 

three associated linguistic terms namely "low", "medium" and "high". Each 

of these linguistic terms is associated with a fuzzy set defined by a 
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corresponding membership function. Anyway, the membership functions 

shown in the figure are just for illustration.  

 

Figure 2: Membership functions for LCOM 

There are many types of membership functions. Some of the more common 

ones are triangular MFs (such as the functions in the Figure 1), trapezoidal 

MFs, Gaussian MFs, and generalized bell MFs. 

3.1.2 Fuzzy Logic Systems 

Fuzzy logic systems (FLS) are name for the systems which have a direct 

relationship with fuzzy concepts (e.g., fuzzy sets, linguistic variables and so 

on) and fuzzy logic. The most popular fuzzy logic systems in the literature 

may be classified into three types: pure fuzzy logic systems, Takagi and 

Sugeno’s fuzzy system, and fuzzy logic system with fuzzifier and 

defuzzifier. As most of the engineering applications produce crisp data as 

input and expects crisp data as output, the last type is the most widely used 
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one. Figure 3 shows the basic configuration of a fuzzy logic system with 

fuzzifier and defuzzifier. This type of fuzzy logic system was first proposed 

by Mamdani. It has been successfully applied to a variety of industrial 

processes and consumer products. The main fours components’ functions are 

as follows. 

 Crisp Output data 

Knowledge Base 
(fuzzy rule base)

& Data Base

Fuzzifier 

Inference 
Mechanism 

Defuzzifier 

Application 
Area 

Output fuzzy set 

Crisp Input dataFuzzified Input 

 

Figure 3: Fuzzy logic system with fuzzifier and defuzzifier 

Fuzzifier: Fuzzifier does a mapping from crisp input to a fuzzy set. 

Fuzzy Rule Base: Fuzzy logic systems use fuzzy IF-THEN rules. A fuzzy 

IFTHEN rule is of the form  

"IF X1 = A1 and X2 = A2... and Xn = An T HEN Y = B”  

where Xi and Y are linguistic variables and Ai and B are linguistic terms. The 

IF part is the antecedent or premise, while the THEN part is the consequence 

or conclusion. An example of a fuzzy IF-THEN rule is  

Engine 
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"IF LCOM = Low THEN FAULT =High".  

In a fuzzy logic system, the collection of fuzzy IF-THEN rules is stored in 

the fuzzy rule base which is referred to by the inference engine when 

processing inputs.  

Fuzzy Inference Engine: Once all crisp input values have been fuzzified 

into their respective linguistic values, the inference engine will access the 

fuzzy rule base of the fuzzy expert system to derive linguistic values for the 

intermediate as well as the output linguistic variables. The two main steps in 

the inference process are aggregation and composition. Aggregation is the 

process of computing for the values of the IF (antecedent) part of the rules 

while composition is the process of computing for the values of the THEN 

(consequent) part of the rules.  

Defuzzifier: Defuzzifier does a mapping from the fuzzy output to the crisp 

output The details of the above four components can be found in Wang’s 

book  [38]. 

3.1.3 Adaptive Fuzzy Logic 

The definition of adaptive fuzzy system given by Wang in his book  [38] is a 

good one and easy to understand - "An adaptive fuzzy system is defined as a 

fuzzy logic system equipped with a training algorithm, where the fuzzy logic 
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system is constructed from a set of fuzzy IF-THEN rules using fuzzy logic 

principles, and the training algorithms adjust the parameters of the fuzzy 

logic system based on numerical information". Here parameters are the 

necessary values to construct the membership functions. Membership 

functions are adjusted by a set of input-output pairs. This is adaptive in the 

sense that the necessary changes are made only locally to the affecting 

membership functions whereas trainable neural networks globally adjust all 

the weights. So, adaptive fuzzy logic is a nice way of combining linguistic 

and numerical information, which can be done in two ways   [38]- 

• Use linguistic information to construct an initial fuzzy logic system, 

and then adjust the parameters of the initial fuzzy logic system based 

on numerical information. 

• Use numerical information and linguistic information to construct 

two separate fuzzy logic systems, and then average them to obtain the 

final fuzzy logic system. 

 

3.2 Uncertainty in Fuzzy Logic Systems 

We discussed general concepts of uncertainty in the beginning of this 

chapter. This concept has been clarified in our discussion of uncertainty in 

the context of our problem domain in Section  1.2. 
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Mendel   [27] has noted that uncertainty also exists while building and using 

typical fuzzy logic systems. He has described four sources of uncertainty. 

Those are summarized here. 

i. Uncertainty about the meanings of the words that are used in a rule. 

This is the uncertainty with the membership functions because 

membership functions represent words in a FLS. It can be both 

antecedents and consequents. 

ii. Uncertainty about the consequent that is used in a rule. This is the 

uncertainty with the rule itself. A rule in FLS describes the impact of 

the antecedents on the consequent. Expert may vary in their opinion to 

decide this nature of impact. 

iii. Uncertainty about the measurements that activate the FLS. This is the 

uncertainty with the crisp input values or measurements that activates 

the FLS systems. These measurements may be noisy or corrupted. This 

noise can again be in a certain range or totally uncertain meaning 

stationary or non-stationary. 

iv. Uncertainty about the data that are used to tune the parameters of a 

FLS. This is the uncertainty with the measurements again. But these 

measurements are used to train the FLS as opposed to that of ( iii) 

which are used to activate the FLS. 
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3.3 Uncertainty and Type-2 Fuzzy Sets 

Mendel has proposed using Type-2 fuzzy sets and Type-2 fuzzy logic 

systems to deal with the four types of uncertainty discussed in the previous 

section. Type-2 fuzzy sets were first proposed by Zadeh  [39] in 1975. But the 

characterization of type-2 fuzzy sets was first done by Mendel and Liang in 

1999   [28]. They characterized type-2 fuzzy sets using the concept of 

footprint of uncertainty and upper and lower membership functions. Actually 

type-2 fuzzy sets are three dimensional whereas type-1 is two dimensional. 

