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CHAPTER 1 
 
1 INTRODUCTION 
 
Object-oriented technology is one of the most widely used paradigms for developing 

software systems. Researchers assert that OO practice assures good quality software. 

Software quality refers to ease of understandability, maintainability, and reuse. 

Through the years, many software attributes have been identified that have relation, in 

one way or the other, with the quality of the artifact being produced. Such attributes 

include: size, complexity, coupling, and cohesion. Several metrics have been proposed 

with a view to accurately capture these attributes so that software of high quality is 

produced. Unfortunately not many of these metrics are exposed to rigorous theoretical 

and experimental validation in order to determine how effective they are at capturing 

what they claim to capture. Software metrics simply give a value that represents some 

software attribute such as coupling and cohesion. These values are difficult to interpret 

because they do not directly give information that relates to external quality attributes 

(such as maintainability, reusability, and fault-proneness) which people are more 

interested in. One way of interpreting the values obtained from such metrics is to 

associate the values to a quality attribute that is externally visible. In this research, we 

set out to conduct a rigorous research for cohesion metrics and to tie the values 

obtained from the existing cohesion metrics to a software attribute that is externally 

visible. In this chapter, we discuss the concept of object-oriented cohesion and its 

relationship with coupling in sections 1.1 and 1.2, respectively. In section 1.3 we 

present a brief introduction to UML. Section 1.4 and 1.5 presents the motivation 

behind this research and the main contributions of the work, respectively. 
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1.1 Cohesion  

Cohesion is an internal software attribute that depicts how well connected the 

components of a software module are. This can be determined by knowing the extent 

to which the individual components of a module are required to perform the same task 

[37]. In a highly cohesive module all the components performance are tailored towards 

the requirement of a single function. On the contrary, a low cohesive module has some 

elements that have little relationships with others, which is an indication that the 

module may provide several unrelated functions [26]. If a module is highly cohesive 

then it is easy to develop and maintain because it does not have much dependence on 

the components of other modules as such it is less error-prone. 

 

Measures such as coupling equally serve as quality indicators; coupling and cohesion 

are terms used to define module interconnectedness. Coupling is a measure of how 

strongly one module is connected to, have knowledge of, or relies on other modules 

[60].While cohesion addresses intra-module connectedness, coupling addresses inter-

module connectedness. In general, coupling should be minimized while cohesion 

should be maximized [33][60]. In object-oriented paradigm, however, coupling should 

not be completely minimized because some level of dependence is required for 

instance dependence due to inheritance is required. This concept is explained in the 

following section. 

1.2 Relationship between coupling and cohesion 

One of the most difficult tasks to achieve in object-oriented design is to come up with 

well designed classes; classes that are easy to understand, easy to maintain and easy to 

reuse. Two important factors that affect the design of classes are coupling and 
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cohesion. Coupling and cohesion are highly related. Bad cohesion usually leads to bad 

coupling because they have a highly interdependent influence [60]. 

1.2.1 Low Coupling 

Coupling is a measure of how strongly one module is connected to, have knowledge 

of, or relies on other modules. A class with low coupling is not dependent on too many 

other classes. On the other hand, a class with high coupling (or strong) coupling relies 

on many other classes. Such classes may be undesirable due to the following reasons 

[60]: 

• Changes in related classes force local changes. 

• Harder to understand in isolation 

• Harder to reuse because its use requires the additional presence of the classes 

on which it is dependent. 

Hence, low coupling is a principle to keep in mind during all design decisions; it is an 

underlying goal to continually consider. Low coupling encourages assigning a 

responsibility so that its placement does not increase the coupling to such a level that it 

leads to the negative results that high coupling can produce. Low coupling supports 

the design of classes that are more independent, which reduces the impact of change. 

The extreme case of low coupling is not desirable i.e. when there is no coupling 

between classes at all or when it is extremely low. If low coupling is taken to excess, it 

yields a poor design because it leads to a few not cohesive, bloated, and complex 

active objects that do all the work [60].  

1.2.2 High Cohesion 

Cohesion, in object-oriented terms, is a measure of how strongly related and focused 

the responsibilities of a module are. The issue to consider here is how to keep 
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complexity manageable. A class with low cohesion does many unrelated things, or 

does too much work. Such classes are undesirable; they suffer from the following 

problems: 

• Hard to comprehend 

• Hard to reuse 

• Hard to maintain 

• Delicate; constantly effected by change 

In general, the relationship between coupling and cohesion is that coupling should be 

low while cohesion is kept high. 

1.3 UML 

In this section we introduce the Unified Modeling Language (UML), which is a 

language used for modeling the design of software products. UML offers a lot of 

advantages to software developers; it makes communication across development team 

simple; developers can come up with models that are language independent and that 

are easy to understand and interpret. 

 

“The Unified Modeling Language (UML) is a standard language for writing software 

blueprints. The UML may be used to visualize, specify, construct, and document the 

artifacts of a software-intensive system.” [13]. The building blocks of UML include 

the following [13]: 

1. Things  

2. Relationships 

3. Diagrams 
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Things are the abstractions that are first-class citizens in a model; relationships tie 

these things together; diagrams group interesting collections of things. 

1.3.1 Things 

There are four kinds of things in the UML: 

• Structural things 

• Behavioral things  

• Grouping things 

• Annotational things 

1.3.2 Relationships 

There are four kinds of relationships in the UML: 

• Dependency 

• Association 

• Generalization 

• Realization 

1.3.3 Diagrams 

UML diagrams are simply projections into system; they are used to visualize systems 

from different perspectives[13]. The UML includes nine diagrams, these are [13][70]: 

 

Class diagram: shows the classes of the system, their interrelationships (such as 

aggregation, and association), and the operations and attributes of the classes. These 

diagrams are the most common diagrams found in modeling object-oriented systems. 

Class diagrams are used for a wide variety of purposes, including both 

conceptual/domain modeling and detailed design modeling. 



 6

Object diagram (sometimes referred to as instance diagrams): shows a set of objects 

and their relationships. Object diagrams are useful for exploring “real world” 

examples of objects and the relationships between them.  Although UML class 

diagrams are very good at describing this very information some people find them too 

abstract – a UML object diagram can be a good option for explaining complex 

relationships between classes.    

Use case diagram: shows a set of use cases and actors and their relationships. UML 

Use Case Diagrams can be used to describe the functionality of a system in a 

horizontal way. That is, rather than merely representing the details of individual 

features of your system, UCDs can be used to show all of its available functionality. It 

is important to note, though, that UCDs are fundamentally different from sequence 

diagrams or flow charts because they do not make any attempt to represent the order or 

number of times that the systems actions and sub-actions should be executed. 

 

UCDs have 4 major elements: The actors that the system you are describing interacts 

with, the system itself, the use cases, or services, that the system knows how to 

perform, and the lines that represent relationships between these elements 

 

Sequence diagram: this is a kind of interaction diagram that emphasizes the time 

ordering of messages. The UML sequence diagrams model the flow of logic within 

your system in a visual manner, enabling you both to document and validate your 

logic, and are commonly used for both analysis and design purposes. 

 

Collaboration diagram: this also is an interaction diagram but its emphasis is on the 

structural organization of the objects that send and receive messages. UML 
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Collaboration diagrams (interaction diagrams) illustrate the relationship and 

interaction between software objects 

 

Statechart diagram: shows a state machine, consisting of states, transitions, events, 

and activities. Statechart diagrams address the dynamic view of a system. A statechart 

diagram is a view of a state machine that models the changing behavior of a state.  

Statechart diagrams show the various states that an object goes through, as well as the 

events that cause a transition from one state to another. 

 

Activity diagram: is a special kind of a statechart diagram that shows the flow from 

activity to activity within a system. Activity diagrams address the dynamic view of a 

system. They are especially important in modeling the function of a system and 

emphasize the flow of control among objects. Activity diagrams represent the business 

and operational workflows of a system. An Activity diagram is a dynamic diagram 

that shows the activity and the event that causes the object to be in the particular state. 

 

Component diagram: shows the organizations and dependencies among a set of 

components. Component diagrams address the static implementation view of a system. 

They are related to class diagrams in that a component typically maps to one or more 

classes, interfaces, or collaborations. Today in software engineering we have team-

based development efforts, where everyone has to work on different component. 

That's important to have a component diagram in modeling process of the system. A 

component diagram describes the organization of the physical components in a 

system. 
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Deployment diagram: shows the configuration of run-time processing nodes and the 

components that live on them. They are related to component diagrams in that a node 

typically encloses one or more components. A UML deployment diagram depicts a 

static view of the run-time configuration of processing nodes and the components that 

run on those nodes. In other words, deployment diagrams show the hardware for your 

system, the software that is installed on that hardware, and the middleware used to 

connect the disparate machines to one another 

1.4 Motivation 

Software engineering researchers have attached importance to having high cohesion in 

the modules of software products, as briefly discussed above. They have asserted that 

highly cohesive program components are desirable because they lead to better external 

attributes such as reusability, comprehensibility, maintainability etc. According to 

Fenton in [37], designs that possess high module cohesion and low module coupling 

are assumed to lead to more reliable and maintainable code. In order to be certain 

about these claims, we need to have good understanding of the cohesion of software 

systems and for this to be achieved; we need to have effective means of measuring it 

so that it can easily be tied to software quality attribute. Our motivation in this 

research is to determine the predictive power of the existing cohesion metrics with 

respect to an external quality attribute that is easily be understood. 

1.5 Main Contributions 

The main contributions of this thesis work are: 

• Conducting a critical survey of existing cohesion metrics. 

• Developing a classification for the existing cohesion metrics 

• Proposing a class cohesion metric and theoretically validating it 
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• Implementing the proposed metric as well as the existing cohesion metrics. 

• Investigating whether cohesion metrics can be predictors of fault density. 

• Building defect prediction models using ANN and regression analysis and 

evaluating the performance the models. 

1.6 Organization of the Thesis 

The rest of this thesis is organized as follows: Chapter 2 presents the literature survey 

of the existing cohesion metrics. Chapter 3 presents a critical analysis of the cohesion 

metrics using some attributes that the cohesion metrics have in common. In chapter 4 

we discuss the new proposed metric, theoretically validate it and empirically show that 

there are inconsistencies in the definitions of the existing cohesion metrics. In chapter 

5, we present defect prediction models built using regression analysis and Artificial 

Neural Network; the performance of the models are compared. Finally we conclude in 

chapter 6. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

2.1 Introduction 

In this chapter we discuss the existing cohesion metrics found in literature that are 

proposed by software researches. While section 2.2 covers cohesion metrics in 

procedural programs, section 2.3 discusses cohesion metrics in object oriented 

paradigm. 

2.2 Background 

By definition, cohesion captures the degree of interdependence among elements of the 

same module [73]. As explained in Chapter 1, modules with strong cohesion are easier 

to maintain and they greatly improve the possibility of reuse. The definition of 

cohesion can have two interpretations; a module is said to be cohesive if (i) its 

elements are tailored towards one functionality and (ii) the module is self-contained; 

i.e. it does not rely on other modules for its function to be achieved. The programming 

paradigm in question determines what a module is and what an element is. In 

procedural paradigm, elements of module are statements, and sub functions. In object-

oriented paradigm, the counterparts of module are classes and methods. The elements 

of a method are statements and attributes since they are accessed either directly or via 

access functions in the methods. The elements of an object class are methods and 

instance variables [33]. In the following sections we discussed some of the proposed 

metrics in procedural paradigm and those in object-oriented paradigm found in the 

literature. 
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2.3 Cohesion Metrics in procedural programs 

A procedural program is composed of one or more units or modules and each module 

is composed of one or more procedures ( e.g of procedural programs include programs 

written in C and FORTRAN). 

2.3.1 The SFC and WFC Metrics 

Bieman and Ott [12], proposed three cohesion metrics. These measures are: Strong 

Functional Cohesion (SFC(p)), Weak Functional Cohesion (WFC(p)) and 

Adhesiveness of a procedure (A(p)). 

 

Strong Functional Cohesion (SFC) is defined as the ratio of super-glue tokens to the 

total number of data tokens in a procedure p. The SFC is a measure of the minimal 

functional cohesion in a procedure; the metric is given by the following formula. 

 

   SFC(p) = 
||

||
tokens

okensSupergluet  

   

The weak functional cohesion (WFC) is defined as the ratio of glue tokens to the total 

number of tokens in a procedure p.  

 

   WFC(p) = 
||

||
tokens

gluetokens  
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The third measure they proposed is Adhesiveness, this is related to the number of slices 

that each token “glues” together. The Adhesiveness of a procedure p is defined as 

follows: 

   A(p) = 
||*||

||
||

cesprogramslitokens
cesprogramsli

keningagluetocescontainprogramsli
tokens
∑

 

 

A program slice is a set of program statements which include references to a particular 

program variable. A glue token is a token which is used in more than one program 

slice that includes a certain statement. A super glue token unites all the program slices 

at some statements. The measures capture the number of program slices having glue or 

super glue tokens as a proportion of total program slices. Note that a procedure having 

no cohesion would have no glue tokens. However, a procedure having perfect 

cohesion would have super glue tokens at every statement. 

2.3.2 The DLC and DFC Metrics 

Bieman and Kang proposed two design level cohesion metrics [10]: DLC (Design 

Level Cohesion) and DFC (Design Functional Cohesion). 

 

An ordinal scale of cohesion measures is defined: Coincidental, Conditional, Iterative, 

Communicative, Sequential, and Functional. Each pair of output tokens in a module is 

evaluated for the strongest cohesion the pair exhibits. The minimum of such value 

over all output token pairs gives the Design Level Cohesion (DLC). Design Functional 

Cohesion (DFC), on the other hand, is a slice based measure which averages 

adhesiveness of output token slices corresponding with the interface pints of the 

module. 
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2.4 Cohesion Metrics in Object Oriented Programs 

In this section we describe the cohesion metrics that were proposed to measure cohesion in 

object oriented programs.  

2.4.1 The Degree of Method and Class Cohesion of Eder et al.  

Eder et al. [33] have extended the concept of coupling and cohesion developed 

oringinally for procedural-oriented systems to object-oriented sytems. They 

distinguised between three types of cohesion in an object-oriented systems: method, 

class and inheritance cohesion. For each type, various degrees of cohesion are defined. 

In this section we succinctly explain the degrees of each type of cohesion. 

 

Method Cohesion: the elements of a method are statements, local variables and 

attributes of the method’s class. Eder et al. defined seven degrees of method cohesion 

as given below from weakest to strongest [33]: 

• Concidental: the elements of a method have nothing in common besides being 

within the same method. 

• Logical: elements with similar functionality such as input/output handling are 

collected in one method 

• Temporal: the elements of a method have logical cohesion and are performed 

at the same time. 

• Procedural: the elements of a method are connected by some control flow. 

• Communicational: the elements of a method are connected by some control 

flow and operate on the same set of data. 

• Sequential: the elements of a method have communicational cohesion and are 

connected by a sequential control flow. 
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• Functional: the elements of a method have sequential cohesion, and all 

elements contribute to a single task in the problem domain. Functional 

cohesion fully supports the principle of locality and thus minimizes 

maintenance efforts. 

 

Class Cohesion: class cohesion addresses the relationships between the elements of a 

class. The elements of a class are its non-inherited methods and non-inherited 

attributes. The following are the five degrees of class cohesion from weakest to 

strongest: 

• Seperable: the objects of a class represent multiple unrelated data abstractions 

• Multifaceted: the objects of a class represent multiple related data abstractions. 

The relation is caused by at least one method of the class which uses all these 

data abstractions. 

• Non-delegated: there exist attributes which do not describe the whole data 

abstraction represented by a class, but only a component of it. 

