

 IMPLEMENTATION AND VALIDATION OF

 OBJECT-ORIENTED DESIGN-LEVEL COHESION

 METRICS

 ABUBAKAR ADAM

 COMPUTER SCIENCE

 JANUARY 2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by King Fahd University of Petroleum and Minerals

https://core.ac.uk/display/266096577?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN 31261, SAUDI ARABIA

DEANSHIP OF GRADUATE STUDIES

This thesis, written by ABUBAKAR ADAM under the direction of his thesis advisor

and approved by his thesis committee, has been presented to and accepted by the Dean

of Graduate Studies, in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE.

 Thesis Committee

Dr. Jarallah AlGhamdi (Chairman)

Dr. Krishna Rao (Member)

Dr. Moataz Ahmed (Member)

Department Chairman

Dean of Graduate Studies

Date

 iii

DEDICATION

This thesis is dedicated to my parent: Late Alhaji Adamu and Hajiya Titi Yusuf.

&
To my wonderful step-mother: Hajiya Habiba Adamu

 iv

ACKNOWLEDGEMENT

I would like to begin by thanking Allah, Lord of the worlds, for His infinite mercy,

blessing and forgiveness. I thank King Fahd University of Petroleum and Minerals for

supporting this research.

My deepest appreciation goes to my thesis advisor, Dr. Jarallah Al-Ghamdi, who has an

attitude and the substance of being a good scholar and a good advisor. His continual

support and constructive criticism is highly appreciated; I do not know what would have

become of this thesis without his support. I am very thankful to the members of my thesis

committee: Dr. Krishna Rao and Dr. Moataz Ahmed for their valuable contributions. In

particular Dr. Moataz’s contributions have been invaluable for this research. My thank

goes to the Software Metrics Research Group (SMRG); I found the weekly meetings

highly informative.

I would like to thank my friends and colleagues in KFUPM for their companionship

especially Rufai, Sohel and Abid for their concern and brotherly support in the course of

this research. Immense appreciation goes to Yushau Balarabe, Yau Garba and Hamisu

Shehu for their assistance; and to Hassan (Abu Hamza) for helping with some of the

statistical analysis.

Finally, I thank the members of my family for their care, love and prayers I believe this is

what kept me going.

 v

TABLE OF CONTENTS
ACKNOWLEDGEMENT...iv

TABLE OF CONTENTS ...v

LIST OF TABLES ...vii

LIST OF FIGURES.. viii

Thesis Abstract ..ix

 x...خلاصة الرسالة

1 INTRODUCTION..1

1.1 Cohesion ...2

1.2 Relationship between coupling and cohesion...2
1.2.1 Low Coupling...3
1.2.2 High Cohesion ..3

1.3 UML ...4
1.3.1 Things ...5
1.3.2 Relationships ..5
1.3.3 Diagrams...5

1.4 Motivation ..8

1.5 Main Contributions...8

1.6 Organization of the Thesis..9

2 LITERATURE REVIEW...10

2.1 Introduction ..10

2.2 Background...10

2.3 Cohesion Metrics in procedural programs ...11
2.3.1 The SFC and WFC Metrics ..11
2.3.2 The DLC and DFC Metrics ..12

2.4 Cohesion Metrics in Object Oriented Programs...13
2.4.1 The Degree of Method and Class Cohesion of Eder et al.13
2.4.2 The LCOM1 and LCOM2 Metrics...15
2.4.3 The LCOM3, LCOM4 and Co Metrics ..16
2.4.4 The TCC and LCC Metrics ..19
2.4.5 The LCOM5 Metric..21
2.4.6 The RCI Metric...23
2.4.7 The CAMC Metric ...25
2.4.8 The CBMC Metric..26
2.4.9 The CCM and ECCM Metrics..30
2.4.10 The OCC and PCC ...32

3 CLASSIFICATION FOR OBJECT-ORIENTED COHESION METRICS38

3.1 Introduction ..38

 vi

3.2 Classification for Cohesion Measurements ..38

3.3 Critical analysis of object oriented cohesion metrics ...43

3.4 Observations ...53

4 NEW COHESION METRIC..54

4.1 Introduction ..54

4.2 Cohesion Based on Attribute and Method Usage...55

4.3 Validation ...58
4.3.1 Theoretical Validation ..58
4.3.2 LCOM5 vs. CBAMU ...64

4.4 Implementation...66
4.4.1 OOMeter Architecture..67

4.5 Empirical Validation ..68
4.5.1 Hypothesis ..68
4.5.2 Selected Systems ..69
4.5.3 Results and Analysis...70

5 NUMBER OF DEFECT PREDICTION MODELS...84

5.1 Introduction ..84

5.2 Approaches for Building Software Prediction Model ..84

5.3 Experimental Goal..86
5.3.1 Hypothesis ..86

5.4 Related Work..87

5.5 Description of Study...88
5.5.1 System ..89
5.5.2 Dependent Variable ..89
5.5.3 Independent variables...90

5.6 Analysis of Results ...91
5.6.1 Descriptive Statistics ..91
5.6.2 Artificial Neural Network (ANN) Prediction Model93
5.6.3 Regression Models ...96
5.6.4 Prediction Model Evaluation (Goodness of fit)..100

6 CONCLUSION ..102

6.1 Summary and Contributions of the Thesis ...102

6.2 Limitations and Future Work ...104

REFERENCES...106

 vii

LIST OF TABLES

Table 1: Cohesion Metrics Examples...34
Table 2: Overview of Cohesion Measure...35
Table 3: Classification Criteria...39
Table 4: Connection Types...42
Table 5: Eder's et al. Approach ..44
Table 6: LCOM1 ..44
Table 7: LCOM2 ..45
Table 8: LCOM3 ..45
Table 9: LCOM4 ..46
Table 10: The Connectivity Metric ..46
Table 11: Tight Class Cohesion ...47
Table 12: Loose Class Cohesion ..48
Table 13: LCOM5 ..48
Table 14: The RCI Metric ..49
Table 15: The CAMC Metric ...50
Table 16: The CBMC Metric ...50
Table 17: The CCM Metric ..51
Table 18: The ECCM Metric..51
Table 19: The OCC Metric...52
Table 20: The PCC Metric ...52
Table 21: The CBAMU Metric ..64
Table 22: Selected Projects ..69
Table 23: Average class cohesion of the projects ..72
Table 24: Project ranking based on bug/design size metric ...73
Table 25: Project ranking based on Bug/LOC ...74
Table 26: Cohesion metrics Vs connection types...78
Table 27: Mechanisms for measuring OO cohesion metrics..80
Table 28: Metrics Classification...91
Table 29: Descriptive statistics I ..91
Table 30: Descriptive statistics II ...92
Table 31: Measures Correlations..97
Table 32: Nonlinear Regression Model..100
Table 33: Comparing the Performance of the Prediction Models....................................101

 viii

LIST OF FIGURES

Figure 1: A class C with three methods and four attributes ...15
Figure 2: A class C and Gx ...17
Figure 3: A class C and Gx with interaction among methods...18
Figure 4: A class C with three methods and four attributes ...21
Figure 5: A class C with three methods and three attributes..22
Figure 6: A class C with four methods and five attributes ...25
Figure 7: A class C with five methods and four attributes ...28
Figure 8: The structure tree of the class in Figure 7...29
Figure 9: The connected graph of the class in Figure 7 ...31
Figure 10: Direct and Indirect Connections ...56
Figure 11: Merging two unconnected classes ..63
Figure 12: OOMeter Architecture ..67
Figure 13: Project ranking based on cohesion results ..73
Figure 14: Spearman rank order correlations based on the design size metric74
Figure 15: Spearman rank order correlations based on LOC...75
Figure 16: Cluster I (LCOM1 & LCOM2)...75
Figure 17: Cluster II (LCOM1-4)...76
Figure 18: Cluster III (TCC & LCC)..77
Figure 19: Cohesion metrics correlations...77
Figure 20: Intersections among the Connection Types ..82
Figure 21: Approaches for Building Prediction Models ..84
Figure 22: Perceptron ...94
Figure 23: Signal-flow with hidden layer...95
Figure 24: The ANN Defects Prediction Model 1..96
Figure 25: Scatter Diagrams...99
Figure 26: The ANN Defects Prediction Model 2..100

 ix

Thesis Abstract

NAME: Abubakar Adam

TITLE: IMPLEMENTATION AND VALIDATION OF OBJECT-ORIENTED DESIGN-

LEVEL COHESION METRICS

MAJOR FIELD: COMPUTER SCIENCE

DATE OF DEGREE: JANUARY 2005

This thesis presents a number of classification criteria that may serve as an evaluation

scheme for object-oriented cohesion metrics. Based on these criteria, we present a critical

survey of the state-of-the-art of object-oriented cohesion metrics. The thesis also proposes

and theoretically validates an object-oriented high-level cohesion metric. Rigorous

experiment was conducted in order to tie cohesion to the number of defects in a software

system. Results show that cohesion alone does not give enough information regarding the

number of defects in a class. The results also show that there are inconsistencies in the

definition of the cohesion metrics. The thesis also presents three defects prediction models

that are built using regression analysis and Artificial Neural Network (ANN).

 x

 خلاصة الرسالة
 أبوبكر آدم : ــــمالاس

 . تطبيق صحة مقاييس تماسك الكائنات في مرحلة التصميم: عنوان الرسالة

 علوم الحاسب الآلي: التخـصص

 2005 يناير : خرجتاريخ الت

يقدم هذا البحث عدد من معايير التصنيف التي يمكن أن يستفاد منها آوسيلة تقييم لمقاييس مقدار

بناءاً على هذه المعايير، نستعرض دراسة نقدية و). Object-oriented cohesion (الكائناتتماسك

تماسك وإثبات صحتها الدار يقترح هذا البحث مقياس جديد لمق. الكائناتلأحدث مقاييس تماسك

في المنتجة خطاء من أجل ربط مقدار التماسك مع عدد من الأدقيقة جريت تجربة عملية أُ. نظرياً

أظهرت النتائج أن مقدار التماسك لوحده قد يعطي معلومات غير آاملة بالنسبة لعدد . أنظمة البرمجة

. الموجودة كات في تعريف مقاييس التماسآما أوضحت النتائج عدة تناقض). class(الأخطاء في الفئة

 على تحليل الانحسار هذه النماذج مبنيةآذلك يستعرض هذا البحث ثلاث نماذج لكشف الأخطاء و

 Artificial Neural(والشبكة العصبية الاصطناعية) Regression Analysis(التدريجي

Network.(

 درجة الماجستير في العلوم

 ل والمعادنجامعة الملك فهد لبترو

 2005يناير

CHAPTER 1

1 INTRODUCTION

Object-oriented technology is one of the most widely used paradigms for developing

software systems. Researchers assert that OO practice assures good quality software.

Software quality refers to ease of understandability, maintainability, and reuse.

Through the years, many software attributes have been identified that have relation, in

one way or the other, with the quality of the artifact being produced. Such attributes

include: size, complexity, coupling, and cohesion. Several metrics have been proposed

with a view to accurately capture these attributes so that software of high quality is

produced. Unfortunately not many of these metrics are exposed to rigorous theoretical

and experimental validation in order to determine how effective they are at capturing

what they claim to capture. Software metrics simply give a value that represents some

software attribute such as coupling and cohesion. These values are difficult to interpret

because they do not directly give information that relates to external quality attributes

(such as maintainability, reusability, and fault-proneness) which people are more

interested in. One way of interpreting the values obtained from such metrics is to

associate the values to a quality attribute that is externally visible. In this research, we

set out to conduct a rigorous research for cohesion metrics and to tie the values

obtained from the existing cohesion metrics to a software attribute that is externally

visible. In this chapter, we discuss the concept of object-oriented cohesion and its

relationship with coupling in sections 1.1 and 1.2, respectively. In section 1.3 we

present a brief introduction to UML. Section 1.4 and 1.5 presents the motivation

behind this research and the main contributions of the work, respectively.

 2

1.1 Cohesion

Cohesion is an internal software attribute that depicts how well connected the

components of a software module are. This can be determined by knowing the extent

to which the individual components of a module are required to perform the same task

[37]. In a highly cohesive module all the components performance are tailored towards

the requirement of a single function. On the contrary, a low cohesive module has some

elements that have little relationships with others, which is an indication that the

module may provide several unrelated functions [26]. If a module is highly cohesive

then it is easy to develop and maintain because it does not have much dependence on

the components of other modules as such it is less error-prone.

Measures such as coupling equally serve as quality indicators; coupling and cohesion

are terms used to define module interconnectedness. Coupling is a measure of how

strongly one module is connected to, have knowledge of, or relies on other modules

[60].While cohesion addresses intra-module connectedness, coupling addresses inter-

module connectedness. In general, coupling should be minimized while cohesion

should be maximized [33][60]. In object-oriented paradigm, however, coupling should

not be completely minimized because some level of dependence is required for

instance dependence due to inheritance is required. This concept is explained in the

following section.

1.2 Relationship between coupling and cohesion

One of the most difficult tasks to achieve in object-oriented design is to come up with

well designed classes; classes that are easy to understand, easy to maintain and easy to

reuse. Two important factors that affect the design of classes are coupling and

 3

cohesion. Coupling and cohesion are highly related. Bad cohesion usually leads to bad

coupling because they have a highly interdependent influence [60].

1.2.1 Low Coupling

Coupling is a measure of how strongly one module is connected to, have knowledge

of, or relies on other modules. A class with low coupling is not dependent on too many

other classes. On the other hand, a class with high coupling (or strong) coupling relies

on many other classes. Such classes may be undesirable due to the following reasons

[60]:

• Changes in related classes force local changes.

• Harder to understand in isolation

• Harder to reuse because its use requires the additional presence of the classes

on which it is dependent.

Hence, low coupling is a principle to keep in mind during all design decisions; it is an

underlying goal to continually consider. Low coupling encourages assigning a

responsibility so that its placement does not increase the coupling to such a level that it

leads to the negative results that high coupling can produce. Low coupling supports

the design of classes that are more independent, which reduces the impact of change.

The extreme case of low coupling is not desirable i.e. when there is no coupling

between classes at all or when it is extremely low. If low coupling is taken to excess, it

yields a poor design because it leads to a few not cohesive, bloated, and complex

active objects that do all the work [60].

1.2.2 High Cohesion

Cohesion, in object-oriented terms, is a measure of how strongly related and focused

the responsibilities of a module are. The issue to consider here is how to keep

 4

complexity manageable. A class with low cohesion does many unrelated things, or

does too much work. Such classes are undesirable; they suffer from the following

problems:

• Hard to comprehend

• Hard to reuse

• Hard to maintain

• Delicate; constantly effected by change

In general, the relationship between coupling and cohesion is that coupling should be

low while cohesion is kept high.

1.3 UML

In this section we introduce the Unified Modeling Language (UML), which is a

language used for modeling the design of software products. UML offers a lot of

advantages to software developers; it makes communication across development team

simple; developers can come up with models that are language independent and that

are easy to understand and interpret.

“The Unified Modeling Language (UML) is a standard language for writing software

blueprints. The UML may be used to visualize, specify, construct, and document the

artifacts of a software-intensive system.” [13]. The building blocks of UML include

the following [13]:

1. Things

2. Relationships

3. Diagrams

 5

Things are the abstractions that are first-class citizens in a model; relationships tie

these things together; diagrams group interesting collections of things.

1.3.1 Things

There are four kinds of things in the UML:

• Structural things

• Behavioral things

• Grouping things

• Annotational things

1.3.2 Relationships

There are four kinds of relationships in the UML:

• Dependency

• Association

• Generalization

• Realization

1.3.3 Diagrams

UML diagrams are simply projections into system; they are used to visualize systems

from different perspectives[13]. The UML includes nine diagrams, these are [13][70]:

Class diagram: shows the classes of the system, their interrelationships (such as

aggregation, and association), and the operations and attributes of the classes. These

diagrams are the most common diagrams found in modeling object-oriented systems.

Class diagrams are used for a wide variety of purposes, including both

conceptual/domain modeling and detailed design modeling.

 6

Object diagram (sometimes referred to as instance diagrams): shows a set of objects

and their relationships. Object diagrams are useful for exploring “real world”

examples of objects and the relationships between them. Although UML class

diagrams are very good at describing this very information some people find them too

abstract – a UML object diagram can be a good option for explaining complex

relationships between classes.

Use case diagram: shows a set of use cases and actors and their relationships. UML

Use Case Diagrams can be used to describe the functionality of a system in a

horizontal way. That is, rather than merely representing the details of individual

features of your system, UCDs can be used to show all of its available functionality. It

is important to note, though, that UCDs are fundamentally different from sequence

diagrams or flow charts because they do not make any attempt to represent the order or

number of times that the systems actions and sub-actions should be executed.

UCDs have 4 major elements: The actors that the system you are describing interacts

with, the system itself, the use cases, or services, that the system knows how to

perform, and the lines that represent relationships between these elements

Sequence diagram: this is a kind of interaction diagram that emphasizes the time

ordering of messages. The UML sequence diagrams model the flow of logic within

your system in a visual manner, enabling you both to document and validate your

logic, and are commonly used for both analysis and design purposes.

Collaboration diagram: this also is an interaction diagram but its emphasis is on the

structural organization of the objects that send and receive messages. UML

 7

Collaboration diagrams (interaction diagrams) illustrate the relationship and

interaction between software objects

Statechart diagram: shows a state machine, consisting of states, transitions, events,

and activities. Statechart diagrams address the dynamic view of a system. A statechart

diagram is a view of a state machine that models the changing behavior of a state.

Statechart diagrams show the various states that an object goes through, as well as the

events that cause a transition from one state to another.

Activity diagram: is a special kind of a statechart diagram that shows the flow from

activity to activity within a system. Activity diagrams address the dynamic view of a

system. They are especially important in modeling the function of a system and

emphasize the flow of control among objects. Activity diagrams represent the business

and operational workflows of a system. An Activity diagram is a dynamic diagram

that shows the activity and the event that causes the object to be in the particular state.

Component diagram: shows the organizations and dependencies among a set of

components. Component diagrams address the static implementation view of a system.

They are related to class diagrams in that a component typically maps to one or more

classes, interfaces, or collaborations. Today in software engineering we have team-

based development efforts, where everyone has to work on different component.

That's important to have a component diagram in modeling process of the system. A

component diagram describes the organization of the physical components in a

system.

