A Methodology for the Design of
Multi-Channel Network Architectures

by

Mohammed Abdul Azeem Abed

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
In

INFORMATION AND COMPUTER SCIENCE

July, 1993



INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some -
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
 continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms international
A Bell & Howell information Company

300 North Zeeb Road. Ann Arbor, Mi 48106-1346 USA
313/761-4700 800/521-0600






Order Number 1355306

A methodology for the design of multi-channel network
architectures

Abed, Mohammed Abdul Azeem, M.S.
King Fahd University of Petroleum and Minerals (Saudi Arabia), 1993

U-M-1

300 N. Zeeb Rd.
Ann Arbor, MI 48106






A METHODOLOGY FOR THE DESIGN OF
MULTI-CHANNEL NETWORK ARCHITECTURES

Mohammed Abdul Azeem Abed

Information and Computer Science

July 1993



Dedicated to

My
Parents,
Sisters, and Brothers



KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS

DHAHRAN, SAUDI ARABIA

This thesis, written by

Mohammed Abdul Azeem Abed

under the direction of his Thesis Advisor, and approved by his Thesis Committe, has been
presented 10 and accepted by the Dean, College of Graduate Studies, in partial Julfillment
of the requirements for the degree of

MASTER 'OF SCIENCE IN COMPUTER SCIENCE

Thesis Committee:
/{ ) Zﬂxamfa

Chairman (Dr. Subbarao Ghanta)

it

Member (Dr. Muslim Bozyigit )

%7«1% /dlj?::J

Member (Dr. Mohsen Guizani)

_—<ulict pLld
@q Member (Dr. Shakil Akhter)
/—\,

Department Chairman

e O

+Dzzn, Collegu-f‘%}mduatc Studies

Das4/¥/73




Acknowledgment

In the name of Allah, Most Gracious, Most Merciful.

Read in the nane of thy Lord and Cherisher, Who created. Created man from
a {leech-like} clot. Read and thy Lord is Most Bountiful. He Who taught
{the use of} the pen. Taught man that which he knew not. Nay, but man
doth transgress all bounds. In that he looketh upon himself as self-sufficient.
Verily, to thy Lord is the return {of all}.

(The Holy Quran, Surah 96)

Praise be to ALLAH for giving me the courage and patience to carry out this work.
I am happy to have had a chance to glorify His name in the sincerest way through this
small accomplishment and ask Him to accept my efforts. May He guide us and the whole

humanity to the right path (Aameen).

Peace and mercy be upon His Holy Prophet.

Acknowledgment is due to King Fahd University of Petroleum and Minerals for support

of this research.

There have been several who influenced my work and life positively, and I consider myself
fortunate to have known them. Foremost among them is my family - my mother, my

father, my sisters and my brothers.

iii



People like my advisor, Dr.Ghanta are rare. There is so much to learn from them. I
sincerely hope I have made good use of my opportunity. I thank Dr.Ghanta for his en-
couragement and inspiration. I also wish to thank my committee members Dr.Bozyigit,

Dr.Mohsen, and Dr.Shakil for their active support, and valuable suggestions.

Special thanks are due to my brother Khalid, for his help, trust, and encouragement.
There have been several friends of mine who have made direct and indirect contributions
to my work and life at KFUPM. Among them Ismail, Neaz, Masud, Asaf, Belal, Sami,
Idrees, Adel, Salah, Mahmood, Jaweed, Yahya, Garout, Husni, Shahid, Emad, Imad, Fa-

rooq, Dikko, Amir, Atif, Yousuf, Wasim, Ahmad deserve special thanks.

So, I conclude by acknowledging that this thesis and its author have benefited a great
deal from the contributions of several individuals that remain unnamed in this acknowl-

edgement.

iv



Contents

List of Figures

x
Abstract(English) xiv
Abstract(Arabic) Xxv

1 Introduction 1
1.1 Introduction and Motivation . . . .. ... ............... 1
1.2 Generations of Lightwave Networks . . .. ... ............ 2
1.3 Suitable Architecturesare Missing . . . . .. .............. 3
14 Applications . . . . .. ... .. ... .. ... ... )
1.5 Objectives of the Thesis Work . . . . . ... .. ............ 5
16 Background ... ......... .. ... .. .. ... 6
1.7 Outlineofthe Thesis . . . . .. ... ... ............... 8

2 Background Work 9
2.1 Networks and Protocols . ... ..................... 9



2.2 Lightwave Networks and Architectures . .. .. ............ 11

2.2.1 Classification of Network Architectures . . ... .. ... ... 12
2.3 Combinatorial Optimization . .. ... ................. 14

2.3.1 Mathematical Programming . . ... .............. 14

2.3.2 Simulated Annealing . ...................... 15

23.3 Genetic Algorithms . . . . ... ... .............. 16
2.4 LAN/MAN Design Problems and Methodologies . . . . ... ... .. 17
25 Summary . ... ... e e, 19
Multi-Channel Architectures and Protocols 20
3.1 Imtroduction ... ... ... ... ... ... ... . . . . ... ... 20
3.2 Technologies: Tunable Transmitters and Receivers . ... ... ... 21
3.3 Multi-Channel Architectures . . . . . ... ... ............ 21
3.4 Goals of Multi-Channel Network Architectures . . . . ... ...... 23
3.5 Advantages of Multi-Channel Architectures. . . . .. ... ... ... 24
3.6 Protocols for Multi-Channel Architectures . . ... ... ....... 25
3.7 Summary . .. ... e 25

A Design Methodology for Multi-Channel Network Architecture 26

4.1 Introduction

4.2 Methodology

vi



Summary . .. ... e e e 28
Design Problems and their Formulations in Multi-Channel Network
Architectures 29
5.1 Imtroduction . . . .. ... ... ... ... ... .. . ... . ... 29
5.2 Formulation of Physical Topology Design Problem (PTDP) . . . . .. 32

5.2.1 Physical Design Topology Problem . ... ........... 33

5.2.2 Problem Formulation . . . . ... ................ 35

5.2.3 Problem Solution . . . ... ............ .. ..... 36
5.3 Formulation of Virtual Topology Design Problem (VIDP) . .. ... 36

5.3.1 The Virtual Topology Design Problem (VIDP) .. ... ... 37

5.3.2 Problem Formulation . . . . ... .. .............. 38

5.3.3 Problem Solution . . . . .. ... ... ... ..., .... 42
5.4 Formulation of OptimalRouting . . . . ... ... ........... 43
55 Summary . ... ... e e 44

A Genetic Algorithm for Virtual Topology Optimization Problem 45

6.1

6.2

6.3

Introduction . . . . . ... ... ... 45
Working of Genetic Algorithms . . . . ... .. ............ 47
Genetic Algorithm (GA) for Virtual Topology Design Problem . . . . 49

6.3.1 Fitness Function

vii



6.3.3 Initial Population Generation
6.3.4 Genetic Operators
6.3.5 Generation of New Population

6.3.6 Working of Genetic Algorithm for Virtual Topology Design:
An Example

Validation and Experimental Results

7.1

7.2

7.3

74

7.5

7.6

Introduction

Development of a Program for Virtual Topology Design Problem . . .

7.2.1 Implementation Details
Simulation Details
Validation and Algorithmic Check

7.4.1 Validation of Linear Programming Function ConstrainedMax
using Exhaustive Search Approach

7.4.2 Validation of Genetic Algorithm using ConstrainedMax . .

743 Large Scale Testing of Genetic Algorithm for VTDP Problem

Observations

A Distributed Virtual Topology Design Heuristic

8.1

Introduction

viii

........................

.................................

....................

...............

................................

................................



8.2 Parallel Genetic Algorithms

.......................

8.2.1 Distributed Genetic Algorithm for Virtual Topology Design

Problem . ... ...

83 Summary ..........

9 Conclusion

9.1 Summary ..........

92 FutureWork.........

.......................