• Concealed: there exist some useful data abstraction concealed in the data 

abstraction represented by the class. Consequently, the class includes some 

attributes and methods which might make another class. 

• Model: the class represents a single, semantically meaningful concept. 

 

Inheritance: This is similar to class cohesion, but it is a bit different in that it 

considers all methods and attributes in a class including those that are inherited. 
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2.4.2 The LCOM1 and LCOM2 Metrics  

Chidamber and Kemerer [28] use the notion of degree of similarity of methods to 

propose a cohesion metric, Lack of Cohesion Measure (LCOM). The definition of this 

metric is given below.  

 

Definition 2.1: 

Consider a class C with n methods M1, M2,….., Mn. Let {Ii} = set of instance variables 

used by method Mi. There are n such sets, i.e., {I1}, {I2},….., {In}. LCOM1(C) = the 

number of disjoint sets formed by the intersection of n sets. In other words, LCOM1 is 

the number of pairs of methods with no common attributes references. 

 

Example 2.1: Let m1, m2, m3 and A1, A2, A3, A4 in Figure 1 represent the methods 

and attributes in class C. 

 

m1

A1 A2 A3 A4

m2 m3

C

 

Figure 1: A class C with three methods and four attributes 

From the example given in Figure 1, LCOM1 = 2. Note that LCOM1 is an inverse 

cohesion measure. A high value of LCOM1 indicates low cohesion and vice versa.  

 

In [29], Chidamber and Kemerer have given the following new definition for LCOM. 

Let the new LCOM be LCOM2. 
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Definition 2.2: 

Consider a class C with methods M1, M2,….., Mn. Let {Ii} = set of instance variables                 

used by method Mi. There are n such sets, i.e., {1i}, {I2},….., {In}. Let                        

P = { (Ii, Ij ) | Ii ∩ Ij  = ∅} and Q = {(Ii, Ij ) | Ii ∩ Ij  ≠ ∅}. If all n sets {1i}, {I2},….., 

{In} are ∅ then let P = ∅. 

 

  LCOM2 = 

⎪
⎪
⎩

⎪
⎪
⎨

⎧ >−

otherwise

QPifQP

,0

|||||,|||

 

 

In other words, P is the number of pairs of methods without shared attributess and Q is 

the pairs of methods with shared attributes. 

Using the example given in Figure 1, we have, P = 2 and Q = 1 thus LCOM2 = 1. 

2.4.3 The LCOM3, LCOM4 and Co Metrics  

Hitz and Montazeri evaluated the metrics suit for object-oriented design put forward 

by Chidamber and Kemerer in [29] by applying the principle of measurement theory. 

One of the metrics evaluated is Lack of Cohesion in Methods (LCOM). They proposed 

alternative definitions for the LCOM metric [49][50], as presented in the following 

definitions. 

 

Definition 2.3: 

Let X denote a class, Ix the set of its attributes, and Mx the set of its                        

methods. Consider a simple undirected graph Gx(V, E) with V = Mx and                        

E = {(m, n) ∈V × V | ∃ I ∈ Ix: (m accesses i) ∧ (n accesses i)}.  
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LCOM3(C) = Number of connected components of Gx. 

 

This definition is illustrated in Figure 2 using the class C given in Figure 1. From the 

figure we can see that the graph Gx has two connected components. Thus LCOM3 = 2. 

 

Gx
m1

m2

C
m1

A1 A2 A3 A4

m2 m3

m3

 

Figure 2: A class C and Gx 

 

Hitz and Montazeri identified a problem with the access methods for LCOM3. An 

access method provides read or write access to an attribute of the class. Access 

methods typically reference only one attribute, namely the one they provide access to. 

If other methods of the class use the access methods, they may no longer need to 

directly reference any attribute at all. These methods are then isolated vertices in graph 

Gx. Thus, the presence of access methods artificially decreases the class cohesion as 

measured by LCOM3. To remedy this problem, Hitz and Montazeri proposed a second 

version of their LCOM measure. In this version, the definition of Gx is changed as 

follows: there is also an edge between vertices representing methods m1 and m2, if m1 

invokes m2 or vice versa.   
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Definition 2.4: 

Let X denote a class, Ix the set of its attributes, and Mx the set of its                        

methods. Consider a simple undirected graph Gx(V, E) with V = Mx and                        

E = {(m, n) ∈V × V | ( ∃ I ∈ Ix: (m accesses i) ∧ (n accesses i)) ∨ (m invokes n) ∨ (n 

invokes m)}.  

 

LCOM4(C) = Number of connected components of Gx . 

 

See Figure 3 for the illustration of this definition. From the figure we can see that the 

graph Gx has only one connected component. Thus, LCOM4 = 1. 

 

m1

m2

C Method invocation
m1

A1 A2 A3 A4

m2 m3

Gx

m3

 

Figure 3: A class C and Gx with interaction among methods 

 

In the case where Gx consists of only one connected component, i.e., LCOM = 1, the 

number of edges |E| ranges between |V | − 1 (minimum cohesion) and |V |.(|V | − 1)/2 

(maximum cohesion). Hitz and Montazeri defined a measure C (“connectivity”) [50] 

which further discriminates classes having LCOM4 = 1 by taking into account the 

number of edges of the connected component. 
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Hitz and Montazeri defined C (Let it be Co in order to differentiate the measure from 

C used for classes in our examples) as follows: 

 

   Co(c) = 
)2|).(|1|(|

)1|(|||
2

−−
−−

⋅
cc

cc

VV
VE

 

 

Where Ec and Vc are the edges and vertices of the connection graph of the class c. 

 

From the example given in Figure 3, we have Ec = 2 and Vc = 3. Hence, Co(C) = 0 

2.4.4 The TCC and LCC Metrics 

The approach by Bieman and Kang [11] is also based on that of Chidamber and 

Kemerer’s. They consider pairs of methods that use common attributes. They have 

defined two different cohesion measures based on the direct and indirect connectivity 

between pairs of methods. Two methods that use one or more common attributes are 

said to be directly connected. Whereas two methods that are connected through other 

directly connected methods are called indirectly connected. The indirect connection 

relation is the transitive closure of the direct connection relation. Thus, a method M1 is 

indirectly connected with a method Mn if there is a sequence of methods M2, M3, … 

Mn−1 such that M1 δ M2, … Mn− 1 δ Mn. Where Mi δ Mj represents a direct connection. 

 

Let NDC(C) be the number of pairs of directly connected methods of a class C, 

NIC(C) be the number of pairs of indirectly connected methods of C and NP(C) be the 

maximum possible number of connections in C. It is clear that for a class with N 

methods,           NP(C) = N (N − 1) / 2. 
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Tight Class Cohesion (TCC) is defined to be a ratio of the number of pairs of directly 

connected methods in a class, NDC(C), to the maximum possible number of 

connections in a class, NP(C). 

 

)(
)()(

CNP
CNDCCTCC =  

 

Loose Class Cohesion (LCC) is defined to be a ratio of the sum of the number of pairs 

of directly connected methods, NDC(C), and number of pairs of indirectly connected 

methods, NIC(C), in a class C to the maximum possible number of connections in C, 

NP(C). 

 

)(
)()()(

CNP
CNICCNDCCLCC +

=  

 

With respect to inheritance, Bieman and Kang have stated three options for the 

analysis of cohesion of a class [11]: 

 

1. Exclude inherited methods and inherited attributes from the analysis, or 

2. Include inherited methods and inherited attributes in the analysis, or 

3. Exclude inherited methods but include inherited attributes. 

 

Bieman and Kang identified a problem with constructor methods for TCC and LCC. A 

class constructor is an initialization function. It generally accesses all attributes in the 

class, and thus, shares attributes with virtually all other methods. Constructors create 

connections between methods even if the methods do not have any other relationships. 
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Therefore, the presence of a constructor method artificially increases cohesion as 

measured by TCC and LCC. Bieman and Kang have therefore recommended 

excluding constructors (and also destructors) from the analysis of cohesion [11]. 

 

To illustrate these two metrics, consider the class given in Figure 4. From the figure, 

we have: 

 

NP(C) = 3, NDC(C) = 2 and NIC(C) = 1, thus TCC = 2/3 and LCC = 1. 

 

m1

A1 A2 A3 A4

m2 m3

 

Figure 4: A class C with three methods and four attributes 

2.4.5 The LCOM5 Metric 

Henderson-Sellers et al.[47] also based their work on the metric suite of Chidamber 

and Kemerer [29]. The suite is evaluated from a mathematical point of view and a new 

formulation for the LCOM metric was defined. Their definition is based on the 

following properties: 

 

• The measure yields 0, if each method of the class references every attribute of 

the class (this situation is called “perfect cohesion” by Henderson-Sellers”). 
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• The measure yields 1, if each method of the class references only a single 

attribute. 

• Values between 0 and 1 are to be interpreted as percentages of the perfect 

value. 

 

We call their definition LCOM5 and it is defined as follows: 

 

Definition 2.5: 

Consider a set of methods {Mi} (i = 1,….., m) of a class C accessing a set of attributes 

{Aj} (j = 1,….., a). Let the number of methods which access an attribute Aj be µ(Aj) 

and total number of attributes in {Aj} is a.  

 

LCOM5 = 
m

mA
a

a

j
j

−

−∑
=

1

)(1
1

µ
 

 

This definition is illustrated in Figure 5. 

C
m1

A1 A2 A3

m2 Mi

Aj

m3

( ) = 1A1 ( ) = 2A2 ( ) = 2A3

 

Figure 5: A class C with three methods and three attributes 

From the example, we have: m = 3 and a = 3, Therefore 
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LCOM5 = 
31

3)221(
3
1

−

−++
 

thus LCOM5 = 2/3. 

2.4.6 The RCI Metric 

Briand et al. proposed a cohesion measure in [15] that is based on the visualization of 

a class as a collection of data declarations and methods. Data declarations are (i) local 

type declarations, (ii) the class itself (as an implicit public type), and (iii) 

public/private attributes (including constants). Briand et al. defined two types of 

interactions, DD-interactions (declaration-declaration interactions) and DM-

Interactions (declaration-method interactions). 

 

DD-interaction: A data declaration a DD-interacts with another data declaration b, if 

a change in a’s declaration or use may cause the need for a change in b’s declaration 

or use. We say that there is a DD-interaction between a and b. The following are 

examples of DD-interactions: 

 

• If the definition of a type t uses another public type t', there is a DD-interaction 

between t' and t. 

• If the definition of a public attribute a uses a public type t, there is a DD-

interaction between t and a. 

• If a public attribute a is an array and its definition uses public constant a', there 

is a DD-interaction between a' and a. 

 

DD-interactions need not be confined to one class. There can be DD-interactions 

between attributes and types of different classes. The DD-interaction relationship is 
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transitive. If a DD-interacts with b and b DD-interacts with c, then a DD-interacts with 

c.  

 

DM-interaction: Data declarations can also interact with methods. There is a DM-

interaction between a data declaration a and method m either 

• if a DD-interacts with at least one data declaration of m (Data declarations of 

methods include their parameters, return type and local variables), or 

• if a is an attribute and m uses/accesses it. 

 

Briand et al. defined CI(C) (CI means Cohesive Interactions) to be the set of all DD- 

and DM-interactions present in the class C and Max(C) to be the set of all possible 

DD- and DM-interactions that can be established in class C. RCI can be defined as 

follows: 

   
|)(|

|)(|)(
CMax

CCICRCI =  

 

Consider a class with four methods and five attributes as shown in Figure 6, from the 

figure we have, |CI(C)| = 8 and |Max(C)| = 20. Hence RCI = 8/20 = 2/5. 
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m1

A1 A2 A3 A4 A5

m2 m3 m4

C

 

Figure 6: A class C with four methods and five attributes 

 

2.4.7 The CAMC Metric 

In 1999, Bansiya et al. [6] proposed a design metric to evaluate cohesion among 

methods of a class early in the analysis and the design phase. The metric evaluates the 

consistency of methods in a class’ interface using the parameter lists of the methods. 

The metric can be applied on class declarations that only contain method prototypes 

(method types and parameter types). They call their metric CAMC (Cohesion Among 

Methods of Classes). 

 

The CAMC metric is based on the assumption that the parameters of a method 

reasonably define the types of interaction that methods may implement. To compute 

the CAMC metric value, an overall union (T) of all object types in the parameters of 

the methods of a class is determined. A set Mi of parameter object types for each 

method is also determined. An intersection (set Pi) of Mi with the union set T is 

computed for all methods in the class. A ratio of the size of the intersection (Pi) set to 

the size of the union set (T) is computed for all methods. The summation of all 

intersection sets Pi is divided by product of the number of methods and the size of the 
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union set T, to give a value for the CAMC metric. Mathematically, the metric is 

defined as follows: 

 

nT

P
CAMC

n

i
i

×
=
∑
=

||

||
1  

 

Where  

N is number of methods in the class 

Mi is the set of parameters of method i 

 T is the union of Mi, for every i = 1 to n 

 Pi is the intersection of set Mi with T i.e. Pi = Mi ∩ T 

 

The metric value ranges between 0 and 1.0. A value of 1.0 represents maximum 

cohesion and 0 represents a completely un-cohesive class. 

2.4.8 The CBMC Metric 

In 2000, Chae et al. highlighted two problems with the existing cohesion metrics.They 

noted that the existing cohesion measures do not [26]: 

1. take into account the properties of special methods like access methods, 

constructors etc. thus fail to properly reflect the actual cohesiveness of classes. 

2. consider the patterns of the interactions among members, they are simply based 

on counting the number of the attributes refernced by methods or the number 

of method pairs with shared attributes. 
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In order to cope with these problems, they proposed a new metric called CBMC 

(Cohesion Based on Member Connectivity) whose definition is given below. Their 

metric is based on two things: connectivity factor and structure factor. 

 

Definition 2.6: 

The CBMC for a class C, CBMC(C), is defined to be the connectivity factor of its 

reference graph, Fc(Gr(C)), scaled by the structure factor of its reference graph, 

Fc(Gr(C)) 
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CGF =  is the connectivity factor(represents the degree of the 

connectivity among the members). 
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=  is the structure factor 

Mg and Mn are the set of glue methods and normal methods respectively. Glue 

methods are the minimum number of methods without which the reference graph will 

be divided into sub-graphs. i
rG  is one of the n children of Gr in the structure tree; 

CBMC denotes the cohesion of a component i
rG . 

 

Example 2.2: 

Consider the class shown in Figure 7, 
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m1

A1 A2 A3 A4

m2 m3 m4 m5

 

Figure 7: A class C with five methods and four attributes 

 

To compute the CBMC of the class in Figure 7, we need to construct its structure tree 

first, which is shown in Figure 8. 
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A2

m1

A1 A2 A3 A4

m2 m3 m4 m5

A2 A3 A4

m3 m4 m5

A3 A4

m4 m5

A4

m5

m1

A1

A3

 

Figure 8: The structure tree of the class in Figure 7 
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2.4.9 The CCM and ECCM Metrics 

Jarallah et al. in [52] proposed two cohsion metrics for assessig the extent to which an 

inheritance hierarchy follows some four design principles they discussed in their 

paper. The proposed metrcs are: CCM (Class Connection Metric) and ECCM 

(Enhanced Class Connection Metric), the difinition of these metrics are given below. 

 

)()(
)()(

CNCCCNMP
CNCCCCM
⋅

=  

 

Where NC(C) is the number of actual connection among the methods of the class, 

NMP(C) is the number of the maximum possible connections among the methods of 

the class C and NCC(C) is the number of connected components of the connection 

graph Gc.  