 8

Deployment diagram: shows the configuration of run-time processing nodes and the

components that live on them. They are related to component diagrams in that a node

typically encloses one or more components. A UML deployment diagram depicts a

static view of the run-time configuration of processing nodes and the components that

run on those nodes. In other words, deployment diagrams show the hardware for your

system, the software that is installed on that hardware, and the middleware used to

connect the disparate machines to one another

1.4 Motivation

Software engineering researchers have attached importance to having high cohesion in

the modules of software products, as briefly discussed above. They have asserted that

highly cohesive program components are desirable because they lead to better external

attributes such as reusability, comprehensibility, maintainability etc. According to

Fenton in [37], designs that possess high module cohesion and low module coupling

are assumed to lead to more reliable and maintainable code. In order to be certain

about these claims, we need to have good understanding of the cohesion of software

systems and for this to be achieved; we need to have effective means of measuring it

so that it can easily be tied to software quality attribute. Our motivation in this

research is to determine the predictive power of the existing cohesion metrics with

respect to an external quality attribute that is easily be understood.

1.5 Main Contributions

The main contributions of this thesis work are:

• Conducting a critical survey of existing cohesion metrics.

• Developing a classification for the existing cohesion metrics

• Proposing a class cohesion metric and theoretically validating it

 9

• Implementing the proposed metric as well as the existing cohesion metrics.

• Investigating whether cohesion metrics can be predictors of fault density.

• Building defect prediction models using ANN and regression analysis and

evaluating the performance the models.

1.6 Organization of the Thesis

The rest of this thesis is organized as follows: Chapter 2 presents the literature survey

of the existing cohesion metrics. Chapter 3 presents a critical analysis of the cohesion

metrics using some attributes that the cohesion metrics have in common. In chapter 4

we discuss the new proposed metric, theoretically validate it and empirically show that

there are inconsistencies in the definitions of the existing cohesion metrics. In chapter

5, we present defect prediction models built using regression analysis and Artificial

Neural Network; the performance of the models are compared. Finally we conclude in

chapter 6.

 10

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

In this chapter we discuss the existing cohesion metrics found in literature that are

proposed by software researches. While section 2.2 covers cohesion metrics in

procedural programs, section 2.3 discusses cohesion metrics in object oriented

paradigm.

2.2 Background

By definition, cohesion captures the degree of interdependence among elements of the

same module [73]. As explained in Chapter 1, modules with strong cohesion are easier

to maintain and they greatly improve the possibility of reuse. The definition of

cohesion can have two interpretations; a module is said to be cohesive if (i) its

elements are tailored towards one functionality and (ii) the module is self-contained;

i.e. it does not rely on other modules for its function to be achieved. The programming

paradigm in question determines what a module is and what an element is. In

procedural paradigm, elements of module are statements, and sub functions. In object-

oriented paradigm, the counterparts of module are classes and methods. The elements

of a method are statements and attributes since they are accessed either directly or via

access functions in the methods. The elements of an object class are methods and

instance variables [33]. In the following sections we discussed some of the proposed

metrics in procedural paradigm and those in object-oriented paradigm found in the

literature.

 11

2.3 Cohesion Metrics in procedural programs

A procedural program is composed of one or more units or modules and each module

is composed of one or more procedures (e.g of procedural programs include programs

written in C and FORTRAN).

2.3.1 The SFC and WFC Metrics

Bieman and Ott [12], proposed three cohesion metrics. These measures are: Strong

Functional Cohesion (SFC(p)), Weak Functional Cohesion (WFC(p)) and

Adhesiveness of a procedure (A(p)).

Strong Functional Cohesion (SFC) is defined as the ratio of super-glue tokens to the

total number of data tokens in a procedure p. The SFC is a measure of the minimal

functional cohesion in a procedure; the metric is given by the following formula.

 SFC(p) =
||

||
tokens

okensSupergluet

The weak functional cohesion (WFC) is defined as the ratio of glue tokens to the total

number of tokens in a procedure p.

 WFC(p) =
||

||
tokens

gluetokens

 12

The third measure they proposed is Adhesiveness, this is related to the number of slices

that each token “glues” together. The Adhesiveness of a procedure p is defined as

follows:

 A(p) =
||*||

||
||

cesprogramslitokens
cesprogramsli

keningagluetocescontainprogramsli
tokens
∑

A program slice is a set of program statements which include references to a particular

program variable. A glue token is a token which is used in more than one program

slice that includes a certain statement. A super glue token unites all the program slices

at some statements. The measures capture the number of program slices having glue or

super glue tokens as a proportion of total program slices. Note that a procedure having

no cohesion would have no glue tokens. However, a procedure having perfect

cohesion would have super glue tokens at every statement.

2.3.2 The DLC and DFC Metrics

Bieman and Kang proposed two design level cohesion metrics [10]: DLC (Design

Level Cohesion) and DFC (Design Functional Cohesion).

An ordinal scale of cohesion measures is defined: Coincidental, Conditional, Iterative,

Communicative, Sequential, and Functional. Each pair of output tokens in a module is

evaluated for the strongest cohesion the pair exhibits. The minimum of such value

over all output token pairs gives the Design Level Cohesion (DLC). Design Functional

Cohesion (DFC), on the other hand, is a slice based measure which averages

adhesiveness of output token slices corresponding with the interface pints of the

module.

 13

2.4 Cohesion Metrics in Object Oriented Programs

In this section we describe the cohesion metrics that were proposed to measure cohesion in

object oriented programs.

2.4.1 The Degree of Method and Class Cohesion of Eder et al.

Eder et al. [33] have extended the concept of coupling and cohesion developed

oringinally for procedural-oriented systems to object-oriented sytems. They

distinguised between three types of cohesion in an object-oriented systems: method,

class and inheritance cohesion. For each type, various degrees of cohesion are defined.

In this section we succinctly explain the degrees of each type of cohesion.

Method Cohesion: the elements of a method are statements, local variables and

attributes of the method’s class. Eder et al. defined seven degrees of method cohesion

as given below from weakest to strongest [33]:

• Concidental: the elements of a method have nothing in common besides being

within the same method.

• Logical: elements with similar functionality such as input/output handling are

collected in one method

• Temporal: the elements of a method have logical cohesion and are performed

at the same time.

• Procedural: the elements of a method are connected by some control flow.

• Communicational: the elements of a method are connected by some control

flow and operate on the same set of data.

• Sequential: the elements of a method have communicational cohesion and are

connected by a sequential control flow.

 14

• Functional: the elements of a method have sequential cohesion, and all

elements contribute to a single task in the problem domain. Functional

cohesion fully supports the principle of locality and thus minimizes

maintenance efforts.

Class Cohesion: class cohesion addresses the relationships between the elements of a

class. The elements of a class are its non-inherited methods and non-inherited

attributes. The following are the five degrees of class cohesion from weakest to

strongest:

• Seperable: the objects of a class represent multiple unrelated data abstractions

• Multifaceted: the objects of a class represent multiple related data abstractions.

The relation is caused by at least one method of the class which uses all these

data abstractions.

• Non-delegated: there exist attributes which do not describe the whole data

abstraction represented by a class, but only a component of it.

• Concealed: there exist some useful data abstraction concealed in the data

abstraction represented by the class. Consequently, the class includes some

attributes and methods which might make another class.

• Model: the class represents a single, semantically meaningful concept.

Inheritance: This is similar to class cohesion, but it is a bit different in that it

considers all methods and attributes in a class including those that are inherited.

 15

2.4.2 The LCOM1 and LCOM2 Metrics

Chidamber and Kemerer [28] use the notion of degree of similarity of methods to

propose a cohesion metric, Lack of Cohesion Measure (LCOM). The definition of this

metric is given below.

Definition 2.1:

Consider a class C with n methods M1, M2,….., Mn. Let {Ii} = set of instance variables

used by method Mi. There are n such sets, i.e., {I1}, {I2},….., {In}. LCOM1(C) = the

number of disjoint sets formed by the intersection of n sets. In other words, LCOM1 is

the number of pairs of methods with no common attributes references.

Example 2.1: Let m1, m2, m3 and A1, A2, A3, A4 in Figure 1 represent the methods

and attributes in class C.

m1

A1 A2 A3 A4

m2 m3

C

Figure 1: A class C with three methods and four attributes

From the example given in Figure 1, LCOM1 = 2. Note that LCOM1 is an inverse

cohesion measure. A high value of LCOM1 indicates low cohesion and vice versa.

In [29], Chidamber and Kemerer have given the following new definition for LCOM.

Let the new LCOM be LCOM2.

 16

Definition 2.2:

Consider a class C with methods M1, M2,….., Mn. Let {Ii} = set of instance variables

used by method Mi. There are n such sets, i.e., {1i}, {I2},….., {In}. Let

P = { (Ii, Ij) | Ii ∩ Ij = ∅} and Q = {(Ii, Ij) | Ii ∩ Ij ≠ ∅}. If all n sets {1i}, {I2},…..,

{In} are ∅ then let P = ∅.

 LCOM2 =

⎪
⎪
⎩

⎪
⎪
⎨

⎧ >−

otherwise

QPifQP

,0

|||||,|||

In other words, P is the number of pairs of methods without shared attributess and Q is

the pairs of methods with shared attributes.

Using the example given in Figure 1, we have, P = 2 and Q = 1 thus LCOM2 = 1.

2.4.3 The LCOM3, LCOM4 and Co Metrics

Hitz and Montazeri evaluated the metrics suit for object-oriented design put forward

by Chidamber and Kemerer in [29] by applying the principle of measurement theory.

One of the metrics evaluated is Lack of Cohesion in Methods (LCOM). They proposed

alternative definitions for the LCOM metric [49][50], as presented in the following

definitions.

Definition 2.3:

Let X denote a class, Ix the set of its attributes, and Mx the set of its

methods. Consider a simple undirected graph Gx(V, E) with V = Mx and

E = {(m, n) ∈V × V | ∃ I ∈ Ix: (m accesses i) ∧ (n accesses i)}.

 17

LCOM3(C) = Number of connected components of Gx.

This definition is illustrated in Figure 2 using the class C given in Figure 1. From the

figure we can see that the graph Gx has two connected components. Thus LCOM3 = 2.

Gx
m1

m2

C
m1

A1 A2 A3 A4

m2 m3

m3

Figure 2: A class C and Gx

Hitz and Montazeri identified a problem with the access methods for LCOM3. An

access method provides read or write access to an attribute of the class. Access

methods typically reference only one attribute, namely the one they provide access to.

If other methods of the class use the access methods, they may no longer need to

directly reference any attribute at all. These methods are then isolated vertices in graph

Gx. Thus, the presence of access methods artificially decreases the class cohesion as

measured by LCOM3. To remedy this problem, Hitz and Montazeri proposed a second

version of their LCOM measure. In this version, the definition of Gx is changed as

follows: there is also an edge between vertices representing methods m1 and m2, if m1

invokes m2 or vice versa.

 18

Definition 2.4:

Let X denote a class, Ix the set of its attributes, and Mx the set of its

methods. Consider a simple undirected graph Gx(V, E) with V = Mx and

E = {(m, n) ∈V × V | (∃ I ∈ Ix: (m accesses i) ∧ (n accesses i)) ∨ (m invokes n) ∨ (n

invokes m)}.

LCOM4(C) = Number of connected components of Gx .

See Figure 3 for the illustration of this definition. From the figure we can see that the

graph Gx has only one connected component. Thus, LCOM4 = 1.

m1

m2

C Method invocation
m1

A1 A2 A3 A4

m2 m3

Gx

m3

Figure 3: A class C and Gx with interaction among methods

In the case where Gx consists of only one connected component, i.e., LCOM = 1, the

number of edges |E| ranges between |V | − 1 (minimum cohesion) and |V |.(|V | − 1)/2

(maximum cohesion). Hitz and Montazeri defined a measure C (“connectivity”) [50]

which further discriminates classes having LCOM4 = 1 by taking into account the

number of edges of the connected component.

 19

Hitz and Montazeri defined C (Let it be Co in order to differentiate the measure from

C used for classes in our examples) as follows:

 Co(c) =
)2|).(|1|(|

)1|(|||
2

−−
−−

⋅
cc

cc

VV
VE

Where Ec and Vc are the edges and vertices of the connection graph of the class c.

From the example given in Figure 3, we have Ec = 2 and Vc = 3. Hence, Co(C) = 0

2.4.4 The TCC and LCC Metrics

The approach by Bieman and Kang [11] is also based on that of Chidamber and

Kemerer’s. They consider pairs of methods that use common attributes. They have

defined two different cohesion measures based on the direct and indirect connectivity

between pairs of methods. Two methods that use one or more common attributes are

said to be directly connected. Whereas two methods that are connected through other

directly connected methods are called indirectly connected. The indirect connection

relation is the transitive closure of the direct connection relation. Thus, a method M1 is

indirectly connected with a method Mn if there is a sequence of methods M2, M3, …

Mn−1 such that M1 δ M2, … Mn− 1 δ Mn. Where Mi δ Mj represents a direct connection.

Let NDC(C) be the number of pairs of directly connected methods of a class C,

NIC(C) be the number of pairs of indirectly connected methods of C and NP(C) be the

maximum possible number of connections in C. It is clear that for a class with N

methods, NP(C) = N (N − 1) / 2.

 20

Tight Class Cohesion (TCC) is defined to be a ratio of the number of pairs of directly

connected methods in a class, NDC(C), to the maximum possible number of

connections in a class, NP(C).

)(
)()(

CNP
CNDCCTCC =

Loose Class Cohesion (LCC) is defined to be a ratio of the sum of the number of pairs

of directly connected methods, NDC(C), and number of pairs of indirectly connected

methods, NIC(C), in a class C to the maximum possible number of connections in C,

NP(C).

)(
)()()(

CNP
CNICCNDCCLCC +

=

With respect to inheritance, Bieman and Kang have stated three options for the

analysis of cohesion of a class [11]:

1. Exclude inherited methods and inherited attributes from the analysis, or

2. Include inherited methods and inherited attributes in the analysis, or

3. Exclude inherited methods but include inherited attributes.

Bieman and Kang identified a problem with constructor methods for TCC and LCC. A

class constructor is an initialization function. It generally accesses all attributes in the

class, and thus, shares attributes with virtually all other methods. Constructors create

connections between methods even if the methods do not have any other relationships.

 21

Therefore, the presence of a constructor method artificially increases cohesion as

measured by TCC and LCC. Bieman and Kang have therefore recommended

excluding constructors (and also destructors) from the analysis of cohesion [11].

To illustrate these two metrics, consider the class given in Figure 4. From the figure,

we have:

NP(C) = 3, NDC(C) = 2 and NIC(C) = 1, thus TCC = 2/3 and LCC = 1.

m1

A1 A2 A3 A4

m2 m3

Figure 4: A class C with three methods and four attributes

2.4.5 The LCOM5 Metric

Henderson-Sellers et al.[47] also based their work on the metric suite of Chidamber

and Kemerer [29]. The suite is evaluated from a mathematical point of view and a new

formulation for the LCOM metric was defined. Their definition is based on the

following properties:

• The measure yields 0, if each method of the class references every attribute of

the class (this situation is called “perfect cohesion” by Henderson-Sellers”).

 22

• The measure yields 1, if each method of the class references only a single

attribute.

• Values between 0 and 1 are to be interpreted as percentages of the perfect

value.

We call their definition LCOM5 and it is defined as follows:

Definition 2.5:

Consider a set of methods {Mi} (i = 1,….., m) of a class C accessing a set of attributes

{Aj} (j = 1,….., a). Let the number of methods which access an attribute Aj be µ(Aj)

and total number of attributes in {Aj} is a.

LCOM5 =
m

mA
a

a

j
j

−

−∑
=

1

)(1
1

µ

This definition is illustrated in Figure 5.

C
m1

A1 A2 A3

m2 Mi

Aj

m3

() = 1A1 () = 2A2 () = 2A3

Figure 5: A class C with three methods and three attributes

From the example, we have: m = 3 and a = 3, Therefore

 23

LCOM5 =
31

3)221(
3
1

−

−++

thus LCOM5 = 2/3.

2.4.6 The RCI Metric

Briand et al. proposed a cohesion measure in [15] that is based on the visualization of

a class as a collection of data declarations and methods. Data declarations are (i) local

type declarations, (ii) the class itself (as an implicit public type), and (iii)

public/private attributes (including constants). Briand et al. defined two types of

interactions, DD-interactions (declaration-declaration interactions) and DM-

Interactions (declaration-method interactions).

DD-interaction: A data declaration a DD-interacts with another data declaration b, if

a change in a’s declaration or use may cause the need for a change in b’s declaration

or use. We say that there is a DD-interaction between a and b. The following are

examples of DD-interactions:

• If the definition of a type t uses another public type t', there is a DD-interaction

between t' and t.

• If the definition of a public attribute a uses a public type t, there is a DD-

interaction between t and a.

• If a public attribute a is an array and its definition uses public constant a', there

is a DD-interaction between a' and a.

DD-interactions need not be confined to one class. There can be DD-interactions

between attributes and types of different classes. The DD-interaction relationship is

 24

transitive. If a DD-interacts with b and b DD-interacts with c, then a DD-interacts with

c.

DM-interaction: Data declarations can also interact with methods. There is a DM-

interaction between a data declaration a and method m either

• if a DD-interacts with at least one data declaration of m (Data declarations of

methods include their parameters, return type and local variables), or

• if a is an attribute and m uses/accesses it.

Briand et al. defined CI(C) (CI means Cohesive Interactions) to be the set of all DD-

and DM-interactions present in the class C and Max(C) to be the set of all possible

DD- and DM-interactions that can be established in class C. RCI can be defined as

follows:

|)(|

|)(|)(
CMax

CCICRCI =

Consider a class with four methods and five attributes as shown in Figure 6, from the

figure we have, |CI(C)| = 8 and |Max(C)| = 20. Hence RCI = 8/20 = 2/5.

 25

m1

A1 A2 A3 A4 A5

m2 m3 m4

C

Figure 6: A class C with four methods and five attributes

2.4.7 The CAMC Metric

In 1999, Bansiya et al. [6] proposed a design metric to evaluate cohesion among

methods of a class early in the analysis and the design phase. The metric evaluates the

consistency of methods in a class’ interface using the parameter lists of the methods.

The metric can be applied on class declarations that only contain method prototypes

(method types and parameter types). They call their metric CAMC (Cohesion Among

Methods of Classes).

The CAMC metric is based on the assumption that the parameters of a method

reasonably define the types of interaction that methods may implement. To compute

the CAMC metric value, an overall union (T) of all object types in the parameters of

the methods of a class is determined. A set Mi of parameter object types for each

method is also determined. An intersection (set Pi) of Mi with the union set T is

computed for all methods in the class. A ratio of the size of the intersection (Pi) set to

the size of the union set (T) is computed for all methods. The summation of all

intersection sets Pi is divided by product of the number of methods and the size of the

 26

union set T, to give a value for the CAMC metric. Mathematically, the metric is

defined as follows:

nT

P
CAMC

n

i
i

×
=
∑
=

||

||
1

Where

N is number of methods in the class

Mi is the set of parameters of method i

 T is the union of Mi, for every i = 1 to n

 Pi is the intersection of set Mi with T i.e. Pi = Mi ∩ T

The metric value ranges between 0 and 1.0. A value of 1.0 represents maximum

cohesion and 0 represents a completely un-cohesive class.