This extra dimension lets uncertainty to be handled by type- 2 fuzzy sets. We 

will now see the definition of type-2 fuzzy sets and how they can help to 

model uncertainty.  We use the definition and figures from Mendel’s book   

[27]. Type-2 fuzzy sets help us to deal with the first source of uncertainty i.e. 

uncertainty about the meaning of the words. Type-1 fuzzy sets can not deal 

with this type of uncertainty because degree of membership is considered as 

certain in type-1 fuzzy sets. On the other hand, the blurred area i.e. the 

second dimension in a type-2 fuzzy set adapts the concept of uncertainty. 

Mendel calls this blurred area as footprint of uncertainty (FOU).Actually 

here the concept is to consider different degree of membership for each of 

the values in the universe of discourse. Fuzzy sets are used to represent word 

or linguistic variables and people really differ in how to interpret a particular 
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word. So, the concept of 2nd dimension in type-2 fuzzy set provides this 

flexibility to incorporate different person’s view in a fuzzy set. We will 

discuss more on this issue in the later part of this thesis. 

 

Figure 4: A Type-1 triangular membership function 

Let’s imagine blurring the type-1 membership function depicted in Figure 4 

by shifting the points on the triangle either to left or to right and not 

necessarily by the same amounts, as in Figure 5. Then at a specific value of 

x, say x´, there no longer is a single value for the membership function; 

instead the membership function takes on values wherever the vertical line 

intersects the blur.  
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Figure 5: Blurred triangular membership function 

Those values need not all be weighted the same; hence, we can assign an 

amplitude distribution to all of those points. Doing this for all Xx∈ , we 

create a three-dimensional membership function- a type-2 membership 

function- that characterizes a type-2 fuzzy set. Type-2 membership functions 

have same constraint of type-1 membership functions. The degree of 

membership along the second dimension is always in the interval [0, 1]. The 

amplitude distribution i.e. the values along the 3rd dimension also lay 

between the interval [0, 1]. So, it is clear that if the blur disappears, then a 

type-2 membership function must reduce to a type-1 membership function. 
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Figure 6: Type-1 fuzzy sets 

 

Figure 7: FOU s for the Figure 6 membership functions. 

Figure 6 shows some triangular membership functions and  is the FOU for 

those membership functions  [27]. The shaded or blurred area is our FOU i.e. 

the second dimension that helps to deal with uncertainty. We see in the 

figure that this FOU is uniformly shaded. It means that that at each point in 

the FOU, the membership degree is one. This type of membership functions 
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are called interval type-2 membership functions. Imposing this constraint 

helps to build the fuzzy logic system but it also poses some limitations. 

We have used Gaussian membership functions in our experiments as Mendel 

used these to build the fuzzy logic systems. Now, let’s see some examples on 

type-2 Gaussian membership functions. Let’s consider the case of a Gaussian 

membership function having a fixed standard deviation, σ, and an uncertain 

mean that takes on values in [m1, m2]. Figure 8 is an example.  

 

Figure 8: FOU for Gaussian primary membership function with uncertain 

mean 

Similarly, let’s consider the case of a Gaussian membership function having 

a fixed mean, m, and an uncertain standard deviation that takes on values in 

[σ1, σ2]. Figure 9 is an example. 
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Figure 9: FOU for Gaussian primary membership function with uncertain 

standard deviation 

It is easy to see here that both the Gaussian membership functions are of 

interval type-2 as the shading is uniform. Mendel developed fuzzy logic 

systems using these two types of Gaussian membership function. 

3.4 Uncertainty and Type-2 Fuzzy Logic System 

Although Zadeh proposed the concept of type-2 fuzzy sets  [39], Karnik and 

Mendel   [17] for the first time extended the concept of type-2 fuzzy sets to 

build type-2 fuzzy logic systems. In this section, we will describe the main 

components of a type-2 fuzzy logic system and we will also see how the 

uncertainty issues are considered. But before that, we add a subsection here 

to discuss the concept of probabilistic models vs. type-2 fuzzy logic systems 
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which is due to Mendel  [27]. This discussion is essential because 

probabilistic model is considered to be the best option to deal with 

uncertainty. 

3.4.1 Probabilistic Models vs. Type-2 Fuzzy Logic Systems 

Mendel   [27] discussed the similarity or differences between type-2 FLS and 

probabilistic models that may help to understand more about how random 

uncertainty is modeled in type-2 FLS. Probabilistic models represent random 

uncertainties using probability density functions (pdf). As many moments a 

pdf can use, it can model uncertainty better. For example, if the pdf is 

Gaussian, it has two moments- mean and variance. This second order i.e. 

variance tries to provide an understating about the dispersion about the mean. 

Although it is difficult to compare a FLS with a pdf, from these moments 

point of view some analogy may be found. A type-1 FLS produces a 

defuzzified output which may be compared to first order moment i.e. mean 

of a pdf. This defuzzified output considers the result as fully certain. On the 

other hand, the output of a type-2 FLS is a type reduced set with two interval 

endpoints. The second order moment of a pdf is used as a confidence interval 

and similarly type reduced interval set can be thought as a linguistic 

confidence interval. As the uncertainty increases, this interval set also 

increases. So, conceptually type-2 FLS is analogous to the probabilistic 
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models from the perspective of the first and second order moments of a pdf. 

Mendel   [27] also mentioned about the superiority of type-2 FLS over 

probabilistic model when data does not agree with the a priori knowledge of 

the pdf. He suggests using framework of a type-2 FLS when probabilistic 

models cannot be used because of system complexities such as non-linearity, 

time-variability or non-stationarity. 

