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Interactive curve design in Computer Aided Geometric Deswgn (CAGD) is typi-
cally accomplished through the manipulation of a control polygon. The methodology
based on B-spline type basis functions results in a curve that lics in the convez hull.
Changes in the control polygon only effect the curve locally. This rescarch is oriented
towards the representation of interpolatory curves and surfaces. using rational cu-
bic splines. These interpolatory splines have been constructed through the B-spline
formulation. The method for evaluating the rational cubic B-spline curve is sug-
gested by a transformation to Bernstein-Bezier form. The method uses the cubic by
quadratic functions and for given control points constructs the interpolatory spline
method which enjoys all the geometric properties of B-splines. Hence the spline rep-
resentation is not a spline over spline form.

The generation of interpolating spline curves and surfuces is a useful and power-
ful tool in CAGD. Various methods have been developed to control the shape of an
interpolating curve for computer-aided design applications. Some methods are better
suited for controlling the tension of the curve on an interval. while others are bet-
ter suited for controlling the tension at the individual control points. This work is
oriented towards investigating C? like rational interpolatory splines with point and
interval tension. Shape controls are available to tighten the rational splines on n-
tervals and/or at the interpolation points.
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Chapter 1

INTRODUCTION

Interactively designing distinct objects is a common problem of Computer Aided De-
sign (CAD), Computer Aided Manufacturing (CAM), Solid Modelling and Graphics
today. It is typically accomplished through the manipulation of a control polygon.
This work is oriented towards the B-spline type approach. for the representation of
curves and surfaces. using rational cubic splines. B-splines are a useful and powerful

tool for CAGD and Solid Modelling. and they can be found frequently in the existing

CAD/CAM systems.

Splines are used in graphics applications to desigu curve and surface shapes,
to digitize drawings for computer storage, and to spccify auimation paths for the
objects or the camera in a scene. Typical CAD applications for splines include the
design of automobile bodies. aircraft and spacecraft surfaces. and ship hulls. In
computer graphics, the term spline curve refers to any composite curve formed with
polynomial sections satisfving specified continuity conditious at the houndary of the

pieces. And a spline surface is described with two scts of orthogonal spline curves.
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Interpolation curves are commonly used to digitize drawings or to specify animation
paths, whereas approximation curves are primarily used as design tools to structure

object surfaces.

Designing curves and surfaces plays an important role not only in the construc-
tion of various objects like automobiles, ship hulls, airplane fusclages and wings.
propeller blades, shoe insoles, bottles, etc, but also in the description of geological,
physical and even medical phenomena such as modelling the human heart ete. This
thesis presents a description and analysis of the class of rational cubic splines for
use in CAGD. It is proposed to use them for the representation of parametric curves
and surfaces in interpolatory form. CAGD is concerned with the approximation
and representation of curves and surfaces that arise when these objects have to be
processed by a computer. Development of objects in computer science is mainly

based on designing the curves and surfaces.

In CAD the smoothness of curves and surfaces plays an important role. Smooth-
ness is a global as well as a local property. Various methiods have been developed
to control the shape of an interpolating curve such as those in [1] and [2]. Some
methods are well suited for one type of shape control but not well suited for another.
This research is oriented towards design of objects using rational splines. In partic-
ular given a set of data points a C? like rational splinc whicli passes through the
data points is investigated. Th.e resulting rational splinc is capable of controlling the

shape of interpolating curves. easy to implement and compurationally cconomical.



CHAPTER 1. INTRODUCTION 3

1.1

1.

=1

Notation and Conventions

The symbol R will be used to denote the N-dimeusional real space.

Knot partitions will be assumed as

o<t <ta...<t,. (1.1)

. For any 7 the transformations

0= 0(1’) = (f - t,')/h,'

will be commonly used where

Il-,' = f,'.;.l -~ t;.

. Vectors (Points) and vectors valued functions are sct in bold face letters.

. Fi.1=0,1,...,n will denote the interpolatory points and ,; will be used for

the ratios of the type

Ai=(Fiq1 = F)/

. D; will be used for the first derivative value at the kuot ¢;.
. Given a function such as p(t). we will denote the ' derivative by pt(t).

. p € C™[to, ta] will mean that each component function of p: [ty.t,] — RY is

m-times continuously differentiable oui [tq.¢,].
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1.2 Overview

1.2.1 Definitions

L.

Spline: An M th degree spline is a piccewise polynomial of degree M that has
continuity of derivatives of order M-1 at cach kuot.

In computer graphics, the term spline curve refers to any composite curve
formed with polynomial sections satisfving specificd continuity conditious at
the boundary of the pieces. And a spline surface is described with two sets

of orthogonal spline curves.

Splines are generally classified as interpolation aud approrimation splines. In
interpolation spline the curve passes through cacli control point. whereas in ap-
proximation spline, the curve generally approxiiates the set of control points
without necessarily passing through any control point. A spline curve is de-
scribed using a geometry vector of four control points. in coutrast with the
geometry matrix of sixteen elements used to produce a surface. Interpolation
curves are commonly used to digitize drawings or to specify animation paths.
whereas approximation curves are primarily used as design tools to structure

object surfaces.

- Smoothness of curves: Curve segments exhibit ditferent continuity proper-

ties. When a composite curve is made up of curve seginents these properties

may change depending on how the segments have heen joined.



CHAPTER 1. INTRODUCTION 3

(a)

Parametric continuity: Two adjoining curves are said to posses Zero
order parametric continuity C°, if they simply meet i.e have a common
join point. If the tangent vectors to cach curve segment at the common
join point are equal then the curve exhibits First order parametric con-
tinuity C'. In general if the direction and magnitude of d"/dt"[Q(u)] (
Q(u) represents the curve ) are equal at the join point hetween segments

then the curve exhibits C" continuity.

Geometric continuity: Two adjoining curves are said to posses zero
order geometric continuity (G°) if they simply meet i.¢ have a common
join point. If the tangent vectors to each curve segment at the common
join point match to within a constant with directions cqual, magnitudes
not equal then the curve has G! geometric continuity .  Second order
geometric continuity G? means that both the first and second parametric
derivatives of the two curve sections are proportional at their common

join point.

1.2.2 Rational Splines

The rational curve has manifested itself in various fors including NURBS (non-

uniform rational B-splines), the rational Bezier curve. and the rational Beta-spline.

A single rational function usually does not have enough freedom to represent a given

curve. Thus several rational segments are joined together to gencerate spline curve.

Bezier (rational Bezier) and B-spline (or B-spline like) curves/surfaces are powerful
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tools for CAGD. They are found incorporated, in most existing CAD/CAM systems.

A rational spline is the ratio of two spline functions. General rational cubic curve

segments are ratios of polynomials:
X(O)=X()/W(E), y(O)=Y(t)/W(t),  a(t)=Z(1)/W(t)

Where X(t), Y(t), Z(t) and W(t) are all cubic polynomial curves whose control
points are defined in homogeneous coordinates. In general. the polynomials in a
rational curve can be Bezier, Hermite, or any other type. When they are B-splines,

we have nonuniform rational B-splines. sometimes called NURBS [3].

Rational curves are useful for two reasons. The first and most important reason
is that they are invariant under rotation, scaling, translation and perspective trans-
formations of the control points , whereas nonrational curves are invariant under
only rotation. scaling, and translation. This means thar the perspective transfor-
mation needs to be applied to only the control points. which can then be used to
generate the perspective transformation of the original curve. A second advantage
of rational splines is that. unlike nonrationals. they can define precisely any of the
conic sections. A conic can be only approximated with nourarionals, by using many
control points close to the conic. This second property is usctul in those applications,

particularly CAD, where general curves and surfaces as well as conics are needed.
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~1

1.3 Previous Work

1.3.1 Rational Splines with Shape Control

Although the C? cubic splines have the many clegant mathematical properties dis-
cussed in [4] and (5], the curves sometimes exhibit undesirable oscillations. Various
methods have been developed to control the shape of an interpolating curve, such
as those in (1], [2], [6]. and [7]. Some methods arc well suited for one type of shape
control but not well suited for another. For this reasou. a multipurpose system was
developed in [8] which consists of different spline methods and uses the particular
spline that is most suited for the desired type of shape control. This system uses a C2
cubic spline to generate the initial interpolating curve. an expouential - based spline
under tension [9] and a rational spline with tension [2] arc used to flatten or tighten
the curve on segments between interpolation points. and piccewise cubic v-splines
[6] are used to sharpen or tighten the corners of the curve at the interpolation point.
Thus, to avoid a multiplicity of methods, one method is desirable which is capable
of generating a broad range of interpolating curves. is casy to implement, provides

a shape control according to the user’s wishes and is copurationally economical.