 

))(1(
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CNCCCNMP
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or simply, 

 

))(1()()( CtorPenaltyFacCCCMCECCM −×=  
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Where 
)(
)()(

CNOIM
CNORMCtorPenaltyFac =   

 

NORM(C) is the number of re-implemented methods and NOIM(C) is the number of 

inherited methods. 

NB: 

The connection criterion of CCM and ECCM is slightly different from that of TCC 

and LCC. For CCM and ECCM, two methods A and B are connected in the connection 

graph GC if they satisfy any or both of the following conditions: 

• Methods A and B access one or more attributes in common. 

• Methods A and B invoke one or more methods in common. 

 

Example 2.3: 

Considering the class given in Figure 7, we have the following connected graph. 

 

 

m1 m2

m3

m4m5

 

Figure 9: The connected graph of the class in Figure 7 
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Thus, NC(C) = 5, NMP(C) = 10 and NCC(C) = 1 hence CCM = 2/5 

 

Here the value of ECCM = CCM because in this example no specification is given for 

the inherited methods. 

2.4.10 The OCC and PCC 

Aman et al. [4] proposed two cohesion metrics that not only consider the connections 

among the component of a class but also consider the sizes of connected modules as 

well as the strength of method connection,. These metrics are: OCC (Optimistic Class 

Cohesion) and PCC (Pessimistic Class Cohesion). 

 

Definition 2.7: Weak-connection graph 

Given a class, let M be the set of methods, and A be the set of attributes, within the 

class. A weak-connection graph is defined as an undirected graph Gw(V, E), where V 

= M and  

E = {{u, v} Є M x M | З a Є A s.t. (ac (u, a) Λ ac (v, a))} 

 

Definition 2.8: Strong-connection graph 

Given a class, let M be the set of methods, and A be the set of attributes, within the 

class. Strong-connection graph is defined as a directed graph Gs (V, E), where V = M 

and  

))},(),(.(.|},{{ avreauwrtsAaMMvuE ∧∈∃×∈=  

 

Definition 2.9: Optimistic Class Cohesion (OCC) 

Given a class, let M be the set of methods, and A be the set of attributes, within C. 

Consider the weak-connection graph Gw(V, E), where V = M and E is as given in 
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equation 1. Let n = |M|. For each method mi Є M (i = 1, . . . , n), let Rw(mi) be the set of 

methods which are reachable by mi on Gw(V, E): 

jimmmm
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The Optimistic Class Cohesion (OCC) for a class C is defined as follows: 
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Definition 2.10: Pessimistic Class Cohesion (PCC) 

Given a class C, let M be the set of methods, and A be the set of attributes, within C. 

Consider the strong-connection graph Gs(V, E), where V = M and E is as in equation 

2. Let n = |M|. For each method mi Є M (i = 1, . . . , n), let Rs(mi) be the set of methods 

which are reachable by mi on Gs(V, E): 
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The Pessimistic Class Cohesion (PCC) for a class C is defined as follows: 
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Table 1 shows three different classes each with five methods and four attributes but with 

different level of interactions between the components of the class. For each class, the  

measure for each metric is computed. 

 
Table 1: Cohesion Metrics Examples 

# Metric C1 
m1

A1 A2 A3 A4

m2 m3 m4 m5

C2 
m1

A1 A2 A3 A4

m2 m3 m4 m5

 

C3 
m1

A1 A2 A3 A4

m2 m3 m4 m5

 

Comment 

1 LCOM1 6 6 0 Does not differentiate 
between C1 and C2 

2 LCOM2 3 2 0 OK 
3 LCOM3 2 1 1 Does not differentiate 

between C2 and C3 
4 LCOM4 2 1 1 Does not differentiate 

between C2 and C3 
5 Co N/A 0 1 Applicable only when 

the connected component 
is one. 

6 LCOM5 0.81 0.75 0.44 OK 
7 LCC 0.6 1 1 Does not differentiate 

between C2 and C3 
8 TCC 0.3 0.4 1 OK 
9 RCI 0.23 0.27 0.43 OK 
10 CCM 0.15 0.4 1 OK 
11 ECCM N/A N/A N/A Cannot be computed 

using these examples 
12 CAMC     
13 CBMC 0 0.13 0.6 OK 
14 OCC 0.75 1 1 Does not differentiate 

between C2 and C3 
15 PCC N/A N/A N/A Cannot be computed 

using these examples 
 

NB: 

In Table 1, ‘OK’ in the comment column signifies that that the metric behaves the way 

we expect in the above examples. However, even those metrics that appear to follow 

intuition in the above examples have their own peculiar problems as discussed in 

chapter 3. For instance LCOM2 may return zero values for classes where the classes 

have different cohesion values. LCOM5 will give an infinite value if there is only one 

method in the class. Table 2 gives a brief summary of the existing cohesion metrics.
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Table 2: Overview of Cohesion Measure 

Metric Definition Validation Cohesion Criteria Source 
LCOM1 
 
 

The number of pairs of methods that share no attributes. Validated 
theoretically 

Attribute sharing  [28] 

LCOM2 
 
 

Let P be the pairs of methods without shared attributes, and Q be the pairs of 
methods with shared attributes. Then  
 

LCOM2 = 
⎩
⎨
⎧ >−

otherwise
QPifQP

,0
|||||,|||
 

 

Validated 
theoretically and 
empirically 

Attribute sharing [29] 

LCOM3 
 
 

Consider an undirected graph G where the vertices are the methods of a class, 
and there is an edge between two vertices if the corresponding methods share 
at least one attribute. 
 
LCOM3=|connected components of G| 

Not validated Attribute sharing [49] 

LCOM4 
 
 

Like LCOM3, where graph G additionally has an edge between vertices 
representing methods Mi and Mj, if Mi invokes Mj or vice versa. 

Not validated Attribute sharing and methods 
invocation 

[49] 

Co 
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Where Ec and Vc are the edges and vertices of G from LCOM4. 

Not validated Attribute sharing and methods 
invocation 

[49] 

LCOM5 
 
 

Consider a set of methods {Mi} (i=1, … , m) accessing a set of attributes 
{Aj}(j=1, …, a). Let µ(Aj) be the number of methods that reference Aj. Then, 

LCOM5 = 
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mA
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Not validated Attribute usage [47] 
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Metric Definition Validation Cohesion Criteria Source 
TCC 
 
 

Let NP be the maximum possible number of direct or indirect connection in a class. 

NP = 
2

)1(* −NN
 for N methods.  Let NDC be the number of directly connected 

methods in a class. Then TCC is defined as: TCC = 
NP

NDC
 

Not validated Attribute sharing [11] 

LCC 
 
 

Let NIC be the number of indirect connections in the class. Then LCC is defined as 
follows 

)(
)()()(

CNP
CNICCNDCCLCC +

=  

Not validated Attribute sharing [11]  

RCI  
(ratio of 
cohesive 
interaction) 

|)(|
|)(|)(

CMax
CClCRCI =  

Validated 
theoretically and 
empirically 

Type and attribute usage [17] 

CAMC 
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×
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∑
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||
1  where  

n is the number of methods in the class; Mi is the set of parameters of method I; T is 
the union of Mi, for every i = 1 to n;  and Pi is the intersection of set Mi with T i.e. Pi 
= Mi ∩ T 

Validated 
empirically 

Type intersection [6] 

CBMC 
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=  is the structure factor 

Validated 
empirically 

Attribute sharing, methods 
invocation and methods 
patterns 

[26] 
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Metric Definition Validation Cohesion Criteria Source 
CCM 
 )

)().(
)(

(
CNCCCNMP

CNC
CCCM =  

Where NC(C) = number of actual connection, NMP(C) = maximum possible 
connections and NCC(C) = number of connected components of the connection 
graph Gc 

Validated 
theoretically 

Attribute sharing and 
methods invocation 

[52] 

ECCM 
 

))(1()()( CtorPenaltyFacCCCMCECCM −×=   
Where 

)(
)()(

CNOIM
CNORMCtorPenaltyFac =  

NORM(C) is the number of re-implemented methods and NOIM(C) is the number of 
inherited methods 

Validated 
theoretically 

Attribute sharing and 
methods invocation 

[52] 
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Attribute sharing and 
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[4] 
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Validated 
theoretically  

Attribute sharing and 
method invocations  

[4] 
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CHAPTER 3 

 

3 CLASSIFICATION FOR OBJECT-ORIENTED COHESION 

METRICS 

3.1 Introduction 

In this chapter, we begin in section 3.2 with the discussion of the classification criteria 

for object-oriented cohesion metrics. Section 3.3 presents a critical analysis of the 

existing object-oriented cohesion metric in the light of the classification criteria. In 

section 3.4 we conclude the critical analysis by summarizing our findings. 

3.2 Classification for Cohesion Measurements 

Software researchers have given so much importance to the area of software metrics 

with a view to quantify different aspects of software. If software features are 

accurately measured, the development process can better be understood and hence it 

can easily be controlled so that better software products are produced. In this section, 

we identify some classification criteria that can be used to classify, assess, compare, 

and evaluate the existing cohesion metrics. The classification criteria are of two types: 

factors and characteristics. 

 

• Factors: these criteria identify what the metric considers in its calculation of 

cohesion value. 

• Characteristics: these criteria, as the name implies, capture the characteristics of 

the cohesion metric i.e. the features of the metric. 
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As shown in Table 3, criterion 3, 7, 9, 10 and 11 can be found in [18]. The table 

presents a summary of these criteria where new (in the source column) signifies new 

criteria that we identified in the course of this research. 

 
Table 3: Classification Criteria 

# Classification Criteria Description  Source Remark 
1 Underlying Approach Characteristic New  
2 Granularity Characteristic New  
3 Availability Characteristic Briand [18] Braind et. al. called this usable or 

partially usable . 
4 Soundness/Validity Characteristic New  
5 Sensitivity Characteristic New  
6 Normalization Characteristic New  
7 Validation Characteristic Briand [18]  
8 Interpretation Characteristic New  
9 Connection type Factor Modified Modified version of Braind’s 

cohesion criteria [18]. 
10 Special Methods Factor Briand [18] Braind et. al. called this known 

problems 
11 Inheritance Factor Briand [18]  

 

Underlying Approach 

To better understand a concept, it is important to understand the underlying principle 

upon which the work is built; this may be obtained by knowing where the original idea 

is obtained. Underlying approach gives the reference of the work where the original 

idea, upon which the approach is built, is obtained.  

 

Granularity 

Granularity refers to the level of granularity of the metric, as in which component of 

the system does the metric measure; method, class or package. 

 

Availability 

Availability determines the software engineering development process in which the 

metric can fully be used. Some metrics can only be used when coding is completed 

such metrics are available at the implementation level. While some metrics can be 
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used at the end of the design stage such metrics are available at the design level of the 

software development process. 

 

Soundness/Validity 

Soundness determines the correctness of the metric proposed in the approach, as in 

how much it really captures the cohesion of the module of a software system. It 

equally determines if there is an ambiguity in the metric computation. An ambiguity 

exist if the metric gives the same value for classes that are, intuitively, of different 

cohesion.  

 

Sensitivity 

Sensitivity describes how sensitive the cohesion metric is to changes. How does a 

change in the module (or class) affect the measurement? Does the change have 

negative or positive impact on the result of the metric? 

 

Normalization 

Normalization determines if the result of the metric is normalized i.e. values returned 

by the metric is between 0 and 1; classes with zero cohesion value have the least 

cohesion while classes with cohesion value 1 have perfect cohesion. Or the reverse is 

the case for inverse metrics like the LCOM metrics. 

 

Validation 

Validation specifies whether the metric is validated or not; if it is validated how is it 

validated-theoretically or empirically. If it is not validated how complex is the 
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validation process, as in what are the things required for it to be validated and whether 

or not the researchers have given a way that their metric can be validated. 

 

Interpretation 

Interpretation determines the difficulty surrounding the interpretation of the results 

obtained from the metric. It also describes whether the researchers have given 

suggestions on how to interpret the values of the metric or not. 

 

Connection Type 

Connection type specifies factors the cohesion metric considers in calculating the 

cohesion of the module i.e. the process the researchers used in capturing the 

interactions among the different components of a class. Based on our research, we 

outlined all the possible interactions that may exist among the components of a class in 

Table 4. However, we have not exhausted all possible types; the types outlined in 

Table 4 are based on the approaches we have covered in this research. If a new 

interaction criterion is proposed later, the table simply needs to be updated. The table 

is a modified version of the one presented in Briand’s framework [18]. 

 

Special Methods 

Methods like constructor, access methods etc have an impact on the cohesion of a 

class. The special method attribute captures whether the impact of such methods is 

considered in the definition of the cohesion measure. 
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Inheritance 

Inheritance describes whether the approach considers the impact of inheritance in 

proposing its metric. Inherited methods and attributes have an impact on the cohesion 

of a class. 

 

Table 4 presents all the possible types of connections used by the existing cohesion 

metrics (i.e. the possible ways through which the components of a class may interact). 

This table is a modified version of the work presented by Briand et al. in [18]; here we 

identified three more connection types: type 3, 8 and 9. In addition, we give names to 

each of the criterion for easy referencing.  

Table 4: Connection Types 

# Element 1 Element 2  Description Name Measures 
1 Method m 

of class c 
Attribute a of 
class c 

m references a  MAR LCOM5, CBMC, 
CBAMU 

2 Method m 
of class c 

Method m’ of 
class c 

m invokes m’ directly DMMR LCOM4, Co, 
CCM, ECCM, 
OCC, PCC, 
CBAMU 

3 Method m 
of class c 

Method m’ of 
class c 

m relates to m’ indirectly via 
other methods that directly 
invoke each other. 

IMMR CBAMU 

4 Method m 
of class c 

Method m’ of 
class c, m ≠ 
m’ 

m and m’ directly reference an 
attribute a of class c in common  

DAS LCOM1, LCOM2, 
LCOM3, LCOM4, 
Co, TCC, CCM, 
ECCM, OCC, 
PCC, LCC 

5 Method m 
of class c 

Method m’ of 
class c, m ≠ 
m’ 

m and m’  indirectly reference 
an attribute a of class c in 
common  

IAS LCC 

6 Data-
declaration  
in class c 

Data-
declaration  in 
class c 

Data-data interaction  DDI RCI 

7 Method m 
of class c 

Data-
declaration  in 
class c 

Data-method interaction DMI RCI 

8 Parameter 1 Parameter 2 The existence of Parameter 1 
and Parameter 2 in the same 
method or otherwise 

PPI CAMC 

9 Method m 
of class c 

Method m’ of 
class c 

m writes to an attribute a of 
class c and m’ reads a 

MIBAT PCC 
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Where; 

MAR means Method-Attribute Referencing 

DMMR means Direct Method-Method Referencing 

IMMR means Indirect Method-Method Referencing 

DAS means Direct Attribute Sharing 

IAS means Indirect Attribute Sharing 

DDI means Data-Data Interaction 

DMI means Data-Method Interaction 

PPI means Parameter-Parameter Interaction (or Intersection). 

MIBAT: Methods Interactions Based on Access Types 

3.3 Critical analysis of object oriented cohesion metrics 

In this section we critically analyze the different approaches we found in the literature, 

all the object-oriented approaches discussed in chapter 2 (Literature Review) are 

scrutinized based on the classification criteria. 