2.4.8 The CBMC Metric

In 2000, Chae et al. highlighted two problems with the existing cohesion metrics.They

noted that the existing cohesion measures do not [26]:

1. take into account the properties of special methods like access methods,

constructors etc. thus fail to properly reflect the actual cohesiveness of classes.

2. consider the patterns of the interactions among members, they are simply based

on counting the number of the attributes refernced by methods or the number

of method pairs with shared attributes.

 27

In order to cope with these problems, they proposed a new metric called CBMC

(Cohesion Based on Member Connectivity) whose definition is given below. Their

metric is based on two things: connectivity factor and structure factor.

Definition 2.6:

The CBMC for a class C, CBMC(C), is defined to be the connectivity factor of its

reference graph, Fc(Gr(C)), scaled by the structure factor of its reference graph,

Fc(Gr(C))

))((1))(())(())(()(
1

CGCBMC
n

CGFCGFCGFCCBMC i
r

n

i
rcrsrc ∑

=

×=×=

Where
|)(|
|)(|

))((
rn

rg
rc GM

GM
CGF = is the connectivity factor(represents the degree of the

connectivity among the members).

and)(1))((
1

i
r

n

i
rs GCBMC

n
CGF ∑

=

= is the structure factor

Mg and Mn are the set of glue methods and normal methods respectively. Glue

methods are the minimum number of methods without which the reference graph will

be divided into sub-graphs. i
rG is one of the n children of Gr in the structure tree;

CBMC denotes the cohesion of a component i
rG .

Example 2.2:

Consider the class shown in Figure 7,

 28

m1

A1 A2 A3 A4

m2 m3 m4 m5

Figure 7: A class C with five methods and four attributes

To compute the CBMC of the class in Figure 7, we need to construct its structure tree

first, which is shown in Figure 8.

 29

A2

m1

A1 A2 A3 A4

m2 m3 m4 m5

A2 A3 A4

m3 m4 m5

A3 A4

m4 m5

A4

m5

m1

A1

A3

Figure 8: The structure tree of the class in Figure 7

))((1))(())(())(()(
1

CGCBMC
n

CGFCGFCGFCCBMC i
r

n

i
rcrsrc ∑

=

×=×=

[])()(
2
1

5
1)(21 GCBMCGCBMCCCBMC +×=

[] ()⎥⎦
⎤

⎢⎣
⎡ +×+=×+=)()(

2
1

3
11

10
11

10
1)(2221 GCBMCGCBMCFFCCBMC SC

 30

() { } ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +×++=⎥⎦

⎤
⎢⎣
⎡ ×++=)()(

2
1

2
11

6
11

10
1)1

6
11

10
1)(222221 GCBMCGCBMCFFCCBMC SC

{ } { }
8
1111

4
11

6
11

10
11

4
11

6
11

10
1)(=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ×+++=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ×+++= SC FFCCBMC

2.4.9 The CCM and ECCM Metrics

Jarallah et al. in [52] proposed two cohsion metrics for assessig the extent to which an

inheritance hierarchy follows some four design principles they discussed in their

paper. The proposed metrcs are: CCM (Class Connection Metric) and ECCM

(Enhanced Class Connection Metric), the difinition of these metrics are given below.

)()(
)()(

CNCCCNMP
CNCCCCM
⋅

=

Where NC(C) is the number of actual connection among the methods of the class,

NMP(C) is the number of the maximum possible connections among the methods of

the class C and NCC(C) is the number of connected components of the connection

graph Gc.

))(1(
)().(

)()(CtorPenaltyFac
CNCCCNMP

CNCCECCM −×=

or simply,

))(1()()(CtorPenaltyFacCCCMCECCM −×=

 31

Where
)(
)()(

CNOIM
CNORMCtorPenaltyFac =

NORM(C) is the number of re-implemented methods and NOIM(C) is the number of

inherited methods.

NB:

The connection criterion of CCM and ECCM is slightly different from that of TCC

and LCC. For CCM and ECCM, two methods A and B are connected in the connection

graph GC if they satisfy any or both of the following conditions:

• Methods A and B access one or more attributes in common.

• Methods A and B invoke one or more methods in common.

Example 2.3:

Considering the class given in Figure 7, we have the following connected graph.

m1 m2

m3

m4m5

Figure 9: The connected graph of the class in Figure 7

 32

Thus, NC(C) = 5, NMP(C) = 10 and NCC(C) = 1 hence CCM = 2/5

Here the value of ECCM = CCM because in this example no specification is given for

the inherited methods.

2.4.10 The OCC and PCC

Aman et al. [4] proposed two cohesion metrics that not only consider the connections

among the component of a class but also consider the sizes of connected modules as

well as the strength of method connection,. These metrics are: OCC (Optimistic Class

Cohesion) and PCC (Pessimistic Class Cohesion).

Definition 2.7: Weak-connection graph

Given a class, let M be the set of methods, and A be the set of attributes, within the

class. A weak-connection graph is defined as an undirected graph Gw(V, E), where V

= M and

E = {{u, v} Є M x M | З a Є A s.t. (ac (u, a) Λ ac (v, a))}

Definition 2.8: Strong-connection graph

Given a class, let M be the set of methods, and A be the set of attributes, within the

class. Strong-connection graph is defined as a directed graph Gs (V, E), where V = M

and

))},(),(.(.|},{{ avreauwrtsAaMMvuE ∧∈∃×∈=

Definition 2.9: Optimistic Class Cohesion (OCC)

Given a class, let M be the set of methods, and A be the set of attributes, within C.

Consider the weak-connection graph Gw(V, E), where V = M and E is as given in

 33

equation 1. Let n = |M|. For each method mi Є M (i = 1, . . . , n), let Rw(mi) be the set of

methods which are reachable by mi on Gw(V, E):

jimmmm

psEmmtsMmmMmmiR

kpjki

kskskpkjw

≠==

−=∈∈∃∈= +

,,

),1,...,1(},{..,...,|{)(

1

11

The Optimistic Class Cohesion (OCC) for a class C is defined as follows:

()

()⎪⎩

⎪
⎨

⎧

=

>⎥⎦
⎤

⎢⎣
⎡

−= =

1,0

1,
1

|)(|max
)(,...,1

n

n
n

miRw
COCC ni

Definition 2.10: Pessimistic Class Cohesion (PCC)

Given a class C, let M be the set of methods, and A be the set of attributes, within C.

Consider the strong-connection graph Gs(V, E), where V = M and E is as in equation

2. Let n = |M|. For each method mi Є M (i = 1, . . . , n), let Rs(mi) be the set of methods

which are reachable by mi on Gs(V, E):

jimmmm

psEmmtsMmmMmmiR

kpjki

kskskpkjs

≠==

−=∈∈∃∈= +

,,

),1,...,1(},{..,...,|{)(

1

11

The Pessimistic Class Cohesion (PCC) for a class C is defined as follows:

()

()⎪⎩

⎪
⎨

⎧

=

>⎥⎦
⎤

⎢⎣
⎡

−= =

1,0

1,
1

|)(|max
)(,...,1

n

n
n

miRs
CPCC ni

 34

Table 1 shows three different classes each with five methods and four attributes but with

different level of interactions between the components of the class. For each class, the

measure for each metric is computed.

Table 1: Cohesion Metrics Examples

Metric C1
m1

A1 A2 A3 A4

m2 m3 m4 m5

C2
m1

A1 A2 A3 A4

m2 m3 m4 m5

C3
m1

A1 A2 A3 A4

m2 m3 m4 m5

Comment

1 LCOM1 6 6 0 Does not differentiate
between C1 and C2

2 LCOM2 3 2 0 OK
3 LCOM3 2 1 1 Does not differentiate

between C2 and C3
4 LCOM4 2 1 1 Does not differentiate

between C2 and C3
5 Co N/A 0 1 Applicable only when

the connected component
is one.

6 LCOM5 0.81 0.75 0.44 OK
7 LCC 0.6 1 1 Does not differentiate

between C2 and C3
8 TCC 0.3 0.4 1 OK
9 RCI 0.23 0.27 0.43 OK
10 CCM 0.15 0.4 1 OK
11 ECCM N/A N/A N/A Cannot be computed

using these examples
12 CAMC
13 CBMC 0 0.13 0.6 OK
14 OCC 0.75 1 1 Does not differentiate

between C2 and C3
15 PCC N/A N/A N/A Cannot be computed

using these examples

NB:

In Table 1, ‘OK’ in the comment column signifies that that the metric behaves the way

we expect in the above examples. However, even those metrics that appear to follow

intuition in the above examples have their own peculiar problems as discussed in

chapter 3. For instance LCOM2 may return zero values for classes where the classes

have different cohesion values. LCOM5 will give an infinite value if there is only one

method in the class. Table 2 gives a brief summary of the existing cohesion metrics.

 35

Table 2: Overview of Cohesion Measure

Metric Definition Validation Cohesion Criteria Source
LCOM1

The number of pairs of methods that share no attributes. Validated
theoretically

Attribute sharing [28]

LCOM2

Let P be the pairs of methods without shared attributes, and Q be the pairs of
methods with shared attributes. Then

LCOM2 =
⎩
⎨
⎧ >−

otherwise
QPifQP

,0
|||||,|||

Validated
theoretically and
empirically

Attribute sharing [29]

LCOM3

Consider an undirected graph G where the vertices are the methods of a class,
and there is an edge between two vertices if the corresponding methods share
at least one attribute.

LCOM3=|connected components of G|

Not validated Attribute sharing [49]

LCOM4

Like LCOM3, where graph G additionally has an edge between vertices
representing methods Mi and Mj, if Mi invokes Mj or vice versa.

Not validated Attribute sharing and methods
invocation

[49]

Co

()
()()2||.1||

1||||.2)(
−−
−−

=
VcVc

VcEcCCo

Where Ec and Vc are the edges and vertices of G from LCOM4.

Not validated Attribute sharing and methods
invocation

[49]

LCOM5

Consider a set of methods {Mi} (i=1, … , m) accessing a set of attributes
{Aj}(j=1, …, a). Let µ(Aj) be the number of methods that reference Aj. Then,

LCOM5 =
m

mA
a

a

i
j

−

−∑
=

1

)(1
1
µ

Not validated Attribute usage [47]

 36

Metric Definition Validation Cohesion Criteria Source
TCC

Let NP be the maximum possible number of direct or indirect connection in a class.

NP =
2

)1(* −NN
 for N methods. Let NDC be the number of directly connected

methods in a class. Then TCC is defined as: TCC =
NP

NDC

Not validated Attribute sharing [11]

LCC

Let NIC be the number of indirect connections in the class. Then LCC is defined as
follows

)(
)()()(

CNP
CNICCNDCCLCC +

=

Not validated Attribute sharing [11]

RCI
(ratio of
cohesive
interaction)

|)(|
|)(|)(

CMax
CClCRCI =

Validated
theoretically and
empirically

Type and attribute usage [17]

CAMC

nT

P
CAMC

n

i
i

×
=
∑
=

||

||
1 where

n is the number of methods in the class; Mi is the set of parameters of method I; T is
the union of Mi, for every i = 1 to n; and Pi is the intersection of set Mi with T i.e. Pi
= Mi ∩ T

Validated
empirically

Type intersection [6]

CBMC
))((1))(())(())(()(

1
CGCBMC

n
xCGFCGxFCGFCCBMC i

r

n

i
rcrsrc ∑

=

==

Where
|)(|
|)(|

))((
rn

rg
rc GM

GM
CGF = is the connectivity factor

and)(1))((
1

i
r

n

i
rs GCBMC

n
CGF ∑

=

= is the structure factor

Validated
empirically

Attribute sharing, methods
invocation and methods
patterns

[26]

 37

Metric Definition Validation Cohesion Criteria Source
CCM
)

)().(
)(

(
CNCCCNMP

CNC
CCCM =

Where NC(C) = number of actual connection, NMP(C) = maximum possible
connections and NCC(C) = number of connected components of the connection
graph Gc

Validated
theoretically

Attribute sharing and
methods invocation

[52]

ECCM

))(1()()(CtorPenaltyFacCCCMCECCM −×=
Where

)(
)()(

CNOIM
CNORMCtorPenaltyFac =

NORM(C) is the number of re-implemented methods and NOIM(C) is the number of
inherited methods

Validated
theoretically

Attribute sharing and
methods invocation

[52]

OCC
 ()

()⎪⎩

⎪
⎨

⎧

=

>⎥⎦
⎤

⎢⎣
⎡

−= =

1,0

1,
1

|)(|max
)(,...,1

n

n
n

miRw
COCC ni

Validated
theoretically

Attribute sharing and
method invocations

[4]

PCC

()

()⎪⎩

⎪
⎨

⎧

=

>⎥⎦
⎤

⎢⎣
⎡

−= =

1,0

1,
1

|)(|max
)(,...,1

n

n
n

miRs
CPCC ni

Validated
theoretically

Attribute sharing and
method invocations

[4]

 38

CHAPTER 3

3 CLASSIFICATION FOR OBJECT-ORIENTED COHESION

METRICS

3.1 Introduction

In this chapter, we begin in section 3.2 with the discussion of the classification criteria

for object-oriented cohesion metrics. Section 3.3 presents a critical analysis of the

existing object-oriented cohesion metric in the light of the classification criteria. In

section 3.4 we conclude the critical analysis by summarizing our findings.

3.2 Classification for Cohesion Measurements

Software researchers have given so much importance to the area of software metrics

with a view to quantify different aspects of software. If software features are

accurately measured, the development process can better be understood and hence it

can easily be controlled so that better software products are produced. In this section,

we identify some classification criteria that can be used to classify, assess, compare,

and evaluate the existing cohesion metrics. The classification criteria are of two types:

factors and characteristics.

• Factors: these criteria identify what the metric considers in its calculation of

cohesion value.

• Characteristics: these criteria, as the name implies, capture the characteristics of

the cohesion metric i.e. the features of the metric.

 39

As shown in Table 3, criterion 3, 7, 9, 10 and 11 can be found in [18]. The table

presents a summary of these criteria where new (in the source column) signifies new

criteria that we identified in the course of this research.

Table 3: Classification Criteria

Classification Criteria Description Source Remark
1 Underlying Approach Characteristic New
2 Granularity Characteristic New
3 Availability Characteristic Briand [18] Braind et. al. called this usable or

partially usable .
4 Soundness/Validity Characteristic New
5 Sensitivity Characteristic New
6 Normalization Characteristic New
7 Validation Characteristic Briand [18]
8 Interpretation Characteristic New
9 Connection type Factor Modified Modified version of Braind’s

cohesion criteria [18].
10 Special Methods Factor Briand [18] Braind et. al. called this known

problems
11 Inheritance Factor Briand [18]

Underlying Approach

To better understand a concept, it is important to understand the underlying principle

upon which the work is built; this may be obtained by knowing where the original idea

is obtained. Underlying approach gives the reference of the work where the original

idea, upon which the approach is built, is obtained.

Granularity

Granularity refers to the level of granularity of the metric, as in which component of

the system does the metric measure; method, class or package.

Availability

Availability determines the software engineering development process in which the

metric can fully be used. Some metrics can only be used when coding is completed

such metrics are available at the implementation level. While some metrics can be

 40

used at the end of the design stage such metrics are available at the design level of the

software development process.

Soundness/Validity

Soundness determines the correctness of the metric proposed in the approach, as in

how much it really captures the cohesion of the module of a software system. It

equally determines if there is an ambiguity in the metric computation. An ambiguity

exist if the metric gives the same value for classes that are, intuitively, of different

cohesion.

Sensitivity

Sensitivity describes how sensitive the cohesion metric is to changes. How does a

change in the module (or class) affect the measurement? Does the change have

negative or positive impact on the result of the metric?

Normalization

Normalization determines if the result of the metric is normalized i.e. values returned

by the metric is between 0 and 1; classes with zero cohesion value have the least

cohesion while classes with cohesion value 1 have perfect cohesion. Or the reverse is

the case for inverse metrics like the LCOM metrics.

Validation

Validation specifies whether the metric is validated or not; if it is validated how is it

validated-theoretically or empirically. If it is not validated how complex is the

 41

validation process, as in what are the things required for it to be validated and whether

or not the researchers have given a way that their metric can be validated.

Interpretation

Interpretation determines the difficulty surrounding the interpretation of the results

obtained from the metric. It also describes whether the researchers have given

suggestions on how to interpret the values of the metric or not.

Connection Type

Connection type specifies factors the cohesion metric considers in calculating the

cohesion of the module i.e. the process the researchers used in capturing the

interactions among the different components of a class. Based on our research, we

outlined all the possible interactions that may exist among the components of a class in

Table 4. However, we have not exhausted all possible types; the types outlined in

Table 4 are based on the approaches we have covered in this research. If a new

interaction criterion is proposed later, the table simply needs to be updated. The table

is a modified version of the one presented in Briand’s framework [18].

Special Methods

Methods like constructor, access methods etc have an impact on the cohesion of a

class. The special method attribute captures whether the impact of such methods is

considered in the definition of the cohesion measure.

 42

Inheritance

Inheritance describes whether the approach considers the impact of inheritance in

proposing its metric. Inherited methods and attributes have an impact on the cohesion

of a class.

Table 4 presents all the possible types of connections used by the existing cohesion

metrics (i.e. the possible ways through which the components of a class may interact).

This table is a modified version of the work presented by Briand et al. in [18]; here we

identified three more connection types: type 3, 8 and 9. In addition, we give names to

each of the criterion for easy referencing.

Table 4: Connection Types

Element 1 Element 2 Description Name Measures
1 Method m

of class c
Attribute a of
class c

m references a MAR LCOM5, CBMC,
CBAMU

2 Method m
of class c

Method m’ of
class c

m invokes m’ directly DMMR LCOM4, Co,
CCM, ECCM,
OCC, PCC,
CBAMU

3 Method m
of class c

Method m’ of
class c

m relates to m’ indirectly via
other methods that directly
invoke each other.