3.5 Fuzzification in Type-2 Fuzzy Logic System 

 

Figure 10: Type -2 FLS 

A fuzzy logic system is considered to be type-2 as long as any one of its 

antecedent or consequent sets is type-2.  All the components of Figure 10 

have been discussed in details by Mendel  [27]. Fuzzifier is one of the most 

important components from the aspect of uncertainty. Here we shall discuss 

fuzzification because it helps to handle uncertainty. 
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Fuzzification can be done in mainly two ways- singleton and non-singleton. 

Singleton fuzzification considers the measurement that activates the FLS to 

be certain and noise free. Non-singleton considers the input crisp 

measurement to be uncertain. In singleton, the result of fuzzification is a 

fuzzy singleton i.e., only at the input measurement, the membership function 

has a value of 1. On the other hand, conceptually, a non-singleton fuzzifier 

implies that the given input value is the most likely value to be correct one 

from all the values in its immediately neighborhood; however, because the 

input is corrupted by noise, neighboring points are also likely to be the 

correct value, but to a lesser degree. So, fuzzy membership function is used 

for fuzzification where the fuzzy membership function is centered at the 

measurement value. This non-singleton fuzzification can also be done in two 

ways – Type-1 and Type-2 based on the type of fuzzy sets used for 

fuzzification. When the noise is stationary, we can use the type-1 non-

singleton fuzzification and when the noise is non-stationary, we can use 

type-2 non-singleton. Based on different types of fuzzification and different 

types of antecedent fuzzy sets, Mendel has developed 5 different fuzzy logic 

systems  [27].  Those five different FLS s are – 

a) Singleton type-1 

b) Non-singleton type-1 
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c) Singleton type-2 

d) Non-singleton type-2 with type-1 inputs 

e) Non-singleton type-2 with type-2 inputs 

Figure 11 shows a pictorial description of these 5 different fuzzy logic 

systems  [27]. 
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Figure 11: Different types of FLS – (a) singleton type-1, (b) non-singleton type-

1, (c) singleton type-2, (d) non-singleton type-2 with type-1 inputs, (e) non-

singleton type-2 with type-2 inputs 
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Mendel has shown in Table 1, which type of noise i.e. uncertainty can be 

handled by which FLS. 

Table 1: Different Fuzzy Logic Systems to handle different types of noise 

Type of FLS Measurement 
Noise 

Training and 
Testing Data 

Measurements 
that is used after 
building the FLS 

Singleton type-1 None Noise Free Noise Free 

Non-singleton 
type-1 

Stationary Noisy Noisy 

Singleton type-2 Stationary Noisy Noise Free 

Type-1 non-
singleton type-2 

Stationary Noisy Noisy 

Type-2 non-
singleton type-2 

Non-Stationary Noisy Noisy 

 

 

 



Chapter 4  

Framework for Building Software Quality Models 

In this chapter we shall present our framework to build software quality 

models which takes care of all types of uncertainty and imprecision. Already 

we have demonstrated that fuzzy logic is good enough to handle imprecision 

in software quality models and have discussed Mendel’s approach  [27] to 

deal with uncertainty. In Section  1.2, we discussed different types of 

uncertainty that should be considered while developing software quality 

models. In Section  3.2 we have discussed the four types of uncertainty 

mentioned by Mendel in a fuzzy logic system. Before approaching to build 

the framework, we need to show that there is a mapping between the 

uncertainty discussed by Mendel and our findings in software quality 

models. Table 2 shows a summary of this mapping. 

It is evident from the Table 2 that if we build our framework based on Type-

2 FLS, we can solve the uncertainty problem in our software quality domain. 

In the previous Chapter, we have presented the basic concepts of type-2 

fuzzy logic. Now we shall see how those concepts help us to deal with four 

types of uncertainty mentioned by Mendel. Then we shall present our 

framework. 



 

 

 

41 

 

 

Table 2: Uncertainties in FLS and Software Quality Model 

Uncertainty in Software Quality 
Models 

Uncertainty in FLS Example 

Linguistic Assessment Meaning of the word Expert judgment on the 
measurement of an internal attribute

Linguistic Relationship Consequent How the internal attributes 
contribute to the external attribute 

Numerical Assessment Measurement to 
activate FLS 

Different metrics to measure a 
particular attribute 

Numerical Relationship Data to build the 
FLS 

Rely only on historical data to build 
a model 

4.1 Type-2 Fuzzy Logic and Four types of Uncertainties 

In this Section we shall see how the four types of uncertainty mentioned in 

Section  3.2 can be solved using Mendel’s approach  [27]. 

4.1.1 Uncertainty about the meanings of the words that are 
used in a rule 

From our discussion of type-2 fuzzy sets, it is evident that type-2 fuzzy sets 

can help us to handle this uncertainty. Actually people interpret the same 

word differently. For example, if we have a range of values 0-10 and ask 

people about the word ‘LOW’, we expect to get different sub ranges for 

LOW. For example, some may say 0-2 is low or some may say 0-3 is low. 

We know that we can represent any interpretation of the word using a type-1 

fuzzy set. Now, we need to combine different type-1 fuzzy sets to form one 



 

 

 

42 

 

 

type-2 fuzzy set to represent several expert opinions in one word. Mendel   

[29] proposed to use union operation to combine different type-1 or type-2 

fuzzy sets to form a type-2 fuzzy set.  

 

Figure 12: Different fuzzy sets which need to be combined  [29] 

 

Figure 13: Union operation to form a Type-2 fuzzy set  [29] 
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We can conduct a survey to get opinions from different experts. But interval 

type-2 fuzzy sets with uniform shading i.e. FOU is used in the FLS 

developed by Mendel. It has a problem when the expert opinions are not 

uniformly distributed. And usually more experts have close opinion while 

few can have opinion that is far. In this case uniform shading of type-2 fuzzy 

set is a limitation. Still, considering the computational complexity of general 

type-2 fuzzy sets, interval tpe-2 fuzzy set is the right choice so far. There is 

another way of handling this situation—we can drop some experts’ opinion 

as outliers if those are really far from most of the others.  