 

Evaluating the Degree of Method and Class Cohesion of Eder et al. [33] 

Eder et al. define degrees for measuring method cohesion, class cohesion and 

inheritance cohesion as explained in chapter 2. In this section we discuss the proposed 

metrics in the light of the attributes discussed in Table 3. See section 2.4.1 for details 

regarding the cohesion metrics proposed by Eder et al. 
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Table 5: Eder's et al. Approach 

# Attribute Approach 
1 Underlying Approach An extension of the concepts of cohesion developed initially for 

procedure-oriented systems by Yourdon and Constantine [80] 
2 Granularity Measure cohesion at method and class level 
3 Availability Implementation 
4 Soundness/Validity Too subjective; the degrees of method and class cohesion are 

ambiguous because their meaning cannot be determined from the 
context. The approach depends on individual to interpret the result 

5 Sensitivity Not sensitive 
6 Normalization Not normalized 
7 Validation Not validated 
8 Interpretation No explanation is given for the metric interpretation 
9 Connection Type Provides ordinal scales for capturing method cohesion, class cohesion 

and inheritance cohesion as explained in chapter 2. All the three types 
of cohesion are subjective and too difficult to measure automatically 

10 Special Methods No consideration was given for special methods in this approach 
11 Inheritance Inherited methods and attributes are considered in the case of 

inheritance cohesion. 
 
 
 
Evaluating the LCOM1 and LCOM2 Metrics [28][29] 

In their approach, Chidamber and Kemerer proposed the lack of cohesion in methods 

(LCOM) and later redefine this metric, we call the two metrics LCOM1 and LCOM2. 

These two metrics are critically analyzed using the classification criteria in Table 6 

and Table 7, respectively. 

Table 6: LCOM1 

# Attribute Approach 
1 Underlying Approach Based on the notion of degree of similarity of methods initially 

proposed by Bunge [25] 
2 Granularity Measures cohesion at class level 
3 Availability Partially available at the design level but fully available at the 

implementation stage. 
4 Soundness/Validity Does not correctly capture the cohesion of a class though it gives an 

idea of how cohesive a class is. The metric is ambiguous because two 
classes that are, intuitively, of different cohesion may have the same 
cohesion value.  

5 Sensitivity Reacts positively to changes though not in all situations. That is if the 
cohesion of a class is altered, the metric reflects this alteration in its 
computation sometimes. 

6 Normalization Not normalized 
7 Validation Validated theoretically 
8 Interpretation No explanation on how to interpret the result of the metric 
9 Connection Type DAS (Direct Attribute Sharing) see Table 4 
10 Special Methods No consideration was given for special methods in this approach 
11 Inheritance Not considered 
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Table 7: LCOM2 

# Attribute Approach 
1 Underlying Approach Based on the notion of degree of similarity of methods initially 

proposed by Bunge [25] 
2 Granularity Measures cohesion at class level 
3 Availability Partially available at the design level but fully available at the 

implementation stage. 
4 Soundness/Validity Does not correctly capture the cohesion of a class. The metric is 

ambiguous because two classes that are, intuitively, of different 
cohesion may have the same value for the measure. In the experiment 
performed by Basili et al [8] it turns out that many classes are set to 
have cohesion value zero although different cohesions are expected. 

5 Sensitivity Behaves positively to changes in the cohesion of a class though not in 
all situations 

6 Normalization Not normalized 
7 Validation Validated theoretically and empirically 
8 Interpretation The researchers here asserted that high value of LCOM2 is not 

desirable because high value of the metric indicates disparateness in 
the functionality provided by the class. This means that the class is 
attempting to achieve different objectives. Such classes could be more 
error prone and more difficult to test and could possibly be 
disaggregated into two or more classes that are better defined in their 
behavior. However, though a high value of LCOM2 implies low 
cohesion, a value of LCOM2 = 0 does not imply the reverse. As a 
matter of fact, two or more different classes may have the value of 
LCOM2 = 0. In such a case it is difficult to interpret the result of 
LCOM2 metric. 

9 Connection Type DAS (Direct Attribute Sharing) see Table 4 
10 Special Methods No consideration was given for special methods 
11 Inheritance Not considered 
 
 
Evaluating The LCOM3, LCOM4 and Co Metrics [49][50] 

Hitz and Montazeri proposed three metrics based on the LCOM metric; their proposed 

metrics are: LCOM3, LCOM4 and Co. In Table 8, Table 9, and Table 10 these metrics 

are carefully analyzed based on the classification criteria. 

Table 8: LCOM3 

# Attribute Approach 
1 Underlying Approach Based on the work of Chidamber and Kemerer which is based on the 

work of Bunge [25] 
2 Granularity Captures cohesion at the class level 
3 Availability Partially available at the design level but fully available at the 

implementation stage. 
4 Soundness/Validity Does not correctly capture the cohesion of a class. The metric is not 

devoid of ambiguity, it always gives a value of 1 if the number of 
connected component in the undirected Gx graph has one connected 
component. In addition, the metric is not normalized. 

5 Sensitivity Not sensitive to changes, it does not always behave the way it should 
when the interactions among the components in a class are tempered 
with. 

6 Normalization Not normalized 
7 Validation Not validated 
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8 Interpretation Difficult to interpret the result 
9 Connection Type DAS (Direct Attribute Sharing) see Table 4 
10 Special Methods No consideration was given for special methods in this approach 
11 Inheritance Not considered 

 

In order to remedy the problems with access method when measuring the cohesion of 

a class, LCOM4 was proposed. In the definition of this metric, methods invocations 

are also put into consideration when drawing the undirected graph Gx. This metric is 

scrutinized in the table that follows. 

Table 9: LCOM4 

# Attribute Approach 
1 Underlying Approach Based on the work of Chidamber and Kemerer which is based on the 

work of Bunge [25] 
2 Granularity Captures cohesion at the class level 
3 Availability Partially available at the design level but fully available at the 

implementation stage. 
4 Soundness/Validity Does not correctly measure the cohesion of a class; it always gives the 

value 1 when the number of connected component in the undirected 
graph is 1. The result of the metric is not normalized. 

5 Sensitivity Not very sensitive to changes, it does not always behave the way it 
should when the interactions among the components in a class are 
tempered with. 

6 Normalization Not normalized 
7 Validation Not validated 
8 Interpretation Difficult to interpret the result 
9 Connection Type Uses DAS and DMMR of Table 4 
10 Special Methods Considers access method by including an edge between methods in the 

undirected graph whenever one of the methods invokes the other. 
11 Inheritance Not considered 
 
To further discriminate classes that have the value of LCOM = 1, Hitz and Montazeri 

proposed a third metric called connectivity (Co). This metric is analyzed in Table 10. 

Table 10: The Connectivity Metric 

# Attribute Approach 
1 Underlying Approach Based on the work of Chidamber and Kemerer which is based on the 

work of Bunge [25] 
2 Granularity Captures cohesion at the class level 
3 Availability Partially available at the design level but fully available at the 

implementation stage. 
4 Soundness/Validity Does not correctly measure the cohesion of a class; it only comes into 

play when we have a situation whereby there is only one connected 
component in the reference graph of the class. 

5 Sensitivity Not very sensitive to changes, it does not always behave the way it 
should when the interactions among the components in a class are 
tempered with. 

6 Normalization Normalized 
7 Validation Not validated 
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8 Interpretation No interpretation is provided for this metric 
9 Connection Type Uses DAS and DMMR of Table 4 
10 Special Methods Considers access method - this metric is an extension of LCOM4. The 

metric is proposed in order to further discriminate classes with one 
connected component in the undirected graph by considering the 
number of edges in the graph. 

11 Inheritance Not considered 
 

Evaluating the TCC and LCC Metrics [11] 

Bieman and Kang proposed two cohesion metrics: TCC (Tight Class Cohesion) and 

LCC (Loose Class Cohesion). TCC and LCC are critically discussed based on the 

classification criteria in Table 11 and Table 12, respectively. 

Table 11: Tight Class Cohesion 

# Attribute Approach 
1 Underlying Approach Based on the work of Chidamber and Kemerer which is based on the 

work of Bunge [25] 
2 Granularity Measures cohesion at the class level 
3 Availability Partially available at the design level but fully available at the 

implementation stage. 
4 Soundness/Validity Provides good means of measuring the cohesion of a class but at times 

it gives result that is contrary to intuition especially when there are 
many methods in the class. If there are a huge number of methods in 
the class, the value of the cohesion will be low because of the 
denominator in the definition of the metric but this is not always the 
case. It gives an infinite value for classes with no method or classes 
with only one method. Also, it does not capture the relationships 
between methods via method invocation. In order words, if two 
methods do not directly or indirectly share an attribute in common, the 
methods will be considered as unrelated methods, which is wrong. 

5 Sensitivity Not very sensitive. 
6 Normalization Normalized 
7 Validation Not validated 
8 Interpretation Difficult to interpret the result 
9 Connection Type Uses IAS of Table 4 
10 Special Methods Recommended that constructors be excluded 
11 Inheritance Suggest three alternatives for handling inherited attributes/methods as 

discussed in chapter 2. 
 

The second metric; Loose Class Cohesion (LCC) considers - in its definition - both 

direct and indirect connections that may exist among the components of a class. 
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Table 12: Loose Class Cohesion 

# Attribute Approach 
1 Underlying Approach Based on the work of Chidamber and Kemerer which is based on the 

work of Bunge [25] 
2 Granularity Measures cohesion at the class level 
3 Availability Partially available at the design level but fully available at the 

implementation stage. 
4 Soundness/Validity Provides good means of measuring the cohesion of a class but at times 

it gives result that is contrary to intuition especially when there are 
many methods in the class. If there are a huge number of methods in 
the class, the value of the cohesion will be low because of the 
denominator in the definition of the metric but this is not always the 
case. Infinity is returned by this metric for classes with only one 
method and for classes with no method. Also, it does not capture the 
relationships between methods via method invocation. In order words, 
if two methods do not directly or indirectly share an attribute in 
common, the methods will be considered as unrelated methods, which 
is wrong. 

5 Sensitivity Not very sensitive. 
6 Normalization Normalized 
7 Validation Not validated 
8 Interpretation Difficult to interpret 
9 Connection Type Uses IAS of Table 4 
10 Special Methods Recommended that constructors be excluded in the analysis 
11 Inheritance Suggest three alternatives for handling inherited attributes/methods. 

See chapter 2 for details 

 

 
Evaluating the LCOM5 Metric [47] 

Henderson-Sellers et al. proposed a new metric by redefining the Lack of Cohesion in 

Methods (LCOM) metric; we call their metric LCOM5. Below, the metric is discussed 

based on the classification criteria. 

Table 13: LCOM5 

# Attribute Approach 
1 Underlying Approach Based on the work of Chidamber and Kemerer which is based on the 

work of Bunge [25] 
2 Granularity Measures cohesion at the class level 
3 Availability Partially available at the design level but fully available at the 

implementation stage. 
4 Soundness/Validity Provides a process of measuring the cohesion of a class but it has some 

problems. If there is no attribute or if there is only one method in a 
class, the metric will give an infinite value as the cohesion of the class. 
This violates the principle of measurement theory and a good metric 
should not return such in any situation. 

5 Sensitivity Sensitive to changes 
6 Normalization Normalized 
7 Validation Not validated 
8 Interpretation Difficult to interpret 
9 Connection Type Uses MAR of Table 4 
10 Special Methods No consideration was given for special methods in this approach 
11 Inheritance Not considered 
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Evaluating the RCI Metric [15] 

Briand et al. proposed cohesion metric, RCI (Ratio of Cohesive Interaction), based on 

the visualization of a class as a collection of data declarations and methods. This 

metric is critically discussed in Table 14. 

Table 14: The RCI Metric 

# Attribute Approach 
1 Underlying Approach Adapted from the early work of Briand et al. for measuring cohesion 

in object-based systems. 
2 Granularity Measures cohesion at the class level 
3 Availability Fully available at the design level 
4 Soundness/Validity Provides a good means of measuring the cohesion of class at the 

design level. But because it measure cohesion at the design level, the 
result of this metric is not always very accurate. 

5 Sensitivity Not very sensitive to changes 
6 Normalization Normalized 
7 Validation Validated theoretically and empirically 
8 Interpretation No interpretation was provided. 
9 Connection Type DDI and DMI of Table 4 
10 Special Methods Not considered 
11 Inheritance In addition to the three options provide by Bieman and Kang, Briand 

et al. added a fourth alternative for handling inheritance: excluding 
inherited attributes but include inherited methods. According to them 
this makes little sense because inherited methods can only access 
inherited attributes 

 
Though special methods are not considered in the definition of the RCI metric, Briand 

et al. [18] provides the following suggestions on how to deal with special methods. 

1. Suggested to count the invocation of access methods as reference to an 

attribute (for MAR and DAS in Table 4 ) 

2. Suggest that access methods be excluded (for DAS and DIAS in Table 4) and 

3. Suggest that constructors be excluded in the analysis. 

 

Evaluating the CAMC Metric [6] 

Bansiya et al. [6], proposed a metric whereby the cohesion of a class is determined by 

the types of objects that methods take as input parameters. The metric CAMC 

(Cohesion Among Methods in Class) measures the extent of intersections of individual 
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method parameter type lists with the parameter type list of all methods in the class. 

This metric is discussed in Table 15 in light of the classification criteria. 

Table 15: The CAMC Metric 

# Attribute Approach 
1 Underlying Approach Based on the premise that the parameters of a method reasonably 

define the types of interaction that methods may implement. 
2 Granularity Measures cohesion at the class level 
3 Availability Fully available at the design level 
4 Soundness/Validity Provides a means of measuring the cohesion of class at the design 

level. This result may or may not capture the actual cohesion of classes 
because at the design level detailed information is not available which 
may affect the cohesion of the class. It is discontinuous for classes 
with no methods. 

5 Sensitivity Not very sensitive 
6 Normalization Normalized 
7 Validation Validated empirically 
8 Interpretation No explanation on how to interpret the result of this metric is provided 
9 Connection Type PPI of Table 4 
10 Special Methods Not considered 
11 Inheritance Not considered 

 

 
Evaluating the CBMC Metric [26] 
 
Chae proposed the metric CBMC (Cohesion Based on Member Connectivity) 
 
Table 16: The CBMC Metric 

# Attribute Approach 
1 Underlying Approach Based on the work of Chidamber and Kemerer which is based on the 

work of Bunge [25] 
2 Granularity Measures cohesion at the class level 
3 Availability Partially available at the design level but fully available at the 

implementation stage. 
4 Soundness/Validity Presents an excellent way to measure the cohesion of a class but have 

a number of problems. If there are two or more glue methods (i.e. 
methods that can separate the reference graph) the order by which 
these methods are removed from the structure tree determines the 
value of the class cohesion. Thus, different values might be obtained 
for the same class. 

5 Sensitivity Not very sensitive 
6 Normalization Normalized 
7 Validation Validated empirically 
8 Interpretation No explanation is provided regarding how to interpret the result of the 

metric 
9 Connection Type MAR of Table 4 
10 Special Methods Introduced the concept of glue methods in order to overcome the 

problems of special methods. Methods like access methods, 
constructors etc are made not have any impact on the cohesion of the 
class by ensuring that their removal in the reference graph does not 
separate the graph. 

11 Inheritance Not considered 
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Evaluating the CCM and ECCM Metrics [52] 

Jarallah et al. [52] conducted a research on some of the object-oriented design features 

that can affect the cohesion of a class and attempted to relate how cohesion can be 

used to assess these design features. Two metrics were proposed: (i) CCM (Class 

Cohesion Metric) and (ii) ECCM (Enhanced Class Cohesion Metric). These two 

metrics are critically discussed in Table 16 and Table 17. 