A Abbreviations and Nomenclature

B Mathematica Preliminaries

C Implementation of Genetic Algorithms for VIDP Problem

Bibliography

Vita

ix

93

93

95

96

97

99

107

111



List of Figures

1.1

2.1

3.1

5.1

5.2

5.3

5.4

5.5

9.6

6.1

6.2

6.3

6.4

Lightwave Network Generations . . . .. ... ............. 4

Connections Between Different Node Pairs at Different Wavelengths . 13

Realization of Multi-Channel Architecture . . . ... ... ... ... 22
Virtual Perfect Shuffle Interconnection . ... ............. 31
Physical Bus Topology Using Wavelengths 0-15 . . ... .. ... .. 33
Physical Topology . . . . . . .. ... .. ... . ... ... . ... .. 34
Perfect Shuffle Virtual Topology ..................... 39
Virtual Topology Mapped Over Physical Topology . . . . . ... ... 40
Ad4x4x4TuningMatrix . . . ... ... .. ..., ... ... 41
Working of Genetic Algorithms . . . ... ... ............ 48
Formation of New Generation . .. ... ................ 48
Crossover Operation on Bit Strings . . . . ............... 55
Single Point Crossover Operation . . .................. 55



7.1

7.2

73

74

7.5

7.6

.7

7.8

79

7.10

8.1

8.2

8.3

Validation of Linear Programming Results with Exhaustive Search

Approach Resultson Twoexamples . . ... .............. 66
Validation of Genetic Algorithm Results with Linear Programming

Results with One Example Instance . . . . . ... ........... 68
Number of Generations Vs. Fitness Values . . . . ... ... ... .. 69
Testing for 3 X 3 X 3 TuningMatrix . ................. 73
Testing for 4 X 4 X 4 Tuning Matrix . ................. 74
Testing for 5 X 5 X 5 Tuning Matrix . .. ............... 76
Testing for 6 X 6 X 6 Tuning Matrix . ................. 77
Average Deviation Curves for Different Tuning Matrices for Different

Valuesof N . . ... ... .. ... . . ... 78
Average Deviation Curves for Different Tuning Matrices for Different

Valuesof T . . . . . .. . . e 81
Average Deviation Curves for Different Tuning Matrices for Different

Values of Prutate + + + « v v v v o o e e e e e e e e 83
Synchronous Master Slave GA . . . .. ... .............. 88
Asynchronous Concurrent GA . . . . . ... ... ........... 89
Network GA . . . . . .. .. . . . . 90

xi



List of Tables

7.1

7.2

7.3

74

7.5

7.6

7.7

7.8

7.9

Genetic Algorithm Values and Percentage Deviations for 3 X 3 X 3
Tuning Matrix

Genetic Algorithm Values and Percentage Deviations for 4 X 4 X 4
Tuning Matrix

Genetic Algorithm Values and Percentage Deviations for 5 X 5 X 5
Tuning Matrix

Genetic Algorithm Values and Percentage Deviations for 6 X 6 X 6
Tuning Matrix

Average of Percentage Deviations for Different Tuning Matrices

Percentage Deviations for 3 X 3 X 3 Tuning Matrix for Different
Values of T

Percentage Deviations for 4 X 4 X 4 Tuning Matrix for Different
Values of T

Percentage Deviations for 5 X 5 X 5 Tuning Matrix for Different
Values of T' '

Average of Percentage Deviations for Different Tuning Matrices for
Different Values of T

7.10 Percentage Deviations for 3 X 3 X 3 Tuning Matrix for Different

Values of Ppytate

xii

...............................

...............................

...............................

................................

................................

................................

...........................

.............................



7.11 Percentage Deviations for 4 X 4 X 4 Tuning Matrix for Different
Values of Poutate « « « = « « v v v o e e e e e e e e 82

7.12 Percentage Deviations for 5 X 5 X 5 Tuning Matrix for Different

Values of Ppytate - - « « v o o o e e e e e 82
7.13 Average of Percentage Deviations for Different Tuning Matrices for
Different Values of Prytate -+« « « v o v v v o o e i e e 83

Xiii



Abstract

Name: MOHAMMED ABDUL AZEEM ABED
Title: A METHODOLOGY FOR THE DESIGN OF

MULTI-CHANNEL NETWORK ARCHITECTURES.
Major Field: COMPUTER SCIENCE
Date of Degree: JULY 1993

Two emerging architectures are opening up new opportunities in distributed network archi-
tectures. The first one is the feasibility of optical fibers that can offer enormous bandwidth.
The second one is the availability of real-time tunable transceivers. Suitable architectures
are needed to utilize these potential technologies. In this thesis design of multi-channel
network architectures (for local and metropolitan area networks) is considered. The con-
nectivity that represents the way station’s transmitters and receivers are tuned to different
bands is the virtual topology of the multi-channel network architecture. Further the tun-
ability of transceivers permits the virtual topology to be updated in response to changing
traffic patterns. The large scale design of multi-channel network architecture addresses a
number of problems: the design of physical and virtual topologies, and the assignment of
traffic flows to channels i.e., optimal routing. In this thesis these problems are formally
proposed and solved. Main focus is on the virtual topology design problem that mazimizes
the sum of total traffic flow and minimum channel flow. Using the optimization technique
of genetic algorithms, the virtual topology design problem problem has been solved. The
results obtained are encouraging in the sense that they are near optimal. Design of a
distributed heuristic for virtual topology design problem is also discussed. A methodology
for the design of multi-channel network architectures is devised. Finally observations with

the genetic (optimization) algorithm are discussed and continuing efforts in this area are
outlined.

Keywords: Tunable Transceivers, Multi-Channel Architectures, Physical Topology, Vir-
tual Topology, Genetic Algorithm, Distributed Virtual Topology Design Heuristic.

Master of Science Degree

King Fahd University of Petroleum and Minerals, Dhahran
July 1993

xiv



Wl da¥s

Ll ‘..:.E.-.ll.\,s KV
cobhldlue i olSs 5 pead b

1)
UL olsze
S FIIE S b SRS LTS MDY
PR LU PPy NPEY s

Wiy ( 15, SLNTDL- (5) el 030,30 Gl 5 e iz Tubs Zals Gl
(2adls Lol O ) bl isncs A .95 a5 4« Tuiall Lo J Sl
1[I (5 T
sl gyl 3 elss ol aeatl oAl ealast i a Ul S0 izl 5 ot
3135 ol LA L8, e Jondl = L M2l U Bl . Ladl ¥ oy M2
o TABIL LA L)k 2B U JSLA] Sy 551 5 i) L 2, 1IN S Ol il e
A LS e raadll 20 b ISt TA5L 5 ad) . DJLS Qﬁé@lu&,ﬂujl s
ol st ot ol,,f;r.,_a:l)lkl.bl,..::..lrs 235 3y L e,

18,9 L 16,30« Ul Batacs 17 o 5 mice oiiaey oS e ¢ Sl

fﬂ' 93 s2anlll 2oy
oldly Jizdl 2 ellll Zuls
Logad] Tpadl ISl o gl
p VMY Iy



Chapter 1

Introduction

Chapter Synopsis: Developments in the field of optical communication are dis-
‘cussed. Motivation for the work, objectives of the thesis, and background on lightwave

networks are presented.

1.1 Introduction and Motivation

Over the last twenty years optical fiber has emerged as the transmission medium
of choice for high speed transmission. Optical fiber has had impact on all branches
of information transmission. Optical fiber is taking over the role of copper in case
of guided transmission and radio for unguided free space transmission. The devel-
opments in the field of lightwave networks during the past two-three decades, allow

one to extrapolate that there are many unexploited opportunities. Optical fiber of-



fers large bandwidth that is about 10 orders of magnitude greater than that of first
generation phone lines. A number of research organizations worldwide are studying
the possibility of all-optical networks. These networks would be capable of tapping
a good portion of the approximately 50 Terahertz (THz) bandwidth or so available
in the lightwave range of frequency spectrum. This represents atleast three orders
of magnitude more than all of the current radio spectrum upto and including the
microwave band. The bit error rate offered by the optical fiber is also about ten

orders of magnitude better than that of first generation phone lines.