IMMR CBAMU

4 Method m
of class c

Method m’ of
class c, m ≠
m’

m and m’ directly reference an
attribute a of class c in common

DAS LCOM1, LCOM2,
LCOM3, LCOM4,
Co, TCC, CCM,
ECCM, OCC,
PCC, LCC

5 Method m
of class c

Method m’ of
class c, m ≠
m’

m and m’ indirectly reference
an attribute a of class c in
common

IAS LCC

6 Data-
declaration
in class c

Data-
declaration in
class c

Data-data interaction DDI RCI

7 Method m
of class c

Data-
declaration in
class c

Data-method interaction DMI RCI

8 Parameter 1 Parameter 2 The existence of Parameter 1
and Parameter 2 in the same
method or otherwise

PPI CAMC

9 Method m
of class c

Method m’ of
class c

m writes to an attribute a of
class c and m’ reads a

MIBAT PCC

 43

Where;

MAR means Method-Attribute Referencing

DMMR means Direct Method-Method Referencing

IMMR means Indirect Method-Method Referencing

DAS means Direct Attribute Sharing

IAS means Indirect Attribute Sharing

DDI means Data-Data Interaction

DMI means Data-Method Interaction

PPI means Parameter-Parameter Interaction (or Intersection).

MIBAT: Methods Interactions Based on Access Types

3.3 Critical analysis of object oriented cohesion metrics

In this section we critically analyze the different approaches we found in the literature,

all the object-oriented approaches discussed in chapter 2 (Literature Review) are

scrutinized based on the classification criteria.

Evaluating the Degree of Method and Class Cohesion of Eder et al. [33]

Eder et al. define degrees for measuring method cohesion, class cohesion and

inheritance cohesion as explained in chapter 2. In this section we discuss the proposed

metrics in the light of the attributes discussed in Table 3. See section 2.4.1 for details

regarding the cohesion metrics proposed by Eder et al.

 44

Table 5: Eder's et al. Approach

Attribute Approach
1 Underlying Approach An extension of the concepts of cohesion developed initially for

procedure-oriented systems by Yourdon and Constantine [80]
2 Granularity Measure cohesion at method and class level
3 Availability Implementation
4 Soundness/Validity Too subjective; the degrees of method and class cohesion are

ambiguous because their meaning cannot be determined from the
context. The approach depends on individual to interpret the result

5 Sensitivity Not sensitive
6 Normalization Not normalized
7 Validation Not validated
8 Interpretation No explanation is given for the metric interpretation
9 Connection Type Provides ordinal scales for capturing method cohesion, class cohesion

and inheritance cohesion as explained in chapter 2. All the three types
of cohesion are subjective and too difficult to measure automatically

10 Special Methods No consideration was given for special methods in this approach
11 Inheritance Inherited methods and attributes are considered in the case of

inheritance cohesion.

Evaluating the LCOM1 and LCOM2 Metrics [28][29]

In their approach, Chidamber and Kemerer proposed the lack of cohesion in methods

(LCOM) and later redefine this metric, we call the two metrics LCOM1 and LCOM2.

These two metrics are critically analyzed using the classification criteria in Table 6

and Table 7, respectively.

Table 6: LCOM1

Attribute Approach
1 Underlying Approach Based on the notion of degree of similarity of methods initially

proposed by Bunge [25]
2 Granularity Measures cohesion at class level
3 Availability Partially available at the design level but fully available at the

implementation stage.
4 Soundness/Validity Does not correctly capture the cohesion of a class though it gives an

idea of how cohesive a class is. The metric is ambiguous because two
classes that are, intuitively, of different cohesion may have the same
cohesion value.

5 Sensitivity Reacts positively to changes though not in all situations. That is if the
cohesion of a class is altered, the metric reflects this alteration in its
computation sometimes.

6 Normalization Not normalized
7 Validation Validated theoretically
8 Interpretation No explanation on how to interpret the result of the metric
9 Connection Type DAS (Direct Attribute Sharing) see Table 4
10 Special Methods No consideration was given for special methods in this approach
11 Inheritance Not considered

 45

Table 7: LCOM2

Attribute Approach
1 Underlying Approach Based on the notion of degree of similarity of methods initially

proposed by Bunge [25]
2 Granularity Measures cohesion at class level
3 Availability Partially available at the design level but fully available at the

implementation stage.
4 Soundness/Validity Does not correctly capture the cohesion of a class. The metric is

ambiguous because two classes that are, intuitively, of different
cohesion may have the same value for the measure. In the experiment
performed by Basili et al [8] it turns out that many classes are set to
have cohesion value zero although different cohesions are expected.

5 Sensitivity Behaves positively to changes in the cohesion of a class though not in
all situations

6 Normalization Not normalized
7 Validation Validated theoretically and empirically
8 Interpretation The researchers here asserted that high value of LCOM2 is not

desirable because high value of the metric indicates disparateness in
the functionality provided by the class. This means that the class is
attempting to achieve different objectives. Such classes could be more
error prone and more difficult to test and could possibly be
disaggregated into two or more classes that are better defined in their
behavior. However, though a high value of LCOM2 implies low
cohesion, a value of LCOM2 = 0 does not imply the reverse. As a
matter of fact, two or more different classes may have the value of
LCOM2 = 0. In such a case it is difficult to interpret the result of
LCOM2 metric.

9 Connection Type DAS (Direct Attribute Sharing) see Table 4
10 Special Methods No consideration was given for special methods
11 Inheritance Not considered

Evaluating The LCOM3, LCOM4 and Co Metrics [49][50]

Hitz and Montazeri proposed three metrics based on the LCOM metric; their proposed

metrics are: LCOM3, LCOM4 and Co. In Table 8, Table 9, and Table 10 these metrics

are carefully analyzed based on the classification criteria.

Table 8: LCOM3

Attribute Approach
1 Underlying Approach Based on the work of Chidamber and Kemerer which is based on the

work of Bunge [25]
2 Granularity Captures cohesion at the class level
3 Availability Partially available at the design level but fully available at the

implementation stage.
4 Soundness/Validity Does not correctly capture the cohesion of a class. The metric is not

devoid of ambiguity, it always gives a value of 1 if the number of
connected component in the undirected Gx graph has one connected
component. In addition, the metric is not normalized.

5 Sensitivity Not sensitive to changes, it does not always behave the way it should
when the interactions among the components in a class are tempered
with.

6 Normalization Not normalized
7 Validation Not validated

 46

8 Interpretation Difficult to interpret the result
9 Connection Type DAS (Direct Attribute Sharing) see Table 4
10 Special Methods No consideration was given for special methods in this approach
11 Inheritance Not considered

In order to remedy the problems with access method when measuring the cohesion of

a class, LCOM4 was proposed. In the definition of this metric, methods invocations

are also put into consideration when drawing the undirected graph Gx. This metric is

scrutinized in the table that follows.

Table 9: LCOM4

Attribute Approach
1 Underlying Approach Based on the work of Chidamber and Kemerer which is based on the

work of Bunge [25]
2 Granularity Captures cohesion at the class level
3 Availability Partially available at the design level but fully available at the

implementation stage.
4 Soundness/Validity Does not correctly measure the cohesion of a class; it always gives the

value 1 when the number of connected component in the undirected
graph is 1. The result of the metric is not normalized.

5 Sensitivity Not very sensitive to changes, it does not always behave the way it
should when the interactions among the components in a class are
tempered with.

6 Normalization Not normalized
7 Validation Not validated
8 Interpretation Difficult to interpret the result
9 Connection Type Uses DAS and DMMR of Table 4
10 Special Methods Considers access method by including an edge between methods in the

undirected graph whenever one of the methods invokes the other.
11 Inheritance Not considered

To further discriminate classes that have the value of LCOM = 1, Hitz and Montazeri

proposed a third metric called connectivity (Co). This metric is analyzed in Table 10.

Table 10: The Connectivity Metric

Attribute Approach
1 Underlying Approach Based on the work of Chidamber and Kemerer which is based on the

work of Bunge [25]
2 Granularity Captures cohesion at the class level
3 Availability Partially available at the design level but fully available at the

implementation stage.
4 Soundness/Validity Does not correctly measure the cohesion of a class; it only comes into

play when we have a situation whereby there is only one connected
component in the reference graph of the class.

5 Sensitivity Not very sensitive to changes, it does not always behave the way it
should when the interactions among the components in a class are
tempered with.

6 Normalization Normalized
7 Validation Not validated

 47

8 Interpretation No interpretation is provided for this metric
9 Connection Type Uses DAS and DMMR of Table 4
10 Special Methods Considers access method - this metric is an extension of LCOM4. The

metric is proposed in order to further discriminate classes with one
connected component in the undirected graph by considering the
number of edges in the graph.

11 Inheritance Not considered

Evaluating the TCC and LCC Metrics [11]

Bieman and Kang proposed two cohesion metrics: TCC (Tight Class Cohesion) and

LCC (Loose Class Cohesion). TCC and LCC are critically discussed based on the

classification criteria in Table 11 and Table 12, respectively.

Table 11: Tight Class Cohesion

Attribute Approach
1 Underlying Approach Based on the work of Chidamber and Kemerer which is based on the

work of Bunge [25]
2 Granularity Measures cohesion at the class level
3 Availability Partially available at the design level but fully available at the

implementation stage.
4 Soundness/Validity Provides good means of measuring the cohesion of a class but at times

it gives result that is contrary to intuition especially when there are
many methods in the class. If there are a huge number of methods in
the class, the value of the cohesion will be low because of the
denominator in the definition of the metric but this is not always the
case. It gives an infinite value for classes with no method or classes
with only one method. Also, it does not capture the relationships
between methods via method invocation. In order words, if two
methods do not directly or indirectly share an attribute in common, the
methods will be considered as unrelated methods, which is wrong.

5 Sensitivity Not very sensitive.
6 Normalization Normalized
7 Validation Not validated
8 Interpretation Difficult to interpret the result
9 Connection Type Uses IAS of Table 4
10 Special Methods Recommended that constructors be excluded
11 Inheritance Suggest three alternatives for handling inherited attributes/methods as

discussed in chapter 2.

The second metric; Loose Class Cohesion (LCC) considers - in its definition - both

direct and indirect connections that may exist among the components of a class.

 48

Table 12: Loose Class Cohesion

Attribute Approach
1 Underlying Approach Based on the work of Chidamber and Kemerer which is based on the

work of Bunge [25]
2 Granularity Measures cohesion at the class level
3 Availability Partially available at the design level but fully available at the

implementation stage.
4 Soundness/Validity Provides good means of measuring the cohesion of a class but at times

it gives result that is contrary to intuition especially when there are
many methods in the class. If there are a huge number of methods in
the class, the value of the cohesion will be low because of the
denominator in the definition of the metric but this is not always the
case. Infinity is returned by this metric for classes with only one
method and for classes with no method. Also, it does not capture the
relationships between methods via method invocation. In order words,
if two methods do not directly or indirectly share an attribute in
common, the methods will be considered as unrelated methods, which
is wrong.

5 Sensitivity Not very sensitive.
6 Normalization Normalized
7 Validation Not validated
8 Interpretation Difficult to interpret
9 Connection Type Uses IAS of Table 4
10 Special Methods Recommended that constructors be excluded in the analysis
11 Inheritance Suggest three alternatives for handling inherited attributes/methods.

See chapter 2 for details

Evaluating the LCOM5 Metric [47]

Henderson-Sellers et al. proposed a new metric by redefining the Lack of Cohesion in

Methods (LCOM) metric; we call their metric LCOM5. Below, the metric is discussed

based on the classification criteria.

Table 13: LCOM5

Attribute Approach
1 Underlying Approach Based on the work of Chidamber and Kemerer which is based on the

work of Bunge [25]
2 Granularity Measures cohesion at the class level
3 Availability Partially available at the design level but fully available at the

implementation stage.
4 Soundness/Validity Provides a process of measuring the cohesion of a class but it has some

problems. If there is no attribute or if there is only one method in a
class, the metric will give an infinite value as the cohesion of the class.
This violates the principle of measurement theory and a good metric
should not return such in any situation.

5 Sensitivity Sensitive to changes
6 Normalization Normalized
7 Validation Not validated
8 Interpretation Difficult to interpret
9 Connection Type Uses MAR of Table 4
10 Special Methods No consideration was given for special methods in this approach
11 Inheritance Not considered

 49

Evaluating the RCI Metric [15]

Briand et al. proposed cohesion metric, RCI (Ratio of Cohesive Interaction), based on

the visualization of a class as a collection of data declarations and methods. This

metric is critically discussed in Table 14.

Table 14: The RCI Metric

Attribute Approach
1 Underlying Approach Adapted from the early work of Briand et al. for measuring cohesion

in object-based systems.
2 Granularity Measures cohesion at the class level
3 Availability Fully available at the design level
4 Soundness/Validity Provides a good means of measuring the cohesion of class at the

design level. But because it measure cohesion at the design level, the
result of this metric is not always very accurate.

5 Sensitivity Not very sensitive to changes
6 Normalization Normalized
7 Validation Validated theoretically and empirically
8 Interpretation No interpretation was provided.
9 Connection Type DDI and DMI of Table 4
10 Special Methods Not considered
11 Inheritance In addition to the three options provide by Bieman and Kang, Briand

et al. added a fourth alternative for handling inheritance: excluding
inherited attributes but include inherited methods. According to them
this makes little sense because inherited methods can only access
inherited attributes

Though special methods are not considered in the definition of the RCI metric, Briand

et al. [18] provides the following suggestions on how to deal with special methods.

1. Suggested to count the invocation of access methods as reference to an

attribute (for MAR and DAS in Table 4)

2. Suggest that access methods be excluded (for DAS and DIAS in Table 4) and

3. Suggest that constructors be excluded in the analysis.

Evaluating the CAMC Metric [6]

Bansiya et al. [6], proposed a metric whereby the cohesion of a class is determined by

the types of objects that methods take as input parameters. The metric CAMC

(Cohesion Among Methods in Class) measures the extent of intersections of individual

 50

method parameter type lists with the parameter type list of all methods in the class.

This metric is discussed in Table 15 in light of the classification criteria.

Table 15: The CAMC Metric

Attribute Approach
1 Underlying Approach Based on the premise that the parameters of a method reasonably

define the types of interaction that methods may implement.
2 Granularity Measures cohesion at the class level
3 Availability Fully available at the design level
4 Soundness/Validity Provides a means of measuring the cohesion of class at the design

level. This result may or may not capture the actual cohesion of classes
because at the design level detailed information is not available which
may affect the cohesion of the class. It is discontinuous for classes
with no methods.

5 Sensitivity Not very sensitive
6 Normalization Normalized
7 Validation Validated empirically
8 Interpretation No explanation on how to interpret the result of this metric is provided
9 Connection Type PPI of Table 4
10 Special Methods Not considered
11 Inheritance Not considered

Evaluating the CBMC Metric [26]

Chae proposed the metric CBMC (Cohesion Based on Member Connectivity)

Table 16: The CBMC Metric

Attribute Approach
1 Underlying Approach Based on the work of Chidamber and Kemerer which is based on the

work of Bunge [25]
2 Granularity Measures cohesion at the class level
3 Availability Partially available at the design level but fully available at the

implementation stage.
4 Soundness/Validity Presents an excellent way to measure the cohesion of a class but have

a number of problems. If there are two or more glue methods (i.e.
methods that can separate the reference graph) the order by which
these methods are removed from the structure tree determines the
value of the class cohesion. Thus, different values might be obtained
for the same class.

5 Sensitivity Not very sensitive
6 Normalization Normalized
7 Validation Validated empirically
8 Interpretation No explanation is provided regarding how to interpret the result of the

metric
9 Connection Type MAR of Table 4
10 Special Methods Introduced the concept of glue methods in order to overcome the

problems of special methods. Methods like access methods,
constructors etc are made not have any impact on the cohesion of the
class by ensuring that their removal in the reference graph does not
separate the graph.

11 Inheritance Not considered

 51

Evaluating the CCM and ECCM Metrics [52]

Jarallah et al. [52] conducted a research on some of the object-oriented design features

that can affect the cohesion of a class and attempted to relate how cohesion can be

used to assess these design features. Two metrics were proposed: (i) CCM (Class

Cohesion Metric) and (ii) ECCM (Enhanced Class Cohesion Metric). These two

metrics are critically discussed in Table 16 and Table 17.

Table 17: The CCM Metric

Attribute Approach
1 Underlying Approach Based four design principles proposed in [52]
2 Granularity Measures cohesion at the class level
3 Availability Partially available at the design level but fully available at the

implementation stage.
4 Soundness/Validity Measure the cohesion of a class but not accurately; at times it returns

the same cohesion value for two classes that appear to be of different
cohesion

5 Sensitivity Not very sensitive to changes
6 Normalization Normalized
7 Validation Validated theoretically
8 Interpretation No explanation on how to interpret the result of this metric is provided
9 Connection Type DMMR and DAS of Table 4
10 Special Methods No consideration was given for special methods in this approach
11 Inheritance Not considered

The analysis of the second metric is given in the following table.

Table 18: The ECCM Metric

Attribute Approach
1 Underlying Approach Based four design principles proposed in [52]
2 Granularity Measures cohesion at the class level
3 Availability Implementation level
4 Soundness/Validity Measure the cohesion of a class but not accurately; at times it returns

the same cohesion value for two classes that appear to be of different
cohesion by intuition

5 Sensitivity Not very sensitive to changes
6 Normalization Normalized
7 Validation Validated theoretically
8 Interpretation No explanation on how to interpret the result of this metric is provided
9 Connection Type DMMR and DAS of Table 4
10 Special Methods No consideration was given for special methods in this approach
11 Inheritance Suggest (i) avoiding unused inherited methods in a subclass (ii)

avoiding re-implementation of inherited methods

 52

Evaluating the OCC and PCC [4]

Aman et al. proposed two metrics: (i) OCC (Optimistic Class Cohesion) and (ii) PCC

(Pessimistic Class Cohesion), detailed explanation of how these two metrics work is

presented in chapter 2. In Table 19 and Table 20, we critically analyzed these metrics

based on the classification criteria.

Table 19: The OCC Metric

Attribute Approach
1 Underlying Approach Based on the work of Chidamber and Kemerer which is based on the

work of Bunge [25]
2 Granularity Measures cohesion at the class level
3 Availability Partially available at the design level but fully available at the

implementation stage.
4 Soundness/Validity Does not accurately measure the cohesion of a class. The fact that

access methods are treated as normal methods means that certain
interactions among methods cannot be captured and thus the overall
cohesion of the class will not be accurately captured. Access methods
reduce the cohesion of a class.

5 Sensitivity Not very sensitive
6 Normalization Normalized
7 Validation Validated theoretically
8 Interpretation No interpretation was given
9 Connection Type DMMR, DAS and MRBAT of Table 4
10 Special Methods Access methods are treated as normal methods
11 Inheritance Not considered

Table 20: The PCC Metric

Attribute Approach
1 Underlying Approach Based on the work of Chidamber and Kemerer which is based on the

work of Bunge [25]
2 Granularity Measures cohesion at the class level
3 Availability Partially available at the design level but fully available at the

implementation stage.
4 Soundness/Validity Does not accurately measure the cohesion of a class. The fact that

access methods are treated as normal methods means that certain
interactions among methods cannot be captured and thus the overall
cohesion of the class will not be accurately captured. Access methods
reduce the cohesion of a class.