This uncertainty is very much similar to our defined linguistic assessment 

uncertainty which is the difference of opinion of experts while assessing a 

software artifact. So we can collect experts’ assessment of the measure of an 

artifact in form of type-1 fuzzy sets. And then union operation of those type-

1 fuzzy set can produce a type-2 fuzzy set which will represent this 

assessment uncertainty. 

4.1.2 Uncertainty about the consequent that is used in a rule 

Survey again should be conducted among the experts to reach some 

conclusion about the consequent of a rule. Mendel   [27] has discussed in 

details how this type of survey can be formulated. To reflect the result of the 
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survey at the output of fuzzy logic systems, he has proposed three 

possibilities- 

a. Keep the response chosen by the largest number of experts. 

b. Find a weighted average of rule consequents for each rule 

c. Preserve the distributions of the expert responses for each rule 

Mendel has chosen solution (b) as the most appropriate one and derived the 

defuzzification method which accomplishes this task. 

If we want to formulate a fuzzy logic system to build quality models, then 

the consequent is the external attribute. And the fuzzy rules are the linguistic 

relationships between the internal and external attributes. As experts have 

different viewpoint about the impact of a group of internal attributes on a 

particular external attribute i.e. consequent, this is the linguistic relationship 

uncertainty. We can conduct a survey among the experts about the fuzzy 

rules to solve this problem. Let us consider a survey among 10 experts on the 

relationship between the internal attributes coupling and cohesion and the 

external attribute reliability. Table 3 shows an example of such survey. 
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Table 3: Survey of experts’ opinion on linguistic relationship  

IF Reliability is  
Low 

Reliability is 
Medium 

Reliability is 
High 

Coupling is High and Cohesion is 
High 

6 3 1 

Coupling is low and Cohesion is 
medium 

4 2 4 

 

4.1.3 Uncertainty about the measurements that activate the 
FLS 

We have seen in Section  3.5, how non-singleton fuzzification helps us to 

deal with input noise. This input noise is the uncertainty about the 

measurements that we use to activate the FLS. When the noise is stationary, 

we can use type-1 non-singleton fuzzification. If the noise is non-stationary, 

we should use type-2 non-singleton fuzzification. 

We have seen in Table 2 that this type of uncertainty is similar to the 

numerical assessment uncertainty in software quality models. This 

uncertainty needs some explanation and the concept of noise in fuzzy logic 

system has a difference with our defined uncertainty. Numerical assessment 

uncertainty comes from the different inconsistent measures of the same 

internal attribute. A Master thesis work here in KFUPM has shown that 

different cohesion measurements to measure class cohesion have real 

inconsistency among them  [1]. Noise in the fuzzy logic system defined by 
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Mendel has a basic difference with our numerical assessment uncertainty. 

Noise in general sense comes from a noisy sensor i.e. if the same thing is 

measured using a noisy sensor for more than once, then the sensor will give 

different measurements at different times. If the metrics are our sensors, then 

there is no noise because software metric always will give the same 

numerical value. Our uncertainty concept lies in the existence of different 

metrics for the same internal attribute. Still we can use non-singleton 

fuzzification to solve this problem. Mendel modeled the input noise using 

interval type-2 Gaussian fuzzy set with uncertain standard deviation. But as 

in our case, we have no concept of stationary or non-stationary noise; we 

shall use type-1 non-singleton fuzzification where the mean of the Gaussian 

membership functions will be the mean of different metric values of a 

particular internal attribute and the standard deviation will be the standard 

deviation of these different metric values. 

4.1.4 Uncertainty about the data used to tune the parameters 
of a FLS 

Here the data means the training data. Training data can be noisy or 

uncertain. For example, at each data point we may have more than one value 

available. This noise should be handled while building the FLS. Type-2 

fuzzy sets help us to handle this type of uncertainty. Again for example, if 

we consider Gaussian membership function, then uncertain mean can 
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represent this noise in the training data. Usually there are two steps of 

building a FLS- initializing and training. While initializing, we should define 

the type-2 fuzzy MF in such a way so that it represents the noise. While 

training, the training data is used as the measurements to activate the FLS 

and to adjust the type-2 membership functions. So, we can use non-singleton 

fuzzification to handle the noise in this stage. 

Uncertainty in the training data has different sources in software quality 

model. The first one is the uncertainty we discussed in the previous section 

i.e., different metric values for measuring the same attribute. Another is 

laziness or ignorance i.e., there may be other factors we don’t know which 

affect the relationship. The first one can be dealt with non-singleton 

fuzzification. While we train the framework, we should use the mean and 

standard deviation of the internal attribute measurements as input. Type-2 

fuzzy set can help to deal with the second issue. We may represent different 

experts’ opinion using type-2 fuzzy set or we can derive the type-2 fuzzy sets 

from the uncertain numerical data. 

4.2 Type-2 fuzzy Logic based Framework to Build Software 

Quality Model 

The core structure of our framework is based on type-2 FLS which has all 

the components as in Figure 10. Internal and external attributes and their 
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relationships are the main sources of knowledge in our framework. So, we 

developed the framework as in Figure 14. 

 

Figure 14: Type-2 FLS based framework to build software quality models 

The fuzzifier takes the crisp metrics values as input. These crisp metric 

values are the different measurements of the internal attributes. We shall see 

later how these different values can be used as input. The output of fuzzifier 

is the fuzzified measurements which will be the input to the inference engine. 