1.3.2 Spline Interpolation

In his remarkable paper Manning [10] considered two hiportant problems of spline

interpolation:
1. How to choose the tangent vector maguitudes

2. How to compute curvature continuous cubic curve interpolants
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Nu-splines were introduced by Nielson [11] as piccewise polynomial alternatives
to splines under tension. Nu-splines are curvature and C'' continuous curves that

contain free parameters, the nus, used to control the arc length.

1.3.3 Interpolation using B-splines

Fitting a B-spline curve or surface through existing data points has two major ap-
plications in computer graphics. First, in modelling: a sct of sample data points can
be produced by a three-dimensional digitizing device. such as a laser ranger. The
problem is then to fit a surface through these points so that a complete computer
graphics representation is available for manipulation (for. say. animation or shape
change) by a program. Second, in computer animation: we may use a parametric
curve to represent the path of an object that is moving through three dimensional-
space. Particular positions of the object (key frame positious) may be defined, and
we require to fit a curve through these points. A B-splinc curve is commonly used
for this purpose because of its C? continuity property. In animation we are normally
interested in smooth motion and a B-spline curve representing the position of an

object as a function of time will guarantee this.

The problem of B-spline interpolation can be informnally stared as follows: given
a set of data points we require to derive a set of control points for a B-spline curve

that will define a fair curve that represents the data points.
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1.4 Review of some Shape Control Methods

In this section a brief review of some of the existing spline methods is given because
these can be considered either as an alternative or as particular cases of the spline
methods which are going to be discussed in the theory of this thesis. For cach of the
splines we assume the knot partition of equation(1.1) and the values F;.i =0..... n

at the knots. Throughout the discussion, we will denote the spline curve by p(t)

1.4.1 Cubic Spline

The natural cubic spline is the C? piecewise cubic fuuction that minimizes

vin = [ ey (12)

over all functions in H2[ty, t,]. H2[ty,ts] consists of all functions whose first deriva-

tive is absolutely continuous and whose second derivative belougs to L2[tg. t,].

1.4.2 Spline under Tension

Barsky [9] constructs the spline under tension as the interpolating function in

H?[to.t,] that minimizes

vip = [ R+

n-—1 i+l
Zw,-/:'"‘ (FY(t))2dt (1.3)

i=0 V

where w; > 0, for¢ = 0,...,n~1. The minimizing function is a piccewise exponential

and linear function that belongs to C2. The constant w; can lie used to control the
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tension of the curve on the interval [t;,t;4,]. As w; increases. the exponential-based

spline under tension becomes tighter on that interval.

1.4.3 Weighted Spline

The weighted spline in [1] is the interpolating function that minimizes

ta
2 9
Vi) = [T ) a (1.4
0
where w(t) is a positive integrable function. If w(t) is a piccewise constant function.
then the weighted spline is a C! piecewise cubic polynowial. If w(t) is large on oue
interval. relative to bordering intervals, then the weighted spline becomes tighter on
that interval in a manner similar to the spline under tension. It should be noted
. . . D . . .
that the spline under tension is C2, but computationally more expensive because it
is a piecewise exponential; whereas the weighted spline is a piccewise cubic. but it

only belongs to C!.

1.4.4 v-Spline

The v-spline in [6] is the interpolating function in H*[t,.t,] that minimizes

tn . n Y _
Vi = [T+ 3wl (15)
to ) i=0
where »; > 0, for i = 0,...,n." As noted in [6], the v-splinc is a C'! piecewise cubic

function that does not mimic splines in tension well in the functional case. However.
in the parametric case, as v; increases the v-spline curve hecomes tighter at the

interpolation point because the magnitude of the tangent vector approaches zero.
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1.4.5 Weighted v-Spline

The weighted v-spline [1] is the marriage of the weighted spline and the v-spline. It

is the C! piecewise cubic interpolatory function p(t) that minimizes

n-1 tn . n )
V() = S [CUD@Rd+ Ll fU) (1.6)
i=0 te =0
where w; > 0fori=0,....n~1and y; >0for/=0..... n. The v; are termed

as point tension factors because they tighten a parametric curve at the it point in
the same way as they do for the v-splines in [6]. The «, are termed interval weights
because they tighten the curve on the i** interval in the saine way as they do for the
weighted splines. If v; =0 and all w; = c¢. where ¢ is some constant value. then the
weighted v-spline is the C? cubic spline. If all w; = c. then the weighted v-spline
equals the v-spline in [6] with tension factors v;/c. If all v;=0. then it equals the

weighted spline.

1.4.6 [3-Spline

The 3-spline [12] is a piecewise cubic function p(t) that satisfics the following deriva-

tive constraints

p(tis) 1 p(t)
pPUty) [ =] 0 3 pHt) (1.7)
i P(Q)(ti+)'_ | 0 3y 33 11 prNE) ]
Where 3,; > 1. 1 =0..... n—~1land 3,;>20. ¢t =0..... n. The 3y ; are known as

biased tension factors as they pull the curve to the ouc side. The parameters o
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are known as point tension factors because they behave in exactly similar way as
the v; in the v-splines. If f5; = 0 and f;; = 1, then the J-spline is the C? cubic
spline. If 4, ; = 1, then it equals the v-spline. For paramectric curves. the constraints

of equation(1.7) mean that the curve is GC? (geometric continuity of order 2).

1.5 Proposed Work

1.5.1 Problem Formulation

The following interpolatory B-spline like rational splines have heen investigated:

—

. Interpolatory rational cubic spline with point tension

[\V]

. Interpolatory rational cubic spline with interval tension

o

. Interpolatory rational cubic spline with point and interval rension.

The foremost objective of this research was to design inrerpolatory rational cubic
splines that provide some extra degrees to control the shape of the curve. both lo-
cally and globally according to the desires of the uscrs. This above curve methods

have been generalized for 3-D object modelling.

1.5.2 Objectives

The C? rational interpolatory splines investigated have the following desirable prop-

erties:

1. Are capable of generating a broad range of interpolating curves
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2. Are easy to implement
3. Provides shape control according to the user’s wishes

4. Are computationally economical.

1.5.3 Results

1. Provides C? alternative to the well known existing GC? or C! methods like

cubic v-spline of [6] and weighted v-splines of [1].

2. Have parameters associated with each control point and interval. which pro-

vides a variety of shape controls like point and interval tensions.



Chapter 2

RATIONAL SPLINES WITH
INTERVAL TENSION

2.1 Introduction

A rational cubic spline with interval tension was described aud analysed in [2]. It
provides a C? computationally simpler alternative to the expounential spline under
tension [7] and an alternative to C! and GC? spliuce methods like the weighted v-
spline [1] and y-spline [13]. The rational cubic splinc waintains the C? parametric
continuity of the curve. rather than the more general geometric GC? arc length
continuity achieved by the v-spline and J-spline. Regarding shape characteristics.
it has a shape control parameter associated with cach inrerval whiclh can be used
to flatten or tighten the curve both locally and globally. Siuce the spline is defined
on a non-uniform knot partition, the partition itself provides additional degrees of
freedom on the curve. However the parameterization is normally expected to be de-

fined on a uniform knot partition, or by cumulative chord leugth. or by some other

14
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appropriate means.

This chapter presents a description and analysis of a rational cubic interpola-
tory spline which has a shape parameter associated with cach interval. The spline
can be used in CAGD, to represent the parametric curves and surfaces in interpo-
latory form. The rational spline is based on a rational cubic Hermite interpolant.
Section(2.4) describes the freeform rational spline and analyses its behavior with re-
spect to shape parameter in each interval. Section(2.3) describes the interpolatory
rational spline, with examples which illustrate the interval tension property of the
rational spline. Section(2.6) and section(2.7) describe freeform aud interpolatory

surfaces respectively.

2.2 (' Rational Cubic Hermite Interpolant

A piecewise rational cubic Hermite parametric function p € C''[tq,#,]. with param-
etersr;. 1 =0,....n —1is defined for ¢t € [t;.t;34]. i =0..... n -1, hy
p(t) = pi(t:ri) =

(1 =6 Fi + 6(1 — 0)°(ri F; + hiDi) + 61 = 8)(riFiyy — hiDiyy) + 03 Fiy
T+ (r —3)8(1 =)

(2.1)

where r; > 0., will be used as tension parameters to control the shape of the curve.
The case r; = 3.7 =0..... n — 1, is that of cubic Hermite interpolation and the

restriction r; > —1 ensures a positive denominator in equation(2.1).