A variety of fascinating applications come to mind when one visualizes the signif-
icance of opening up this relatively untapped reservoir of bandwidth. Wavelength
division multiplexing (WDM) allows these applications to be realized by providing
the required bandwidth on optical links. But the main bottleneck is at nodes since
the existing switching process, and buffering technologies lag behind the transmis-
sion capabilities [1]. WDM again provides a solution by simplifying switching. Here

time slots and data channels are utilized such that identification of header is

1.2 Generations of Lightwave Networks

The growing research awareness in the field of lightwave networks has resulted in
a number of ongoing activities in various research laboratories which are leading
to what is called third generation lightwave networks. Figure 1.1 shows different

generations of lightwave networks. In the first generation all links are copper and



conversions between waveform and bits takes place at every node. In the second gen-
eration, all links are fiber (whose bit rate and bit error rate performance is improved,
but whose propagation latency is unchanged, as schematized in the diagram by links
that are fatter but of the same length). In the third generation networks, there are

no electrical to optical conversions except at the end of a logical connection.

1.3 Suitable Architectures are Missing

In the second generation networks, with the use of fiber instead of copper we gain in
bandwidth but the communication system esentially remained the same. New net-
work architectures and protocols are needed to fully exploit the special properties of
fiber, to satisfy the emerging applications, and to reach to the user expectations and
perceptions. Reorganization of protocol layers is needed. Because of the low error
rate and the high bandwidth offered by the fiber, the low level protocols that are
meant for error masking purposes become redundant and unneccessary. New type
of protocols called lean protocols which are a direct consequence of large bandwidth

and low error rate offered by the fiber needs to be designed.

In the short term, we are limited by technology, and several devices will have to be
made cost effective. In the longer term, we will have to develop radically new network
architectures and protocols and tailor them to the emerging high-bandwidth appli-
cations. Many interesting problems in lightwave networks remains to be solved such

as distributed routing, management and control of wavelength routing networks,
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interconnection of Local Area Networks (LANs) and Metropolitan Area Networks
(MANS) using Wide Area Networks (WANs).

1.4 Applications

-Many modern applications need high bandwidth for supporting multi-media ser-
vices i.e., voice, video and data transmission at the same time. Super computer
visualization is another application. High bandwidth is needed to interconnect su-
per computers to workstations, where users can see and manipulate full-motion
color graphics showing results of their calculations. In the field of medicine, medical
imaging, requires high-resolution images to be transmitted uncompressed which re-
quires enormous bandwidth. Past experience indicates that users of such networks,
whether at home, business, or institution, will themselves develop undreamed of

applications once presented with this wideband capability [30].

1.5 Objectives of the Thesis Work

The objectives of this thesis work are:

1. To explore:
e advances in the field of lightwave networks

¢ immediate problems being faced by the designers in the field of lightwave networks.



2. To find out potential problems of research in the field of lightwave networks

in general and design of lightwave networks in particular.

3. To formulate lightwave network design problems, for fast changing traffic i.e.,

formulation of problem for logically rearrangeable lightwave networks.

4. To develop solution techniques for near optimal virtual topology design of light-
wave networks under the constraints of connectivity between two nodes, maximum

channel flow, etc.

6. To give a distributed virtual topology design heuristic useful in real life situ-

ation. To explore the use of distributed genetic algorithms for this purpose.

7. To provide a methodology for the design of lightwave networks.

1.6 Background

The multi-channel architecture is based on the efficient use of data-channels formed
as a result of bandwidth partitioning. A data channel is established between any
two nodes of the network by the assignment of wavelength. The available wave-
lengths are limited, so it is not possible to establish a data-channel between each

pair of nodes [14]. As a result only a few nodes selected through some criteria of



importance can be assigned wavelengths thus leading to a topology that is not fully

connected.

Today the progress in the lightwave networks is limited mostly by technology avail-
able [27] and the cost consideration. The wishlist of components includes cheap
fixed-tuned and rapidly tunable lasers and filters with narrow spectral widths, wide-
band optical amplifiers, lowloss optical switches, etc. Overall, having a few hundred
optical channels within a 30 to 40 nm band around 1.5 micro meter appears to be

quite feasible. Tuning rapidly between these channels also appears to be feasible in

the near future.

In the short term, optics appears to be better suited for transmission and circuit-
switching, rather than packet switching, and it appears that packet switching in
these optical networks will have to be done electronically using the multihop ap-
proach. This may change in the future as components evolve. A truly all-optical
switch, where control is also done optically, appears to be far away on the horizon
[27]. Much work needs to be done to develop slim or lean protocols (discussed in
Section 1.3) that can support a wide variety of services with widely varying require-
ments. New multiaccess protocols that provide these functions are just beginning

to be developed for these networks.



1.7 Outline of the Thesis

Chapter 2 deals with a preview of previous work carried out in the field of lightwave
networks. Chapter 3 discusses multi-channel architectures in detail. Chapter 4
presents a design methodology for the lightwave networks. Chapter 5 deals with
formulation of design problems in multi-channel network architectures. Chapter
6 presents a genetic algorithm for solving virtual topology design problem. The
validation and experimental results as well as results of various comparisons made
are all provided in Chapter 7. A distributed virtual topology design heuristic is
given in Chapter 8. The final Chapter is about the contributions made in the thesis,

the conclusions drawn as well as suggestions for future research.



Chapter 2

-Background Work

Chapter Synopsis: Literature on lightwave networks is surveyed. Introduction to
networks and protocols is given. Advances in the field of lightwave networks, multi- -
channel architectures, protocols for multi-channel architectures, combinatorial opti-
mization techniques (mathematical programming, simulated annealing and genetic

algorithms), and LAN/MAN problems and methodologies are discussed.

2.1 Networks and Protocols

In a networked computer system, a user must explicitly logout of a machine, explic-
itly submit jobs remotely, move files around, and handle all the network management
personally. In a distributed system most of the above mentioned activities are auto-

matically done by the system without the user’s knowledge. In effect, a distributed



system is based on a computer network and whose software gives it a high degree

of cohesiveness and transparency.

The main goals of a computer network are to provide resource sharing, high re-
liability and cost effectiveness. Mainframes are roughly a factor of ten faster than
the fastest single chip microprocessors, but they cost a thousand times more. This
imbalance has caused many system designers to build systems consisting of pow-
erful personal computers, one per user, with data kept on one or more shared file
server machines. This leads to networks with many computers located in the same
building. Such a network is called Local Area Network (LAN) to contrast it with
the far flung Wide Area Networks (WAN). Some important uses of computer net-

works are access to remote programs, access to remote databases, and value added

communication facilities.

In any network there exists a collection of machines called hosts intended for running
user applications. The hosts are connected by a communication subnet. Two types
of channels are used in communication subnets. They are point-to-point channels
and broadcast channels. Some broadcast systems also support transmission to a

subset of machines, known as multicasting.

Modern computer networks are designed in a highly structured way [4], as a hierar-
chy of layers or levels each one built upon its predecessor. The rules and conventions
used in the conversation (between layer n on one machine and layer n on another

machine) are collectively known as layer n protocol. Between each pair of adjacent

10



layers there is an interface. The set of layers and protocols is called the network
architecture. The network architecture of ISO/OSI (open system interconnection)
is commonly used. The OSI model has seven layers namely physical, data link,

network, transport, session, presentation, and application.