Expert assessment of a software artifact in a form of fuzzy set also can be 

input to the inference engine. The fuzzy rules are also input to the inference 

engine. In our framework, fuzzy rules are the relationship between internal 

and external attributes. The resultant of the inference engine is type-2 fuzzy 

output sets which can be reduced to type-1 fuzzy set by the type reducer. 

This type reduced fuzzy set in our framework is an interval set which gives 

the predicted external attribute measurement as a possible range of values. 
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The defuzzifier calculates the average of this interval set to produce the 

predicted crisp external attribute measurement. 

Developing such framework usually has three main steps. We shall also 

define developing process of our framework in these three steps. The steps 

are 

i) Initializing the Framework 

ii) Training the Framework 

iii) Using the Framework 

We shall discuss these three steps in details in the following three 

subsections. 

4.2.1 Initializing the Framework  

We have discussed type-2 fuzzy logic system in the previous chapter. We 

know about the components of a typical fuzzy logic system. Now to initialize 

our framework, we need to define those components from the perspective of 

software quality models. Initializing a FLS means initialization of its 

antecedents, consequents and the fuzzy rules. These components of a fuzzy 

logic system can be initialized either from the numerical dataset or from the 

expert opinion. Before delving more into this, let us see what will be the 

antecedents and consequents in our framework.  
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 Internal attributes are the antecedents 

 External attribute is the consequent 

Our framework will support one external attribute to be assessed or predicted 

based on several internal attributes. If-Then rules will form the rule base 

using these internal and external attributes. 

First let us look at the issue of initialization from numerical data. We expect 

that we shall have one or more measurements available in the dataset for 

each internal or external attribute. Our framework will define the initial 

fuzzy sets for both antecedents and the consequent from this dataset. To use 

the FLS developed by Mendel  [27], we consider our antecedent and 

consequent membership functions to be type-2 Gaussian with uncertain mean 

and the input membership functions will be type-2 Gaussian with uncertain 

standard deviation. Let us suppose that we need to initialize F fuzzy sets for 

the attribute A. Each attribute has m measurements. In the training dataset, 

we have attribute measurements for n software modules. Table 4 shows the 

structure of the training dataset for one attribute. 
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Table 4: Training Dataset for one Attribute 
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Now, we have to calculate the followings- 

M1 = Minimum (µ1, µ2….. µn) 

M2 = Maximum (µ1, µ2….. µn) 

M = Mean (µ1, µ2….. µn) 

S = Standard Deviation (µ1, µ2….. µn)  

R1 = Minimum (σ1, σ2... σn) 

R2 = Maximum (σ1, σ2... σn) 
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R = Mean (σ1, σ2... σn) 

T = (M2-M1) /(F-1) 

Now if Ui1 and Ui2 are the uncertain means for i-th fuzzy set, then define the 

means and standard deviations of F fuzzy sets as follows- 

Ui1 = M1 + (i-1)T – 0.5*R 

Ui2 = M1 + (i-1)T + 0.5*R 

Here i = 1….F 

Standard Deviation of all the fuzzy sets = K*S 

Here K is a positive constant. K should be chosen such that the membership 

functions cover the whole universe of discourse. 

Expert comments can be used to initialize all these parameters. Whenever we 

shall have more than one expert to define a fuzzy set, we can use the 

approach discussed in Section  4.1.1. 

The rule base can be initialized by an expert or considering all the possible 

combinations of fuzzy sets of internal attributes. If we have X internal 

attributes and F fuzzy sets for each internal attribute, then number of rules 

can be maximum FX if in each rule we use all the internal attributes as 

antecedents. 
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4.2.2 Training the Framework 

After initializing the FLS, our framework supports an optional step – 

training. If someone wants to rely totally on the expert comment to build the 

quality model, he does not need any training. But if it is needed to use the 

historical data, then training is the second step in our framework. The 

historical dataset will contain the measurements of different internal and 

external attributes. We have discussed in the previous section how this data 

should be organized and used to initialize the FLS. The same dataset will be 

used as training data. It will contain the input-output pair where the inputs 

are the internal attribute measurements and the output is the external attribute 

measurement. If we have more than one measurement for any attribute, then 

we shall use the mean of those measurements i.e. from Table 4 we shall use 

µi as the input or output measurement for a particular attribute i of a software 

module. µi will be the mean of non-singleton input type-1 Gaussian 

membership function. The standard deviation of the measurements i.e. σi will 

be the standard deviation of the non-singleton input type-1 Gaussian 

membership function. Following is the training algorithm. 

 Given N input-output training samples (x(t):y(t)), t=1,…,N 

 Objective is to minimize the error function for E training Epochs 

 E(t) = {[f(x(t)) – y(t)]/y(t)}^2, t=1,…N 
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 The steps 

 Initialize all the parameters (as we discussed before) 

 Set the counter, e, of the training epoch to zero i.e. e=0 

 Set the counter, t, of the training data to one. i.e., t=1 

 Apply the means of the internal attribute measurements with 

their corresponding standard deviation to the type-1 non-

singleton type-2 FLS (see Chapter 11 of Mendel’s book). 

Mendel has used same standard deviation for all the input 

MF. But in our framework, we used different standard 

deviation for each input. 

 While defuzzification, use average the average response from 

the survey for the consequents (see section 10.12 of Mendel’s 

book) 

 Tune the uncertain means of the antecedent membership 

functions and the consequents also using steepest descent 

algorithm for the error function (see chapter 11 of Mendel’s 

book). Don’t tune the input standard deviations.  

 Set t=t+1. If t = N+1, go to next step otherwise apply the next 

input 
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 Set e=e+1. If e=E, Stop; otherwise start a new epoch 

4.2.3 Using the Framework 

Using our framework is straightforward. If we want to use numerical data as 

input, we shall use the mean and standard deviation of the existing 

measurements for each internal attribute where this mean and standard 

deviation will be the mean and standard deviation of input non-singleton 

type-1 fuzzy set. If we use expert comment as the input, then the expert 

comment should be given as input to the system in the form of type-2 

Gaussian fuzzy set with uncertain standard deviation. 