Table 17: The CCM Metric 

# Attribute Approach 
1 Underlying Approach Based four design principles proposed in [52] 
2 Granularity Measures cohesion at the class level 
3 Availability Partially available at the design level but fully available at the 

implementation stage. 
4 Soundness/Validity Measure the cohesion of a class but not accurately; at times it returns 

the same cohesion value for two classes that appear to be of different 
cohesion 

5 Sensitivity Not very sensitive to changes 
6 Normalization Normalized 
7 Validation Validated theoretically 
8 Interpretation No explanation on how to interpret the result of this metric is provided 
9 Connection Type DMMR and DAS of Table 4 
10 Special Methods No consideration was given for special methods in this approach 
11 Inheritance Not considered 

 

The analysis of the second metric is given in the following table. 
 
Table 18: The ECCM Metric 

# Attribute Approach 
1 Underlying Approach Based four design principles proposed in [52] 
2 Granularity Measures cohesion at the class level 
3 Availability Implementation level 
4 Soundness/Validity Measure the cohesion of a class but not accurately; at times it returns 

the same cohesion value for two classes that appear to be of different 
cohesion by intuition 

5 Sensitivity Not very sensitive to changes 
6 Normalization Normalized 
7 Validation Validated theoretically 
8 Interpretation No explanation on how to interpret the result of this metric is provided 
9 Connection Type DMMR and DAS of Table 4 
10 Special Methods No consideration was given for special methods in this approach 
11 Inheritance Suggest  (i) avoiding unused inherited methods in a subclass (ii) 

avoiding re-implementation of inherited methods 
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Evaluating the OCC and PCC [4] 

Aman et al. proposed two metrics: (i) OCC (Optimistic Class Cohesion) and (ii) PCC 

(Pessimistic Class Cohesion), detailed explanation of how these two metrics work is 

presented in chapter 2. In Table 19 and Table 20, we critically analyzed these metrics 

based on the classification criteria. 

Table 19: The OCC Metric 

# Attribute Approach 
1 Underlying Approach Based on the work of Chidamber and Kemerer which is based on the 

work of Bunge [25] 
2 Granularity Measures cohesion at the class level 
3 Availability Partially available at the design level but fully available at the 

implementation stage. 
4 Soundness/Validity Does not accurately measure the cohesion of a class. The fact that 

access methods are treated as normal methods means that certain 
interactions among methods cannot be captured and thus the overall 
cohesion of the class will not be accurately captured. Access methods 
reduce the cohesion of a class. 

5 Sensitivity Not very sensitive 
6 Normalization Normalized 
7 Validation Validated theoretically 
8 Interpretation No interpretation was given 
9 Connection Type DMMR, DAS and MRBAT of Table 4 
10 Special Methods Access methods are treated as normal methods 
11 Inheritance Not considered 
 
Table 20: The PCC Metric 

# Attribute Approach 
1 Underlying Approach Based on the work of Chidamber and Kemerer which is based on the 

work of Bunge [25] 
2 Granularity Measures cohesion at the class level 
3 Availability Partially available at the design level but fully available at the 

implementation stage. 
4 Soundness/Validity Does not accurately measure the cohesion of a class. The fact that 

access methods are treated as normal methods means that certain 
interactions among methods cannot be captured and thus the overall 
cohesion of the class will not be accurately captured. Access methods 
reduce the cohesion of a class. 

5 Sensitivity Not very sensitive 
6 Normalization Normalized 
7 Validation Validated theoretically 
8 Interpretation No interpretation was given 
9 Connection Type DMMR, DAS and MRBAT of Table 4 
10 Special Methods Access methods are treated as normal methods 
11 Inheritance Not considered 
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3.4 Observations 

Based on the critical analysis of state-of-the-art of existing cohesion metrics, the 

following are our findings: 

1. Most of the approaches are based on the work of Chidamber and Kemerer 

which is based on the notion of degree of similarity of methods initially 

proposed by Bunge. 

2. Most of the approaches are based on attribute usage, method invocations or 

both. 

3. Most of the metrics studied capture cohesion at the class level. 

4. None of the metrics studied captures cohesion at the package level. 

5. Most of the cohesion metrics studied do not accurately capture the cohesion of 

a class without violating at least one example. 

6. Most of the metrics are not validated and few researchers provide explanation 

on how to interpret the result of their metrics. 

7. Some of the metrics are not normalized. 

 

In an attempt to address some of the short comings of some of the existing cohesion 

metrics, a new metric has been developed in this research. This metric is presented in 

chapter 4. The metric is based on LCOM5 and addresses some of its shortcomings. 
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CHAPTER 4 

 

4 NEW COHESION METRIC 

4.1 Introduction 

Software metrics can help address the most critical issues in software development and 

can provide support for planning, predicting, monitoring, controlling, and evaluating 

the quality of both software products and processes [7]. Quite a number of object-

oriented cohesion metrics have been proposed; we identified lapses in the definition of 

some of the object-oriented cohesion metrics. In this chapter we propose a new metric 

for measuring cohesion at the design level, which overcomes some of the problems 

identified with LCOM5.  

 

In addition to having a context and explicit goals, a well defined metric should have 

the following in order to be complete: 

 

1. A metric should have a measure (expressed as a numerical value) 

2. A metric should provide a simple procedure or process for capturing the software 

attributes it measures. 

3. The result of a metric should be normalized for easy understanding and easy 

comparison. 

4. A metric should also provide an interpretation for the measure (the numerical 

value) 
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Briand et al. [15] proposed four strategies for proposing high-level design metrics: (i) 

declaration counts (ii) metrics based on the USES relationships (iii) metrics based on 

the IS_COMPONENT_OF relationships (iv) interaction-based.  

 

The metric we proposed in this research work is based on the second strategy (i.e. 

metrics based on the USES relationships). Though not all the USES (Interactions) can 

be exhaustively captured at the end of the software design stage, the information 

available at this stage can be used to define a metric that can be used at the design 

level. We call our proposed metric CBAMU (Cohesion Based on Attribute and 

Method Usage). In computing this metric, we simply keep track of all the methods that 

use (access) each of the attributes in a class and all the methods that use (invoke) each 

of the method in the class. The metric (CBAMU) is also normalized so that cohesion 

values obtained from the metric lies between 0 and 1. 

4.2 Cohesion Based on Attribute and Method Usage 

Most of the existing class cohesion metrics attempt to measure the cohesion of a class 

by taking into account only the interactions among methods and the attributes of a 

class. This type of cohesion criteria constitutes a restrictive way of capturing the 

cohesion of a class [5]. The new metric, CBAMU (Cohesion Based on Attribute and 

Method Usage) is defined based on both attribute usage and method usage 

(invocation) within a class. The metric does not only considers, in its definition, the 

direct interaction between methods and attributes but also the interaction between 

methods which may serve as a means of capturing the indirect relationship among 

methods as shown in Figure 10.  
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Figure 10: Direct and Indirect Connections 

 

From Figure 10, we can see that m2 and m3 are directly related because they both 

access the same attribute A2. This is the only interaction that can be captured if the 

cohesion criterion is only attribute usage. In order to capture the direct interaction 

between m1 and m2 via m5, and subsequently the indirect connection between m1 and 

m3, we need to consider the method usages in a class.  

 

Definition 4.1 

Let C denote a class, Ai the set of attributes and Mj the set of methods in the class. 

Consider an undirected graph Gc(V, E) where V = Mj U Ai (methods are represented in 

rectangular nodes while attributes are represented in circular nodes) E is the set of all 

edges in Gc. An edge is drawn from a method to an attribute or another method, in the 

class, if the method accessed the attribute or invoked the method. 

 

Definition 4.2 

Let C denote a class, Ai the set of attributes and Mj the set of methods in the class. Let 

the total number of attributes in the class be a and the total number of methods in the 
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class be m. The attribute usage of the class (AU(C)) and method usage of the class 

(MU(C)) can be computed using equations 4.1 and 4.2, respectively. 
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The CBAMU(C) is given by the following mathematical expression 

CBAMU(C) = ( ))()(
2
1 CMUCAU +⋅ ----------------------------------------[4.3] 

Where; 

 a = number of attributes in the class 

 m  = number of methods in the class 

 µ(Ai) = number of methods that access attribute Ai 

 µ(Mj) = number of methods that invoke method Mj 
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From equations 4.1 and 4.2, we can see that dividing ∑
=

a

i
iA

1

)(µ  by am and 

∑
=

m

j
jM

1

)(µ  by m(m – 1) will normalized the result. In the same vain, the summation 

of AU(C) and MU(C) is divided by 2 in order to keep the value obtained from the 

CBAMU metric normalized. 

4.3 Validation 

In recent time, so much attention has been given to the concept of software 

measurement probably due to the fact that most software projects fail. In view of this, 

numerous software metrics have been proposed so that features of software can easily 

be measured. One major criticism of most of these metrics is that they have not been 

validated, by validating a metric we need to show that it actually measure whatever it 

claims to measure [46]. 

 

The most common approaches for validating software metrics are theoretical 

validation and empirical validation; these two approaches complement each other. In 

other words, if a metric is validated theoretically, it needs to be validated empirically 

before it can be used with confidence [46]. In this section, we theoretically validate the 

CBAMU metric proposed in section 4.1. 

 

4.3.1 Theoretical Validation 

Several researchers have proposed properties that software metrics should posses in 

order to increase their level of confidence. It is desirable to have a formal set of criteria 

with which to evaluate proposed metrics.  
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In 1996, Hitz and Montazeri used the concept of measurement theory to evaluate and 

validate any given metric. They identified the significance of establishing a 

“sufficient” empirical relation system after the researcher has identified his attributes 

of interest. Having established an empirical relation system, a metric M should then 

map the empirical relation system into an appropriate formal (or numerical) relation 

system, preserving the semantics of the empirical relation(s) observed. In other words, 

for every empirical relation ∠ and a corresponding formal relation <, the so-called 

representation condition X ∠ Y ⇔ M(X) < M(Y) must hold [50]. The task of 

validating a software measure in the assessment sense is equivalent to demonstrating 

empirically that the representation condition is satisfied for the attribute being 

measured [40]. 

 

So, the empirical relation will be stated as: The more edges in the interaction 

graph,GX, the higher the cohesion of the class X. Therefore any metric M should 

preserve the semantic of empirical relation. 

 

In 1998, Briand et al. have proposed a mathematical framework including properties to 

be satisfied by several types of software metrics [18]. Cohesion measure is one of the 

measures supported by this framework, others include: size, length, coupling and 

complexity. The following properties are proposed with respect to cohesion metrics, in 

other words, any well defined metric should satisfy the following conditions.  
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Property 1: Non-negativity and Normalization 

The cohesion of a class of an object oriented system should belong to a specified 

interval (i.e. Cohesion (C) ε [0, Max]. Normalization allows meaningful comparisons 

between the cohesions of different classes, since they all belong to the same interval. 

 

Property 2: Null value and maximum value 

The cohesion of a class of an object oriented system is null if there is no interactions 

among the components of the class (i.e. interaction among the methods and attributes 

of the class) and it is maximum if the interaction among the components is maximal. 

 

Property 3: Monotonicity 

Let C be an object-oriented system, and c ∈ C be a class in C. Assuming we modified 

the class c to form a new class c’ which is identical to c except that there are fewer 

interactions in c than in c’. Let C’ be the object-oriented system which is identical to C 

except that class c is replaced by class c’. Then 

 

)]'()(|)'()([ CCohesionCCohesioncCohesionccohesion ≤≤  

 

In other words, if a relationship is added to an object-oriented system, cohesion must 

not decrease. 

 

Property 4: Merging of unconnected classes 

Let C be an object-oriented system, and c1, c2 ∈ C be two classes in C. Let c’ be the 

class which is the union of c1 and c2. Let C’ be the object-oriented system which is 
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identical to C except that classes c1 and c2 are replaced by c’. If no relationship exist 

between classes c1 and c2 in C, then 

 

)]'()(|)'()}(),([max{ 21 CCohesionCCohesioncCohesioncCohesioncCohesion ≥≥  

 

In other words, the merging of two unconnected classes must not increase cohesion 

(because the union of two unconnected classes will have little cohesion). 

 

Hermadi et al. [48] augmented two other additional properties to Briand’s et. al. 

framework, that cohesion metrics need to satisfy; these are symmetry and transitive. 

These properties are defined below. 

 

Symmetry: the cohesion of a class should not be sensitive to the direction of the 

relation between its components. If there is a relation between m1 and m2 then the 

representation of m1→m2 is equivalent to m2→m1. 

 

Transitivity: Consider three classes c1, c2 and c3 such that, Cohesion (c1) < 

Cohesion(c2) and Cohesion(c2) < Cohesion(c3), then Cohesion(c1) < Cohesion(c3). 

 

Theoretical Validation of CBAMU 

In this study we will use the following seven properties in addition to the property 

proposed by Hitz and Montazeri in the theoretical validation of the proposed cohesion 

metric (CBAMU). 
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1. Non-negativity  

2. Normalization 

3. Null value and maximum value 

4. Monotonicity 

5. Merging of unconnected classes 

6. Symmetry 

7. Transitivity 

 

Going by the definition of CBAMU, we can see that the more the number of edges in 

the undirected graph (representing the interactions among the class’s component) the 

more the cohesion of the class. Therefore, CBAMU satisfies Hitz’s property (i.e. the 

representation condition holds). 

 

The CBAMU of a class = 0 if there is no interactions among the components of the 

class and CBAMU = 1 if all methods are directly or indirectly connected (i.e. if the 

interactions among the components of the class is maximal). Therefore, the value of 

CBAMU lies in the interval [0, 1] inclusive. Hence, the metric satisfies the first three 

of the seven properties.  

 

The monotonicity property says that if relationships are added to the system, then 

cohesion must not decrease. From the definition of CBAMU, we can see that as 

relationships are added, the values of ∑ )(Mµ  and ∑ )(Aµ  (i.e. the numerators) will 

increase while the number of attributes and methods remain fixed. Since while the 

numerator is increasing the denominator remains unchanged, the cohesion must 

increase. Therefore, CBAMU satisfies the fourth property (monotonicity). 
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Figure 11: Merging two unconnected classes 

Property five says that merging two unconnected classes must not increase cohesion. 

By merging any two classes that are unconnected, we are increasing the number of 

connected components as shown in Figure 11. This will lead to a decrease in CBAMU 

because while ∑ )(Mµ  and ∑ )(Aµ  slightly increases the values of am and m(m-1) 

drastically increase thereby causing an overall decrease in CBAMU. Thus, CBAMU 

satisfies the fifth property (merging of unconnected classes). 

 

CBAMU does not satisfy the sixth property (symmetry) because in the case of 

interactions among methods (method invocations) direction is considered; we are 

interested in capturing which method invokes which not just the interaction. 

 

Class C is more cohesive than class C’ if, in the connection graph, there are less 

number of connected components in C than in C’ or if there are more interactions in C 

than in C’. CBAMU will always show that a class with less number of connected 
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components (or with more interactions) has higher cohesion than a class with more 

connected components. Hence, if we have three classes A, B and C, such that 

Cohesion (Class A) < Cohesion (Class B) and Cohesion (Class B) < Cohesion (Class 

C). Then it implies that Cohesion (Class A) < Cohesion (Class C). Therefore, CBAMU 

satisfies the seventh property (transitivity).. 

 

To conclude this chapter, the proposed metric (CBAMU) is exposed to the same 

treatment as the remaining cohesion metrics we studied in the cause of this research. 

Table 21 presents the critical analysis of the CBAMU metric. 

 
Table 21: The CBAMU Metric 

# Attribute Approach 
1 Underlying Approach The approach is based on the work of Chidamber and Kemerer which 

is based on the work of Bunge [25] 
2 Granularity Measures cohesion at the class level 
3 Availability Partially available at the design level 
4 Soundness/Validity The metric may not give accurate results for classes with large number 

of methods because of the denominator in the definition of the metric. 
If there is large number of methods in the class, the value of the 
cohesion will be low which may not always be the case. 