2.2 Lightwave Networks and Architectures

The advances in lightwave technology have revolutionized multiuser local commu-
nication systems. Single-mode fiber is the preferred transmission medium for long
distance and point-to-point links. It is preferred due to its low-loss low-attenuation
properties, and the huge bandwidth potential (measured in the range of tens of
terahertz [1]). This new technology has many unexploited opportunities. To date
fiber is used as a substitute for copper within the framework of existing network
architectures. Due to such a deployment the performance is improved and the cost

has gone down, but the networking system basically remained the same.

The physical level topologies, the layer structure, the protocols within the layers,
and the network control functions in use today are all derived from heritage of voice
grade telephone lines or local area coaxial cables. Some examples of such traditional
network architectures which use fiber as replacement to copper are fiber-distributed
data interface (FDDI) [29] and the distributed queuing double bus (DQDB) [25].
The total capacity in these networks is time-shared among the many users of the

network. Each user has to have electronics that run at the aggregate bit rate at

11



which the network operates. However, electronic speeds are limited to a few giga-
bits per second at most. Thus, these architectures cannot be extended to terabits
per second capacities because of the basic electronic switching bottleneck. The op-
tical network approach offers the potential of low-cost reliable interconnection of a

large number of ports with flexible topologies.

The uniform traffic distribution requires for its fulfilment, a regular topology such
as shufflenet [10]. A multihop network with each node having 2 transmitters and
receivers is being developed at Colombia University [28]. Algorithms to determine
optimal topologies are given in [18, 16]. Further single wavelength can be shared
among many stations using wavelength division multiplexing [32, 24]. This can re-
duce the average number of hops between stations at the cost of having higher speed

electronics at each station.

2.2.1 Classification of Network Architectures

Wavelength division multi-plexing concept is illustrated in Figure 2.1. Wavelength
division multiplexing network architectures can be classified into broadcast and se-
lect networks and wavelength routing networks [15]. In case of broadcast and select
networks transmission of each station is broadcast to all other network stations. In
wavelength routing networks wavelength routing is used along with optical switch-
ing so as to be able to reuse the wavelengths in the network. Each of the above

categories, can be classified as either single-hop networks, or as multihop networks.

12



Figure 2.1: Connections Between Different Node Pairs at Different Wavelengths

Broadcast and Select Networks

Broadcast and select networks are further divided into broadcast and select single-

hop networks and broadcast and select multi-hop networks.

Broadcast and Select Single-Hop Networks

In these networks, information once translated as light, reaches its final destination
directly without being converted to electric form in between. They are also called
all-optical networks. The examples of single-hop broadcast-and-select networks are
Bellcore’s LAMDANET (23], AT&Ts direct-detection receivers and tunable lasers,

and IBMs Rainbow [26]. Media access protocols allow coordination of transmissions

between various stations.

13



Broadcast and Select Multi Hop Networks

In these networks, each station is provided with a small number of tunable optical
tranceivers; these transceivers can be tuned to different bands or channels of the
optical fiber that are made possible by wavelength division multiplexing. Each
transmitter in the network is tuned to a particular wavelength. In general with
4 transmitters at each station (and § receivers) it is possible to select the logical

topology so that the average number of hops between stations is O(logs N) where

N is the number of stations.

2.3 Combinatorial Optimization

The formulation and anlysis of several network design problems involves dealing
with combinatorial optimization problems. The various combinatorial optimization
techniques that are commonly used are the mathematical programming, hill climbing

technique, simulated annealing, and genetic algorithms.

2.3.1 Mathematical Programming

Mathematical Programming is ‘programming’ in the sense of ‘planning’ [11]. The
common feature which mathematical programming techniques have is that they are
all used for solving optimization problems, where something needs to be mazimized
or minimized. The quantity which is maximized or minimized is known as objective
function. In this section we confine our attention to selected mathematical program-

ming techniques such as linear, non-linear, and integer programming.

14



Linear programming [22] is concerned with the optimization of a linear function
while satisfying a set of linear equality and/or inequality constraints or restrictions.
The simplex method of linear programming enjoys wide acceptance because of (1)
its ability to model important and complex decision problems, and (2) its capability
for obtaining solutions in a reasonable amount of time. The linearity assumption of
linear programming is not always valid in a practical problem, although it makes
any model computationally much easier to solve. When we have to incorporate
non-linear terms in a model (either in the objective function or in the constraints)
we have to use non-linear programming. In practice the assumption that the vari-
ables can be fractional is perfectly acceptable, if the errors involved in rounding to
the nearest integer are not great. If this is not the case then one has to resort to
integer programming which permits variables to attain only integral values. Integer
programming technique is computationally more expensive when compared to linear

programming technique.

2.3.2 Simulated Annealing

Simulated annealing is another commonly used optimization technique. It is very
time consuming [31] but yields good results. It is a good heuristic for solving any
optimization problem. It can be considered as an improved version of the simple
random pairwise interchange technique. The basic procedure in simulated annealing
is to accept all moves that result in a reduction in cost. Moves that result in a cost

increase are accepted with a probability that decreases with the increase in cost. A
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parameter T', called the temperature, is used to control the acceptance probability of
the cost increasing moves. Higher values of T' cause more such moves to be accepted.
In most implementations of this algorithm, the acceptance probability is given by
exp(-AC/T), where AC is the cost increase. In the beginning, the temperature
is set to a very high value so that most of the moves are accepted. Then the
temperature is gradually decreased so the cost increasing moves have less chance of
being accepted. Ultimately, the temperature is reduced to a very low value so that

only moves causing a cost reduction are accepted, and the algorithm converges to a

low cost configuration.

2.3.3 Genetic Algorithms

Genetic algorithms (GAs) are search techniques which emulate the natural process
of evolution as a means of progressing toward the optimum. The algorithm starts
with an initial set of random configurations called a population. Each individual in
the population is a string of symbols called genes. The string made up of genes is
termed chromosome which represents a solution to the optimization problem. A set
of genes that makes up a partial solution is called a schema. During each iteration
(generation), the individuals in the current population are evaluated using some
measure of fitness. Based on the fitness value, two individuals at a time (called
parents) are selected from the population. The fitter individuals have a higher
probability of being selected. Then, a number of genetic operators such as crossover
and mutation are applied on the selected parents to generate new individual solutions

called offsprings. These genetic operators combine the features of both parents.

16



2.4 LAN/MAN Design Problems and Method-

ologies

The need for high bandwidth communications provides an incentive for the deploy-
ment of Fiber Optic Local Area Networks (FOLAN). FOLAN provides communi-
cations for customers requiring high bit rate services at low cost. The cost may be

lowered by sharing the large bandwidth that optical communication channels pro-

vide.

Fiber optics is becoming increasingly important for local area networks due to high
band width, light-weight, low-loss, ineffectiveness from electro magnetic interference
of the fiber. Optical fiber also offers excellent security as it is difficult to wiretap
without detection [5]. The key issues in the design of optical local area networks
are the connection topology to be used, communication protocols, and the hard-
ware requirements. The advances in optical technology specially fiber-optics and
opto-electronics have created the need to reexamine the way communications are

provided. We need to find ways through which the broadband of the fiber optics
may be fully exploited.

In recent years, the number of stations attached to a local area network and its
usage by each station has increased rapidly. The increased usage is due to rise in
distributed services, shared storage with diskless workstations, information servers,
distributed image servers, distributed image intensive applications, graphic termi-

nals, etc., and is expected to grow even further with the incresing scope of multimedia
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services. Most local area network based distributed systems have a serial component
of communication that sooner or later becomes the bottleneck. For a truly Multi-
ple Instruction Multiple Data (MIMD) computation multi-channel architectures are
needed [34]. Multi-channel local area networks (M-LANS) try to achieve very high
data rate [5]. M-LANs use lower data rate buses connected to the stations. Buses
in M-LANSs need not be physically separate; they can be obtained by dividing the
bandwidth of a single physical connection. M-LANSs offer the reliability character-

istics while providing a large bandwidth.