The function p(t) has the Hermite interpolation propertics :
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p(t,-) = F,' and p(l)(t;) = D,', t=0.....n.

For r; # 0, equation(2.1) can be written in the form:

pi(tir) =

Ro(6: i) Fi + Ry(8;7:)Vi + Ro(6: 1) WV + Ry(0: 1) Fig. (2.

[\V]
[N
~

where
‘/;' = F,’ + h,‘D;/T,'. H’,- =rljgp — /I,D‘,;/I',.

and R;(8:r;), j = 0.1.2,3. are appropriately defined rational functions with
> Rj(6:r;) = 1. (2.3)

Moreover. these functions are rational Bernstein-Bezier weight functions which are
non-negative for r; > 0. Thus in RY. N > 1 and for r; > 0 the conver hull
property holds i.e the curve segment P; lies in the convex hull of the control points
{Fi, Vi. Wi, Fiq1 }. Moreover, the wariation dimninishing property also holds of the
rational cubic i.e the curve segment p; crosses any (livper) plane of dimensions N-1
no more times than it crosses the control polygon joiuing F;. Vi, 1. Fi ;.

The rational cubic of equation(2.1) can be expressed as:

p;(t:'r,-) = l;(t) + e;i(t: ;). where
lLi(ty=(1-0)F, + 0F.+

e\ BB~ =D (0=~ = D), 10
e‘(t"') - l4+(r,~3)0(]1 -0,
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This immediately leads to Interval tension property i.c. for given fixed (or
bounded) D;, Diyy, the rational cubic Hermite interpolant of cquation(2.1) con-

verges uniformly to the linear interpolant on [t;, t;4,] as r; — oc.

In the following section, a C? rational spline interpolant is constructed. This
requires knowledge of the 2" derivative of equation(2.1) which, after some simplifi-
cation, is given by

@, _ 2 + 36%(1 = 6) + 3001 — 6)* + 5,(1 — 0)%)
A = BT+ (r; = 96(1 - 67

(2.4)
where

o; = ri{Diy1 — ;) = Diyy + D,
Bi = 3(Diy1 ~ )
7i = 3(Ai = D)

6; =1i(A;j = Di} = Diyy + D;

2.3 C? Rational Cubic Spline Interpolant

We now follow the familiar procedure of allowing the derivative parameters D;. { =
0,....7n to be degrees of freedom which are constrained by the imposition of the C?2

continuity conditions

PA(ti) =pP(tis). i=1..... n—1. (2.3)
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These C? conditions give. from equation(2.4), the lincar system of consistency equa-
[=) - -

tions.

hiDi_y + {hi(ricy = 1)+ hioy (1 = 1)} D; + hiy Digy (2.6)

= h,-r,-_lA;_l + h,’_[l',’A,’. t=1..... n—-1

For simplicity . assume that D and D, are given as end conditions ( clearly other

end conditions are also appropriate.). Assume also that

Then the equation(2.6) defines a diagonally dominant. tri-diagonal lincar system in
the unknowns D;. i = 1..... n — 1. Hence there exists a unique solution which can
be easily calculated by use of the tri-diagonal LU decomposition algorithm. Thus
a rational cubic spline interpolant can be constructed with tension parameters r;.
1 =0..... n — 1. where the special case r; = 3./ = 0..... n ~ 1. is that of cubic

spline interpolation.

2.4 Rational Cubic Spline with Interval Tension

This section reviews the rational spline with tension (B-spline represeutation ) method
[2]. For the purpose of the analysis. let additional knots be introduced outside the

interval [to.t,]. defined by t_3 <t_g <ty <tgandt, <t,.| < t,en < tasg. Let
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be shape parameters defined on this extended partition. Rational cubic spline func-

tions ¢, 7 = —1,...,n + 3, have been constructed, see Figure 2.1(a), such that

P;(t) =0, for t <tj_s (2.8)

’(,/')](t) =1. for ¢t 2 tj.{,.l

The local support rational cubic B-spline basis, see Figure 2.1(c) is now defined by
the difference functions:

Bj(t) = L"j(t) ~ '¢‘j+1(t). _] =-1..... n+1
Let Ri(6;7;), k =0.1,2,3 be defined as :

Ro(0:1:) = (1 — 6)*/Qol(8: 1;).
Ri(8;r;) = r:0(1 — 8)*/Qo(6: 1)
Ro(8;1:) = r:6%(1 — 6)/Qu(8; 7).

Ry(8:r;) = 03/Qo(6: 1)
where  Qg(8:7r;) =1+ (r; —3)4(1 —6).

A local support rational cubic B-spline basis B;(t). j = —1..... n + 1 was con-

structed and an explicit representation was given as:

Bj(t) = Ro(0:7i)B;(t:) + Ry(8:7;)(By(t:) + hiB;'”(ti)/"i) + (2.9)

Ra(0;7:)(Bj(tizy) — ]’-iBg'”(tH-.l)/"i) + Ry(0: ;) Bj(t,+1).
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w.(t) =0, fort< t j2
] c—
\[J](t) =1, fort>= t]+1
I ] R T
tio  tid t tiee

(@) The rational spline W;(t)

Wj(t) T
< Wj-ﬂ (t)
| | 1 ! T
tig Lt t tist tiv2

(b) The rational splines

Bi(t) = w0 - v,

l i | ] |
tig b1 t et ti+2

(c) The rational B-spline Bj(t)

Figurc 2.1: The rational spline forns
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where
Bj(t:) = B(t:) =0, for i#j—1.j.j+1
and
Bj(tj—1) = pj—1. B (tjo1) = fij-i.
Bi{t;) =1-X;—p;, B{(t;)=X; — ;.
Bj(ti+1) = Ajs1, Bf,'”(fj:-l) = —’\jrl
with

Aj = N[y gy =Dy o

These rational spline functions, see Figure 2.1. arc such that

—

. (local support) B;(t) =0, fort € (tj=2.tjs2).

(R

. (Partition of unity) Z}‘:ll Bj(t) = 1. for t € [ty.1,]

[UV]

. (Positivity) B;(t) > 0, for all ¢,

and hence enjoy all the B-spline properties..
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The design curve is given by:

n+1
p(t) = -Z P;Bj(t). t € [tg.t.] (2.12)

j=~1

where P; € RV define the control points, was transformed to the piecewise defined

rational Bernstein-Bezier representation, see Figure 2.2 :

Figure 2.2: Rational Bernstein-Bezier representation

p(t) = Ro(oi T’;)F,' + R1(9 1‘,‘)‘/,’ + Rg(g I',')H",' + R;,((i: I';)F;+|, (213)
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where
Poidi+ Pi(1 = XN — i) + Poypi = F (2.14)
(1=ea))P +a; Py =1
BiP;i + (1 = 3:) Py = 1V
with
a; =+ hgifr; (2.13)
3,' = /\i+1 =+ /l,':\,;l/l','
Let
Xi=[Fi A\ \Vi FH—[]T- Z; = [Pi—l r; Pi+l PH--_)]T
and . 1
A L= A=y I
l—aq; Q,
Y= (2.16)
3 1 - J
] Aigl L= ANig1 = tis1 Mz ]

Then the transformation of equation(2.14) can also he represented in matrix

notation as

Xi=1Y.Z; (2.17)

The transformation to rational Bernstein-Bezier form is very convenient for conmpu-

tational purposes and also leads to:

1. Variation diminishing property: The rational B-spline curve p(t). t €
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[to. ta], defined by equation(2.12), crosses any (liyper) plauc of dimension N-1
no more times than it crosses the control polygou P joining the control points

{P;}2t, see Figure 2.3 .

Figure 2.3: Variation diminishing property

2. Global tension property: Let r; > r > 2. /i = =2..... n+1, and let P
denote the rational B-spline control polygon. defined explicitly on [t;.t; ). i =
-1....,n by

P(t) = (1 ~8)P; +6P,.,. (2.18)

then the rational B-spline representation (2.12) converges uniformly on [t_;.t, . ]

as r — oo, see Figure 2.4(a)

3. Interval tension property: Consider an interval [t;.1,,,] for a fixed k €

{0....,n—1} and let

Qe=0- )P+ puPl_,.
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(W]

Qi1 = AP + (1 — \) Py

denote two distinct points on the line segment of the control polygon joining

Py.. Piyy, where

_ N1 [ s
* (hiemt[Timt + hyer [regr + )
_ hi_y[ri-t
B (Rt [Tt + hewr [ resy + D)

7

Then the rational B-spline representation of cquation(2.12) converges uni-

formly to Q, see Figure 2.4(b) on (e tier] as e — . where

Q(t) = (1 = 0)Qx + Qs+ (2.19)

Figure 2.5(a) and Figure 2.5(b) illustrate the interval tension behavior of the
curves. As the value of 74 and iy increases the resulting curve segment

approaches the line segment Py, Py.,.