5 Sensitivity The metric is sensitive to changes. 
6 Normalization Normalized 
7 Validation Validated theoretically 
8 Interpretation Difficult to interpret 
9 Cohesion Criteria Uses MAR, DMMR, IMMR of Table 4 
10 Special Methods No consideration was given for special methods in this approach 
11 Inheritance Not considered 
 
 
As can clearly be seen from our careful scrutiny of object oriented cohesion metrics in 

chapter 3, cohesion may be considered as a subjective concept. Hence, we do not 

claim that our metric accurately captures the cohesion of a class; this is simply our 

intuition of class cohesion. 

4.3.2 LCOM5 vs. CBAMU 

Consider the following three classes, which are intuitively of different cohesion. 
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From the above classes, we can see that both LCOM5 and CBAMU correctly 

differentiate among the cohesion of the classes. Both metrics show that as the 

interaction among the component of the class increases, the cohesion value also 

increases. However, LCOM5 is solely based on attribute referencing and thus will not 

show an increase in the cohesion of a class where there is method invocation in 

addition to attribute referencing. This is shown in the following example where there 

are four methods and four attributes like in the first example the only different is that 

m1 invokes m2 and m2 invokes m3. Unlike CBAMU, LCOM5 could not differentiate 

C
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m3
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between the cohesion of this class and the one in the first example. But CBAMU was 

able to differentiate between the cohesion of these classes.  

 

 

LCOM5 satisfies all the properties used in theoretical validating CBAMU, while 

CBAMU fail to satisfy one of them (the symmetry property). However, one of the 

major problems with LCOM5 is that it returns infinity for classes with only one 

method. Moreover, the symmetry property that CBAMU failed to satisfy is not an 

agreed upon property by all researchers in the area of software metrics. 

4.4 Implementation 

In order to easily compute and conduct experiments with object-oriented software 

metrics, quite a number of software metrics tools have been developed. The main goal 

of such tools is to increase system quality and to predict relevant system qualities such 

as fault-proneness, maintainability etc. OOMeter is a tool that can capture object-

oriented software metrics from UML models stored in XMI [56]. We extended this 

tool to support more metrics by implementing cohesion metrics. In this section we 

give a description of OOMeter. 

LCOM5 = 11/12 = 0.917 
CBAMU = 23/96 = 0.24 
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4.4.1 OOMeter Architecture 

OOMeter is a software metrics tool that measures the structural properties of UML 

models and java code and computes a number of software measures that include 

coupling, cohesion, and complexity. The tool contains four main components: Java 

parser & XMI parser, Data repositories for storing source data and metrics output as 

shown in Figure 12. 

 

Java File

XMI ParserJava Parser

Data Repository

Metric Database

Metric Caluculation
(OOMeter)

XMI Files

Size Coupling Cohesion Complexity Inheritance

 
Figure 12: OOMeter Architecture 

 

As shown in Figure 12, object-oriented systems are parsed to the tool in order to 

collect the data that can be used in computing the various software metrics supported 

by the tool. The collected data is stored into a Central Data Repository and the results 
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of the computation of all the metrics are stored in a different database called Metric 

Database. At the moment the tool supports the parsing of both java source files as well 

as UML models stored in XMI format. The tool supports the computation of a variety 

of software measures, which includes size, coupling, cohesion and complexity 

measures. 

4.5 Empirical Validation 

To empirically validate any software metric, well documented software projects are 

required but such projects are hard to find. However, to demonstrate the effectiveness 

or ineffectiveness of the proposed cohesion metrics, we performed a case study on 

several open source software systems. Our approach in this study is as follows: 

• Let Sn be the set of all systems to be used  

• For each system in Sn determine the following: 

o Total number of defects per system (or per class if available) 

o The test coverage for each system 

• Normalized the test coverage with respect to the bugs 

• Rank the projects based on normalized (modified) bugs per unit size. 

• Compute the average class cohesion of the metric and rank the systems based on 

magnitude. 

• Compare the ordering in 4 and 5, if they match then the metric is valid else the 

metric claim is questionable. 

Note: the above steps can be used as a practical approach for validating any OO 

cohesion metric. 

4.5.1 Hypothesis 

In this part of the research work we will investigate the following hypothesis which is 
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simply derived from our understanding of the concept of cohesion. However, the 

hypothesis is not experimentally shown to be true by previous research work. The 

hypothesis is:  

 A project with low average class cohesion is likely to have high number of defects 

than a class with high average class cohesion. 

4.5.2 Selected Systems 

A total of seven projects were collected from SourceForge.net, which is an open 

source website that provides a centralized place where open source developers can 

control and manage open source software development. 

 
The projects used in this study are collected based on their percentile values, which 

give an idea of how frequent the project is used. The percentile is expressed in a scale 

of 100; based on page views and download information. The higher the percentile the 

more used the project is likely to be and the more we expect bugs to be discovered in 

the project. On the other hand, if a project has low percentile then the bugs reported 

regarding this project may not be an indicator of its quality. It is worth mentioning 

here that; it does not always hold true that a user uses a project by merely visiting the 

projects website or by downloading it. However, it is an indicator that the project is 

popular and perhaps many of the people that download it may have used it. Details of 

the projects used are shown in Table 22. 

Table 22: Selected Projects 

Project Class Method Attribute 
Babeldoc 1.0 212 1541 936
Checkstyle 2.4 58 492 228
JGraph 2.0 29 750 340
VR Juggler 1.1DR3 278 2502 1338
Saxon 6.5.2 344 3252 1678
Jext 3.2 553 3233 2435
Saxon 8.0 540 4881 3298
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4.5.3 Results and Analysis 

On computing the different cohesion metric values, we noticed that some of the 

metrics have some strange values. One striking thing is that exactly the same cohesion 

metrics are affected in all the projects. These metrics are: TCC (Tight Class 

Cohesion), RCI (Ration of Cohesive Interaction), CAMC (Cohesion among Methods 

of Classes), and LCOM5. The cause of this problem was carefully investigated and we 

discovered that the affected cohesion metric values of some classes are infinite. The 

codes of such classes reveal that some of the classes have only one method in them 

while others don’t even have a single method. This calls for us to revisit our 

implementation and to carefully study the definition of these metrics. At the end of our 

investigation, we came to understand that the cause of the problems was in the 

definition of the cohesion metrics. 

4.5.3.1 Problems in the Definition of Some Cohesion Metrics 

The problems in the definition of LCOM5 have already been discussed at length in 

chapters 3 and 4. In this sub-section, we would like to discuss the problems of other 

cohesion metrics which we came to know from the empirical study. At least three 

other metrics have similar problem as LCOM5 i.e. they give infinity for some classes. 

TCC and LCC are defined as follows: 
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NP is given by NP(C) = N (N − 1) / 2, where N is the number of methods in the class. 

From this we can see clearly that the problem is in the definition of these metrics. Both 
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metrics are discontinuous for classes with one method as well as for classes with no 

method.  

Another metric with a similar problem is CAMC (Cohesion Among Methods of 

Classes). The CAMC metric is defined as follows: 
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Where n is the number of methods. The fact that n is the number of methods will make 

the whole denominator to be zero for classes with zero number of methods and will 

result in making the metrics to return infinite values for such classes.  

 

A tempting approach to unravel this problem is to consider eliminating all the classes 

that have this problem. However, this solution will not work because the classes to be 

eliminated may be the cause of some bugs in the whole project. This will lead us to 

having an inconsistent result; on one hand we are not considering the classes while on 

the other hand we are considering their impact on the quality of the system. In the 

cause of this experiment, what we did was to consider classes with no method to have 

no cohesion because if there is no method in a class it means that there is no 

interaction among the component of that class. Classes with only one method are 

considered to have perfect cohesion; because we expect a class with only one method 

to have only one functionality. The average values of the cohesion metrics used in this 

analysis are given in Table 23. 
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Table 23: Average class cohesion of the projects 

Project Babeldoc Saxon 6.5.2 Saxon 8.0 Checkstyle Jext  VR Juggler Jgraph 
LCOM1 0.968 0.921 0.933 0.872 0.947 0.938 0.420
LCOM2 0.969 0.923 0.935 0.869 0.948 0.938 0.418
LCOM3 0.894 0.872 0.880 0.864 0.921 0.868 0.700
LCOM4 0.872 0.845 0.855 0.875 1.000 0.846 0.708
LCOM5 0.267 0.401 0.296 0.298 0.480 0.190 0.144
CBAMU 0.130 0.151 0.165 0.047 0.100 0.092 0.073
CCM 0.129 0.167 0.172 0.154 0.083 0.101 0.069
TCC 0.102 0.156 0.155 0.093 0.149 0.098 0.059
LCC 0.118 0.173 0.178 0.103 0.098 0.110 0.095
CAMC 0.514 0.384 0.358 0.369 0.462 0.477 0.318

 

4.5.3.2 Projects Ranking 

Owing to the fact that no information is provided regarding the test coverage of the 

systems, we simply ranked the projects based on bugs per unit size. The size metric 

used for this purpose is discussed below.  

 

Khan in [56] proposed a UML class size metric based on attribute size, method size 

and inner class. The weights complexities of data types are proportional to their size in 

java. 

Attribute Type Attribute Size 
Int 4 
Byte 1 
Short 2 
Long 8 
Float 4 
Double 8 
Char 2 
Boolean 1 
String or any other object type 20 
 
 
The method size is given by the following equation 
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The class size is given by 



 73

∑ ∑ ∑
= = =

++=
na

i

nm

i

ni

i
ii esinnerClassSizemethSizeattSizecSize

1 1 1

)()()()(  

Based on the size metric above, the projects are ranked in order of bug per unit size as 

shown in Table 24. 

 

Table 24: Project ranking based on bug/design size metric 

Project Total Bugs Design Size Metric Bug/Size Rank 
Babeldoc 1.0 4 17116 0.000233699 1
Saxon 6.5.2 36 63048 0.000570994 2
Saxon 8.0 26 29620 0.000877785 3
Checkstyle 2.4 5 3174 0.001575299 4
Jext 3.2 100 23615 0.004234597 5
VR Juggler 1.1DR3 136 20860 0.006519655 6
JGraph 2.0 31 3862 0.008026929 7

 
 
 
The project with rank 1 has the least fault density while the project with rank 7 has the 

highest fault density. Based on our hypothesis, we expect to have similar ranking from 

the cohesion metric values of the seven projects. However, on computing the cohesion 

metrics, none of them show this ranking as shown in Figure 13. We started this 

experiment with three projects; in this case the results were good. However, on using 

the whole seven projects none of the metrics follow our intuition. 
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Figure 13: Project ranking based on cohesion results 
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From the charts presented in Figure 13, we can see that none of the cohesion metrics 

follow the ordering we have in (i.e. ordering based on quality). The project ordering in 

the legend of Figure 13 is the same as the ordering based on quality (in Table 24). As 

clearly seen none of the considered cohesion metrics follow this ordering. Therefore, 

we can conclude that the existing cohesion metrics are not highly correlated to the 

number of defects in a software system, therefore, cannot be good predictors of 

software defects.  To support the above assertion, that the existing cohesion metrics 

are not good predictors of software defect, we built software defect prediction model 

using an object oriented software project downloaded from NASA Metric Data 

Program website. Details of these models are given in Chapter 5. 

 

In order to determine which metric has the closest ordering, we generate the 

spearman’s rank correlations. Results show that LCC’s ordering is the closest to the 

ordering based on defect density as shown in Figure 14.  

 

 

 

 

 

The projects are also ranked based on LOC, the LOC is computed using Borland 

Together Control Center. This ranking is shown in Table 25. 

Table 25: Project ranking based on Bug/LOC 

Project Total Bugs LOC Bug/LOC Rank 
Babeldoc 1.0 4 24588 0.000163 1
Saxon 8.0 26 62482 0.000416 2
Checkstyle 2.4 5 5941 0.000842 3
Saxon 6.5.2 36 34468 0.001044 4
Jext 3.2 100 58848 0.001699 5
JGraph 2.0 31 9096 0.003408 6

Figure 14: Spearman rank order correlations based on the design size metric 
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On generating the spearman’s rank correlations we have similar result, i.e. LCC has 

the closest correlation to that of defect density as shown in Figure 15. 

 
 
 

 

 

4.5.3.3 Linking Results to Classification Criteria 

The mean values of the normalized LCOM’s as well as the remaining cohesion 

metrics are shown in Figure 13; we can see some clusters from this plot. To clearly see 

these clusters, we order the projects based on the individual metric values. When the 

projects are ordered based on the LCOM1 values, both LCOM1 and LCOM2 have 

exactly the same pattern as shown in Figure 16. Also based on this ordering, we can 

see that LCOM1 to LCOM4 have similar pattern as shown in Figure 17.  

 

 

 

 

 

 

 

 

 

  

Figure 16: Cluster I (LCOM1 & LCOM2) 

Figure 15: Spearman rank order correlations based on LOC 
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We expect LCOM1 and LCOM2 to have similar patterns because they both use the 

same Connection Type (i.e. DAS in Table 4). Furthermore, LCOM2 is simply an 

extension of LCOM1.  

 

 

 

 

 

 

 

 

 

 

The fact that LCOM1 to LCOM4 have similar patterns, though not exactly the same, is 

an indication that they all have something in common. All these metrics use the same 

Connection Type (i.e. DAS in Table 4); though in addition to DAS, LCOM4 uses 

Connection Type 2 (i.e. DMMR in Table 4).  

 

When the projects are ordered based on TCC mean values, we can see that TCC and 

LCC have similar patterns. And if the CheckStyle project is pulled out of the analysis, 

CCM would have exactly the same pattern as LCC; all these metrics use the DAS 

connection type (though CCM uses the DMMR connection type in addition to DAS 

and LCC uses IAS in addition to DAS). So we expect these three metrics to have 

similar pattern as shown in Figure 18.  

 

Figure 17: Cluster II (LCOM1-4) 
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To clearly see the correlations among the cohesion metrics, we generate a correlation 

matrix of the metrics. The above charts are based on the average cohesion values of 

the seven projects presented in Table 22. Using this in generating the correlations 

means that we have only seven cases. In order to have more cases, we use a single 

project (JDSL), which has 99 classes; this means that we have 99 cases. JDSL is the 

Data Structures Library in Java. It is a collection of Java interfaces and classes that 

implement fundamental data structures and algorithms, such as: search trees, hash 

tables, sorting algorithms, and graph traversals. The correlations are presented in 

Figure 19; the correlation show similar clusters as the ones shown in the above charts.  

 

Figure 19: Cohesion metrics correlations 

Figure 18: Cluster III (TCC & LCC) 
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The connection types used by each of the cohesion metrics studied in this research are 

presented in Table 26. The first ten metrics in this table are empirically investigated. 

Table 26: Cohesion metrics Vs connection types 

Metric MAR DMMR IMMR DAS IAS DDI DMI PPI MIBAT 
LCOM1    X      
LCOM2    X      
LCOM3    X      
LCOM4  X  X      
LCOM5 X         
CBAMU X X X       
CCM  X  X      
TCC    X      
LCC    X X     
CAMC X       X  
Co  X  X      
ECCM  X  X      
OCC  X  X      
PCC  X  X     X 
RCI X     X X   
CBMC X X X       
 

OBSERVATIONS 

• All the LCOM metrics show negative correlations with the remaining metrics 

because they are inverse metrics as discussed in Chapter 2. Out of all the LCOMs 

metrics, only LCOM4 show a bit of significant correlation with CCM, TCC, and 

LCC. 