Some work was carried out on fiber LAN/MAN architectures in the past. The
work does not satisfactorily exploit the advantages offered by fiber. Part of the
challenge to researchers in this area is to find ways of utilizing the enormous band-

width capacity of the fiber by designing LAN/MAN architectures that can operate

successfully within the constraints that fiber imposes.

In conclusion, fiber-optic networks with terabit/s capacities are not just an exiting
area for research, but appear to be perfectly practical to build [34]. Many interest-
ing problems in lightwave networks remain to be solved. These include the develop-
ment of sequential and distributed algorithms for adapting the network topology to
changing traffic patterns in a multihop network, distributed routing, management
and control of wavelength routing networks, interconnection of LANs and MANs
using WANS, effective optimization techniques for optimizing physical and virtual

topology of lightwave networks, and frameworks for the design of lightwave networks.

18



2.5 Summary

In this chapter we introduced networks and protocols. Then we discussed wa.vé-
length division multiplexing principle along with classification of network architec-
tures. Then we talked about combinatorial optimization techniques like mathemati-
cal programming, simulated annealing and genetic algorithms. Finally, we presented

problems and methodologies for LANs/MANs.
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Chapter 3

Multi-Channel Architectures and

Protocols

Chapter Synopsis: A brief introduction to multi-channel network architectures is

given. Different goals and advantages of multi-channel architectures are provided.

3.1 Introduction

Current technology allows as many as 1000 high bandwidth (100-200 Mb/s) indepen-
dent channels, supported on a single optical fiber. In the near future, the bandwidth
of each channel is likely to reach 1 Gb/s [3]. The multi-channel technology will allow
growth in capacity and increase in processing power. Advances in fiber-optic tech-

nology have made different approaches to parallel processor interconnection feasible.
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3.2 Technologies: Tunable Transmitters and Re-

ceivers

Developments in tunable lasers and tunable receivers are making future capabilities
of optical fiber hard to predict [8]. A technology that is comercially available today
is the tunable Fabry-Perot filter. Such devices can be made tunable over almost any
desired range, but the tuning speed is limited by mechanical inertia to the order
of hundreds of microseconds, fast enough for all circuit applications, but not fast
enough for packet switching. The future tunable transmitter and receiver devices

are very promising specially for packet switching.

3.3 Multi-Channel Architectures

Multi-channel architectures provide independently selectable channels using single
optical fiber [34]. Figure 3.1(a) shows how different stations are connected by a
single bus. This is how we see the connections physically. Figure 3.1(b) shows the
logical connections between different stations, this virtual diagram is obtained by
tuning different transmitters and receivers to different bands (frequencies), which

are made possible by wavelength division multiplexing.
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Figure (a)

Figure (b)

Figure 3.1: Realization of Multi-Channel Architecture
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3.4 Goals of Multi-Channel Network Architec-

tures

The multi-channel architecture is targeted to be implemented in an optical wave-
length division multiplexing network, addressing the mismatch between optical trans-
mission rates and electronic processing speeds to alleviate the bottlenecks created
at intermediate nodes. The solution to the problem of congestion and long waiting
time at the intermediate stations is to have a channel connection established be-

tween two intermediate stations. Wavelengths are assigned to channels.

Multi-channel architectures allow us to create a general purpose computing platform
that can support large number of users with vastly different computing requirements.
It will also allow us to create a parallel processing test-bed to study all aspects of
parallel processing. With the help of tunable transceivers, multi-channel architec-
tures allow the partition and allocation of bandwidth by task. Multiple tasks with

small communication requirements can be combined to better utilize bandwidth.

The proposed multi-channel architecture enables us to construct an integrated packet
and circuit switching alternative. Packets will be routed through logically adjacent

instead of routing between all physically adjacent links between the source and the

destination.

The use of data-channels will enable the use of switches with large setup time.

Switching need not be on a per packet basis. from the wavelength continuous prop-
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erty of the data-channel. This is due to the fact that a channel incoming on one
wavelength need not be switched to another wavelength. The multi-channel architec-
ture reduces the number of active nodes through which a packet is switched between
source and destination thus alleviating the processing and buffering bottlenecks. The
multi-channel architecture represents a possible solution to congestion problem at
intermediate nodes, and provides a viable solution for networks having non-uniform

traffic patterns. This is because of the possibility to reassign data-channels.

3.5 Advantages of Multi-Channel Architectures

Multi-Channel Architecture (MCA) allows different virtual buses with a single fiber
which alleviates communication bottlenecks by providing parallel communication.
MCA make real time processing possible. By dedicating channels for real time oper-
ation, delay in response can be controlled. MCA allows development of new parallel
operating systems for efficient allocation of resources (including bandwidth) to tasks.
MCA subsumes all the fixed interconnection networks which are its special cases,
these fixed interconnection networks can be obtained by tuning transmitters and
receivers at a node to different channels. MCA allows greater flexibility in program-
ming parallel algorithms. Different phases of a parallel solution to a problem may
require different topologies which can be realized by tuning to different channels.
MCAs are making LANs/MANs into truly distributed systems with parallel compu-

tation and communication which is a radical departure from conventional network

architectures
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3.6 Protocols for Multi-Channel Architectures

Communication protocols are an important aspect of LANs and MANs. Design
of good protocols that could effectively use the large bandwidth communication
media is difficult. At low rates, that is 10 Mb/s, a carrier sense multiple access/
collision detection (CSMA/CD) protocol is used. It appears that the fiber-based
architectures would be restricted to unidirectional links. However the study of LAN
and MAN architectures is an important aspect of an emerging field. More recently

work along these lines has been generalized to cover architectures based on multiple

buses [15].

3.7 Summary

In this chapter, we gave brief introduction to multi-channel network architectures
then we talked about different goals and advantages of multi-channel architectures.

Finally, we talked about protocols for multi-channel architectures.
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Chapter 4

A Design Methodology for
Multi-Channel Network

Architecture

Chapter Synopsis: A methodology for the design of multi-channel network archi-

tecture is presented.

4.1 Introduction

A methodology for the design of multi-channel network architecture based on multi-
channel architecture model and recent concepts and techniques can be defined. The

methodology supports regularity in design and simplicity in the design process.
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4.2 Methodology

The methodology is presented in iterative steps which involves:

1. Multi-channel network architecture requirement analysis
2. Selection of tentative physical interconnection topology (such as tree,..)
3. Detailed simulation of the physical, virtual and optimal routing problem

4. Verification and validation of the solution for the satisfaction of requirements.
After going through the verification step, it will be clear, whether performance
cost and physical constraints are good enough. If not another iteration of the

design process is done making better choices of design variables.
The various steps of the methodology are as follows:

Step 1: Multi-channel network requirement analysis.

Analysis is done with applications of multi-channel network in view.

e Number of multi-channel network stations n
¢ Number of channels m

e Number of transceivers per node T

¢ Serviceability requirement

e Fault tolerance and reliability requirement

¢ Extendibility requirement
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Step 2: Based on requirements in Step 1, the design problems formulated in Chap-
ter 5 are solved for the given problem.

¢ In the physical topology problem it needs to be decided which physical distributed
topology among the star topology, tree topology, 2-clustered tree topology and 4-
clustered tree topology to be used. The coupler locations are obtained by solving a
genetic algorithm as discussed in Chapter 6.

e The virtual topology problem is also solved using genetic algorithm as explained
in Chapter 5. As a result a tuning matrix (which gives the connectivity between
stations) is obtained.

¢ Flows have to be optimally assigned over the links of the logical diagram (ob-
tained from connectivity tuning matrix) yielding the routing problem. The genetic

algorithm can be applied to the routing problem to minimize the maximum flow.

4.3 Summary

In this chapter we gave a design methodology for multi-channel network architecture.
The methodology is given in iterative steps involving requirement analysis of the

network, design of physical and virtual topology and finally validation of the results.
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Chapter 5

Design Problems and their
Formulations in Multi-Channel

Network Architectures

Chapter Synopsis: The need for virtual topology design in lightwave networks is
discussed. Various problems that need to be solved while designing lightwave networks

are stated and formulated. Solutions to these problems are outlined.