5 Sensitivity Not very sensitive
6 Normalization Normalized
7 Validation Validated theoretically
8 Interpretation No interpretation was given
9 Connection Type DMMR, DAS and MRBAT of Table 4
10 Special Methods Access methods are treated as normal methods
11 Inheritance Not considered

 53

3.4 Observations

Based on the critical analysis of state-of-the-art of existing cohesion metrics, the

following are our findings:

1. Most of the approaches are based on the work of Chidamber and Kemerer

which is based on the notion of degree of similarity of methods initially

proposed by Bunge.

2. Most of the approaches are based on attribute usage, method invocations or

both.

3. Most of the metrics studied capture cohesion at the class level.

4. None of the metrics studied captures cohesion at the package level.

5. Most of the cohesion metrics studied do not accurately capture the cohesion of

a class without violating at least one example.

6. Most of the metrics are not validated and few researchers provide explanation

on how to interpret the result of their metrics.

7. Some of the metrics are not normalized.

In an attempt to address some of the short comings of some of the existing cohesion

metrics, a new metric has been developed in this research. This metric is presented in

chapter 4. The metric is based on LCOM5 and addresses some of its shortcomings.

 54

CHAPTER 4

4 NEW COHESION METRIC

4.1 Introduction

Software metrics can help address the most critical issues in software development and

can provide support for planning, predicting, monitoring, controlling, and evaluating

the quality of both software products and processes [7]. Quite a number of object-

oriented cohesion metrics have been proposed; we identified lapses in the definition of

some of the object-oriented cohesion metrics. In this chapter we propose a new metric

for measuring cohesion at the design level, which overcomes some of the problems

identified with LCOM5.

In addition to having a context and explicit goals, a well defined metric should have

the following in order to be complete:

1. A metric should have a measure (expressed as a numerical value)

2. A metric should provide a simple procedure or process for capturing the software

attributes it measures.

3. The result of a metric should be normalized for easy understanding and easy

comparison.

4. A metric should also provide an interpretation for the measure (the numerical

value)

 55

Briand et al. [15] proposed four strategies for proposing high-level design metrics: (i)

declaration counts (ii) metrics based on the USES relationships (iii) metrics based on

the IS_COMPONENT_OF relationships (iv) interaction-based.

The metric we proposed in this research work is based on the second strategy (i.e.

metrics based on the USES relationships). Though not all the USES (Interactions) can

be exhaustively captured at the end of the software design stage, the information

available at this stage can be used to define a metric that can be used at the design

level. We call our proposed metric CBAMU (Cohesion Based on Attribute and

Method Usage). In computing this metric, we simply keep track of all the methods that

use (access) each of the attributes in a class and all the methods that use (invoke) each

of the method in the class. The metric (CBAMU) is also normalized so that cohesion

values obtained from the metric lies between 0 and 1.

4.2 Cohesion Based on Attribute and Method Usage

Most of the existing class cohesion metrics attempt to measure the cohesion of a class

by taking into account only the interactions among methods and the attributes of a

class. This type of cohesion criteria constitutes a restrictive way of capturing the

cohesion of a class [5]. The new metric, CBAMU (Cohesion Based on Attribute and

Method Usage) is defined based on both attribute usage and method usage

(invocation) within a class. The metric does not only considers, in its definition, the

direct interaction between methods and attributes but also the interaction between

methods which may serve as a means of capturing the indirect relationship among

methods as shown in Figure 10.

 56

C

m1

A1 A2 A3

m2

m5

m3

A3

m4

Figure 10: Direct and Indirect Connections

From Figure 10, we can see that m2 and m3 are directly related because they both

access the same attribute A2. This is the only interaction that can be captured if the

cohesion criterion is only attribute usage. In order to capture the direct interaction

between m1 and m2 via m5, and subsequently the indirect connection between m1 and

m3, we need to consider the method usages in a class.

Definition 4.1

Let C denote a class, Ai the set of attributes and Mj the set of methods in the class.

Consider an undirected graph Gc(V, E) where V = Mj U Ai (methods are represented in

rectangular nodes while attributes are represented in circular nodes) E is the set of all

edges in Gc. An edge is drawn from a method to an attribute or another method, in the

class, if the method accessed the attribute or invoked the method.

Definition 4.2

Let C denote a class, Ai the set of attributes and Mj the set of methods in the class. Let

the total number of attributes in the class be a and the total number of methods in the

 57

class be m. The attribute usage of the class (AU(C)) and method usage of the class

(MU(C)) can be computed using equations 4.1 and 4.2, respectively.

AU(C) =

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧
==

∑
=

otherwise
am

miforaif

a

i
iA ,)(1

)0(0,0

1
µ

---------------------------------------[4.1]

MU(C) =

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−

==

∑
=

otherwise
mm

miformif

m

j
jM ,)(

)1(
1

)1(0,0

1

µ

 -----------------------------[4.2]

The CBAMU(C) is given by the following mathematical expression

CBAMU(C) = ())()(
2
1 CMUCAU +⋅ --[4.3]

Where;

 a = number of attributes in the class

 m = number of methods in the class

 µ(Ai) = number of methods that access attribute Ai

 µ(Mj) = number of methods that invoke method Mj

 58

From equations 4.1 and 4.2, we can see that dividing ∑
=

a

i
iA

1

)(µ by am and

∑
=

m

j
jM

1

)(µ by m(m – 1) will normalized the result. In the same vain, the summation

of AU(C) and MU(C) is divided by 2 in order to keep the value obtained from the

CBAMU metric normalized.

4.3 Validation

In recent time, so much attention has been given to the concept of software

measurement probably due to the fact that most software projects fail. In view of this,

numerous software metrics have been proposed so that features of software can easily

be measured. One major criticism of most of these metrics is that they have not been

validated, by validating a metric we need to show that it actually measure whatever it

claims to measure [46].

The most common approaches for validating software metrics are theoretical

validation and empirical validation; these two approaches complement each other. In

other words, if a metric is validated theoretically, it needs to be validated empirically

before it can be used with confidence [46]. In this section, we theoretically validate the

CBAMU metric proposed in section 4.1.

4.3.1 Theoretical Validation

Several researchers have proposed properties that software metrics should posses in

order to increase their level of confidence. It is desirable to have a formal set of criteria

with which to evaluate proposed metrics.

 59

In 1996, Hitz and Montazeri used the concept of measurement theory to evaluate and

validate any given metric. They identified the significance of establishing a

“sufficient” empirical relation system after the researcher has identified his attributes

of interest. Having established an empirical relation system, a metric M should then

map the empirical relation system into an appropriate formal (or numerical) relation

system, preserving the semantics of the empirical relation(s) observed. In other words,

for every empirical relation ∠ and a corresponding formal relation <, the so-called

representation condition X ∠ Y ⇔ M(X) < M(Y) must hold [50]. The task of

validating a software measure in the assessment sense is equivalent to demonstrating

empirically that the representation condition is satisfied for the attribute being

measured [40].

So, the empirical relation will be stated as: The more edges in the interaction

graph,GX, the higher the cohesion of the class X. Therefore any metric M should

preserve the semantic of empirical relation.

In 1998, Briand et al. have proposed a mathematical framework including properties to

be satisfied by several types of software metrics [18]. Cohesion measure is one of the

measures supported by this framework, others include: size, length, coupling and

complexity. The following properties are proposed with respect to cohesion metrics, in

other words, any well defined metric should satisfy the following conditions.

 60

Property 1: Non-negativity and Normalization

The cohesion of a class of an object oriented system should belong to a specified

interval (i.e. Cohesion (C) ε [0, Max]. Normalization allows meaningful comparisons

between the cohesions of different classes, since they all belong to the same interval.

Property 2: Null value and maximum value

The cohesion of a class of an object oriented system is null if there is no interactions

among the components of the class (i.e. interaction among the methods and attributes

of the class) and it is maximum if the interaction among the components is maximal.

Property 3: Monotonicity

Let C be an object-oriented system, and c ∈ C be a class in C. Assuming we modified

the class c to form a new class c’ which is identical to c except that there are fewer

interactions in c than in c’. Let C’ be the object-oriented system which is identical to C

except that class c is replaced by class c’. Then

)]'()(|)'()([CCohesionCCohesioncCohesionccohesion ≤≤

In other words, if a relationship is added to an object-oriented system, cohesion must

not decrease.

Property 4: Merging of unconnected classes

Let C be an object-oriented system, and c1, c2 ∈ C be two classes in C. Let c’ be the

class which is the union of c1 and c2. Let C’ be the object-oriented system which is

 61

identical to C except that classes c1 and c2 are replaced by c’. If no relationship exist

between classes c1 and c2 in C, then

)]'()(|)'()}(),([max{ 21 CCohesionCCohesioncCohesioncCohesioncCohesion ≥≥

In other words, the merging of two unconnected classes must not increase cohesion

(because the union of two unconnected classes will have little cohesion).

Hermadi et al. [48] augmented two other additional properties to Briand’s et. al.

framework, that cohesion metrics need to satisfy; these are symmetry and transitive.

These properties are defined below.

Symmetry: the cohesion of a class should not be sensitive to the direction of the

relation between its components. If there is a relation between m1 and m2 then the

representation of m1→m2 is equivalent to m2→m1.

Transitivity: Consider three classes c1, c2 and c3 such that, Cohesion (c1) <

Cohesion(c2) and Cohesion(c2) < Cohesion(c3), then Cohesion(c1) < Cohesion(c3).

Theoretical Validation of CBAMU

In this study we will use the following seven properties in addition to the property

proposed by Hitz and Montazeri in the theoretical validation of the proposed cohesion

metric (CBAMU).

 62

1. Non-negativity

2. Normalization

3. Null value and maximum value

4. Monotonicity

5. Merging of unconnected classes

6. Symmetry

7. Transitivity

Going by the definition of CBAMU, we can see that the more the number of edges in

the undirected graph (representing the interactions among the class’s component) the

more the cohesion of the class. Therefore, CBAMU satisfies Hitz’s property (i.e. the

representation condition holds).

The CBAMU of a class = 0 if there is no interactions among the components of the

class and CBAMU = 1 if all methods are directly or indirectly connected (i.e. if the

interactions among the components of the class is maximal). Therefore, the value of

CBAMU lies in the interval [0, 1] inclusive. Hence, the metric satisfies the first three

of the seven properties.

The monotonicity property says that if relationships are added to the system, then

cohesion must not decrease. From the definition of CBAMU, we can see that as

relationships are added, the values of ∑)(Mµ and ∑)(Aµ (i.e. the numerators) will

increase while the number of attributes and methods remain fixed. Since while the

numerator is increasing the denominator remains unchanged, the cohesion must

increase. Therefore, CBAMU satisfies the fourth property (monotonicity).

 63

Class A

Class B

Class C (The union of Class A and B)m1

A1 A2

m2 m3

m1

A1 A2

m2 m3 m4

A3 A4 A5

m5

m4

A3 A4 A5

m5

Figure 11: Merging two unconnected classes

Property five says that merging two unconnected classes must not increase cohesion.

By merging any two classes that are unconnected, we are increasing the number of

connected components as shown in Figure 11. This will lead to a decrease in CBAMU

because while ∑)(Mµ and ∑)(Aµ slightly increases the values of am and m(m-1)

drastically increase thereby causing an overall decrease in CBAMU. Thus, CBAMU

satisfies the fifth property (merging of unconnected classes).

CBAMU does not satisfy the sixth property (symmetry) because in the case of

interactions among methods (method invocations) direction is considered; we are

interested in capturing which method invokes which not just the interaction.

Class C is more cohesive than class C’ if, in the connection graph, there are less

number of connected components in C than in C’ or if there are more interactions in C

than in C’. CBAMU will always show that a class with less number of connected

 64

components (or with more interactions) has higher cohesion than a class with more

connected components. Hence, if we have three classes A, B and C, such that

Cohesion (Class A) < Cohesion (Class B) and Cohesion (Class B) < Cohesion (Class

C). Then it implies that Cohesion (Class A) < Cohesion (Class C). Therefore, CBAMU

satisfies the seventh property (transitivity)..

To conclude this chapter, the proposed metric (CBAMU) is exposed to the same

treatment as the remaining cohesion metrics we studied in the cause of this research.

Table 21 presents the critical analysis of the CBAMU metric.

Table 21: The CBAMU Metric

Attribute Approach
1 Underlying Approach The approach is based on the work of Chidamber and Kemerer which

is based on the work of Bunge [25]
2 Granularity Measures cohesion at the class level
3 Availability Partially available at the design level
4 Soundness/Validity The metric may not give accurate results for classes with large number

of methods because of the denominator in the definition of the metric.
If there is large number of methods in the class, the value of the
cohesion will be low which may not always be the case.

5 Sensitivity The metric is sensitive to changes.
6 Normalization Normalized
7 Validation Validated theoretically
8 Interpretation Difficult to interpret
9 Cohesion Criteria Uses MAR, DMMR, IMMR of Table 4
10 Special Methods No consideration was given for special methods in this approach
11 Inheritance Not considered

As can clearly be seen from our careful scrutiny of object oriented cohesion metrics in

chapter 3, cohesion may be considered as a subjective concept. Hence, we do not

claim that our metric accurately captures the cohesion of a class; this is simply our

intuition of class cohesion.

4.3.2 LCOM5 vs. CBAMU

Consider the following three classes, which are intuitively of different cohesion.

 65

From the above classes, we can see that both LCOM5 and CBAMU correctly

differentiate among the cohesion of the classes. Both metrics show that as the

interaction among the component of the class increases, the cohesion value also

increases. However, LCOM5 is solely based on attribute referencing and thus will not

show an increase in the cohesion of a class where there is method invocation in

addition to attribute referencing. This is shown in the following example where there

are four methods and four attributes like in the first example the only different is that

m1 invokes m2 and m2 invokes m3. Unlike CBAMU, LCOM5 could not differentiate

C
m1

A1 A2 A3

m2 m3

A3

m3

() = 1A1 () = 1A2 () = 1A3 () = 2A4

LCOM5 = 11/12 = 0.917
CBAMU = 5/96 = 0.052

LCOM5 = 3/4 = 0.75
CBAMU = 7/64 = 0.109

C
m1

A1 A2 A3

m2 m3

A3

m3

() = 1A1 () = 2A2 () = 2A3 () = 2A4

LCOM5 = 2/3 = 0.667
CBAMU = 1/4 = 0.25

C
m1

A1 A2 A3

m2 m3

A3

m3

() = 1A1 () = 2A2 () = 3A3 () = 2A4

 66

between the cohesion of this class and the one in the first example. But CBAMU was

able to differentiate between the cohesion of these classes.

LCOM5 satisfies all the properties used in theoretical validating CBAMU, while

CBAMU fail to satisfy one of them (the symmetry property). However, one of the

major problems with LCOM5 is that it returns infinity for classes with only one

method. Moreover, the symmetry property that CBAMU failed to satisfy is not an

agreed upon property by all researchers in the area of software metrics.

4.4 Implementation

In order to easily compute and conduct experiments with object-oriented software

metrics, quite a number of software metrics tools have been developed. The main goal

of such tools is to increase system quality and to predict relevant system qualities such

as fault-proneness, maintainability etc. OOMeter is a tool that can capture object-

oriented software metrics from UML models stored in XMI [56]. We extended this

tool to support more metrics by implementing cohesion metrics. In this section we

give a description of OOMeter.

LCOM5 = 11/12 = 0.917
CBAMU = 23/96 = 0.24

C

m1

A1

() = 1A1 () = 1A2

A2 A3

m2 m3

() = 1A3 () = 2A4

A3

m3

(M) = 01 (M) = 12 (M) = 13 (M) = 04

 67

4.4.1 OOMeter Architecture

OOMeter is a software metrics tool that measures the structural properties of UML

models and java code and computes a number of software measures that include

coupling, cohesion, and complexity. The tool contains four main components: Java

parser & XMI parser, Data repositories for storing source data and metrics output as

shown in Figure 12.

Java File

XMI ParserJava Parser

Data Repository

Metric Database

Metric Caluculation
(OOMeter)

XMI Files

Size Coupling Cohesion Complexity Inheritance

Figure 12: OOMeter Architecture

As shown in Figure 12, object-oriented systems are parsed to the tool in order to

collect the data that can be used in computing the various software metrics supported

by the tool. The collected data is stored into a Central Data Repository and the results

 68

of the computation of all the metrics are stored in a different database called Metric

Database. At the moment the tool supports the parsing of both java source files as well

as UML models stored in XMI format. The tool supports the computation of a variety

of software measures, which includes size, coupling, cohesion and complexity

measures.

4.5 Empirical Validation

To empirically validate any software metric, well documented software projects are

required but such projects are hard to find. However, to demonstrate the effectiveness

or ineffectiveness of the proposed cohesion metrics, we performed a case study on

several open source software systems. Our approach in this study is as follows:

• Let Sn be the set of all systems to be used

• For each system in Sn determine the following:

o Total number of defects per system (or per class if available)

o The test coverage for each system

• Normalized the test coverage with respect to the bugs

• Rank the projects based on normalized (modified) bugs per unit size.

• Compute the average class cohesion of the metric and rank the systems based on

magnitude.

• Compare the ordering in 4 and 5, if they match then the metric is valid else the

metric claim is questionable.

Note: the above steps can be used as a practical approach for validating any OO

cohesion metric.

4.5.1 Hypothesis

In this part of the research work we will investigate the following hypothesis which is

 69

simply derived from our understanding of the concept of cohesion. However, the

hypothesis is not experimentally shown to be true by previous research work. The

hypothesis is:

 A project with low average class cohesion is likely to have high number of defects

than a class with high average class cohesion.

4.5.2 Selected Systems

A total of seven projects were collected from SourceForge.net, which is an open

source website that provides a centralized place where open source developers can

control and manage open source software development.

The projects used in this study are collected based on their percentile values, which

give an idea of how frequent the project is used. The percentile is expressed in a scale

of 100; based on page views and download information. The higher the percentile the

more used the project is likely to be and the more we expect bugs to be discovered in

the project. On the other hand, if a project has low percentile then the bugs reported

regarding this project may not be an indicator of its quality. It is worth mentioning

here that; it does not always hold true that a user uses a project by merely visiting the

projects website or by downloading it. However, it is an indicator that the project is

popular and perhaps many of the people that download it may have used it. Details of

the projects used are shown in Table 22.