4.3 Experimental Design and Validation 

Validation is a very important requirement to show that any newly proposed 

framework really works. We also tried to validate our framework. For 

validating the framework, we need to conduct experiments. In this section we 

shall discuss how we design our experiment to validate the framework. 

We want to prove mainly two things from the validation. The first one is that 

our framework’s training works fine i.e., with numerical dataset, the 

framework can train well to achieve a lower value of error function. The 

second thing is to show that the framework gives better performance than the 

other existing approaches. The second objective of validation is often 
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difficult to achieve due to the insufficiency of available data. Still, we can do 

some sort of comparisons using artificial dataset. The first objective can 

easily be achieved, because artificial dataset can be used to train the 

framework. Actually the ultimate purpose of the framework is function 

approximation i.e. approximate the functional relation between internal and 

external attributes. So, if we generate artificial dataset, then still there will be 

some sort of functional relation. So, if we can validate our framework using 

this artificial dataset, it is expected that while actual dataset is provided, it 

will also work fine. 

For training the framework, we need uncertain numerical measurements of 

internal attributes and the measurement of the external attribute. We have 

such data from  [1]. But unfortunately this dataset does not have any external 

attribute measurements. So we used artificial external attributes. To compare 

our framework with other approaches, we used data from NASA. But this 

dataset has no uncertain measurements. We discuss the details of these 

experiments and the results in  Chapter 5. 

4.4 Validation of the Training Algorithm 

Here, we now discuss the validation of the training algorithm of the 

framework. As we mentioned earlier, the dataset from  [1] has uncertain 

internal attribute measurements. All the measurements available there, are 
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cohesion metric values. Different cohesion metrics have been calculated for 

many classes from different object oriented systems. We took 50 classes 

from this dataset and for each class we considered the metric values of four 

cohesion metrics. Those are CCM, TCC, LCC, CAMC. We randomly 

generated the one external attribute value for each class. Then we applied our 

framework on this dataset and trained with different step size. Step size is an 

important parameter of steepest descent algorithm. The step size determines 

how quickly or slowly the error function is minimized. Figure 15 and Figure 

17 show the relative Mean Squared Error (MSE) while training with step 

sizes 0.01 and 0.1 respectively. It also shows the testing MSE while we test 

with CAMC metric after training with uncertain data. It is very much evident 

from these figures that lower step size makes the learning procedure slow, 

whereas higher step size makes it faster. Figure 15 needs some more 

explanation regarding the ups and downs towards the end of learning epochs. 

This may occur if the error function has some local minima or maxima and 

in that case small step size may be caught in those regions. The example of 

such error function is shown in Figure 16. Another important conclusion we 

may draw from the figures that the uncertainty is properly handled through 

our framework because when we test with one of the cohesion metrics, the 

error function is also minimized. To check the same result with other metrics 

we tested with LCC, TCC and CCM also. Figure 18, Figure 19 and Figure 20 
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shows the test result with the cohesion metrics LCC, TCC and CCM 

respectively. All these figures agree with our conclusion that the framework 

is learning the uncertainty in the dataset properly. In all cases, while testing 

with a single cohesion metric, the testing curve has same pattern as the 

training curve. 

 

 

Figure 15: Training with means (Type-2) and testing with CAMC (step size = 

0.01) 
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Figure 16: Error Function 

 

Figure 17: Training with means (Type-2)  and testing with CAMC (step size = 

0.1) 
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Figure 18: Training with means (Type-2) and testing with LCC (step size=0.1) 
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Figure 19: Training with means (Type-2) and testing with TCC (step size=0.1) 
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Figure 20: Training with means (Type-2) and testing with CCM (step size=0.1)



Chapter 5  

Experimental Results 

We implemented our proposed framework to build software fault prediction 

model. As we saw in  Chapter 2, people have widely used software fault 

prediction models to verify their model building approach. There is another 

reason behind our choice of fault prediction. That is the availability of data. 

To get historical data in public domain is not very easy and for the 

experiments data should come from reliable source. We got some data which 

helped us to build fault prediction models and to compare the performance of 

our framework with that of other existing techniques. We have divided this 

chapter in three sections based on different types of available data. Two 

sources of data are used. One is NASA IV&V MDP   [30] another is from the 

Giovanni Denaro, author of the paper on software fault proneness models  

[8].  

5.1 Experiments with NASA Dataset 

NASA dataset has few projects developed in C and one project developed in 

C++. For all the projects, there are several metrics data calculated from 

different modules of the projects. The very much useful aspect of this dataset 

is that the number of defects or faults detected for each module has been 
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stored in the dataset. For the OO project i.e., project developed is C++ we 

have considered each class as a module. As there is only one such project, 

we have divided the classes into two sets randomly. One set was used as the 

training set and another for testing. For the procedural projects i.e., projects 

developed in C, we could choose training set and test set from different 

projects as we have more than one project. We did use only numerical data 

for training and testing.  

We implemented type-1 and type-2 fuzzy logic based models and compared 

their performances. This comparison is important because; although both 

type of fuzzy logics have the ability to take expert comments into 

consideration, uncertainty is the main issue that should create a difference 

between the performances. Actually in NASA data, we cannot apparently see 

any type of uncertainty except only uncertainty with numerical relationship. 

So, we expect type-2 FLS to perform better if we could have data that 

associated all types of uncertainties. We also tried to compare the 

performance with that of regression based model. But it is difficult to reach 

some conclusion with this sort of comparison. Because, the underlying 

shortcoming of the regression based models is the one we discussed in 

 Chapter 1. Regression based models are not universal function approximator. 