5.1 Introduction

The multi-channel network architecture is a wavelength division multiplexing archi-

tecture that was proposed for local and metropolitan based communication networks
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[1, 2]. Each station in a multi-channel network consists of a small number (say two
to four ) of transmitters and receivers. Each transmitter in the network is tuned
to a different wavelength. Although the network is physically a star (or a bus, or
any other broadcast topology), stations can transmit data directly only to those
stations that have a receiver tuned to one of their transmit wavelengths. At each
intermediate station, optical data is converted to electronic form, the packet headers
are decoded, and the packet is then switched electronically and transmitted on the

appropriate wavelength enroute to its final destination.

The originally proposed logical interconnection pattern was meant for uniform traffic
condition [1, 10], and consisted of several stages connected through a perfect shuffle
[12] or simplified routing at intermediate nodes in case of deBruijn graph [19]. In
case of perfect shuffle connection, the last stage is connected back to the first stage
as shown in the Figure 5.1. Each link in this diagram consists of distinct wavelength
(channel), with all channels multiplexed onto the optical medium. In general with &
transmitters at each station (and 4 receivers) the average number of hops a packet

would take is @ (logs N) where N is the number of stations.

An interesting feature of the multihop network is that the logical topology can be
changed simply by retuning some of the receivers (or transmitters) in the network.
This means that it is possible to reconfigure the logical topology according to traffic
patterns. In addition, a single wavelength or channel can be shared among many
stations. This can reduce the average number of hops between stations, at the cost

of having higher speed electronics at each station.
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Figure 5.1: Virtual Perfect Shuffle Interconnection
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The large scale design of multi-channel architectures addresses a number of problem
areas: the selection of topology (physical topology), the selection of an interconnec-
tion graph (virtual topology) and the problem of optimal routing. These problems
will be formally proposed and formulated in this Chapter. Focus will be on virtual
topology design problem, which is the problem of determining the interconnection
graph or effective tuning matrix that maximizes the channel traffic and the total
traflic between different stations. We will first discuss the physical topology design

problem, then the design of virtual topology and finally the problem of optimal

routing.

5.2 Formulation of Physical Topology Design Prob-
lem (PTDP)

The linear (geographical) arrangement of the network stations as shown in Figure
5.2 gives the physical topology of the multi-channel architecture. In other words
physical topology of multi-channel network architecture is the layout of the optical

fiber, associated optical components (couplers, amplifiers), and the locations of the

station themselves.

Station attached to a folded bus shown Figure 5.2 is not a desirable one, because
the transmitter to receiver power loss attributable to the couplers, taps and con-

nectors increases linearly with number of stations [17]. Other examples of physical
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Figure 5.2: Physical Bus Topology Using Wavelengths 0-15

distributed topologies such as the tree topology and the star topology are more de-

sirable since they accommodate many more stations than the linear bus for a given

power margin [13].

5.2.1 Physical Design Topology Problem

The particular physical topology chosen from the different alternatives (eg. bus,
star, tree, and ring) is largely a function of power margin [13], but this aspect of
network design does not concern us here. The physical topology design problem is
to determine the optimal deployment of optical fiber and optical components. In

other words physical topology design problem is to decide which physical topology
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Figure 5.3: Physical Topology

should be selected to minimize the cost of multi-channel network architecture (as

reflected by the total length of optical fiber).

In the physical topology design problem, if we employ the tree topology or star
topology the problem becomes one of finding locations for the couplers on the in-
ternal nodes of the tree (the triangles), with the objective of minimizing the length
of optical fiber used in the multi-channel network for LAN/MAN design we assume

that the optical fiber from one point to another is modelled by the Euclidian distance

metric.
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5.2.2 Problem Formulation

We can formulate the physical topology design problem as a constrained optimiza-
tion problem in which, given the locations of a set of points (stations) in the plane,
choose another set of points (couplers) so that the spanning tree for these sets of
points has minimum length. This problem is the geometric steiner problem, which
is intractable [21]. Thus, we restrict slightly the statement of physical topology de-
sign problem as follows: To find the optimal positioning of couplers, given the basic
shape of the tree. This basic shape is the class of topologies such as star, binary tree,
binary tree with clusters of stations arranged on buses at the leaves. Once we choose
topological class and heuristically group stations into clusters, the physical topology
design problem becomes one of locating the nonstationary equipment such as the
couplers and headend, so that the cost of the connecting optical fiber is minimized.

Informally, the problem can be stated as follows:

Given: 1)Station-Coupler connectivity
2)Station locations
Objective: Minimize total length of optical fiber.
Variables:  Coupler locations
Constraints: 1) No segments has more than a given number of taps.

2) Length of the segment < maximum length
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5.2.3 Problem Solution

The physical topology design problem can be solved using the genetic algorithm dis-
cussed in the next Chapter. In the physical topology problem the coupler locations
will form the chromosome and the objective function minimizes the total length of
optical fiber. The constraint of maximum allowable length depending upon the type
of network used (LAN or MAN) will be incorporated in the objective function as
a penalty function. The only inputs to the physical topology design problem are
the locations of the stations to be connected, indication of what class of topology
is being considered and the maximum allowable length of the fiber. The principle
outputs are the locations of the couplers, from which the multi-channel network

distance matrix can be calculated.

5.3 Formulation of Virtual Topology Design Prob-
lem (VTDP)

The interconnection graph, an abstraction representing the way the station’s trans-
mitters and receivers are tuned to WDM channels, is called the multi-channel net-

work virtual topology.

A key property of multi-channel network is the relative independence between the
virtual topology (logical interconnection among nodes) and the physical topology

(fiber layout). As a result of this property any virtual topology (subject to degree
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requirements) can be mapped onto a physical topology. The optical transmitters
and receivers (which can be tuned to any of the wavelengths) help in adaptively op-
timizing the virtual topology of a multi—channel network. This capability of actually
changing the virtual topology (reconfigurability) in response to prevailing conditions

in the network is an important property of multi-channel network architecture.

5.3.1 The Virtual Topology Design Problem (VTDP)

The virtual topology design problem involves different choices of design variables
and constraints. The multi-channel network has a physical and a virtual topology.
The virtual topology can be easily obtained by means of a tunable matrix which in-
dicates, how the receivers and transmitters are tuned to logical channels (or bands).
The network designer can choose the virtual topology of a multi-channel network

architecture to optimize a given characteristic of the network.

The performance measures of interest are the delays over the network and the
throughput achieved by the network. We consider the potential increase in the
throughput for a given traffic pattern. The potential increase in the throughput is
maximized by minimizing the maximum traffic flow or vice versa over the channels
in the network. This measure i.e., the potential increase in the throughput can also
be maximized by maximizing the total traffic flowing from source to destination
in single hop. It may be the case that no path from node i to j may exist (i.e
the entry of connectivity matrix is 0), although element of the traffic matrix (A ma-

trix) is nonzero. The maximization of total traffic will avoid this situation effectively.
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The MIN — MAX performance doesn’t take propagation into account and would
not be suited for wide area networks where propagation delay plays a prominent
role. The MIN — M AX performance measure would however capture some quan-
titative aspects of transmission delay. The MIN — M AX could take the possibility

of channel sharing into account with the need to specify the media-access-protocols

used.