Table 22: Selected Projects

Project Class Method Attribute
Babeldoc 1.0 212 1541 936
Checkstyle 2.4 58 492 228
JGraph 2.0 29 750 340
VR Juggler 1.1DR3 278 2502 1338
Saxon 6.5.2 344 3252 1678
Jext 3.2 553 3233 2435
Saxon 8.0 540 4881 3298

 70

4.5.3 Results and Analysis

On computing the different cohesion metric values, we noticed that some of the

metrics have some strange values. One striking thing is that exactly the same cohesion

metrics are affected in all the projects. These metrics are: TCC (Tight Class

Cohesion), RCI (Ration of Cohesive Interaction), CAMC (Cohesion among Methods

of Classes), and LCOM5. The cause of this problem was carefully investigated and we

discovered that the affected cohesion metric values of some classes are infinite. The

codes of such classes reveal that some of the classes have only one method in them

while others don’t even have a single method. This calls for us to revisit our

implementation and to carefully study the definition of these metrics. At the end of our

investigation, we came to understand that the cause of the problems was in the

definition of the cohesion metrics.

4.5.3.1 Problems in the Definition of Some Cohesion Metrics

The problems in the definition of LCOM5 have already been discussed at length in

chapters 3 and 4. In this sub-section, we would like to discuss the problems of other

cohesion metrics which we came to know from the empirical study. At least three

other metrics have similar problem as LCOM5 i.e. they give infinity for some classes.

TCC and LCC are defined as follows:

)(
)()(

CNP
CNDCCTCC =

)(
)()()(

CNP
CNICCNDCCLCC +

=

NP is given by NP(C) = N (N − 1) / 2, where N is the number of methods in the class.

From this we can see clearly that the problem is in the definition of these metrics. Both

 71

metrics are discontinuous for classes with one method as well as for classes with no

method.

Another metric with a similar problem is CAMC (Cohesion Among Methods of

Classes). The CAMC metric is defined as follows:

nT

P
CAMC

n

i
i

×
=
∑
=

||

||
1

Where n is the number of methods. The fact that n is the number of methods will make

the whole denominator to be zero for classes with zero number of methods and will

result in making the metrics to return infinite values for such classes.

A tempting approach to unravel this problem is to consider eliminating all the classes

that have this problem. However, this solution will not work because the classes to be

eliminated may be the cause of some bugs in the whole project. This will lead us to

having an inconsistent result; on one hand we are not considering the classes while on

the other hand we are considering their impact on the quality of the system. In the

cause of this experiment, what we did was to consider classes with no method to have

no cohesion because if there is no method in a class it means that there is no

interaction among the component of that class. Classes with only one method are

considered to have perfect cohesion; because we expect a class with only one method

to have only one functionality. The average values of the cohesion metrics used in this

analysis are given in Table 23.

 72

Table 23: Average class cohesion of the projects

Project Babeldoc Saxon 6.5.2 Saxon 8.0 Checkstyle Jext VR Juggler Jgraph
LCOM1 0.968 0.921 0.933 0.872 0.947 0.938 0.420
LCOM2 0.969 0.923 0.935 0.869 0.948 0.938 0.418
LCOM3 0.894 0.872 0.880 0.864 0.921 0.868 0.700
LCOM4 0.872 0.845 0.855 0.875 1.000 0.846 0.708
LCOM5 0.267 0.401 0.296 0.298 0.480 0.190 0.144
CBAMU 0.130 0.151 0.165 0.047 0.100 0.092 0.073
CCM 0.129 0.167 0.172 0.154 0.083 0.101 0.069
TCC 0.102 0.156 0.155 0.093 0.149 0.098 0.059
LCC 0.118 0.173 0.178 0.103 0.098 0.110 0.095
CAMC 0.514 0.384 0.358 0.369 0.462 0.477 0.318

4.5.3.2 Projects Ranking

Owing to the fact that no information is provided regarding the test coverage of the

systems, we simply ranked the projects based on bugs per unit size. The size metric

used for this purpose is discussed below.

Khan in [56] proposed a UML class size metric based on attribute size, method size

and inner class. The weights complexities of data types are proportional to their size in

java.

Attribute Type Attribute Size
Int 4
Byte 1
Short 2
Long 8
Float 4
Double 8
Char 2
Boolean 1
String or any other object type 20

The method size is given by the following equation

)()()()(
1

messagenreturnSizeparamSizemSize
np

i
i ×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= ∑

=

The class size is given by

 73

∑ ∑ ∑
= = =

++=
na

i

nm

i

ni

i
ii esinnerClassSizemethSizeattSizecSize

1 1 1

)()()()(

Based on the size metric above, the projects are ranked in order of bug per unit size as

shown in Table 24.

Table 24: Project ranking based on bug/design size metric

Project Total Bugs Design Size Metric Bug/Size Rank
Babeldoc 1.0 4 17116 0.000233699 1
Saxon 6.5.2 36 63048 0.000570994 2
Saxon 8.0 26 29620 0.000877785 3
Checkstyle 2.4 5 3174 0.001575299 4
Jext 3.2 100 23615 0.004234597 5
VR Juggler 1.1DR3 136 20860 0.006519655 6
JGraph 2.0 31 3862 0.008026929 7

The project with rank 1 has the least fault density while the project with rank 7 has the

highest fault density. Based on our hypothesis, we expect to have similar ranking from

the cohesion metric values of the seven projects. However, on computing the cohesion

metrics, none of them show this ranking as shown in Figure 13. We started this

experiment with three projects; in this case the results were good. However, on using

the whole seven projects none of the metrics follow our intuition.

0.000

0.200

0.400

0.600

0.800

1.000

1.200

LCOM1 LCOM2 LCOM3 LCOM4 LCOM5 CBAMU CCM TCC LCC CAMC

Babeldoc 1.0
Saxon 6.5.2
Saxon 8.0
Checkstyle 2.4
Jext 3.2
VR Juggler 1.1
Jgraph 2.0

Figure 13: Project ranking based on cohesion results

 74

From the charts presented in Figure 13, we can see that none of the cohesion metrics

follow the ordering we have in (i.e. ordering based on quality). The project ordering in

the legend of Figure 13 is the same as the ordering based on quality (in Table 24). As

clearly seen none of the considered cohesion metrics follow this ordering. Therefore,

we can conclude that the existing cohesion metrics are not highly correlated to the

number of defects in a software system, therefore, cannot be good predictors of

software defects. To support the above assertion, that the existing cohesion metrics

are not good predictors of software defect, we built software defect prediction model

using an object oriented software project downloaded from NASA Metric Data

Program website. Details of these models are given in Chapter 5.

In order to determine which metric has the closest ordering, we generate the

spearman’s rank correlations. Results show that LCC’s ordering is the closest to the

ordering based on defect density as shown in Figure 14.

The projects are also ranked based on LOC, the LOC is computed using Borland

Together Control Center. This ranking is shown in Table 25.

Table 25: Project ranking based on Bug/LOC

Project Total Bugs LOC Bug/LOC Rank
Babeldoc 1.0 4 24588 0.000163 1
Saxon 8.0 26 62482 0.000416 2
Checkstyle 2.4 5 5941 0.000842 3
Saxon 6.5.2 36 34468 0.001044 4
Jext 3.2 100 58848 0.001699 5
JGraph 2.0 31 9096 0.003408 6

Figure 14: Spearman rank order correlations based on the design size metric

 75

On generating the spearman’s rank correlations we have similar result, i.e. LCC has

the closest correlation to that of defect density as shown in Figure 15.

4.5.3.3 Linking Results to Classification Criteria

The mean values of the normalized LCOM’s as well as the remaining cohesion

metrics are shown in Figure 13; we can see some clusters from this plot. To clearly see

these clusters, we order the projects based on the individual metric values. When the

projects are ordered based on the LCOM1 values, both LCOM1 and LCOM2 have

exactly the same pattern as shown in Figure 16. Also based on this ordering, we can

see that LCOM1 to LCOM4 have similar pattern as shown in Figure 17.

Figure 16: Cluster I (LCOM1 & LCOM2)

Figure 15: Spearman rank order correlations based on LOC

 76

We expect LCOM1 and LCOM2 to have similar patterns because they both use the

same Connection Type (i.e. DAS in Table 4). Furthermore, LCOM2 is simply an

extension of LCOM1.

The fact that LCOM1 to LCOM4 have similar patterns, though not exactly the same, is

an indication that they all have something in common. All these metrics use the same

Connection Type (i.e. DAS in Table 4); though in addition to DAS, LCOM4 uses

Connection Type 2 (i.e. DMMR in Table 4).

When the projects are ordered based on TCC mean values, we can see that TCC and

LCC have similar patterns. And if the CheckStyle project is pulled out of the analysis,

CCM would have exactly the same pattern as LCC; all these metrics use the DAS

connection type (though CCM uses the DMMR connection type in addition to DAS

and LCC uses IAS in addition to DAS). So we expect these three metrics to have

similar pattern as shown in Figure 18.

Figure 17: Cluster II (LCOM1-4)

 77

To clearly see the correlations among the cohesion metrics, we generate a correlation

matrix of the metrics. The above charts are based on the average cohesion values of

the seven projects presented in Table 22. Using this in generating the correlations

means that we have only seven cases. In order to have more cases, we use a single

project (JDSL), which has 99 classes; this means that we have 99 cases. JDSL is the

Data Structures Library in Java. It is a collection of Java interfaces and classes that

implement fundamental data structures and algorithms, such as: search trees, hash

tables, sorting algorithms, and graph traversals. The correlations are presented in

Figure 19; the correlation show similar clusters as the ones shown in the above charts.

Figure 19: Cohesion metrics correlations

Figure 18: Cluster III (TCC & LCC)

 78

The connection types used by each of the cohesion metrics studied in this research are

presented in Table 26. The first ten metrics in this table are empirically investigated.

Table 26: Cohesion metrics Vs connection types

Metric MAR DMMR IMMR DAS IAS DDI DMI PPI MIBAT
LCOM1 X
LCOM2 X
LCOM3 X
LCOM4 X X
LCOM5 X
CBAMU X X X
CCM X X
TCC X
LCC X X
CAMC X X
Co X X
ECCM X X
OCC X X
PCC X X X
RCI X X X
CBMC X X X

OBSERVATIONS

• All the LCOM metrics show negative correlations with the remaining metrics

because they are inverse metrics as discussed in Chapter 2. Out of all the LCOMs

metrics, only LCOM4 show a bit of significant correlation with CCM, TCC, and

LCC.

• LCOM1, LCOM2, & LCOM3 are correlated significantly while LCOM4 is

slightly correlated with these three metrics. LCOM1, LCOM2, & LCOM3 are

correlated because they all use the DAS connection type; LCOM4 is not

significantly correlated with these metrics because it uses DMMR in addition to

the DAS connection type.

• CCM, TCC, LCC and CBAMU are correlated significantly. The fact that CCM,

TCC and LCC use the same connection type (i.e. the DAS connection type) we

expect them to be significantly correlated. Moreover, these three metrics are

similar in the way they compute the cohesion of a class. CBAMU show significant

 79

correlation with CCM because they share the DMMR connection type. Though,

CBAMU does not share any connection type with LCC, the two metrics are similar

in that both metrics consider indirect interactions in the computation of the

cohesion of a class; while CBAMU uses IMMR the LCC metric uses IAS. More

so, this is an indication that there are different orthogonal ways of capturing class

cohesion.

• CBAMU and LCOM5 are slightly correlated. They are slightly correlated because

they both use the MAR connection type but, in addition to this, CBAMU uses

DMMR and IMMR connection types; this justifies why the two metrics are not

significantly correlated.

• LCOM4 is slightly correlated to CCM, TCC & LCC because they all share the

DAS connection type. It is worth mentioning that LCOM4 and CCM both use the

DMMR connection type in addition to the DAS connection type so we expect the

correlation between LCOM4 and CCM to be higher than the correlation between

LCOM4 and TCC (or LCC). This is exactly what the result shows as we can see in

Figure 19.

• From Figure 19 and Table 26, we can see that the most highly used connection

type is DAS and, from the patterns shown in the charts, we may conclude that

DAS is the most effective connection type.

• Whenever the DMMR connection type is used by a metric, it is always used in

addition to another connection type.

Therefore, we can conclude from the above observations that:

1. Some of the metrics are related and the following clusters can clearly be

seen

 80

a. LCOM1, LCOM2 and LCOM3

b. LCOM3 and LCOM4 (the correlation between these metrics is

weaker than the one in (a)).

c. CBAMU, CCM, TCC and LCC

d. LCOM4, CCM, TCC and LCC (here LCOM4 is not strongly

correlated to the remaining three metrics).

2. The fact that metrics form different clusters (i.e. clusters a, b & c) show

different results is an indication of inconsistencies among cohesion metrics.

3. Furthermore, we may conclude that there are four mechanisms that may be

used to in order to measure the cohesion of a module. These are:

a. Direct Method to Method interaction via method invocation

b. Indirect Method to Method interaction via attributing sharing or

indirect relationship based on method invocation.

c. Direct Method to Attribute interaction

d. Indirect Method to Attribute interaction

These mechanisms are presented in Table 27 along side the cohesion metrics.

 Table 27: Mechanisms for measuring OO cohesion metrics

Interaction Type Interaction Mode Method Interaction Metric
M → A M → M Direct Indirect M/Invocation A /Sharing

LCOM1 X X X
LCOM2 X X X
LCOM3 X X X
LCOM4 X X X X X
LCOM5 X X
CBAMU X X X X X
CCM X X X X
TCC X X X
LCC X X X X
CAMC X X
Co X X X X
ECCM X X X X
OCC X X X X
PCC X X X X
RCI X X X
CBMC X X X X X

 81

From Table 27 we can draw the following conclusions:

1. There are two ways via which the interactions among methods can be captured:

(1) Method Invocation (2) Attribute sharing.

2. The most effective Interaction Type is M → M. This may be considered as the

best way to capture the cohesion of a class because methods play a better role

(than attributes) in determining what the functionality of a class is.

3. It is interesting to note that with the mechanisms presented in Table 27, the

cohesion metrics correlations can easily be explained. For instance:

a. LCOM1, LCOM2 and LCOM3 show high correlation because they

share the same interaction type/mode. LCOM4 does not show high

correlation with these three metrics because it uses both the direct and

indirect interaction mode while the remaining three metrics use only

the indirection interaction mode.

b. CCM, TCC, LCC and CBAMU are significantly correlated because

they all use the stronger interaction type (M → M) and the stronger

interaction mode (Direct).

c. CBAMU and LCOM5 are not significantly correlated because although

they use the same interaction type and interaction mode, CBAMU use

the stronger interaction type while LCOM5 does not.

d. From Table 27, we can see that CAMC and LCOM5 use the same type

and mode of interaction. However, the coefficient of correlation

between these metrics is 0.5323; the lack of significant correlation may

be due to the fact that CAMC is a design level metric while LCOM5 is

a code level metric.

 82

The intersections among the connection types based on the metrics that use them are

presented in Figure 20. In order words, the sets in the figure represent the metrics.

Figure 20: Intersections among the Connection Types

From the figure above, we expect CBAMU to be more correlated to LCOM5 than with

LCC but this is not the case. It has already been discussed why LCOM5 and CBAMU

show partial correlation. The fact that LCC is correlated to CBAMU but share no

connection type in common is indication that there are different ways through which

the aspects of class cohesion can be measured and these ways are orthogonal. These

ways are: (1) Measuring class cohesion by capturing direct attribute to method

relationship or direct/indirect method to method relationship (2) Measuring class

cohesion by capturing the indirect method to method relationship via attribute sharing.

These two ways are termed as “Interaction Mode” in Table 27

 83

Since we don’t have 100% correlation between metrics of type (1) and metrics of type

(2), it means that either none or at least one of the orthogonal ways for measuring class

cohesion does not capture all the dimensions (aspects) of cohesion. To effectively

measure class cohesion, we need to have metrics that can capture all the dimensions

(aspects) of cohesion. The main challenge here is how to determine all the dimensions

of class cohesion. This may be achieved by determining which of the orthogonal set

significantly correlates to an external quality attribute (e.g. fault).

 84

CHAPTER 5

5 NUMBER OF DEFECT PREDICTION MODELS

5.1 Introduction

This chapter presents defect prediction models, models that will help us interpret the

values obtained from software design metrics. The chapter is organized as follows:

Section 5.2 discusses the different approaches for building software prediction models.

Section 5.3 presents the experimental goals and the hypothesis, and Section 5.4

presents related work. The description of study and analysis of results are discussed in

sections 5.5 and 5.6, respectively.

5.2 Approaches for Building Software Prediction Model

The different approaches through which software prediction models are built can be

classified into four different classes: machine learning, probabilistic approaches,

statistical approaches and mixed methods; as shown in Figure 21.

APPROACHES FOR BUILDING
PREDICTION MODELS

MACHINE
LEARNING

PROBABILISTIC
APPROACHES

Decision Trees

Logistic Regression

Regression Trees

Linear Regression

MARS

Combination
of techniques

ANN

CART BBN

STATISTICAL
APPROACHES

MIXED
APPROACHES

Figure 21: Approaches for Building Prediction Models

 85

Quite a number of researchers have investigated the use of machine learning

techniques for building software prediction models. Porter and Selby studied the use

of decision trees in building prediction models [68][71] and Khoshgoftaar et al.

applied artificial neural networks in building prediction models [57][58]. Statistical

approaches have been investigated by Abreu et al. who applied linear regression [1],

by El Emam et al. who applied logistic regression [34], and by Briand et al. who

applied Logistic regression and MARS (Multivariate Adaptive Regression Splines)

[21]. Probabilistic approaches have been exploited by Fenton et al. who highly

criticized the complete reliance on historical data of software projects when building

prediction models, he proposed the use of Bayesian Belief Networks [39]. Other

researchers combine different techniques; for instance Morasca and Ruhe worked by

combining rough set analysis and logistic regression [64]. In this work, prediction

models are built using Regression analysis and Artificial Neural Network and the

performance of the models are compared based on coefficient of determination.

When building prediction models, the choice of the prediction technique may affect

the result. The choice of the prediction techniques used in this research is due to the

following reasons:

• Multiple Linear Regression (MLR) is used because the data set used is not

large enough to investigate non-linear interactions. For accurate non-linear

prediction models, large data set is required [22]. In addition, MLR is better

than some techniques like CART-LS (Classification and Regression Trees-

Least Square) and S-PLUS regression trees [59].

• However, the performance of the MLR model was not very good so we built a

nonlinear model using regression analysis, which gave better results.

 86

• The Artificial Neural Network (ANN) technique is claimed to be simple and

accurate [58]. A third model is build using this technique and its performance

is compared with the performance of the regression models.