• LCOM1, LCOM2, & LCOM3 are correlated significantly while LCOM4 is 

slightly correlated with these three metrics. LCOM1, LCOM2, & LCOM3 are 

correlated because they all use the DAS connection type; LCOM4 is not 

significantly correlated with these metrics because it uses DMMR in addition to 

the DAS connection type. 

• CCM, TCC, LCC and CBAMU are correlated significantly. The fact that CCM, 

TCC and LCC use the same connection type (i.e. the DAS connection type) we 

expect them to be significantly correlated. Moreover, these three metrics are 

similar in the way they compute the cohesion of a class. CBAMU show significant 
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correlation with CCM because they share the DMMR connection type. Though, 

CBAMU does not share any connection type with LCC, the two metrics are similar 

in that both metrics consider indirect interactions in the computation of the 

cohesion of a class; while CBAMU uses IMMR the LCC metric uses IAS. More 

so, this is an indication that there are different orthogonal ways of capturing class 

cohesion. 

• CBAMU and LCOM5 are slightly correlated. They are slightly correlated because 

they both use the MAR connection type but, in addition to this, CBAMU uses 

DMMR and IMMR connection types; this justifies why the two metrics are not 

significantly correlated. 

• LCOM4 is slightly correlated to CCM, TCC & LCC because they all share the 

DAS connection type. It is worth mentioning that LCOM4 and CCM both use the 

DMMR connection type in addition to the DAS connection type so we expect the 

correlation between LCOM4 and CCM to be higher than the correlation between 

LCOM4 and TCC (or LCC). This is exactly what the result shows as we can see in 

Figure 19. 

• From Figure 19 and Table 26, we can see that the most highly used connection 

type is DAS and, from the patterns shown in the charts, we may conclude that 

DAS is the most effective connection type. 

• Whenever the DMMR connection type is used by a metric, it is always used in 

addition to another connection type. 

 

Therefore, we can conclude from the above observations that: 

1. Some of the metrics are related and the following clusters can clearly be 

seen 
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a. LCOM1, LCOM2 and LCOM3 

b. LCOM3 and LCOM4 (the correlation between these metrics is 

weaker than the one in (a)). 

c. CBAMU, CCM, TCC and LCC 

d. LCOM4, CCM, TCC and LCC (here LCOM4 is not strongly 

correlated to the remaining three metrics). 

2. The fact that metrics form different clusters (i.e. clusters a, b & c) show 

different results is an indication of inconsistencies among cohesion metrics.  

3. Furthermore, we may conclude that there are four mechanisms that may be 

used to in order to measure the cohesion of a module. These are: 

a. Direct Method to Method interaction via method invocation 

b. Indirect Method to Method interaction via attributing sharing or 

indirect relationship based on method invocation. 

c. Direct Method to Attribute interaction 

d. Indirect Method to Attribute interaction 

 
These mechanisms are presented in Table 27 along side the cohesion metrics.  

        Table 27: Mechanisms for measuring OO cohesion metrics 

Interaction Type Interaction Mode Method Interaction Metric 
M → A M → M Direct Indirect M/Invocation A /Sharing 

LCOM1  X  X  X 
LCOM2  X  X  X 
LCOM3  X  X  X 
LCOM4  X X X X X 
LCOM5 X  X    
CBAMU X X X X X  
CCM  X X  X X 
TCC  X X   X 
LCC  X X X  X 
CAMC X  X    
Co  X X  X X 
ECCM  X X  X X 
OCC  X X X  X 
PCC  X X X  X 
RCI X  X X   
CBMC X X X X X  
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From Table 27 we can draw the following conclusions: 

1. There are two ways via which the interactions among methods can be captured: 

(1) Method Invocation (2) Attribute sharing. 

2. The most effective Interaction Type is M → M. This may be considered as the 

best way to capture the cohesion of a class because methods play a better role 

(than attributes) in determining what the functionality of a class is. 

3. It is interesting to note that with the mechanisms presented in Table 27, the 

cohesion metrics correlations can easily be explained. For instance: 

a. LCOM1, LCOM2 and LCOM3 show high correlation because they 

share the same interaction type/mode. LCOM4 does not show high 

correlation with these three metrics because it uses both the direct and 

indirect interaction mode while the remaining three metrics use only 

the indirection interaction mode. 

b. CCM, TCC, LCC and CBAMU are significantly correlated because 

they all use the stronger interaction type (M → M) and the stronger 

interaction mode (Direct). 

c. CBAMU and LCOM5 are not significantly correlated because although 

they use the same interaction type and interaction mode, CBAMU use 

the stronger interaction type while LCOM5 does not. 

d. From Table 27, we can see that CAMC and LCOM5 use the same type 

and mode of interaction. However, the coefficient of correlation 

between these metrics is 0.5323; the lack of significant correlation may 

be due to the fact that CAMC is a design level metric while LCOM5 is 

a code level metric. 
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The intersections among the connection types based on the metrics that use them are 

presented in Figure 20. In order words, the sets in the figure represent the metrics.  

 

Figure 20: Intersections among the Connection Types 

 

From the figure above, we expect CBAMU to be more correlated to LCOM5 than with 

LCC but this is not the case. It has already been discussed why LCOM5 and CBAMU 

show partial correlation. The fact that LCC is correlated to CBAMU but share no 

connection type in common is indication that there are different ways through which 

the aspects of class cohesion can be measured and these ways are orthogonal. These 

ways are: (1) Measuring class cohesion by capturing direct attribute to method 

relationship or direct/indirect method to method relationship (2) Measuring class 

cohesion by capturing the indirect method to method relationship via attribute sharing. 

These two ways are termed as “Interaction Mode” in Table 27 
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Since we don’t have 100% correlation between metrics of type (1) and metrics of type 

(2), it means that either none or at least one of the orthogonal ways for measuring class 

cohesion does not capture all the dimensions (aspects) of cohesion.  To effectively 

measure class cohesion, we need to have metrics that can capture all the dimensions 

(aspects) of cohesion. The main challenge here is how to determine all the dimensions 

of class cohesion. This may be achieved by determining which of the orthogonal set 

significantly correlates to an external quality attribute (e.g. fault). 
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CHAPTER 5 

 

5 NUMBER OF DEFECT PREDICTION MODELS 

5.1 Introduction 

This chapter presents defect prediction models, models that will help us interpret the 

values obtained from software design metrics. The chapter is organized as follows: 

Section 5.2 discusses the different approaches for building software prediction models. 

Section 5.3 presents the experimental goals and the hypothesis, and Section 5.4 

presents related work. The description of study and analysis of results are discussed in 

sections 5.5 and 5.6, respectively. 

5.2 Approaches for Building Software Prediction Model 

The different approaches through which software prediction models are built can be 

classified into four different classes: machine learning, probabilistic approaches, 

statistical approaches and mixed methods; as shown in Figure 21. 

 

APPROACHES FOR BUILDING 
PREDICTION MODELS

MACHINE
LEARNING

PROBABILISTIC 
APPROACHES

Decision Trees

Logistic Regression

Regression Trees

Linear Regression

MARS

Combination 
of techniques

ANN

CART BBN

STATISTICAL
APPROACHES

MIXED
APPROACHES

 

Figure 21: Approaches for Building Prediction Models 
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Quite a number of researchers have investigated the use of machine learning 

techniques for building software prediction models. Porter and Selby studied the use 

of decision trees in building prediction models [68][71] and Khoshgoftaar et al. 

applied artificial neural networks in building prediction models [57][58]. Statistical 

approaches have been investigated by Abreu et al. who applied linear regression [1], 

by El Emam et al. who applied logistic regression [34], and by Briand et al. who 

applied Logistic regression and MARS (Multivariate Adaptive Regression Splines) 

[21]. Probabilistic approaches have been exploited by Fenton et al. who highly 

criticized the complete reliance on historical data of software projects when building 

prediction models, he proposed the use of Bayesian Belief Networks [39]. Other 

researchers combine different techniques; for instance Morasca and Ruhe worked by 

combining rough set analysis and logistic regression [64]. In this work, prediction 

models are built using Regression analysis and Artificial Neural Network and the 

performance of the models are compared based on coefficient of determination.  

 

When building prediction models, the choice of the prediction technique may affect 

the result. The choice of the prediction techniques used in this research is due to the 

following reasons: 

• Multiple Linear Regression (MLR) is used because the data set used is not 

large enough to investigate non-linear interactions. For accurate non-linear 

prediction models, large data set is required [22]. In addition, MLR is better 

than some techniques like CART-LS (Classification and Regression Trees-

Least Square) and S-PLUS regression trees [59]. 

• However, the performance of the MLR model was not very good so we built a 

nonlinear model using regression analysis, which gave better results. 
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• The Artificial Neural Network (ANN) technique is claimed to be simple and 

accurate [58]. A third model is build using this technique and its performance 

is compared with the performance of the regression models. 

5.3 Experimental Goal 

The goal of this experiment is to determine the predictive power of cohesion metrics 

amidst other object oriented software metrics with respect to the number of defects in 

a class. In other words, our external software quality attribute of interest is the number 

of defects in a class. The number of defects in a system will give an idea of how 

reliable the system is; a system with high number of defects will not be reliable 

because the presence of the defects may lead to undesirable behavior of the system. 

On the other hand, a system with few defects is expected to be more reliable than a 

system with high number of defects. Our aim here is to achieve the following: 

1. To determine which type of measure (coupling, cohesion, complexity etc) is 

significantly correlated to the number of defects of a class. 

2. To compare the performance of the models built using Artificial Neural 

Network and Regression Analysis using the same data. 

5.3.1 Hypothesis 

In this study, we want to test a number of hypotheses; basically we want to find out 

which measure (coupling, complexity, cohesion or inheritance) has significant impact 

on the number of defects in a class. The following hypotheses will be tested in this 

study: 

1. A class with high coupling measure is likely to have high number of defects. In 

other words, coupling measure is significantly correlated to the number of 

defects in a class. 
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2. A class with low cohesion is more likely to have high number of defects than a 

class with high cohesion  

3. A class with high measure of complexity is more likely to have higher number 

of defects than a class of lower complexity. 

4. A class with high inheritance measure (e.g. a class with many descendents or a 

class situated deeper in the inheritance hierarchy) is more likely to have high 

number of defects. 

5.4 Related Work 

One of the earliest defect prediction studies was in 1971 by Akiyama [1], which was 

based on a system developed at Fujitsu, Japan. The study showed that linear models of 

some simple metrics provide reasonable estimate for the total number of defects D (the 

dependent variable) which is actually defined as the sum of the defects found during 

testing and the defects found during two months after release. One of Akiyama’s 

correlation involving lines of code is shown in the following equation. 

D = 4.86 + 0.018L 

Another early study was in 1974 by Ferdinand, [41], who argued that the expected 

number of defects increases with the number n of code segments; a code segment is a 

sequence of executable statements which, once entered, must all be executed. 

Specifically the theory asserts that for smaller numbers of segments, the number of 

defects is proportional to a power of n; for larger numbers of segments, the number of 

defects increases as a constant to the power n. 

 

In 1975, Halstead [44], proposed a number of size metrics, which have been 

interpreted as “complexity” metrics, and used these as predictors of program defects. 
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Most notably, Halstead asserted that the number of defects D in a program P is 

predicted by the following equation. 

D = V/3000 

Where V is the volume metric, which like all the Halstead metrics is defined in terms 

of the number of unique operators and unique operands in P. The divisor 3000, 

represents the mean number of mental discriminations between decision made by the 

programmer. Each such decision possibly results in error and thereby a residual defect. 

 

The availability of artificial neural network programming tools has attracted the 

attention of software engineers. Software researchers now use artificial neural network 

in several software related applications. Karunanithi et al. [55] explored the 

applicability of neural network models for dynamic software reliability growth 

prediction, and demonstrated that neural network models exhibit better predictive 

quality than some analytic models. Khoshgoftaar et al. proposed a neural network 

approach for predicting the number of faults in program modules [57]. In 1994, 

Khoshgoftaar et al. introduced a neural network approach for detecting high-risk 

modules, and compared the results of their approach with that of discriminant analytic 

approach. They concluded that neural network gave better performance [58]. 

5.5 Description of Study 

In this subsection, we present a detailed description of the Number of defects 

prediction model build using Artificial Neural Network.  
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5.5.1 System 

The system used for this experiment is a C++ project (KC1) downloaded from NASA 

IV & V MDP (Metric Data Program) repository. Owing to the fact that the source 

code of the project is not made available on the repository, we solely rely on the 

information provided on the site as such we only used the class level metrics provided 

in the documentation of the project. 

 

The NASA IV&V Metrics Data Program project is being developed by Galaxy Global 

Corporation, Inc. The primary objective of the Metrics Data Program is to collect, 

validate, organize, store and deliver software metrics data. The project detail is as 

follows: 

• Number of classes : 145 classes 

• Classes with defects : 60 classes 

• Number of modules : 2107 modules 

• Modules with defects : 293 modules 

5.5.2 Dependent Variable 

We want to evaluate the predictive power of the class level metrics provided in the 

NASA KC1 project with respect to the number of defects in a class. More precisely, 

we want to determine the number of defects in a class by considering the values of the 

class level metrics. Hence, the dependant variable is number of defects in a class. 

 

The defects in the project are not associated to classes, they are linked to Modules (a 

term applied to the lowest level functional unit which metrics can be applied e.g. 

functions, modules, subroutines). However, since we can determine the number of 
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modules in a class and defects are related to modules, we can easily determine the 

number of defects in each class.  

5.5.3 Independent variables 

The independent variables are the class level metrics captured in the KC1 NASA 

project. We limit our analysis to these metrics because the source code of this project 

is not made available in the repository, thus more metrics cannot be calculated. A total 

of ten different class-level software metrics were computed for the classes in this 

project. They are: 

1. PERCENT_PUB_DAT (PPD) 

2. ACCESS_TO_PUB_DATA (ATPD) 

3. COUPLING_BETWEEN_OBJECTS (CBO) 

4. DEPTH 

5. LACK_OF_COHESION_OF_METHODS (LCOM) 

6. NUM_OF_CHILDREN (NOC) 

7. DEP_ON_CHILD (DOC) 

8. FAN_IN 

9. RESPONSE_FOR_CLASS (RFC) 

10. WEIGHTED_METHODS_PER_CLASS (WMPC)  

 

The above metrics are all considered in building the prediction model. We start by 

classifying them into complexity, coupling, cohesion and inheritance measures as 

shown in Table 28. 
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Table 28: Metrics Classification 

# Complexity Coupling Cohesion Inheritance 
1 FAN_IN CBO LCOM DEPTH 
2 WMPC   NOC 
3 PPD   DOC 
4 ATPD    
5 RFC    
 

5.6 Analysis of Results 

In this section we present the analysis of the results obtained from the experiments, we 

start by discussing the descriptive statistics of the respective parameters we consider to 

building the prediction model. 

5.6.1 Descriptive Statistics 

Table 29 presents the descriptive statistics for the 80% of the project, which is used as 

training data for building the prediction models. We used 80% of the data for training 

because the size of the project is not large enough; to properly train the model we need 

to have large data set. Rows, “Max”, “P75”, “Median”, “P25”, “Min”, “Mean”, and 

“Variance” state for each metric the maximum value, 75 % percentile, median, 25 % 

percentile, minimum, mean and variance respectively. For this project, the inheritance 

metrics (DEPTH, DOC, and NOC) have low mean and variance values; this is an 

indication that the use of inheritance is sparse. 