5.3.2 Problem Formulation

The traffic flowing from a source to destination and the traffic flowing in a channel
is basically our performance metric. The decision variable in the formulation of
virtual topology design problem is the tuning matrix X;;, an entry of which specifies
whether station ¢ transmits to station j over channel k. The tuning matrix whose
third dimension represents the channel used is shown in Figure 5.6. The entries
of the tuning matrix assumes value from the set 0,1. The problem may thus be
expressed as maximization of the total traffic fiowing between each pair and the
channel traffic, subject to the degree constraints and channel flow constraints. In

summary we can state the virtual topology design problem as follows:
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Figure 5.4: Perfect Shuffle Virtual Topology

Given:

Load matrix A;j, Number of nodes NV,

Number of nodes M, Number of tranceivers per node T’
Objective:

Maximize (the sum of total traffic flow and minimum channel flow)
Variables:

Tuning matrix X
Constraints: 1) Station connectivity

2) Channel flow constraints

3) X,‘jk €0,1
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Figure 5.5: Virtual Topology Mapped Over Physical Topology

In detail the problem can be expressed as:

Maz {C1 ). Z Xijk + Cu2 mmzz Xij Xk } (5.1)

k=1i=1j i=1 j=1
Such that Z ori_ Xijx <T Vi€ {l.n} (5.2)
E or’ Xijr < T Vj € {1.n} (5.3)
k=1
ZZXU"’ >1Vke {lm} (54)
i=1j=1
Xijk € {0’ 1} (55)
1, if s; is transmitting to s; over channel k
Xijr = (5.6)
0 otherwise.
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Figure 5.6: A 4 x 4 x 4 Tuning Matrix
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Equation (5.1) is the objective function which is the maximization of traffic flowing
from source to destination in one-hop and maximization of minimum channel traffic.
Equation (5.2) and (5.3) are the station’s degree constraints which require that every
station is assigned to less than or equal to T reception and transmission channels.
Equation (5.4) is the usage constraints which requires atleast one transmitting and
one receiving station per channel i.e., each channel gets used by atleast a pair of

nodes. The last Equation (5.5) says that decision variable X;;; assumes values from

the set {0,1}.

5.3.3 Problem Solution

The virtual topology design problem is a combinatorial optimization problem for
which there are no known efficient solution procedures due the nonlinear constraints
and non-linear terms used in the objective function. We use genetic algorithms to
solve the virtual topology design problem. Due to fast convergence and no need for
initial solutions genetic algorithms are preferable.A genetic algorithm for solving a
problem begins with a population of chromosomes that encode solutions to the prob-
lem. The algorithm requires an evaluation function that will take a chromosome and
returns a numerical measure of its fitness in the environment of the problem. The
fitness function plays the role of the environment in natural evolution. When popu-
lation of the chromosomes has been evaluated, the chromosomes become the parents
of a new population. A parent’s chromosomes will reproduce more frequently if it

is fitter than the other chromosomes in its generation.
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In the process of reproduction, genetic operators may alter the composition of a
parent. Such operators include mutation operator that randomly alters gene values
and crossover operator that combines the chromosomal matter of two parents. A
genetic algorithm proceeds in this way, creating a population, evaluating it and re-
producing its members to form a new population, until a stopping criterion is met.

In general, the best individual evolved by this process is taken to be the solution to

the problem.

5.4 Formulation of Optimal Routing

For a given allocation of transmitters and receivers to the nodes of the network, we
get the connectivity or tuning matrix by solving the virtual topology design prob-
lem mentioned in the previous section. Once a connectivity diagram (from tuning
matrix) is obtained, flows have to be optimally assigned over the links of the logical
diagram, yielding the routing problem for the multi-channel network. Routing is

not done on an aggregate basis. It is done on a packet-by-packet basis.

Given: Load matrix lambda, number of nodes n, number of channels m
Objective: Minimize the maximum flow over the links in the network
Variable: Flow matrix f;;

Constraints: Flow constraints, other constraints
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For the routing problem we introduce the following flow variables:

fi;*= traffic due to source destination pair(s,t) flowing from node i and node j. The
total flow on link (3, j), fi; is obtained by summing over all source-destination pairs
(s,t) the flows f;;*'. We choose to consider the potential increase in the throughput
for a given traffic pattern, and that measure is maximized by minimizing the largest

flow over the links in the network i.e., minimize max{f;;}

Minimize maz ;){ fi;} (5.7)

Zn: fi™ = En: fi® =0 Vij,s,t (5.8)
=1 i=1

fij= zt:f,-j"' Vi, j,s,t (5.9)

f,-j‘“,;ij 20 Vi js,t (5.10)

Equation 5.9 specifies that for each source-destination pair (s,t) the traffic flowing
into a node balances the traffic flowing out of a node. The routing problem can be

formulated as a linear programming problem.

5.5 Summary

In this chapter, we proposed and formulated three different problems namely phys-
ical topology design, virtual topology design, and optimal routing. The design of
virtual topology is the selection of optimal channel assignment, maximizing the
throughput of the network. Similarly, the optimal routing problem is the minimiza-

tion of maximum flow, subject to flow constraints.
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Chapter 6

A Genetic Algorithm for Virtual

Topology Optimization Problem

Chapter Synopsis: The details of a genetic algorithm used for solving virtual
topology design problem are discussed. Genetic algorithm and the operators used are
introduced. Design of objective function, selection operator, crossover operator, and

mutation operator are presented. The working of a genetic algorithm is illustrated

with an example.

6.1 Introduction

Genetic algorithms (GAs) are derived by analogy from biological process of evolu-

tion. The problem of virtual topology design, has not been addressed by a genetic
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algorithm before. The evaluation function is highly complex. The number of pos-
sible solutions are vast. The virtual topology design problem is one of finding an
optimal solution in a large search space with many local optima, and genetic algo-
rithms are designed to do just that. The genetic algorithm we are about to design
has the following essential parts: technique for creating the initial population, the
evaluation function (or the fitness function), the operators that would alter the ge-
netic composition of parents (such as crossover and mutation operators) when they

reproduce, and the parameter string that would control the behavior of the algo-

rithm and its genetic operators.

Algorithm GeneticVTDA:
Input values Ng,Np,Mp,Cp
(* Ng:number of generations, Np:number of individuals, Mp:Mutation probability,
Cp:Crossover probability *)
BEGIN
Initialize;
(* Procedure initialize will initialize a population at random. The procedure will

also evaluate fitness of each individual based on the objective function value *)

FOR i~ 1TO Ng
Generation;
(* Procedure generation creates a new generation through Select, crossover and

mutation, in the process it will use the procedures select, crossover, mutate and

objective function*)
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Statistics;
(* Procedure statistics calculates population statistics such as minimum, maximum
and average fitness and sum of fitness of the new population and the individual with
maximum fitness*)

Result;
(* Procedure results give the new population*)

ENDFOR

Return the highest fitness individual obtained in statistics

END GeneticVTDA

6.2 Working of Genetic Algorithms

Genetic algorithms start with a set of problem solutions called initial population.
Then they transform these solutions in a way that resembles the mechanics of natural
evolution which includes reproduction and survival. Figure 6.1 shows the working
of genetic algorithms i.e., formation of different generations. Figure 6.2 shows how

a new generation is formed.
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6.3 Genetic Algorithm (GA) for Virtual Topol-

ogy Design Problem

In this section we discuss the design of a genetic algorithm for virtual topology
design problem. We give the basic structure of the algorithm, discuss the design
of fitness function, and then we talk about chromosomal representation and initial
population generation. Finally, we give algorithms for different genetic operators
such as selection, crossover, and mutation operators. The basic structure of genetic

algorithm for virtual topology design problem is:

STEP1: Begin with a population of individuals (tuning matrix Xijr) whose entries
are generated at random.

STEP2: Determine the fitness of each individual in the current population (i.e., the
value of objective function f(X;;) for each individual)

STEP3: Select the parents for the next generation with a probability proportional
to fitness.

STEP4: Mate the selected parents to produce offspring i.e., by means of crossover
operation selecting the sight of crossover randomly.

STEPS5: Perform mutation using mutation operators.