So, we need to define the type of the model and there could be numerous 

types. In our experiments we used linear and polynomial statistical 
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regression models to compare their performance. Actually this comparison 

between fuzzy logic based model and regression based models is just for 

experimental purpose, because theoretically also it is evident that regression 

based models can not handle imprecision and uncertainty. 

For all experiments, we used the type-2 fuzzy logic system developed by 

Mendel  [27]. We used his source code also which is provided for free to use. 

He used Gaussian membership functions with uncertain mean for 

antecedents and consequents and Gaussian membership functions with 

uncertain standard deviation for inputs. We also used type-1 fuzzy logic 

system developed by Mendel to build the fault prediction model. We used 

the same set of rules to build fault prediction model using type-1 and type-2 

fuzzy logic systems. We used mean squared error as the performance 

indicator of the fault prediction models. While developing this type of 

adaptive models, another issue plays a vital role in the results i.e., the step 

size. Higher step size may lead to worse performance rather than converging. 

On the other hand very low step size may lead to a slow convergence. So, we 

did experiments with different step sizes. As it is not our main objective to 

find out a suitable step size, we just did experiment with several step sizes 

and show some of the results that may help us to explain the performance of 

the framework. Suitable step size really differs in different problems and 
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experiments with different values will be required to find the most suitable 

one. 

5.1.1 Results from OO Dataset 

The object oriented project has several metrics data in the dataset. We used 

CBO and LCOM metrics to build our fault prediction model. In the model, 

CBO and LCOM are the antecedents and number of faults is the consequent. 

For each antecedent, we considered 2 membership functions. So we have 

total 4 rules. For each rule the consequent membership functions are 

different and random. So we have 4 consequent membership functions. The 

rules look like as given below. 

If CBO is MF1
CBO and LCOM is MF1

LCOM then Number of Faults is MF1
NOF 

If CBO is MF1
CBO and LCOM is MF2

LCOM then Number of Faults is MF2
NOF 

If CBO is MF2
CBO and LCOM is MF1

LCOM then Number of Faults is MF3
NOF 

If CBO is MF2
CBO and LCOM is MF2

LCOM then Number of Faults is MF4
NOF 

In these rules MFi
v represents the i- th membership function for variable v.  

In the object oriented project, we have total 144 classes. We chose randomly 

75 classes for training and rest 69 classes for testing. As the consequent 

fuzzy set is random, we conducted the experiment with training dataset 15 

times and plotted the average and standard deviation of the relative Mean 
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Squared Error after testing. This gives us more confidence in the result. 

Figure 21 and Figure 22 shows average and standard deviation respectively. 

The result doesn’t look to be promising for type-2 fuzzy logic based 

framework. Type-1 fuzzy logic is performing better. To have an explanation 

on this issue, we conducted the same experiment with step size 0.2. With 

step size 0.01, our framework is converging still while Type-1 has already 

converged. After some more epochs, it is expected to converge totally.  

Figure 23 and Figure 24 shows the average and standard deviation of MSE 

with step size 0.2. It is evident from these two figures that with high step 

size, after few epochs Type-2 FLS based framework converges to the same 

level of Type-1. This happened mainly because we had no uncertainty in the 

training or testing dataset. Type-2 FLS considers that uncertainty is there, but 

if the dataset is certain, then after few epochs it starts performing same as 

Type-1. If we could have data with uncertainty i.e., each attribute with 

several measurements, then it was possible to show the superiority of Type-2 

FLS over Type-1. 
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Figure 21: Average Testing MSE of OO project for 15 experiments with step 

size 0.01 
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Figure 22: Standard Deviation of Testing MSE of OO project for 15 

experiments with step size 0.01 
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Figure 23: Average Testing MSE of OO project for 15 experiments with step 

size 0.2 



 

 

 

71 

 

 

 

Figure 24: Standard Deviation of Testing MSE of OO project for 15 

experiments with step size 0.2 
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We see the same type of graphs with test data also. Our explanation 

regarding the relation between the step size and the uncertainty is more 

evident from Figure 23. All the figure of standard deviation also gives us 

confidence that at least at higher step size, type-2 has better standard 

deviation. 

We built statistical regression based model also with the same training and 

testing dataset. We used both linear and non-linear regression. For non linear 

we used 2nd degree polynomial regression. We calculated the MSE for both 

training and testing dataset. While comparing the MSE of regression based 

models with that of FLS based models, we considered the minimum that we 

could get from FLS based model irrespective of the step size. Figure 25 

shows the comparison for the testing dataset. The result looks inspiring for 

the Type-2 FLS based framework. Some may argue that we just 

experimented with two types of regression based models. Actually this is the 

strength of FLS based models over regression based model. Fuzzy logic 

systems are universal function approximator and we discussed this issue 

earlier in this chapter. 
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Figure 25: Comparison of Regression based models with FLS based models for 

OO Testing Data 
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5.1.2 Results from Procedural Dataset 

As we have more than one project written in C, we could choose our training 

and testing dataset from two different projects. The training and testing both 

projects have more than 1000 modules. But most of them have zero faults. 

So, we considered to choose only those modules which have at least 1 fault. 

Now our training set contains 81 modules and test set contains 73 modules. 

Halstead Error Estimate (HEE) and Cyclomatic Complexity (CC) are two 

metrics that we used as our internal attribute measurements. So, in our model 

HEE and CC are antecedents and Number of Faults (NOF) is the consequent. 

For antecedents, we considered two membership functions and for each 

consequent we considered different and random membership function. Here 

are our rules. 