5.3 Experimental Goal

The goal of this experiment is to determine the predictive power of cohesion metrics

amidst other object oriented software metrics with respect to the number of defects in

a class. In other words, our external software quality attribute of interest is the number

of defects in a class. The number of defects in a system will give an idea of how

reliable the system is; a system with high number of defects will not be reliable

because the presence of the defects may lead to undesirable behavior of the system.

On the other hand, a system with few defects is expected to be more reliable than a

system with high number of defects. Our aim here is to achieve the following:

1. To determine which type of measure (coupling, cohesion, complexity etc) is

significantly correlated to the number of defects of a class.

2. To compare the performance of the models built using Artificial Neural

Network and Regression Analysis using the same data.

5.3.1 Hypothesis

In this study, we want to test a number of hypotheses; basically we want to find out

which measure (coupling, complexity, cohesion or inheritance) has significant impact

on the number of defects in a class. The following hypotheses will be tested in this

study:

1. A class with high coupling measure is likely to have high number of defects. In

other words, coupling measure is significantly correlated to the number of

defects in a class.

 87

2. A class with low cohesion is more likely to have high number of defects than a

class with high cohesion

3. A class with high measure of complexity is more likely to have higher number

of defects than a class of lower complexity.

4. A class with high inheritance measure (e.g. a class with many descendents or a

class situated deeper in the inheritance hierarchy) is more likely to have high

number of defects.

5.4 Related Work

One of the earliest defect prediction studies was in 1971 by Akiyama [1], which was

based on a system developed at Fujitsu, Japan. The study showed that linear models of

some simple metrics provide reasonable estimate for the total number of defects D (the

dependent variable) which is actually defined as the sum of the defects found during

testing and the defects found during two months after release. One of Akiyama’s

correlation involving lines of code is shown in the following equation.

D = 4.86 + 0.018L

Another early study was in 1974 by Ferdinand, [41], who argued that the expected

number of defects increases with the number n of code segments; a code segment is a

sequence of executable statements which, once entered, must all be executed.

Specifically the theory asserts that for smaller numbers of segments, the number of

defects is proportional to a power of n; for larger numbers of segments, the number of

defects increases as a constant to the power n.

In 1975, Halstead [44], proposed a number of size metrics, which have been

interpreted as “complexity” metrics, and used these as predictors of program defects.

 88

Most notably, Halstead asserted that the number of defects D in a program P is

predicted by the following equation.

D = V/3000

Where V is the volume metric, which like all the Halstead metrics is defined in terms

of the number of unique operators and unique operands in P. The divisor 3000,

represents the mean number of mental discriminations between decision made by the

programmer. Each such decision possibly results in error and thereby a residual defect.

The availability of artificial neural network programming tools has attracted the

attention of software engineers. Software researchers now use artificial neural network

in several software related applications. Karunanithi et al. [55] explored the

applicability of neural network models for dynamic software reliability growth

prediction, and demonstrated that neural network models exhibit better predictive

quality than some analytic models. Khoshgoftaar et al. proposed a neural network

approach for predicting the number of faults in program modules [57]. In 1994,

Khoshgoftaar et al. introduced a neural network approach for detecting high-risk

modules, and compared the results of their approach with that of discriminant analytic

approach. They concluded that neural network gave better performance [58].

5.5 Description of Study

In this subsection, we present a detailed description of the Number of defects

prediction model build using Artificial Neural Network.

 89

5.5.1 System

The system used for this experiment is a C++ project (KC1) downloaded from NASA

IV & V MDP (Metric Data Program) repository. Owing to the fact that the source

code of the project is not made available on the repository, we solely rely on the

information provided on the site as such we only used the class level metrics provided

in the documentation of the project.

The NASA IV&V Metrics Data Program project is being developed by Galaxy Global

Corporation, Inc. The primary objective of the Metrics Data Program is to collect,

validate, organize, store and deliver software metrics data. The project detail is as

follows:

• Number of classes : 145 classes

• Classes with defects : 60 classes

• Number of modules : 2107 modules

• Modules with defects : 293 modules

5.5.2 Dependent Variable

We want to evaluate the predictive power of the class level metrics provided in the

NASA KC1 project with respect to the number of defects in a class. More precisely,

we want to determine the number of defects in a class by considering the values of the

class level metrics. Hence, the dependant variable is number of defects in a class.

The defects in the project are not associated to classes, they are linked to Modules (a

term applied to the lowest level functional unit which metrics can be applied e.g.

functions, modules, subroutines). However, since we can determine the number of

 90

modules in a class and defects are related to modules, we can easily determine the

number of defects in each class.

5.5.3 Independent variables

The independent variables are the class level metrics captured in the KC1 NASA

project. We limit our analysis to these metrics because the source code of this project

is not made available in the repository, thus more metrics cannot be calculated. A total

of ten different class-level software metrics were computed for the classes in this

project. They are:

1. PERCENT_PUB_DAT (PPD)

2. ACCESS_TO_PUB_DATA (ATPD)

3. COUPLING_BETWEEN_OBJECTS (CBO)

4. DEPTH

5. LACK_OF_COHESION_OF_METHODS (LCOM)

6. NUM_OF_CHILDREN (NOC)

7. DEP_ON_CHILD (DOC)

8. FAN_IN

9. RESPONSE_FOR_CLASS (RFC)

10. WEIGHTED_METHODS_PER_CLASS (WMPC)

The above metrics are all considered in building the prediction model. We start by

classifying them into complexity, coupling, cohesion and inheritance measures as

shown in Table 28.

 91

Table 28: Metrics Classification

Complexity Coupling Cohesion Inheritance
1 FAN_IN CBO LCOM DEPTH
2 WMPC NOC
3 PPD DOC
4 ATPD
5 RFC

5.6 Analysis of Results

In this section we present the analysis of the results obtained from the experiments, we

start by discussing the descriptive statistics of the respective parameters we consider to

building the prediction model.

5.6.1 Descriptive Statistics

Table 29 presents the descriptive statistics for the 80% of the project, which is used as

training data for building the prediction models. We used 80% of the data for training

because the size of the project is not large enough; to properly train the model we need

to have large data set. Rows, “Max”, “P75”, “Median”, “P25”, “Min”, “Mean”, and

“Variance” state for each metric the maximum value, 75 % percentile, median, 25 %

percentile, minimum, mean and variance respectively. For this project, the inheritance

metrics (DEPTH, DOC, and NOC) have low mean and variance values; this is an

indication that the use of inheritance is sparse.

Table 29: Descriptive statistics I

 Max P75 Median P25 Min Mean Variance
PPD 100 0 0 0 0 14.4 1058
ATPD 0 0 0 0 0 0 0
CBO 24 14 8 3 0 8.32 40.7
DEPTH 7 2 2 1 1 2 1.5833
LCOM 100 96 84 58 0 68.72 1361
NOC 5 0 0 0 0 0.21 0.49
DOC 1 0 0 0 0 0.01 0.01
FAN_IN 3 1 1 0 0 0.6345 0.4835
RFC 222 44 28 10 0 34.4 1311
WMPC 100 22 12 8 0 17.421 304.47
DEFECT 101 4 0 0 0 4.613793 117.9054

 92

Of these metrics, ATPD (Access to public data) was not considered for the analysis

because it returns zero for all the classes in the training set. DOC (Dependent on

Child) was also not considered for further analysis because almost all its entries are

zeros. Table 30 shows the descriptive statistics of the remaining measures.

Table 30: Descriptive statistics II

 Max P75 Median P25 Min Mean Variance
PPD 100 0 0 0 0 14.4 1058
CBO 24 14 8 3 0 8.32 40.7
DEPTH 7 2 2 1 1 2 1.5833
LCOM 100 96 84 58 0 68.72 1361
NOC 5 0 0 0 0 0.21 0.49
FAN_IN 3 1 1 0 0 0.6345 0.4835
RFC 222 44 28 10 0 34.4 1311
WMPC 100 22 12 8 0 17.421 304.47
DEFECTS 101 4 0 0 0 4.613793 117.9054

So we are left with a total of eight class-level metrics, which will serve as the

independent variables or rather the input parameters when building the prediction

model using Artificial Neural Network. From Table 30, we make the following

observations:

• Both DEPTH and NOC have low variance; this is an indication of low variation of

values in the sample space. Hence, both measures will not be very good candidates

for prediction. However, they may help in building prediction models.

• More than 75% of the classes don’t have any child which is an indication that most

of the classes are leaf classes. Furthermore, less than 25% of the classes have a

depth of more than 2. Hence, the overall use of inheritance in this project is low.

• More than 75% of the data is not public (from the distribution of the PPD metric);

this is an indication that coupling measure is not very high as can be seen from

CBO whose mean value is relatively low.

 93

• The low variance of FAN_IN is an indication of low dependence which supports

the above argument that the coupling across modules is not very high.

5.6.2 Artificial Neural Network (ANN) Prediction Model

A prediction model, the following details, was built using ANN.

• Neural Model : Multilayer perceptron

• Hidden Layers : 3 layers

• Transfer function : TanhAxon

• Number of epochs : 5000 epochs

An MLP is a network of simple neurons called perceptrons. The basic concept of a

single perceptron was introduced by Rosenblatt in 1958. The perceptron computes a

single output from multiple real-valued inputs by forming a linear combination

according to its input weights and then possibly putting the output through some

nonlinear activation function. Mathematically this can be written as [51].

()bXWbxwy T
n

i
ii +=⎟

⎠

⎞
⎜
⎝

⎛
+= ∑

=

ϕϕ
1

Where w denotes the vector of weights, x is the vector of inputs, b is the bias and φ is

the activation function. A signal-flow graph of this operation is shown in Figure 22.

 94

X1

Y

B

W1

X2 W2

X3
W3

Xn

Wn

Figure 22: Perceptron

A single perceptron is not very useful because of its limited mapping ability. No

matter what activation function is used, the perceptron is only able to represent an

oriented ridge-like function. The perceptrons can, however, be used as building blocks

of a larger, much more practical structure. A typical multilayer perceptron (MLP)

network consists of a set of source nodes forming the input layer, one or more hidden

layers of computation nodes, and an output layer of nodes. The input signal propagates

through the network layer-by-layer. The signal-flow of such a network with one

hidden layer is shown in Figure 23 [51].

 95

Input Layer

Hidden Layer

Output Layer

Figure 23: Signal-flow with hidden layer

Nowadays, and especially in multilayer networks, the activation function is often

chosen to be the logistic sigmoid ()xe−+1
1 or the hyperbolic tangent)tanh(x . They

are related by xe
x

21
1

2
1)tanh(

−+
=

+ . These functions are used because they are

mathematically convenient and are close to linear near origin while saturating rather

quickly when getting away from the origin. This allows MLP networks to model well

both strongly and mildly nonlinear mappings [51].

Figure 24 shows the Artificial Neural Network that was generated after series of trial

and error in order to optimize the performance of the network.

 96

Input Layer

PPD

CBO

DEPTH

DEFECT

LCOM

NOC

FAN_IN

RFC

WMPC

Hidden Layers

Output Layer

Figure 24: The ANN Defects Prediction Model 1

5.6.3 Regression Models

In this subsection we described the two prediction models that were built using

regression technique. These models are: Multiple Linear Regression model and

nonlinear regression model. We begin by determining the correlation among the

parameters.

5.6.3.1 Correlations

As explained at the beginning of this chapter, one of the goals of this research work is

to determine which measures are significantly correlated to the number of defects in a

class. Table 31 shows the correlation that exist among the different variables and most

importantly the correlation of each of the independent variable on the dependant

variable (number of defects).

 97

Table 31: Measures Correlations

From Table 31 we can see that apart from DEPTH (which does not have any

correlation with the dependant variable), the other inheritance measure (i.e. NOC) has

a negative correlation with the dependant variable. One interpretation for this may be

that classes with high inheritance measure (because such classes are more complex to

deal with) have been carefully designed and implemented possibly by more

experienced programmers and therefore less defects are discovered in such classes.

WMPC, CBO, and RFC have high positive correlation with the number of defects.

While PPD, LCOM and FAN_IN have low positive correlation with the number of

defects.

5.6.3.2 Stepwise Correlation

To determine those measures that are significantly correlated to the number of defects

in other words to determine those parameters that can be considered in building a

prediction model at a confidence limit of 0.05, we run a stepwise regression. The

result of the last step (step 8, after the last input parameter) is presented below.

 98

Step 8 Variable FAN_IN Entered R-square = 0.33045914 C(p) = 9.00000000

 DF Sum of Squares Mean Square F Prob>F

Regression 8 5242.75412769 655.34426596 6.60 0.0001

Error 107 10622.30621714 99.27388988

Total 115 15865.06034483

 Parameter Standard Type II

Variable Estimate Error Sum of Squares F Prob>F

INTERCEP -0.60840605 2.51544224 5.80755578 0.06 0.8093

PPD 0.02173577 0.03062470 50.00824071 0.50 0.4794

CBO 0.62856421 0.18572793 1137.05088067 11.45 0.0010

DEPTH -1.92505065 1.34690377 202.78985571 2.04 0.1558

LCOM -0.01836089 0.03022309 36.63908023 0.37 0.5448

NOC -1.74195553 1.26765582 187.45907042 1.89 0.1723

FAN_IN 1.18694648 2.00371776 34.83567407 0.35 0.5549

RFC -0.03797026 0.05558022 46.33205791 0.47 0.4960

WMPC 0.31406710 0.08360890 1400.79614054 14.11 0.0003

Bounds on condition number: 4.349991, 141.6002

--

From the result above, we can see that only two parameters show statistical

significance; these are CBO and WMPC. Hence, using these two parameters, the

linear regression model is:

Regression Summary for Dependent Variable: DEFECT (TRAINING.sta)
R= .51935031 R²= .26972474 Adjusted R²= .25679951
F(2,113)=20.868 p<.00000 Std.Error of estimate: 10.126

N=116
Beta Std.Err.

of Beta
B Std.Err.

of B
t(113) p-level

Intercept
CBO
WMPC

-3.58368 1.795957 -1.99542 0.048404
0.223306 0.083575 0.42436 0.158820 2.67194 0.008656
0.411797 0.083575 0.26172 0.053117 4.92730 0.000003

The model can be expressed by the following formula:

DEFECT = 0.42 (CBO) + 0.26 (WMPC) - 3.58

 99

The performance of this model is nothing to write home about. On plotting the scatter

diagrams of the parameters, we have noticed that there is an outlier in the plots as

shown in the following Figure 25. An outlier is a data point which is located in an

empty part of the sample space; the inclusion or exclusion of outliers can have a large

influence on the result of the prediction model.

Correlations (TRAINING.sta 9v*116c)

PPD

CBO

DEPTH

LCOM

NOC

FAN_IN

RFC

WMPC

DEFECT

Figure 25: Scatter Diagrams

The same experiment is repeated without the outlier; slightly better results were

obtained from the new model. The model without the outlier is given below:

Regression Summary for Dependent Variable: DEFECT (TRAIN.sta)
R= .52610654 R²= .27678809 Adjusted R²= .26398788
F(2,113)=21.624 p<.00000 Std.Error of estimate: 6.4971

N=116
Beta Std.Err.

of Beta
B Std.Err.

of B
t(113) p-level

Intercept
CBO
WMPC

-2.14548 1.156143 -1.85572 0.066099
0.467585 0.083712 0.57295 0.102575 5.58567 0.000000
0.140006 0.083712 0.06273 0.037507 1.67248 0.097197

Mathematically, the model can be expressed as:

 100

DEFECT = 0.57 (CBO) + 0.06 (WMPC) - 2.15

5.6.4 Prediction Model Evaluation (Goodness of fit)

In order to compare the performance of the models built using Regression analysis and

the one built using Artificial Neural Network, we built two more prediction models.

The first is a nonlinear regression model and the second an ANN model both using

CBO and WMPC, which the same input parameters used for the linear regression

model. The statistics of the nonlinear model is shown in Table 32.

Table 32: Nonlinear Regression Model

Model pr1+pr2*X1^1+pr3*X2^1+pr4*X1^2+pr5*X2^2+pr6*X1^3+pr7*X2^3
Equation 1.097 + 1.231*X1^1 - 0.518 * X2^1-0.152 *X1^2 + 2.878E-02 *X2^2

+ 5.958E-03*X1^3-2.401E-04*X2^3
R2 0.428

Details of the new model built using ANN are:

• Neural Model : Multilayer perceptron
• Hidden Layers : 2 layers
• Transfer function : TanhAxon
• Number of epochs : 5000 epochs

The model is shown in Figure 26.

Input Layer

CBO

DEFECT

WMPC

Hidden Layers Output Layer

Figure 26: The ANN Defects Prediction Model 2

 101

To evaluate the model’s goodness of fit, we apply the prediction models to the

remaining 20% of the same NASA project that we used in building the prediction

models. The coefficient of determination of the three different models is shown in

Table 33. The Table shows that the model built using ANN has better performance

than models built using regression analysis.

Table 33: Comparing the Performance of the Prediction Models

Approach R2
ANN 0.588
Nonlinear 0.482
Linear 0.280

From the results of the above experiment we can draw the following conclusions:

1. Only coupling and complexity metrics are significantly correlated to the

number of defects in a class.

2. Cohesion is not correlated to the number of defects in a class, one reason for

this might be that the cohesion metric used (LCOM) does not accurately

capture the cohesion of a class.

3. Inheritance measures are not correlated to the number of defects in a class. As

explained at the beginning of this chapter the reason might be because such

classes were handled by experts as such few defects were reported.

 102

CHAPTER 6

6 CONCLUSION

In this chapter we present a summary of the contribution of this thesis, outline the

limitation of the work and provide suggestions on how it can be improved in the

future.

6.1 Summary and Contributions of the Thesis

In this research we conducted a literature survey of object-oriented cohesion metrics.

Most researchers based their definition of cohesion on the assumption that the more

the interaction among the components of a class, the higher the cohesion of the class;

this interaction is captured by looking at method-method and method-attribute

accesses. As a matter of fact, Most of the approaches are based on attribute usage or

method invocations and the cohesion metrics studied capture cohesion at the class

level. We identified some problems in the definition of some of the existing object-

oriented cohesion metrics.