For the proof of the above properties the reader is referred to [14]

2.5 Interpolatory Rational Spline with Interval
Tension

In interpolatory case we are given a set of data points Fy. Fy..... F,. We want a
cubic B-spline curve p determined by unknown control vertices P Py.... . Py,
such that p(t;) = F; in other words, p interpolates to the data points. The process

of obtaining the interpolatory rational cubic B-spline with interval shape control is
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& r=50 /‘——

(b)

Figure 2.4: Global/local tension propertics of rational B-splines
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Figure 2.5: Local tension properties of rational B-splines

[A\]
-]
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accomplished through
n+1

> PBi(t)=F. Vi (2.20)

j=-1

where the matrix Bj(t) is the tridiagonal matrix. From cquation(2.14) F;’s. i =

0,....n can be written as
Fi=P i+ Pl = A — i) + Py (2.21)
TP=F (2.22)
The above set of equations for F;. i = 0..... n . t.c the given set of data points.

through which the resulting curve must pass. and the conrrol points P's can be
written as in equation(2.22). The values of F. P and T arc as shown below. As such
the above system is underdefined and for a unique solution we need to specify two
further conditions, one at the start and one at the end of the curve. We shall repeat
the two end control points, although it is not the only end condition available. The
above system of equations is tridiagonal- only the diagonal clements and the two
neighbors are nonzero. By exploiting the structure of the rridiagonal matrix we

can solve the resulting system of equations more cfficicutly and bypass the standard

elimination techniques.
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L= A=y K
/\2 1 - /\2 — 2 15
Az 1 =23~
Ay
T=
Py
Py
P
P =
Pn-—l
Rx J
From equation(2.22) we get
P=T1'F

L -\ —

Fy
£

Fn—l
F,

j27}

’\u l - ’\n — Hn

(2.23)

That is the control vertices of the curve which passes through the given data points

Fi’s are given by the P;’s as in equation(2.23). When these values of P;’s are sub-

stituted in equation(2.12). we get the required C? mterpolatory B-spline curve with

interval tension.
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2.5.1 Examples:

The shape behavior of the interpolatory rational spline with interval tension are
illustrated by the following simple examples for the data set in 2. The global ten-
sion behavior is shown in Figure 2.6, where all shape parameters are progressively
increased with values 3, 7, and 50. The effect of the high interval tension is clearly
seen in that the resulting spline curve in Figure 2.6(c) approaches the control poly-
gon. Figure 2.7(b) and Figure 2.7(c) display the interval tension behavior applied

to the curve of Figure 2.6(a).
2.6 Freeform Rational B-Spline Surfaces
In this section we gencralize the idea of section(2.4) to surfaces.

2.6.1 Rational B-Splines and the Design Surface

Suppose that we are given points
P,-'J-ER:]. i=-1,....m+1. j=-1..... n+1 (2.24)

and knot sequences



CHAPTER 2. RATIONAL SPLINES WITH INTERVAL TENSION

(a) r=3

(b) r=7

(c) r=50

(S U)UD

Figure 2.6: Interpolatory curves, with global tension

31
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&

L\ . (a)

AN \—’/)@

7

(

\_’\} = (b)

N

ﬂ/r-\\‘-

f

\v\ r=50 ©
<<

Figure 2.7: Interpolatory curves. witl: local tension
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with appropriate additional knots

-~ ~ ~

t-3 < t.-'.) < f—l < {0; tm < tnm’-l < im +2 < Em-&-:}‘

t-s < t_"_) < t_[ < to: t" < t,,.".[ < t,,+2 < t,,+3

We need to find a parametric rational B-splinc surface p(f.t) in such a way that
p(t.t;) and p(;,t) are freeform rational cubic splines with teusion in t— and t-
directions for all i and j respectively.

Suppose we are given tension parameters

rij>2and r;j>2 i=-3..... m+2 j=-=3..... n+ 2, (2.1

1R™)
o
[S1}
~—

with Bi(f,t) and By(t,f) the corresponding rational B-spline basis fuuctions. as in

section(2.4) but with variable cubic B-spline tensions 7;(t) and r;(f) defined as:

18]
o
D
=

ri(t) = Z 7ig\(t). (2.
J
ri(t) = Z 7\l

where V;(t)'s are cubic B-splines. These can be computed as a special case of the

rational cubic splines of section(2.4).

Remark: The convex hull property of 2N and equation(2.25) show that 7;(t). rj(f

2, Vi. j, t.and . Also. for any j

ri(t) =0, t & (tj-a. tjsa)

) >
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and for any i

ri(€) =0, & (tica, tisa)
Furthermore, a large value of the shape parameter 7;; for any j results in large val-
ues of £i(¢) in the intervals [t;_i,¢;], [¢;,¢j41] and [t;.£;41]. A similar characteristic
is possessed by 7;(£). Thus a sufficiently large value of any of the shape paramecters
in equation(2.25) (for i = 0,...,m -1, j = 0,...,n — 1) results in a sufficiently
large valuc of the variable weight in the corresponding interval. In particular. if any
of fijand r;;, i=0,...,m=1,j=0,....n—1 tend to infinity. it causes the cor-
responding values from amongst 7;(t;) and r;(f;), i = 0... .. m=1.7=0..... n—1
respectively to approach infinity. Hence the shape paramecters in equation(2.23) are

chosen in such a way that one shape parameter is associated with cach interval.

The surface by local support property is defined as:

- i+2 j+2 . N
plt.t)= > > PuBf.t)Bi(t.1) (2.27)
hk=i-1l=j-1
where f;§f<f,-+1: i <t<tjy,t=0..... m-1, 5=0..... n—1

Substitution of the Bernstein-Bezier form of the rational B-splines gives the piecewise

defined rational Bernstein-Bezier representation:

3

3
=3 S XE ) Ri(6: 7)) Ri(6: (1)), (2.28)

k=0-l=

where the Bernstein-Bezier points X}”(f.t) can be compured from the rational B-
spline vertices P; ; as

X',"j = Y”,Z,J)JT (2.

N
V]
[Is]
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where
“ij i -inj
Xgo Xo1 - g3
] X710
J\,"j =
5] -1
| X303
Picrj-1 Picrj o Poyij
7 P
ij =
| Pigaj-1 o Pigajin

and the matrix Yj is given as in equation(2.16) as well as Y; provided tildes are

put where appropriate. Y, and )"}T now depend on f and ¢ respectively.

2.6.2 Tension Properties

The rational B-spline surface representation equation(2.28) satisfies the global ten-

ston property and the local tension property as proved in [14].

2.7 Interpolatory Rational B-Spline Surfaces

Expanding equation(2.29) we get the points through which the freeform rational
B-spline surface passes, for given control points say P’s. Here in our case we need
to find P’s (the new control points) given the data points F's. through which the

interpolatory rational B-spline surface should pass. Let us denote it by F:

Fi.j =\X= :\i[P'—l.j—l)‘j + Pi—l.j(l - /\j - ;lj) + [)i—l.j+l/-lj] + (230)
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(1—-X - R)PijrAj+ Pij(1 = Nj = ;) + Prjy] +

AilPiv1j o1 + Pier j(1 = Aj = 15) + Py jeg]

Fori=1,....,nand j=1.....m:
We can observe from the above that the sum of the cocfficients of P's equal to
unity. Which means that the resulting interpolatory surface satisfies the conver hull

property. Let

.-'l;_j = ,'_j_ll\j + P,J(]. - r\j - /lj) + Pi.j+l/lj (231)

Equation(2.30) can be expressed as :

F=T4 (2.32)

where F. T. and A are as given below:

1=~y Hy
A 1~ Ao — fi2 f2
Az 1— Ay~ 3 3
\4 1 - ;\.l — [y iy

/‘\nl 1 - /\’11 - /‘l”!




CHAPTER 2. RATIONAL SPLINES WITH INTERVAL TENSION 37

4y £,
4.1 Fy
A= i and F=
Amoi Fo-1y
o’lm,l ] i Fm.l

Since T is invertible. we get from equation(2.32)

A=T"1F

Moreover. from equation(2.31) A can be expressed as:

A=D.P

The values of A, P, and D are as given below:

L= A= H1
A2 1- 1\2 — K2 H2
A3 1= Ay — g3 13

/\.[ 1- \[ - Hy

1

An

(2.33)

(2.34)

1 - /\n = Hy
.
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- - - -

A,"l Pi,l
Aia P
A= . and P=
Ai,n—l Iji.n—l
.4,"" L Pi.u

The process of calculating the new control points P’s. is carried out in two
stages, first the entire matrix A is calculated. Then the new control points P's can

be calculated as

P=D"14 (2.