Table 29: Descriptive statistics I 

  Max P75 Median P25 Min Mean Variance 
PPD 100 0 0 0 0 14.4 1058
ATPD 0 0 0 0 0 0 0
CBO 24 14 8 3 0 8.32 40.7
DEPTH 7 2 2 1 1 2 1.5833
LCOM 100 96 84 58 0 68.72 1361
NOC 5 0 0 0 0 0.21 0.49
DOC 1 0 0 0 0 0.01 0.01
FAN_IN 3 1 1 0 0 0.6345 0.4835
RFC 222 44 28 10 0 34.4 1311
WMPC 100 22 12 8 0 17.421 304.47
DEFECT 101 4 0 0 0 4.613793 117.9054
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Of these metrics, ATPD (Access to public data) was not considered for the analysis 

because it returns zero for all the classes in the training set. DOC (Dependent on  

Child) was also not considered for further analysis because almost all its entries are 

zeros. Table 30 shows the descriptive statistics of the remaining measures. 

Table 30: Descriptive statistics II 

  Max P75 Median P25 Min Mean Variance 
PPD 100 0 0 0 0 14.4 1058
CBO 24 14 8 3 0 8.32 40.7
DEPTH 7 2 2 1 1 2 1.5833
LCOM 100 96 84 58 0 68.72 1361
NOC 5 0 0 0 0 0.21 0.49
FAN_IN 3 1 1 0 0 0.6345 0.4835
RFC 222 44 28 10 0 34.4 1311
WMPC 100 22 12 8 0 17.421 304.47
DEFECTS 101 4 0 0 0 4.613793 117.9054

 
 
So we are left with a total of eight class-level metrics, which will serve as the 

independent variables or rather the input parameters when building the prediction 

model using Artificial Neural Network. From Table 30, we make the following 

observations: 

• Both DEPTH and NOC have low variance; this is an indication of low variation of 

values in the sample space. Hence, both measures will not be very good candidates 

for prediction. However, they may help in building prediction models. 

• More than 75% of the classes don’t have any child which is an indication that most 

of the classes are leaf classes. Furthermore, less than 25% of the classes have a 

depth of more than 2. Hence, the overall use of inheritance in this project is low. 

• More than 75% of the data is not public (from the distribution of the PPD metric); 

this is an indication that coupling measure is not very high as can be seen from 

CBO whose mean value is relatively low. 
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• The low variance of FAN_IN is an indication of low dependence which supports 

the above argument that the coupling across modules is not very high. 

5.6.2 Artificial Neural Network (ANN) Prediction Model 

A prediction model, the following details, was built using ANN. 

• Neural Model : Multilayer perceptron 

• Hidden Layers : 3 layers 

• Transfer function  : TanhAxon 

• Number of epochs : 5000 epochs 

 

An MLP is a network of simple neurons called perceptrons. The basic concept of a 

single perceptron was introduced by Rosenblatt in 1958. The perceptron computes a 

single output from multiple real-valued inputs by forming a linear combination 

according to its input weights and then possibly putting the output through some 

nonlinear activation function. Mathematically this can be written as [51]. 
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Where w denotes the vector of weights, x is the vector of inputs, b is the bias and φ is 

the activation function. A signal-flow graph of this operation is shown in Figure 22. 
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Figure 22: Perceptron 

 
A single perceptron is not very useful because of its limited mapping ability. No 

matter what activation function is used, the perceptron is only able to represent an 

oriented ridge-like function. The perceptrons can, however, be used as building blocks 

of a larger, much more practical structure. A typical multilayer perceptron (MLP) 

network consists of a set of source nodes forming the input layer, one or more hidden 

layers of computation nodes, and an output layer of nodes. The input signal propagates 

through the network layer-by-layer. The signal-flow of such a network with one 

hidden layer is shown in Figure 23 [51]. 

 
 



 95

Input Layer

Hidden Layer
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Figure 23: Signal-flow with hidden layer 

Nowadays, and especially in multilayer networks, the activation function is often 

chosen to be the logistic sigmoid ( )xe−+1
1  or the hyperbolic tangent )tanh(x . They 

are related by xe
x

21
1

2
1)tanh(

−+
=

+ . These functions are used because they are 

mathematically convenient and are close to linear near origin while saturating rather 

quickly when getting away from the origin. This allows MLP networks to model well 

both strongly and mildly nonlinear mappings [51].  

Figure 24 shows the Artificial Neural Network that was generated after series of trial 

and error in order to optimize the performance of the network. 

 



 96

Input Layer

PPD

CBO

DEPTH

DEFECT

LCOM

NOC

FAN_IN

RFC

WMPC

Hidden Layers

Output Layer

 
Figure 24: The ANN Defects Prediction Model 1 

 

5.6.3 Regression Models 

In this subsection we described the two prediction models that were built using 

regression technique. These models are: Multiple Linear Regression model and 

nonlinear regression model. We begin by determining the correlation among the 

parameters. 

5.6.3.1 Correlations 

As explained at the beginning of this chapter, one of the goals of this research work is 

to determine which measures are significantly correlated to the number of defects in a 

class. Table 31 shows the correlation that exist among the different variables and most 

importantly the correlation of each of the independent variable on the dependant 

variable (number of defects). 
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Table 31: Measures Correlations 

 
 
 

From Table 31 we can see that apart from DEPTH (which does not have any 

correlation with the dependant variable), the other inheritance measure (i.e. NOC) has 

a negative correlation with the dependant variable. One interpretation for this may be 

that classes with high inheritance measure (because such classes are more complex to 

deal with) have been carefully designed and implemented possibly by more 

experienced programmers and therefore less defects are discovered in such classes. 

WMPC, CBO, and RFC have high positive correlation with the number of defects. 

While PPD, LCOM and FAN_IN have low positive correlation with the number of 

defects. 

5.6.3.2 Stepwise Correlation 

To determine those measures that are significantly correlated to the number of defects 

in other words to determine those parameters that can be considered in building a 

prediction model at a confidence limit of 0.05, we run a stepwise regression. The 

result of the last step (step 8, after the last input parameter) is presented below. 
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Step 8   Variable FAN_IN Entered    R-square = 0.33045914   C(p) =  9.00000000 

 

                DF         Sum of Squares      Mean Square          F   Prob>F 

 

Regression       8          5242.75412769     655.34426596       6.60   0.0001 

Error          107         10622.30621714      99.27388988 

Total          115         15865.06034483 

 

                Parameter        Standard          Type II 

Variable         Estimate           Error   Sum of Squares          F   Prob>F 

 

INTERCEP      -0.60840605      2.51544224       5.80755578       0.06   0.8093 

PPD            0.02173577      0.03062470      50.00824071       0.50   0.4794 

CBO            0.62856421      0.18572793    1137.05088067      11.45   0.0010 

DEPTH         -1.92505065      1.34690377     202.78985571       2.04   0.1558 

LCOM          -0.01836089      0.03022309      36.63908023       0.37   0.5448 

NOC           -1.74195553      1.26765582     187.45907042       1.89   0.1723 

FAN_IN         1.18694648      2.00371776      34.83567407       0.35   0.5549 

RFC           -0.03797026      0.05558022      46.33205791       0.47   0.4960 

WMPC           0.31406710      0.08360890    1400.79614054      14.11   0.0003 

 

Bounds on condition number:     4.349991,     141.6002 

-------------------------------------------------------------------------------- 

From the result above, we can see that only two parameters show statistical 

significance; these are CBO and WMPC. Hence, using these two parameters, the 

linear regression model is: 

 
Regression Summary for Dependent Variable: DEFECT (TRAINING.sta)
R= .51935031 R²= .26972474 Adjusted R²= .25679951
F(2,113)=20.868 p<.00000 Std.Error of estimate: 10.126

N=116
Beta Std.Err.

of Beta
B Std.Err.

of B
t(113) p-level

Intercept
CBO
WMPC

-3.58368 1.795957 -1.99542 0.048404
0.223306 0.083575 0.42436 0.158820 2.67194 0.008656
0.411797 0.083575 0.26172 0.053117 4.92730 0.000003

 
The model can be expressed by the following formula: 

DEFECT = 0.42 (CBO) + 0.26 (WMPC) - 3.58  
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The performance of this model is nothing to write home about. On plotting the scatter 

diagrams of the parameters, we have noticed that there is an outlier in the plots as 

shown in the following Figure 25. An outlier is a data point which is located in an 

empty part of the sample space; the inclusion or exclusion of outliers can have a large 

influence on the result of the prediction model. 

 
Correlations (TRAINING.sta 9v*116c)

PPD

CBO

DEPTH

LCOM

NOC

FAN_IN

RFC

WMPC

DEFECT

 
Figure 25: Scatter Diagrams 

 
The same experiment is repeated without the outlier; slightly better results were 

obtained from the new model. The model without the outlier is given below: 

 
Regression Summary for Dependent Variable: DEFECT (TRAIN.sta)
R= .52610654 R²= .27678809 Adjusted R²= .26398788
F(2,113)=21.624 p<.00000 Std.Error of estimate: 6.4971

N=116
Beta Std.Err.

of Beta
B Std.Err.

of B
t(113) p-level

Intercept
CBO
WMPC

-2.14548 1.156143 -1.85572 0.066099
0.467585 0.083712 0.57295 0.102575 5.58567 0.000000
0.140006 0.083712 0.06273 0.037507 1.67248 0.097197  

 
Mathematically, the model can be expressed as: 
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DEFECT = 0.57 (CBO) + 0.06 (WMPC) - 2.15 

5.6.4 Prediction Model Evaluation (Goodness of fit) 

In order to compare the performance of the models built using Regression analysis and 

the one built using Artificial Neural Network, we built two more prediction models. 

The first is a nonlinear regression model and the second an ANN model both using 

CBO and WMPC, which the same input parameters used for the linear regression 

model.  The statistics of the nonlinear model is shown in Table 32. 

Table 32: Nonlinear Regression Model 

Model pr1+pr2*X1^1+pr3*X2^1+pr4*X1^2+pr5*X2^2+pr6*X1^3+pr7*X2^3
Equation 1.097 + 1.231*X1^1 - 0.518 * X2^1-0.152 *X1^2 + 2.878E-02 *X2^2 

+ 5.958E-03*X1^3-2.401E-04*X2^3 
R2 0.428 
 

Details of the new model built using ANN are: 

• Neural Model  : Multilayer perceptron 
• Hidden Layers  : 2 layers 
• Transfer function  : TanhAxon 
• Number of epochs : 5000 epochs 

 

The model is shown in Figure 26. 

Input Layer

CBO

DEFECT

WMPC

Hidden Layers Output Layer

 

Figure 26: The ANN Defects Prediction Model 2 
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To evaluate the model’s goodness of fit, we apply the prediction models to the 

remaining 20% of the same NASA project that we used in building the prediction 

models. The coefficient of determination of the three different models is shown in 

Table 33. The Table shows that the model built using ANN has better performance 

than models built using regression analysis. 

Table 33: Comparing the Performance of the Prediction Models 

Approach R2 
ANN 0.588 
Nonlinear 0.482 
Linear 0.280 

 

From the results of the above experiment we can draw the following conclusions: 

1. Only coupling and complexity metrics are significantly correlated to the 

number of defects in a class. 

2. Cohesion is not correlated to the number of defects in a class, one reason for 

this might be that the cohesion metric used (LCOM) does not accurately 

capture the cohesion of a class. 

3. Inheritance measures are not correlated to the number of defects in a class. As 

explained at the beginning of this chapter the reason might be because such 

classes were handled by experts as such few defects were reported. 

 



 102

 
CHAPTER 6 

6 CONCLUSION 

In this chapter we present a summary of the contribution of this thesis, outline the 

limitation of the work and provide suggestions on how it can be improved in the 

future. 

6.1 Summary and Contributions of the Thesis 

In this research we conducted a literature survey of object-oriented cohesion metrics. 

Most researchers based their definition of cohesion on the assumption that the more 

the interaction among the components of a class, the higher the cohesion of the class; 

this interaction is captured by looking at method-method and method-attribute 

accesses. As a matter of fact, Most of the approaches are based on attribute usage or 

method invocations and the cohesion metrics studied capture cohesion at the class 

level. We identified some problems in the definition of some of the existing object-

oriented cohesion metrics. 

  

We also proposed eleven classification criteria, which we used in critically analyzing 

all the cohesion metrics we found in the literature. The classification criteria are of two 

types: Factors and characteristics; factors identify the things that may affect the 

cohesiveness of a module. The more factors a metric considers in its definition the 

more effective it is likely to be in computing the cohesion of modules. Characteristics 

specify the characteristics of the cohesion metric i.e. the features of the metric. See 

chapter 3, for details of the classification criteria. At the end of our analysis we found 

that there are some inaccuracies in the definition of some of the cohesion metrics. For 

instance, LCOM1 does not accurately capture the cohesion of a class, LCOM2 returns 
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zero for classes that are intuitively of different cohesion. LCOM4 always gives the 

value 1 when the number of the connected component is one irrespective of the access 

density. LCC and TCC give result that is contrary to intuition especially when there is 

huge number of methods in the class. In fact, of all the cohesion metrics that are 

critically analyzed, none seem to accurately capture the cohesion of a class may be the 

concept is yet to be fully understood in the object oriented paradigm. As discussed in 

Chapter 4, there are inconsistencies in the existing cohesion metrics. 

 

We determine the relationships that exist among the connection types used by different 

object-oriented cohesion metrics. At the end of our analysis, we came to the 

conclusion that there are different ways through which the aspects of class cohesion 

can be measured and these ways are orthogonal. These ways are: (1) Measuring class 

cohesion by capturing direct attribute to method relationship or direct/indirect method 

to method relationship (2) Measuring class cohesion by capturing the indirect method 

to method relationship via attribute sharing. 

 

We proposed a cohesion metric (CBAMU); we do not claim that our metric is the best 

nor do we claim that the metric accurately captures the cohesion of a class but this is 

simply our intuition of class cohesion. The metric uses both method and attribute 

usage in its definition see Chapter 4 for details. 

 

Number of defects prediction models were built using Artificial Neural Network and 

regression analysis; results show that model built using ANN performs better. 



 104

6.2 Limitations and Future Work 

In this section, we discuss the limitations of this work and give indications of how it 

can be improved in the future. 

1. In Chapter 5, we built defect prediction models using ANN and regression 

analysis. However, the models built are solely dependent on the NASA KC1 

project data, Future work requires that similar experiments be rigorously 

conducted using more well documented projects. 

2. In addition, the models may not be very accurate because uncertainty factors 

were not considered in the cause of building the models. Uncertainties in 

prediction may arise from the input parameters due to, but not limited to, the 

following: 

a. Researchers cannot exhaustively incorporate all the possible factors that 

may affect the accuracy of prediction models because some of the 

factors may not be known at the point of building the models. 

b. Other, researchers may deliberately ignore some factors even though 

they know that such factors will affect the accuracy of the models due 

to the fact that such factors may complicate the model; probably to 

enable them meet datelines. Thus, some factors are deliberately left out 

of the analysis. 

NB: 

In order to account for uncertainty in an output function of any sort we need to 

consider the uncertainties in the input variables as well as any uncertainty 

surrounding the way the model is built. Further work is needed to address the 

issues of uncertainty in building similar models. 
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3. In section 4.5.1, we hypothesized that: “A project with low average class 

cohesion is likely to have high number of defects than a class with high 

average class cohesion”. Conducting rigorous experiments in order to show 

that this assertion truly holds may be pursued as future work. 

4. The cohesion studied in this work measure cohesion at class level, measuring 

cohesion at a higher level of abstraction is a promising area for research. 

5. We identified two orthogonal ways through which class cohesion can be 

measured: (1) Method-Method accesses (2) Method-Method accesses. 

Determining which of these ways is strongly correlated to an external software 

quality attribute may be pursued as future work. 
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