If HEE is MF1
HEE and CC is MF1

CC then Number of Faults is MF1
NOF 

If HEE is MF1
HEE and CC is MF2

CC then Number of Faults is MF2
NOF 

If HEE is MF2
HEE and CC is MF1

CC then Number of Faults is MF3
NOF 

If HEE is MF2
HEE and CC is MF2

CC then Number of Faults is MF4
NOF 

In these rules MFi
v represents the i- th membership function for variable v.  

We have conducted the same sets of experiments with step sizes 0.01 and 0.1 

as we did for OO dataset. We shall present the results of average and 
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standard deviation of 15 experiments for both training and testing. Figure 26 

and Figure 27 shows the average and standard deviation of MSE with 

training dataset. The step size is 0.01 here. We see here that with step size 

0.01, after 25 epochs, Type-2 converged at the same level with Type-2. We 

did not do more experiments with high step size because with step size 0.01 

we could get good performance for both Type-1 and Type-2. Here the data 

has same shortcoming as the OO data had. We have no uncertainty and thats 

why after some epochs Type-2 FLS should perform as good as Type-1 FLS. 
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Figure 26: Average Training MSE of procedural project for 15 experiments 

with step size 0.01 
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Figure 27: Standard Deviation of Training MSE of procedural project for 15 

experiments with step size 0.01 
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We also conducted some experiments on this procedural dataset to compare 

our results with the results of regression based models. We did it only for test 

dataset.  

Figure 28 shows this comparison. FLS based models outperformed 

regression based models. The explanation of this result is again the same as 

we explained in the case of OO dataset. FLS based models are universal 

function approximator but regression based models are not. 

None of the above experiments with OO and procedural dataset uses expert 

comments. We could not use it due to the lack of available data from the 

experts. We hope to get better performance with our framework if we could 

use different expert judgments. 
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Figure 28: Comparison of Regression based models with FLS based models for 

Procedural Testing Data 
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5.2 Experiments with Apache Dataset 

All the experimental results we showed in Section  5.1, were solely based on 

our own experiments. As we could not find any published result for the 

NASA dataset, we are not able to compare our work with others using this 

dataset. Fortunately we got the dataset used by the authors of  [8]. The 

authors have extracted their relevant data fields from the public data of 

Apache web server. They used Data from Apache 1.3 as the training set and 

Apache 2.0 as the test set. Every C file has been considered as a module. 

Authors have calculated some procedural metrics for each module and 

extracted number of faults from the CVS repository. They have chosen 

different fault prediction models among all possible models based on some 

criteria. The models are built using multivariate regression analysis. The 

models differ in the use of metrics as independent variables. Different 

models use different subset of metrics. For each model, they have predicted 

the fault proneness as output from the test dataset. Then the modules of test 

dataset are sorted in descending order based on the predicted output. The 

percentage of modules from this sorted order have been calculated which are 

accountable for different percentages of known faults e.g., from the sorted 

order first x% modules are responsible for y% actual faults. If we want to 

compare two models, for the same value of y, the model which produces 
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smaller value of x, is said to be better to predict y% of actual faults. In the 

paper  [8], the authors have shown the results of 8 different models. We have 

built our type-2 fuzzy logic based model using the metrics that the authors 

used to build the direct model with best overall completeness. Figure 29 

shows the comparison between our model and the regression based model 

from the paper. It is evident that our type-2 FLS based model has a consistent 

better performance.  
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Figure 29: Comparison with the results from the paper  [8] 

 
 



Chapter 6  

Conclusion 

In this chapter, we summarize our contributions and limitations and conclude 

the thesis with some future work directions. 

6.1 Contributions 

Our investigation, research and experiments conclude the following 

contributions of this thesis. 

i) Sources of imprecision and four different types of uncertainties 

have been defined in software quality models 

ii) A literature survey has been done in the domain of software 

quality models 

iii) Type-2 fuzzy logic has been investigated as a solution to the 

uncertainty problems 

iv) It has been shown that there is a nice mapping between the 

uncertainties discussed by Mendel  [29] and our definitions of 

uncertainty in software quality models. 
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v) Type-2 fuzzy logic based general framework has been built to 

handle imprecision and uncertainty in software quality models 

and different steps of this framework has been discussed in 

details. Conceptually it has been shown to deal with all types of 

uncertainties. 

vi) Validation of the framework has been done using some artificial 

dataset. 

vii) Software fault prediction models have been built as an instance of 

the framework. Experiments have been done using this model to 

compare type-2 fuzzy logic based framework with type-1 FLS 

and regression based approaches.  

6.2 Limitations 

i) We could not conclude the performance of our framework fully 

because of the lack of sufficient data. The data we used had no 

uncertainty in the attribute measurements and we did not try to 

build the model based on expert comments. These are the two 

limitations of this work. Still, most of the results look to be 

promising. Appropriate justification has been given to explain the  

results. 
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ii) Mendel’s type-2 FLS has some limitations and we built our 

framework based on these limitations. For example, FLS can only 

deal with interval type-2 Gaussian membership functions. It 

specially imposes the limitation while combining the experts 

opinion to deal with linguistic assessment uncertainty. 

6.3 Future Work 

Here we point to some the possible future works in the same research 

direction of this thesis 

i. More experiments can be done if data is available with uncertain 

numerical attribute measurements 

ii. The framework can be validated using expert data 

iii. Type-2 FLS developed by Mendel still has some limitations which 

have been discussed in the previous sections. Some future work can 

be directed towards this direction to make the framework more 

robust 

iv. Software fault prediction models have been built in this work for 

experiment. Other models like cost estimation model may be built 

with this framework. 
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v. We mainly focused on the framework, not on the attributes and 

their relationship. This framework opens the door to work with 

different software attributes to explore their relationship and thus 

come up with different quality models. 
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MSE: Mean Squared Error 

LCOM: Lack of Cohesion Measure 

CAMC: Cohesion among Methods of Classes 

TCC: Tight Class Cohesion 
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