N
w
it

which when substituted in equation(2.28), gives the required interpolatory surface

with interval tension which can be controlled botli lucally and globally.

2.7.1 Examples

Consider a set of three dimensional data. The figures show the cffect of increase in
tensions, both locally and globally. The Figure 2.8(a) is the control net. Surface
in Figure 2.8(b) corresponds to the value r = 7 = 3 (the bicubic case). Surface in
Figure 2.9(a) converges to the control polyhedron as r = # = 30. The local change

of tension parameters is evident in Figure 2.9(h).
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JiF-

(b)

Figure 2.8: Interpolatory surfaces, with interval tension
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Figure 2.9: Interpolatory surfaces, with interval tension

40
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2.8 Concluding Remarks

An analysis of a rational cubic tension spline has been developed with a view to its
application in CAGD. We have found it appropriate to construct a rational form
which involves just one tension parameter per interval, although clearly the rational
form defined by equation(2.1) could be generalized. One advantage of the use of
C? parametric continuity, compared with that of the more general geometric GC?
continuity, hecomes apparent in the application of such a rational spline method
for surfaces. In this case we followed the approach of (13}, in the use of the spline
blended methods of [16]. Nielson proposes a spline blended surfaces of GC? curves.
However, the use of parametric C? curves in the blend will alleviate this loss of

continuity.

The idea of C? freeform rational B-spline is extended to achieve a C? interpola-
tory parametric rational B-spline which can be controlled locally and globally. For
CAGD applications, the developed interpolatory spline provides a parameter to con-
trol the shape of a curve on each interval. The surface has been designed through
the sum of the products of bivariate rational B-spline basis functions. The use of
variable tensions allows shape control. This is not a tensor product surface but
a tensor product surface can be recovered as a special case. This is not a NURBS
representation either: the NURBS representation of the surface has some limitations
regarding its shape control. Computation of the surface has heen suggested through

the Bernstein-Bezier representation which is quite couvenient.



Chapter 3

RATIONAL SPLINES WITH
POINT TENSION

3.1 Introduction

Interactive designing of the curves and surfaces is a conumon problem of CAD,
CAML, Solid Modelling and Graphics today. It is typically accomplislied through
the manipulation of a control polygon. The approach hased on B-spline type basis
functions results in a curve that lies in the convex Lull. Changes in the control
polygon only affect the curve locally. The alternative approach based upon interpo-
lating the curve passes a spline type curve through the courrol points. A change in
a single control point can affect the entire curve. Both approaches are useful and it
is desirable to introduce a class of curves and associated techniques that allows not
only either style of interaction but also has the capability 1o control the shape of
the curves and corresponding rectangular surfaces. locally and globally. according to

the desires of the user. This chapter is oriented towards tle B-spline type approacl,

42
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for the representation of curves and surfaces, using rational cubic splines.

B-splines are a useful and powerful tool for CAGD and Solid Modelling, and
they can be found frequently in the existing CAD/CAM systems. They form a ba-
sis for the space of n'* degree splines of continuity class C"~!. Each B-spline is a
non-negative n'® degree spline that is non-zero ouly on n+1 intervals. The B-splines
form a partition of unity, that is, they sum up to oue. Curves generated by sumining
control points multiplied by the B-splines have some very desirable shape properties.

including the local convez hull property and wvariation diminishing property.

It is still desirable to generalize the idea of B-spline like local basis functious for
the classes of rational splines, with shape parameters considered in their deserip-
tions. In this chapter a B-spline like local basis for designing of a freeform rational
spline, with point tension to produce shape control hotly locally and globally. has
been reviewed. and extended to design interpolatory curves and surfaces with point
tension having shape control both locally and globally. This method uses the cubic
by quadratic functions and, for given control points. constructs the freeform spline
method which enjoys all the geometric properties of B-splines. Morcover. the spline
representation has extra features that it is, like NURBS. is not a spline over spline
form and its denominator is a quadratic term instead of a cubic. This generation
of freeform rational spline curves has parameters to control the shape freely. The
design curve maintains the C"; parametric continuity. Freeform and interpolatory
structure of the rational spline can not only manage to be a smoother alternative

to the well known useful methods with geometric continuities. including v-splines of
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Nielson [6] and gamma splines of Boehm [13], but it is also an cconomical alternative

to NURBS of degree 3 as it has quadratic denominator.

3.2 Rational Cubic Spline with Point Tension

In [17] a rational cubic spline with point tension was constructed by using a C!

piecewise rational cubic Hermite parametric function

Si(t) = - (3.1)

where

A=(1=0PuF +6(1 -0 2+ i)l
B =6%1—6)(2+ vis )W+ 6300, Fiypy

C=(1-0)%;+26(1 —0)+6%%;.,

Where 0<8<1
And we assume that the shape parameters v;. ¢;.; > 0. Vi

This can be further expressed as :
Si(t) = Ro(6)F; + Ry(0)V: + Ra(6)11 + Ry(8) Fiyy (3.2)

where the basis functions R;(6). j=0..... 3 are Berustein Bezier weight functions
dependent on v;.v;,y in the interval [t;.tiv1]. The C? rational cubic spline inter-
polant is obtained by imposition of the C? continuity conditions.

In (18] an alternate to NURBS of degrec three lias been proposed, (henceforth re-

ferred to as ANURBS). by converting the interpolatory rational spline with point
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tension of [17]. The method for evaluating this ratioual cubic B-spline curve is sug-
gested by a transformation to Bernstein-Bezier form. A tensor product of the above

spline curves gives a rational bicubic B-spline surface.

3.2.1 A Comparative Study of NURBS and ANURBS

1. Both NURBS and ANURBS possess convex hull, variation diminishing and

partition of unity properties.

2. NURBS is of spline over spline form whereas ANURBS is a single spline in its

nature.

3. NURBS has cubic numerator and denominator swhereas ANURBS belong to

the class of splines having cubic numerator and quadratic denominator.
- . - . ')
4. Both of them beclong to the same continuity class of functions i.e C2.

5. Both of them can be transformed into Bernstein-Bezier form. Hence the ex-

isting efficient computational methods can be iinplemented.

G. The rate of sharpness of ANURBS regarding the shape control is much faster

than that of NURBS.

3.3 Local Support Basis

In [18] the local support rational B-spline was constructed as

Bji(t) = Ro(0)Fji + Ri(0)V]; + Ra(O)W,, + N3(6)Fj s (3.3)
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in any interval [t;,t;4,]. These rational spline functions are such that
1. (Iocal support) Bj(t) =0, fort € (tj_‘_),tj+2),
2. (Partition of unity) Z;‘:Ll Bj(t) = l.for t € [ty.t,]

3. (Positivity) B;(t) > 0, for all ¢,

And hence enjoy all the B-spline propertics.
To apply the rational cubic B-spline as a practical method for the curve design. a

convenient method for computing the curve representation is given by:

n+l
S(t)y= Y PBj(t). tE€ [ty.t.] (3.4)

j==1
where P; € R define the control points.
Substitution of equation(3.3) then gives the piccewise defined rational Bernstein-

Bezier representation.
Si(t) = Ro(O)F; + Ry(0)V; + Ro(0)11: + Ry4(6) Fiyy (3.9)
wlere

I),'_lz\,' -+ P,(]. - /\,' - /L,’) -+ ,'.:-[;l,' = F,' (36)
(1 —ai)P+a;P. =1,

JiPi 4+ (1= 3)P. =11

where ao; and J; are variables dependent on parameters § and v. Let



CHAPTER 3. RATIONAL SPLINES WITH POINT TENSION

Xi=([F: Vi W; Fin)]|T, Z: = [Py P Pipy Prsa]”

and

Aipl

1

— Nig1l = Jliz

/

!

e
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Then the transformation ( 3.6 ) can also be represcuted in matrix notation as

z\’i =

Yi.Z;

(3.8)

The transformation to rational Bernstein-Bezier form is very convenient for compu-

tational purposes.

3.4 Shape Control

The parameters defined in equation(3.1) can be used to control the local or global

shape of the curve. These shape control propertics of the rational B-spline are

analysed as follows:

1. Point Tension. Consider v; — 0o0. Then

lim W,_y = lim V; = lim F: = P.