We also proposed eleven classification criteria, which we used in critically analyzing

all the cohesion metrics we found in the literature. The classification criteria are of two

types: Factors and characteristics; factors identify the things that may affect the

cohesiveness of a module. The more factors a metric considers in its definition the

more effective it is likely to be in computing the cohesion of modules. Characteristics

specify the characteristics of the cohesion metric i.e. the features of the metric. See

chapter 3, for details of the classification criteria. At the end of our analysis we found

that there are some inaccuracies in the definition of some of the cohesion metrics. For

instance, LCOM1 does not accurately capture the cohesion of a class, LCOM2 returns

 103

zero for classes that are intuitively of different cohesion. LCOM4 always gives the

value 1 when the number of the connected component is one irrespective of the access

density. LCC and TCC give result that is contrary to intuition especially when there is

huge number of methods in the class. In fact, of all the cohesion metrics that are

critically analyzed, none seem to accurately capture the cohesion of a class may be the

concept is yet to be fully understood in the object oriented paradigm. As discussed in

Chapter 4, there are inconsistencies in the existing cohesion metrics.

We determine the relationships that exist among the connection types used by different

object-oriented cohesion metrics. At the end of our analysis, we came to the

conclusion that there are different ways through which the aspects of class cohesion

can be measured and these ways are orthogonal. These ways are: (1) Measuring class

cohesion by capturing direct attribute to method relationship or direct/indirect method

to method relationship (2) Measuring class cohesion by capturing the indirect method

to method relationship via attribute sharing.

We proposed a cohesion metric (CBAMU); we do not claim that our metric is the best

nor do we claim that the metric accurately captures the cohesion of a class but this is

simply our intuition of class cohesion. The metric uses both method and attribute

usage in its definition see Chapter 4 for details.

Number of defects prediction models were built using Artificial Neural Network and

regression analysis; results show that model built using ANN performs better.

 104

6.2 Limitations and Future Work

In this section, we discuss the limitations of this work and give indications of how it

can be improved in the future.

1. In Chapter 5, we built defect prediction models using ANN and regression

analysis. However, the models built are solely dependent on the NASA KC1

project data, Future work requires that similar experiments be rigorously

conducted using more well documented projects.

2. In addition, the models may not be very accurate because uncertainty factors

were not considered in the cause of building the models. Uncertainties in

prediction may arise from the input parameters due to, but not limited to, the

following:

a. Researchers cannot exhaustively incorporate all the possible factors that

may affect the accuracy of prediction models because some of the

factors may not be known at the point of building the models.

b. Other, researchers may deliberately ignore some factors even though

they know that such factors will affect the accuracy of the models due

to the fact that such factors may complicate the model; probably to

enable them meet datelines. Thus, some factors are deliberately left out

of the analysis.

NB:

In order to account for uncertainty in an output function of any sort we need to

consider the uncertainties in the input variables as well as any uncertainty

surrounding the way the model is built. Further work is needed to address the

issues of uncertainty in building similar models.

 105

3. In section 4.5.1, we hypothesized that: “A project with low average class

cohesion is likely to have high number of defects than a class with high

average class cohesion”. Conducting rigorous experiments in order to show

that this assertion truly holds may be pursued as future work.

4. The cohesion studied in this work measure cohesion at class level, measuring

cohesion at a higher level of abstraction is a promising area for research.

5. We identified two orthogonal ways through which class cohesion can be

measured: (1) Method-Method accesses (2) Method-Method accesses.

Determining which of these ways is strongly correlated to an external software

quality attribute may be pursued as future work.

 106

REFERENCES

[1] Abreu R., Goulao M., Esteves R., “Toward the Design Quality Evaluation of
Object-Oriented Software Systems”, 5th International Conference on Software
Quality, Austin, Texas, USA, October 1996.

[2] Akiyama F., “An Example of Software System Debugging”, Information

Processing, vol. 71, pp. 353-379, 1971.

[3] Alkadi G., Alkadi I., “Application of a Revised DIT Metric to Redesign an OO
Design”, Eth Zurich, Chair of Software Engineering ©JOT, Vol. 2, No. 3,
May-June 2003.

[4] Aman H., Yamasaki K., Yamada H. Noda M., “A Proposal of Class Cohesion

Metrics Using Sizes of Cohesive Parts”, Knowledge-based Software
Engineering, T. welzer et al.(Eds.), pp102-107, IOS Press, Sept. 2002.

[5] Badri L. and Badri M.,”A Proposal of a New Class Cohesion Criterion: An

Empirical Study”, Journal of Object Technology, Vol. 3, No. 4, April 2004.

[6] Bansiya J., Etzkorn L., Davis C., and Li W., “A Class Cohesion Metric for
Object-Oriented Designs”, Jornal of Object-Oriented Programming (January),
pages 47-52, 1999.

[7] Basili V. and Rombach H., “The TAME Project: Towards Improvement-

Oriented Software Environments”, IEEE Trans. Software Eng., 14(6), June,
1988.

[8] Basili V. R., Briand L. C., and Melo W. L., “A Validation of object-Oriented

Design Metrics as Quality Indicators”, IEEE Transactions on Software
Engineering, 22(10), 751-761 (1996).

[9] Beyer D., Lewerentz C., and Simon F., “Impact of Inheritance on Metrics for

Size, Coupling and Cohesion in Object Oriented Systems”, in Dumke, Abran
(Eds):”New Approaches in Software Measurement”, Lecture Notes on
Computer Science, pp. 1-17, Springer-Verlag, 2001.

[10] Bieman J. M., Kang B., “Measuring Design-Level Cohesion”, IEEE Trans. On

Software Engineering, Vol. 24, No. 2, February 1998.

[11] Bieman J. M., Kang B., “Cohesion and Reuse in an Object-Oriented System”,
in Proc. ACM Symp. Software Reusability (SSR’94), 259-262,, 1995

[12] Bieman J., Ott L., “Measuring Functional Cohesion”, IEEE Transactions on

Software Engineering, vol. 20 no 8, August 1994.

[13] Booch G., Rumbaugh J., Jacobson I., “The Unified Modeling Language User
Guide”, Addison Wasley Longman, Inc., USA, 1998.

 107

[14] Briand L., Morasca S., Basili V., "Assessing Software Maintainability at the
end of High-Level Design", IEEE Conference on Software Maintenance
(ICSM), 1993, Montreal, Canada

[15] Briand L., Morasca S., Basili V., “Defining and Validating High-Level Design

Metrics”, Computer Science Technical Report CS-TR 3301, University of
Maryland at College Park, 1994.

[16] Briand L., Morasca S., Basili V., “Property-Based Software Engineering

Measurement”, IEEE Transactions on Software Engineering, vol 22 no 1,
January 1996.

[17] Briand L., Morrasca S., and Basili V., “Defining and Validating Measures for

Object-Based High-Level Design”, IEEE Transactions on Software
Engineering, 25(5), (1999), pp. 125-132.

[18] Briand L., Daly J., Wust J., “A Unified Framework for Cohesion Measurement

in Object-Oriented Systems”, Technical Report ISERN-97-05. Kaiserlautern:
Germany: Fraunhofer Institute for Experimental Software Engineering, 1997.

[19] Briand L., Bunse C., and Daly J., “A Controlled Experiment for Evaluating

Quality Guidelines on the Maintainability of Object-Oriented Designs”, IEEE
Transactions on Software Engineering, 27(6), (2001), pp. 513-530.

[20] Briand L. C., Wust J., Daly J. W., and Porter V., “Exploring the Relationships

Between Design Measures and Software Quality in Object-Oriented Systems”,
ISERN 98-07 – Version 2.

[21] Briand L., Melo W., Wüst J., “Assessing the Applicability of Fault-Proneness

Models Across Object-Oriented Software Projects”, IEEE Transactions on
Software Engineering, 28 (7), 706-720, 2002.

[22] Briand L., Wüst J., “Empirical Studies of Quality Models in Object-Oriented

Systems”, Advances in Computers Vol. 59, 97-166, 2002.

[23] Briand L., Wüst J., Lounis H., “Replicated Case Studies for Investigating
Quality Factors in Object-Oriented Designs”, Empirical Software Engineering:
An International Journal, Vol 6, No 1, 11-58, 2001.

[24] Briand L., Wüst J., “The Impact of Design Properties on Development Cost in

Object-Oriented Systems”, IEEE Transactions on Software Engineering, 27
(11), 963-986, 2001.

[25] Bunge M., “Treatise on Basic Philosophy: Ontology I: The Furniture of the

World”, Boston, Riedel, 1977.

[26] Chae H. S., Kwon Y. R., Bae D., “A cohesion Measure for Object-Oriented
Classes”, Software-Practice & Experience, V.30 n.12, p.1405-1431, Oct. 2000.

 108

[27] Cherniavsky, J.C. and Smith, C.H., “On Weyuker’s Axioms for Sotware
Complexity Measures”, IEEE Transactions on Software Engineering, vol. 17,
pp. 636 – 638, 1991.

[28] Chidamber S. R., Kemerer C. F.,“Towards a Metrics Suite for Object Oriented

Design“, in A. Paepcke, (ed.) Proc. Conference on Object-Oriented
Programming: Systems, Languages and Applications (OOPSLA’91),
SIGPLAN Notices 26(11), 197-211, 1991.

[29] Chidamber S., Kemerer C., “A Metrics Suite for Object Oriented Design”,

IEEE Transactions on Software Engineering, vol 20 no6, June 1994.

[30] Counsell S., Mendes E., Swift S., “Comprehension of Object-Oriented
Software Cohesion: the Empirical Quagmire”, Proceedings of the 10th
International Workshop on Program Comprehension(IWPC’02) 1092-8138/02
© 2002 IEEE.

[31] Demuth B., Hussmann H., Obermaier S., “Experiments With XMI Based

Transformations of Software Models”, In Workshop on Transformations in
UML. 2001.

[32] Denaro G., Pezze M., “An Empirical Evaluation of Fault-Proneness Models”,

ICSE ’02, May 19-25, 2002, Orlando, Florida, USA.

[33] Eder J., Kappel G., Schrefl M., “Coupling and Cohesion in Object-Oriented
Sysems”, Technical Report of University Klagenfurt, Institute of Computer
Science, 1993.

[34] El Emam K., Melo W., Machado J., “The Prediction of Faulty Classes Using

Object-Oriented Design Metrics”, Journal Of Systems and Software 56, 63-75,
2001.

[35] Elish M. O., “Measuring Inheritance Coupling in Object-Oriented Systems”,

Master Thesis, Department of Information and Computer Science, KFUPM,
Dec. 1999.

[36] Fenton, N.E., “Software Metrics, A rigorous approach”, New York: Chapman

& Hall, 1991

[37] Fenton E. N., Pfleeger S. L., “Software Metrics – A Rigorous & Practical
Approach”, PWS Publishing company, Boston, 1997.

[38] Fenton N., Neil M., “Software Metrics: Roadmap”, In A. Finkelstein, editor,

The Future of Software Engineering. ACM Press, New York, 2000.

[39] Fenton N. E. and Neil M., “A Critique of Software Defect Prediction Models,
IEEE Transactions on Software Engineering,SE-25(5), pp. 675-689, Oct. 1999.

[40] Fenton N. E., “Software Measurement: A necessary scientific basis”, IEEE

Trans. Software Eng., vol. 20, no. 3, March 1994, pp. 199-206.

 109

[41] Ferdinand A. E., “A Theory of System Complexity”, Int’l J. General Systems,

vol. 1, pp. 19 – 33, 1974.

[42] Glasberg D., El Emam K., Melo W., Madhavji N.,“Validating Object-Oriented
Design Metrics on a Commercial Java Application”, TR ERB – 1080, NRC,
Sep. 2000.

[43] Grose T. J., Doney G. C., Brodsky S. A., “Mastering XMI”, Wiley & Sons,

Inc., New York, USA, 2002.

[44] Halstead M. H., “Elements of Software Science”, Elsevier North-Holland,
1975.

[45] Hamilton G., Cattell R., Fisher M., “JDBC Database Access with Java: A

Tutorial and Annotated Reference”, Addison Wesley Longman, Inc. USA,
January 1998.

[46] Harrison T., Counsell S. “Theoretical Validation and Empirical Evaluation of

Object-oriented Design Metrics”, Declarative Systems and Software
Engineering Group. 1998.

[47] Henderson-Sellers B., Constantine L. L., Graham I. M., “Coupling and

cohesion (towards a valid metrics suite for object-oriented analysis and
design)”, Object Oriented Systems 3, (1996) 143-158.

[48] Hermadi I., El-Badawi K., Al-Ghamdi J., “Theoretical Validation of Cohesion

Metrics in Object Oriented Systems”, International Arab Conference on
Information Technology 2002 (ACIT2002), 16-19 Dec 2002, University of
Qatar, Doha, Qatar.

[49] Hitz M., Montazeri B., “Measuring Coupling and Cohesion in Object-Oriented

systems”, in Proc. Int. Symposium on Applied Corporate Computing,
Monterrey, Mexico, October 1995.

[50] Hitz M., Montazeri B., “Chidamber and Kemerer’s Metrics Suite: A

Measurement Theory Perspective”, IEEE Transaction on Software
Engineering, vol 22 no 4, April 1996.

[51] http://www.cis.hut.fi/ahonkela/dippa/node41.html, “Multilayer Perceptrons”

[52] Jarallah A., Wasiq M., and Ahmed M. A., “Principle and Metrics for

Cohesion-Based Object-Oriented Component Assessment”. Confidential Draft
Copy, 2001.

[53] Kabaili H., Keller R., Lustman F.,“Class Cohesion as Predictor of

Changeability: An Empirical Study”, supported by SPOOL project organized
by CSER(Consortium for Software Engineering Research) which is funded by
Bell Canada, NSERC(National Sciences and Research Concil of Canada), and
NRC (National Research Council of Canada) 2001.

 110

[54] Kang B., Bieman J., “Using Design Coesion to Visulaize, Quantify, and

Restructure Software”, In Eighth International Conference onSoftware
Engineering and Knowledge Engineering (SEKE’96), pages 222-229, Skokie,
IL, June 1996. Knowledge Systems Institute.

[55] Karunanithi N., Whitley D., and Malaiya Y. K., “Using Neural Networks in

Reliability Prediction”, IEEE Software, vol. 9, no. 4, pp. 53-59, July 1992.

[56] Khan S., “Design Level Coupling Metrics for UML Models”, Information and
Computer Science Department, King Fahd University of Petroleum and
Minerals, Saudi Arabia, 2001.

[57] Khoshgoftaar T. M., Pandya A. S., and More H. B., “A Neural Network

Approach for Predicting Software Development faults,” in Proc. Third Int.
Symp. Software Reliability Eng., Research Triangle Park, NC, Oct. 1992, pp.
83-89.

[58] Khoshgoftaar T. M., Lanning D. L., and Pandya A. S., “A Comparative Study

of Pattern Recognition Techniques for Quality Evaluation of
Telecommunications Software” IEEE Journal on Selected Areas in
Communications, 12(2):279--291, February 1994.

[59] Khoshgoftaar T. M., Seliya N., “An Empirical Study of Commonly Used

Modeling Techniques for Software Fault Prediction”, FAU Technical Report
TR-CSE-01-32, 2001.

[60] Larman C., “Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Desing and the Unified Process”, Prentice-Hall, Inc. US, 2002.

[61] Lee Y., S., Liang B., S., Wu S., F., Wang F., J., “Measuring the Coupling and
Cohesion of an Object Oriented Program Based on Information Flow”, in Proc.
International Conference on Software Quality, Maribor, Slovenia, 1995.

[62] Mens T., Lanza M., “A Graph-Based Metamodel for Object-Oriented Software

Metrics”, Electronic Notes in Theoretical Computer Science 72 No. 2(2002).

[63] Mens T., Demeyer S., “Evolution Metrics”, IWPSE 2001, Vienna, Austria
2001 ACM.

[64] Morasca S., Ruhe G., “A Hybrid Approach to Analyze Empirical Software

Engineering Data and its Application to Predict Module Fault-Proneness in
Maintenance”, The Journal of Systems and Software 53(3): 225-237, Sept.
2000.

[65] Ott L., Bieman J., Kang B., Mehra B., “Developing Measures of Class

Cohesion for Object-Oriented Software”, Proceedings of the Annual Oregon
Workshop on Software Metrics (AOWSM95), 1995.

 111

[66] Ott L. M., Bieman J. M., “Program Slices as an Abstraction for Cohesion
Measurement”, Journal of Information and Software Technology, 40(11-
12):691-699, November 1998.

[67] OMG, UML Specification v. 1.3 Draft, http://www.omg.org

[68] Porter A. A., Selby R. W., “Empirically Guided Software Development Using

Metric-Based Classification Trees”, IEEE Software, 7(2): 46-54, Mar. 1990.

[69] Purao S., Vaishnavi V. “Product Metrics for Object-Oriented Systems” ACM
Computing Surveys, Vol. 35, No. 2, June 2003, pp. 191-221.

[70] Schmuller J., “Sams Teach Yourself UML in 24 Hours”, USA, Sams

Publishing, 1999.

[71] Selby R.W., Porter A. A., “Learning From Examples: Generation and
Evaluation of Decision Trees for Software Resource Analysis”, IEEE
Transactions on Software Engineering, 14(12): 1743-1757, Dec. 1988.

[72] Sheldon F. T., Jerath K., and Chung H., ”Metrics for Maintainability of Class

Inheritance Hierarchies”, article accepted for publication in the Journal of
Software Maitenance and Evolution: Research and Practice Copyright © 2002.

[73] Shumway M. F., “Measuring Class Cohesion in Java”, Computer Science

Department, Colorado State University, June 11, 1997.

[74] Simon F., Loffler S., Lewerentz C., “Distance Based Cohesion Measuring”
Accepted for FESMA99, Amsterdam 4 -8 October.

[75] Simon F., Loffler S., Lewerentz C., “Impact of Inheritance on Metrics for Size,

Coupling, and Cohesion in Object-Oriented Systems” , R. Dumke and A.
Abran (Eds.): IWSM 2000, LNCS 2006, pp. 1-17, Berlin Heidelberg 2001

[76] Wasiq M., “Measuring Class Cohesion in Object-oriented Systems: MS

Thesis”, Information and Computer Science Department, King Fahd University
of Petroleum and Minerals, 2001.

[77] Weyuker, E., “Evaluating Softwaer Complexity Measures”, Third International

Conference on Applications of Software Measurement, 1992, La Jolla,
California.

[78] W3C, Extensible Markup Language (XML), http://www.w3.org

[79] Youness S., Boutquin P. et al., “SQL Unleashed” SAMS Publishing, USA,

2002.

[80] Yourdon E. and Constantine L., “Structured Design”, Prentice Hall, 1979.

 112

[81] Zhao J., Xu B., “Measuring Aspect Cohesion”, Proc. International Conference
on Fundamental Approaches to Software Engineering (FASE'2004), LNCS
2984, pp.54-68, Springer-Verlag, Barcelona, Spain, March 29-31, 2004.

[82] Zuse, H., “Properties of Software Measures”, Software Quality Journal, vol. 1,

pp. 225 -260, 1992.