Thus the curve is pulled towards P; and in the limit a tangent discontinuity is

introduced at P;.
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2. Interval Tension. Consider v;, v;;; — oc. Then
m W, =limV;=lim F; = P,
and
bm W, =lim V., =lim Fi , = Py
Thus the curve is pulled towards the straight line segment:
P(1 -8)+ Piy,6

and in the limit a tangent discontinuity is introduced at /. Pii.

3. Global Tension. Consider v; — oc. V i. following the above tension re-

sults. one can easily see that the curve is pulled towards the control polygon

(P. Py, ...... Py}

3.4.1 Examples

The tension behaviors of the rational cubic spline (ANURBS) are illustrated by the
following simple examples for the data set in R2. It should be noted that unless
otherwise stated we shall assume v; = 1,V i. The point tension behavior is shown in
Figure 3.1{a), as v» is increased the resulting curve is pulled towards 2. Wheun the
point tension is increased at two consecutive points [ and 7 the resulting curve is
pulled towards the straight line segment P, P, as shown in F tgure 3.1(b). The global
tension behavior is shown in Figure 3.2 where all shape parameters are progressively
increased with values 1. 5 and 50. The effect of the high tension parameters is clearly
scen in that the resulting spline curve Figure 3.2(c) approaches the control polygon.
Figure 3.3(b) displays the point tension result to ANURBS curve of Figure 3.3(a)

at the top most point.
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Py P3
=1
(a)
P2 | —————— P3
v=1
P
1 P4
(b)

Figure 3.1: Point tension behavior
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(a)

(b)

()

Figure 3.2: Curves, with global tension
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O
(a)
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O O
OOO (b)
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Figure 3.3: Curves. with point tension
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3.5 Interpolatory B-Spline with Point Tension

The process of obtaining the interpolatory rational cubic B-spline with point tension
is accomplished by furthering the work doue in {18]. The derivation procedure is
shown below:

A convenient method for computing the curve representation of [18] is given by :

n+l
> PiBj(t) = F. (3.9)

j=-1

where B;(t)’s are B-spline blending functions. At t =t; all B;(¢;)’s are zero except

Bi_i(t;), Bi(t;), and B;1(¢;). From equation(3.6) we have:
P+ P(1 =X — )+ Py, = F, (3.10)

The above set of equations for F;, i = 0,...n (given sct of data points) and new

control points P’s (to be determined) can be written in the matrix form as follows:
XP=F {3.11)

Where the values of matrices N, P and F are as shown in Figure 3.4.

As such the above system is underdefined and for a unicue solution we need to
specify two further conditions at the start and the eud of the curve. We shall make
the two end control points coincident, although it is nor the onlyv end coundition
available. The above system of equations is tridiagonal-only the diagonal elements
and the two neighbors are nonzero. By exploiting the structure of the tridiagonal

matrix we can solve more efficiently and bypass the standard climination techniques.
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Figure 3.4: Values of matrices X, P aud F
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From equation(3.11). we get

P=X"'F (3.12)

That is the control points of the curve, which passes through the given data points
F’s are given by the above cquation. When these values are substituted in the
equation(3.4), we get the required C? interpolatory B-spline curve with point ten-

sion.

3.5.1 Examples

The shape behaviors of the interpolatory rational spline with point tension are illus-
trated by the following simple examples for the data set in 2%, The global tension
behavior is shown in Figure 3.5 where all shape parameters are progressively in-
creased with values 1, 3. 30. The effect of the Ligh point teusion is clearly seen in
that the resulting spline curve Figure 3.5(¢) approaches the coutrol polygon. Figure
3.6(b) displays the point tension result to the curve of Figure 3.5(a) at the top most

point.

3.6 Surfaces

The results of section(3.3) can be extended to tensor product rational bicubic B-

spline surfaces. that is surfaces of the form

m+l n+l

plity= 5 5 PuBui. t)Bi(t.T) (3.13)

k==11=-1
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[&]]
(31}

(a)

(c)

Figure 3.53: Interpolatory curves. with global tension
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(a)

Figure 3.6: Interpolatory curves. with local tension
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to <t <to fg <t < £, with Bi(t) as constructed in section(3.3) and analogously
the Bi(f) a set of rational cubic B-splines corresponding to a sct of knots ¢,. k =

—3,...,m+ 3 (m > 0), with shape parameters &,. k =3,....m +3

If the representation of a rational spline patch p(t.t). {; <t < fis1, tp <t <t s

required as a rational bicubic Bernstein-Bezier patcl, then it can be expressed as:
) 3.3 ) X
pij(t.t) =35 Xl ) Rel6:7:(t) ) Ri(8; rj(E)). (3.14)
k=0 (=0
Here 7;(t) and rj(t) are variable cubic B-spline tensions defined as:

Ft) =Y i N(t). (3.13)
i
ri(t) = > v Nilf)
where Ni(t)'s are cubic B-splines. These can be computed as a special case of the

rational cubic splines of section(3.3).

The Bernstein-Bezier points X7 can be computed from the rational B-spline vertices
k.

P ij as
XNy =Y. Zi; YT (3.16)
where
Xobh Xob - X34
X1%




CHAPTER 3. RATIONAL SPLINES WITH POINT TENSION 38

Piovj-1 Poyj . Py
P

Zij =
Piigjor .. Pisajen |

and the matrix Y; is given as in equation(3.7) with a correspondine expression
t (=]

for f’,-.

3.6.1 Remarks

There is a drawback with this ANURBS surfaces in that any of the shape parameters
influences entire corresponding row or column of the surface. The drawback of not
having local control for ANURBS can bhe removed: A surface method. using the
rational cubic splines of [14] , may be utilized to control the shape of the surface
both locally and globally. This is a simple bivariate B-spline product method which
results in a C? freeform surface as well as provides shape control. This method is
similar to a tensor product method but actually it is not. C? variable tensions are
introduced in the B-splines which distinguish this surface method from the tensor
product method and help in producing a €2 surface which Las tension control hoth
locally and globally. The surfaces of this section follow the method of [14] to alleviate
the drawback of ANURBS surface. Hence generating surfaces which are C? and have

both local and global control.
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3.7 Interpolatory Surfaces

Expanding equation(3.16) we get the poiuts through which the freeform rational
B-spline surface passes, for given control points say P’s. Here in our case we need
to find P’s {the new control points) given the data points F’s. through which the

interpolatory rational B-spline surface should pass. Let us denote it by F:

Fi;=X= :\i[Px'—l.j-l’\j + Py (1= Aj~p;) + Poy ] + (3.17)
(1= X = F)[PrjorNj + Pij(1 = A = ) + i)+

FilPesrjiAj + P j(1 = Aj = ;) + Py japty]

Fori=1..... nand j=1,...,m;

We can observe from the above that the sum of the coefficients of P's equal to
unity. which means that the resulting interpolatory surface satisfies the convez hull
property. Let

Aij = Prjaidj + Pl = Ny = ) + Pjp; (3.18)

Equation(3.17) can be expressed as :
F=TA1 (3.19)

where F. T. and A are as given below:
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1-5, -y i
Ao 1= N\s — fig 8
A 1= Xy — iy f3
T = /i:l R /\.1 - [14
A )
.-{2'1 F‘.’.I
A= . and F =
-_lm—l.l Fm—l.l
-'lm.l Fm.l

Since T is invertible. from equation(3.19). we get

A=T"'F

Moreover A can be expressed as:

A=D.P

The values of A. P, and D are as given below:

fly

J

= My

GO
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R N 1 i
Aa L —X—po H2
Az 1 —A3—p3 H3
Aq L= Ay — oy
D =
A L =A, =ty

Aiy Py

Aio P;s

A= . and P =

.-1,",1._1 Px‘,n—l

o{i,n ] i Pi.n

The process of calculating the new control points P’s is carried out in two stages.
first the entire matrix A is calculated. Then the new control points P's can be

calculated as

P=D"1'.4 (3.22)

which when substituted in equation(3.14), gives the required interpolatory surface

with point tension which can be controlled both locally and globally-
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3.7.1 Examples

Counsider a data set of a cup in 3. The figures show the cffect of increase in ten-
sious, both locally and globally. The surface in Figure 3.7 corresponds to global
values v = ¢ = 3 (the bicubic spline surface). Figure 3.8 shows the global tension
effects in both dircctions (v = & = 50). Figure 3.9 is an example of the effect of
increasing the v shape parameters in both directious on a point at the top of the
cup, and hence creating a corner. The surface of Figure 3.10(a) is a bicubic spline
surface. the surfaces in Figures 3.10(b) and 3.11(a) are duc to high global tension
values in f and ¢ directions respectively: the surface of Figure 3.11(b) is obtained
when all tension parameters. in both dircctions. are assumed cqual to 30. Figure

3.12 shows the point tension effect at the top most point.

3.8 Concluding Remarks

An analysis of a C? interpolatory rational cubic spline is developed with a view to
its application in CAD/CAM and Computer Graphics. It provides local as well as
global shape controls. In particular, it has heen found that ouly one shape parameter
per point is enough when local or global shape control, in any portion of the figure,
is required. The rational spline method can be applied to tensor product surfaces
but unfortunately. in the context of interactive surface design, this tensor product
surface is not that useful because any of the shape parameters controls an entire
corresponding strip of the surface. The NURBS. are popular regarding local shape

control but the user has to be careful because of certain limitations of the nature
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Figure 3.7: The bicubic spline surface
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Figﬁre 3.8: Global tension cffect
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Figure 3.9: Point tension effect
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of the shape parameters in the construction of the NURBS. Thus some useful and
sufficiently smooth method is required so that one may play with the shape of the
surfaces freely. The method in the previous section of this chapter provides such

features.



Chapter 4

POINT AND INTERVAL
TENSION SPLINES

4.1 Introduction

This chapter describes a parametric C? rational spline representation (19] which has
interval and point tension weights which can be used to control the shape of the
curve. The spline can be considered as an alternative to the cubic v-spline and 3-
spline formulations of {12] and [6]. These splines provide shape control parameters
through the use of geometric GC? continuity constraints and hence are C2? with
. . . . . . 9 .
respect to a reparameterization. The rational spline also provides a C? alternative
to the C! weighted v-spline of Foley[1], since the interval and point tension weights

have a remarkably similarly influence on the curve to those of the weighted v-spline.

The rational spline. discussed here is a generalization of the interval tension

method introduced in [2]. However, the appropriate generalization of this interval

70
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tension method is not immediately clear. The usec of a gencral rational form gives an
over abundance of conflicting parameters whicl can lead to poorly parameterized
curves. The solution adopted here is to restrict the class of rational cubic repre-
sentations to those having quadratic denominators. This leads to representations
having sensible parameterizations with well defined and well behaved interval and
point tension weights. The use of this restricted class of rational splines has the
added advantage that conic segments could easily be accommodated within the rep-

resentation.

Given the volume of literature on rational splines in CAD, the reader might be
dubious as to the merit of introducing yet another rational spline representation.
However. we belicve that the introduction of point and interval weights gives a pow-
erful tool for manipulating the shape of the curve within one simple representation
and hence will be useful in CAD applications. The spline can be represented as a
NURB through the use of multiple knots, although we prefer the direct use of the
rational Bernstein-Bezier basis in the development of the theory. In section(4.2), the
basis rational cubic form is described. Then, in section(4.3). the local support basis
form is described. Section(4.4) describes B-spline like interpolatory rational spline
with point and interval tension. Section(+.5) and section(4.6) describe freeform and

interpolatory surfaces respectively.
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4.2 The Rational Cubic Form

Let F; € R™. i € Z, be values given at the distinct kuots #; € R. i € Z. A
g

aratuetric C' piecewise rational cubic Hermite function p : 7 — R™ is defined by
l 3

p(li.l;+xl(t) = »"\"'(9)/[)(9)- (4.1)

where
.\-(6) = (1 — 0)3Q;F,' +0(1 - 0)2(0',' + '),)‘; -+ 02(1 - 0)(3, - '},‘)”'F,' + 93,6,'F;+1,
D8y =(1~ 9)20; -+ ’}';6(1 - 9) +92.3,‘.

with

Qa; -

‘*’;' =L+ /l,‘D,‘. (42)
Qi T 5i
. Ji
Wi=Fiy - w——hiDiy
For simplicity. we assume positive weights
A;>0. ;>0 and 5,20, 12 (4.3)

and have made use of a rational Bernstein-Bezier representation, where the control

points {F,. V7. 115, F..i} are determined by imposing the the Hermite interpolation

conditions:
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and p(t;) = D;. i € Z.

Since the denominator is positive, it follows from Bernstein-Bezier theory that the
curve segiment py, 4, ,} lies in the convex hull of the control points {F;. Vi, 17 Fior}

and is variation diminishing with respect to the control polygon joining these points.

For the practical implementation we will write

a; =1/ and 3, =1/y; (4.4)

This leads to a consistent behavior with respect to increasing weishts and avoids
numerical problems associated with evaluation at @ = Q aud # = 1 in the (removable)

singular cases a; =0 and 3; = 0. We now have

1
Vi=Fi+ ———,D,. 1.3
F+/\,’7,'+ll ( a)
W= i+l — —;/HDiTl
BiYi + 1

The following tension properties of the rational Hermite form are now immediately

apparent from equations(4.1),(4.4) and (4.5), see Figurc 4.1

1. Point tension
lim y,_V; = F; and
10 3, —ox il (¢) = N(8)/D(6),
where
N(6) = (1= 0)>%:F; +6(1 = 6)(6; + 7)11, + 623,F,...
D(6) = (1 - 0)v: + 88,

lim ,, 1V, = Fj;, and
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}‘i =>infinity

f; > infinity

up ~> infinicy

Figure 4.1: Tension properties of the rational cubic Hermite
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~]
(@]

Um ,, _oePp; e, (t) = N(6)/D(8),

where

N(8) = (1 = 6)%a;F; +0(1 — 0)(a; + ~;)V; + 625, Fey.
D(8) = (1 - 8)a; + 6.

2. Interval tension
im 4 Vi = Fi, lim oo W; = Fi;). and
lim -y,--ocp[t.'.t.+|](t) =(l-0)F; + eﬂ+l

For more detail regarding shape analysis the reader is referred to (19].

4.3 The Local Support Basis

We now describe a local support basis representation for the space of C? rational
cubic splines on the knot partition ( ¢; € R. i € Z ). Thus assume that there exists

a local support basis ( B;(t) )jez, where

L. Bi(t) = 0. t ¢ (tj_2.fj42). (local support)

2. ¥jez B;(t) = 1. (partition of unity: normalization)

Then given control points {P; € R™, j € Z }. we consider the parametric curve

representation

p(t) = ZPJBJ‘(T) (4.6)

JEZ
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Following the approach of Boehm [13], the curve is represented in the rational
Bernstein-Bezier form, as in equation(4.1), with control points {Fi. Vi, Wi, Fis1}iez.
The existence of the transformation to rational Bernstein-Bezier form will in fact,
demounstrate the existence of the local support basis. The transformation also pro-
vides a convenient tool for computing and analysing the local support basis repre-
sentation.

Imposing the constraint

poE) = pier) (4.7)

on the rational Bernstein-Bezier form gives
Fi= (1= 6)Wi_y + &1; (4.8)

where

§: = hic1(qiditl)
P b (it DFh(io e + 1)

Also. imposing the constraint
2 2)4— ,
pA(EF) = p(t7) (4.9)
aund some further processing gives the values of 1;’s aud 117's

Vi=[(1-n)/AdPr—~ [0/ ] Py (4.10)

Wi = =[n/AJP 4+ (1 — 0:)/ A Py
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where

A,'=1—0','—Ti (411)

7 and o; are the values as given in [19]. Equations(4.10) and (4.11) define the
transformation from the control points {P;};cz to those of the piccewise defined
Bernstein-Bezier representation. The existence of this transformation implies the

existence of the local support basis.

4.3.1 Tension Properties

We know consider the tension properties of the local support basis representation:
Point Tension: Consider \; — oo and let 1 he defined by equation(4.10) with

weights d, = lim 0; aud 7; = lim 7. Then

lim F; = lim V; = ¥ and lim 1V;_, = P.. (4.12)

Thus the curve is pulled towards a point V; on the line segment joining P; and Py,
and. in the limit. is C! at 1.

Interval Tension: Consider 4; — oc. In this case

lim F; =lim \; = V5. lim Frop = lim W, = 107,

ImW,_, =P, limVi., =Py,

As proved in [19]. The curve is'pulled onto a straight line segiment joining the points

Vi and 11 between P and P,
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4.3.2 Examples

The behavior described above is confirmed by the examples curves of F igures 4.2

and 4.3.

4.4 Interpolatory Spline with Interval and Point
Tension

The process of obtaining the interpolatory rational cubic B-spline with interval shape

control is accomplished through

p(t) =3 P;Bj(t) (4.13)
j€z
From equation(4.8) F;’s.i = 0,...,n can be written as

Fi = kiPisy + piPi + 0; Piyy (4.14)

where

ki =1 = &(Tie1 /i)
pi =1 = &)[(1 = oimy)/Dic] + 6:[(1 = 7)/Al]

o = 0;(0./A;)

Let
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.

Figure 4.2: Curves with point and interval tension
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(@)

ﬁ

Figure 4.3: Curves with point and interval rension
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Xe=[Fi Vi W; Fin|T, Zi = [Py P Piyy Piga)”

and
— Ki  pi O, -
¥ = tvl;  tu2; (4.15)
twl; tw2;
i Kitl  Pit1 Qigr |
Where
tel; = (1 — 7)/Al]
tw2; = —[(o:/;)]
twl; = ~[(7:/A)]
and

tw2; = (1 - 0;)/A]

Then the transformation (4.14) can also be represented in matrix notation as

X=YZ (4.16)
Equation(4.14). for i = 0..... n can be written in matrix form as:
F=TP (4.17)

The given set of data points F's, through which the resulting curve must pass. and

the new control points P’s can be written as in cquation(4.17). The values of F.
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P and T are as shown below. As such the above svstem is underdefined and for a
unique solution we need to specify two further conditions. one at the start and one
at the end of the curve. We shall repeat the two end control points, although it is
not the only end condition available. The above system of equations is tridiagonal-
only the diagonal elements and the two neighbors are nonzero. By exploiting the
structure of the tridiagonal matrix we can solve the resulting system of equations

more efficiently and bypass the standard climination techniques.

L1 O

Ka P2 O3
K3 p3 Oy

Ky Py 04
T= ) )
I\‘H [)n
L .J
By Fq
Py F
P> £
P = F=
I)n—l Fn—l

Pll FH
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From equation(4.17), we get

P=T"'F (4.18)

That is the control vertices of the curve which passes through the given data points
F’s are given by the P’s as in equation(4.18). When these values of P’s are substi-
tuted in equation(4.13), we get the required C? interpolatory B-spline curve with

point and interval tension.

4.4.1 Examples

The shape behavior of the interpolatory rational spline with point and interval
tension is illustrated by following simple examples for the data set in R2. The

behavior described above is confirmed by the example curves of Figure 4.4.

4.5 Surfaces

The results of section(4.3) can be extended for tensor product rational bicubic B-

spline surfaces. That is surfaces of the form

R i+2  j42 .. R
pitt)= > 3 PuBili.t)Bi(t.1) (4.19)
k=i-1l=j-1

with By(t) as constructed in section(4.3) and analogously the Bk(f) a set of rational
cubic B-splines corresponding to a set of knots . k= —3..... m+3 (m 2> 0), with

corresponding shape parameters.
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(a)

(b)

ﬁ

Figure 4.4: Interpolatory curves with point and interval tension
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If the representation of a rational spline patch p(f.t). {; < f < f,.,. t <t <ty is
required as a rational bicubic Bernstein-Bezier patch. then it can be expressed as:

3 3 c. . .
pt.t) = 3 5" XUI(E ) Re(6: 7i(t)) Ru(8: (1)), (4.20)
k=0

=0

the Bernstein-Bezier points X can be computed fron: the rational B-spline vertices

Pi.j as
Xij=Y: .Zi; 0T (4.21)
where
g i i ]
Xoo Noi - g3
—.'vj
. X10
Nij =
1] i
L JYs'O \} 3 |
Pioyjo1 Py .. Poijm
Py
Zi; =
| P . Piiajsn |

and the matrix Y; is given as in equation(4.15) with a corresponding expression for

¥

4.5.1 Remarks

The above surface is a simple bivariate B-spline product method which results in a
C? freeform surface as well as provides shape control. This method is similar to a

tensor product method but actually it is not. C? variable tensions are introduced in
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the B-splines which distinguish this surface method from the tensor product method
and help in producing a C? surface which has tension control both locally and glob-

ally.

4.6 Interpolatory Surfaces

Expanding equation(4.20). we get the points through which the freeform rational
B-spline surface passes, for given control points say P's. Here in our case we need
to find P’s {the new control points) given the data points F's, through which the

interpolatory rational B-spline surface should pass. Let us denote it by F:

Fij = X =Ri[Piovjakj + Py j(pj) + Picyjiog] + (4.22)
(05)[Prjmtrj + Poj(p;) + Pij105] +

5:’[Pi+1.j-1f<j + Pis1j(pj) + Pit1,j+195]

Fori=1..... nand j=1..... m; \We can observe from the above that the sum of
the coefficients of P's equal to unity. which means that the resulting interpolatory

surface satisfies the convez hull property. Let
Aij =Pk + Pijp; + P j110; (4.23)

Equation(+.22) can be expressed as :

™
I

T.A (4.24)
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where F. T.and A are as given below:

pn o
Ry pa O3
Ry p3 O3
Ky fs Oy
T =
/}Hl f)lll

41, Fi

-;.2 1 F_’ 1 i
A= i and F=

-'1m—l.l Fm—l.l
L .'17,1.1 ] L Fm.l ]

Since T is invertible. from equation(4.24). we get

A=T"'F (4.

o
(S]]
S

Moreover from equation(4.23). A can be expressed as:

4=DPp (4.20)
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The values of A, P, and D are as given below:

.
pL A
Ky P2 @2
K3 p3 O3
Ky pq4 Oy
D=
i Ky an
.—'1,',1 Pi.l
Aia Pis
A= ) and P=
Ain-1 Py
-4i.n ] L Pi.n

So the new control points P’s can be calculated as
P=D7'4 (4.27)

which when substituted in equation(4.20), gives the required interpolatory surface

with interval and point tension which can be controlled both locally and globally-.
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4.6.1 Examples

The Figure 4.5 is a bicubic spline surface whereas the surface of Figure 4.6 is obtained
because of high tension value 50 everywhere. The surface of Figure 4.7 demonstrate
the result when tension is applied along a curve. Figure 4.8 and 4.9 show the effect
of increase in point and interval tensions. Figure 4.10 shows the effect of increase in

interval tension.

4.7 Concluding Remarks

We have described the basic theory for a C? rational cubic spline curve representation
which has interval and point tension weights and which behaves in a well controlled
and meaningful way. The extension to tensor product surface representations is
immediately apparent. However, this representation exhibits a problem common to
all tensor product descriptions in that the shape control parameters now effect a
complete row or column of the tensor product array. [15] solves this problem for
his cubic v-spline representation by constructing a Boolean sum. spline-blended.
rectangular-network of parametric v-spline curves. We have followed the approach

in [14] to overcome the above stated problem.
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Figure 4.6: Global tension effect
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Figure 4.8: Point and interval tension effect
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Figure 4.9: Point and interval tension effect
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Chapter 5

CONCLUSIONS AND FUTURE
WORK

5.1 Conclusions

5.1.1 C? Freeform Spline Curves and Corresponding Sur-

faces

A constructive way of developing the B-spline like basis functious of the C? rational
cubic splines of [2] has been adopted. These basis functions and their corresponding
design curve are reviewed with respect to two shape parameters in each interval.
The method of computation is selected through the generation of the Bezier points
from the control points, which makes the computarions very convenient. Both local
and global shape effects can be achieved in a well controlled way whereas NURBS

do not have that much freedom.

96
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The idea of the C? rational B-splines is quite simply generalized and extended
to achieve a C? parametric rectangular freeform rational bicubic surface which can
be controlled locally and globally. The surface has been designed through the sum
of the products of bivariate rational B-spline basis functions. This is not a tensor
product surface but a tensor product surface can be recovered as a special case. The
tensor product surface is not that useful because any one of the tension parameters
controls an entire corresponding interval strip of the surface. This is not a NURBS
representation either; the NURDBS representation of the surface has some limitations
regarding its shape control. This surface is such that. one shape parameter is asso-
ciated with each interval and one shape parameter is associated with each control
point; these shape parameters can be used. both locally and globally. to tighten or
loosen the surface along and/or across the network of curves associated with each
knot. Computation of the surface has been suggested through the Bernstein-Bezier

representation which is quite convenient.

5.1.2 C? Interpolatory Spline Curves and Corresponding

Surfaces

The idea of C? freeforrﬁ curves and surfaces have been extended to achieve corre-
sponding C? interpolatory spline curves and surfaces. with a view to its application
in CAGD. The interpolatory curves and surfaces satisfy all the properties of freeform
curves and surfaces, namely local and global tension properties. In particular, it has
been found that only one shape parameter per interval /knot is enough when local

or global tension is required.
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9.2 Future Work

—

. Incorporation of geometric continuity, in addition to parametric continuity.

2. Incorporation of biased shape control parameter, apart from point and interval

tension parameters.
3. Development of a recursive formula, like that of B-splines.
4. Use in visualization of data, as B-splines are being used for this purpose.

5. High quality character font designing.
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