STEP6: Repeat STEP2 to STEP5 until a satisfactory solution is found.
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6.3.1 Fitness Function

A clear and correct formulation of fitness function is necessary for a good genetic
algorithm. Since our problem is complex consisting of multiple constraints, we have
to find a means to represent these constraints as parts of the fitness function (or
objective function). Equality constraints may be summed into a system model, we
are really concerned about inequality constraints. One way out, is to evaluate the
objective function, and check to see if constraints are violated. If not, the parameter
set is assigned the fitness value corresponding to the objective function evaluation.
If constraints are violated, the solution is infeasible and thus has no fitness. This
procedure is fine except that many practical problems (such as our problem) are
highly constrained; finding a feasible solution is difficult. As a result, we usually
want to get some information out of infeasible solutions, perhaps by degrading their
fitness ranking in relation to the degree of constraint violation. This is what is sug-

gested in the next method called penalty method.

In penalty method, a constrained problem is transformed to an unconstrained prob-
lem by associating a cost or penalty with all constraint violations. This cost is
included in the objective function evaluation. Our highly constrained problem for-

mulated in Equations (5.1) to (5.6) can be easily transformed to unconstrained form.

The objective function of the virtual topology design problem, after application

of penalty method would look like
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Mazimize f(X;ji) (6.1)

o(Xijk) = Y1 Lz Zj=1 Nij-Xiji (6.2)
B(Xijx) = Tt Tjer Nij-Xige (6.3)
6(Xijx) = (T - Ty orfey Xije)? (6.4)
(Xiji) =(T - Tk orjy Xiji)? (6.5)

f(X,'jk) = A. a(X.-jk) + B. min}c';l ,B(X,'jk) -

C.Yi ‘5(Xijk) - D. Z?:l ¢(Xijk) (6-6)

The coefficients A, B, C, D used in Equation (6.6) are called the penalty coeffi-
cients and the functions in Equations (6.4) and (6.5) are the penalty functions. We
usually square the penalty functions or the violations of the constraint. In the ge-
netic algorithm’s evolution, the unconstrained solutions are dropped in favour of
their variants which are constrained solutions, as the penalty coefficient becomes
larger. We give different penalty coefficients different values so that moderate vi-

olations of the constraints yield a penalty that is some significant percentage of a

nominal operating cost.

We now explain the significance of functions in the Equations (6.1) to (6.6) in
detail. The function in Equation (6.6) is the main objective function expressed as
sum of different functions. The functions in Equations (6.2) and (6.3) are the actual

min-max functions that are being optimized. The function in Equation (6.2) tries
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to maximize the traffic flowing from any station ¢ to any station j (1 < i < n and
1 < j < n)in a single hop. There can be a situation where a path from station i
to station j may not exist or the tuning matrix entry X;;; is zero Vk, although the
corresponding elements of the traffic matrix A;; is non zero. Equation (6.3) will bal-
ance the channel traffic flow by maximizing channel traffic. The penalty functions in
Equations (6.4) and (6.5) will penalize the main function for violation of constraints.
The functions in Equations (6.4) and (6.5) are the penalty functions which would
penalize heavily if the degree constraint is violated. A degree constraint is one that
requires the number of connections (or Ored entries of X;; matrix) to be greater

than or equal to the number of transceivers T.

6.3.2 Chromosomal Representation

Our chromosomal representation is straightforward. Chromosome i.e., the tuning
matrix in our case is a 0 — 1 matrix. Extensive work has been done by Holland
and his coworkers on bit string representation [6]. They have shown that bit string
mechanism is an effective mechanism in domains about which little is known espe-
cially in function optimization. A lot is known about the genetic operators that
work well with 0 — 1 representation of individuals. The use of 0’s and 1’s does not

require decoding as the actual values of entries of tuning matrices are 0’s and 1’s.

52



6.3.3 Imitial Population Generation

There are various methods of generating initial populations. The population can be
generated randomly. A good deal can be learned by initializing a population ran-
domly. Moving from a randomly created population to a well adapted population is
a good test of the genetic algorithm, since the critical features of the final solution
will be produced by the search and recombination mechanisms, rather than the ini-
tialization procedures. In our case we use randomly generated initial population to
make use of the advantages offered by this technique. However, the initial popula-
tions contributed by the greedy method or clustering technique is fitter initially, it

rapidly converges to a local optimum.

6.3.4 Genetic Operators

Genetic operators for bit string representations have been extensively studied. As
the chromosome in our case is three dimensional matrix we have to tailor the ge-
netic operators according to the domain of our application. We choose the set of
genetic operators such as selection, crossover and mutation operators, which at-
tempts to move towards promising parts of search space. Crossover is the main
genetic operator. It operates on two individuals and generates an offspring. It is
an inheritance mechanism where the offspring inherits the characteristics of both its
parents. Mutation produces incremental random changes in the offspring generated

by the crossover.
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Selection Operator

The selection operator or the reproduction operator selects the individuals (tuning
matrices in our case) according to its objective function value (or fitness). The
selection will be done randomly, which helps in selecting those individuals whose
objective function value is high when compared to others. This is the simulation of
“ survival of the fittest” concept. Once an individual (a tuning matrix) is selected
for reproduction, an exact replica is entered into a mating pool, ready to be acted

upon by the cross over operator.

Crossover Operator

The sharing of the chromosomal material (genes) during mating is called crossover.
There are many different crossover methods, the two important among them are
single-point crossover and two-point crossover. The single point operator chooses
a random cut point and generates the offsprings by combining the segment of one
parent to the left of the cut point with the segment of the other parent to the right of
the cut. Two-point crossover takes two parents, selects two cutpoints and combines
the chromosomal material of the parents by swapping the material between the cut
points of the second parent for the material between the cut points of the first.
We confine ourself to the single point crossover method. The Figures 6.4 and 6.5

illustrate the single point crossover operation.

After the selection of parents for mating, we perform a biased coin flip with a certain

probability of heads that will determine whether to proceed with the crossover. If the
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Figure 6.4: Single Point Crossover Operation
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coin toss is successful, we choose, at random a particular locus called the crossover
point. Two children are produced by splicing the genes upto the crossover point
from one parent with the genes beyond the crossover point from the other parent. If
the coin toss is not successful, the parents are simply returned as new children. The
crossover point chosen actually represents the row number beyond which swapping

of rows occurs between the two parents, to produce an offspring.

Mutation Operator

The random modification of a gene is called mutation. The mutation rate controls
the rate at which new genes are introduced into the population for trial. If it is
too low, then population evolves steadily towards a local optimum condition. If it
is high there will be too many random disturbances, and the offsprings will start

losing their resemblance to their parents and the algorithm will lose its ability to

learn from the history of the search.

The theory of genetic algorithm shows how the crossover mechanism can result
in fitter population. It can however, happen that crossover results in children who
are less fit than their parents. By subjecting each of the genes in a chromosome
to a very small probability of mutation, the result of a bad crossover is reversed.
Mutation can flip gene back to favorable value. If all the genes are subjected to mu-
tation, we could end up with a situation wherein a favorable gene is altered. Thus,
we need to keep the value of probability of mutation very small. Thus, mutation

avoids quick convergence, which allows a thorough exploration of state space.
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6.3.5 Generation of New Population

A simplistic approach to building a new population is to mate enough parents so
that enough children are produced to completely replace their parents. This tech-
nique called the generational replacement, allows for a thorough mixing of genes in
the new generation, but it has some drawbacks. There is no guarantee that all or
even most of the children will turn out better than their parents. Thus generational
replacement might result in a loss of individuals with the best genes. Not only could

the best individuals be lost, but the population as a whole could diminish in overall

fitness.

We could counter some of the negative effects of generational replacement by re-
taining a certain number of the best individuals from the previous generation. This
strategy is called elitism. At the opposite end of the spectrum from generational
replacement is steady state reproduction. In this method, a certain number of indi-
viduals are replaced in each successive generation. In the design of our algorithm we
employ the elitism strategy for generating the next population. We take the union of
the individuals to avoid the redundant individuals and retain n best fit individuals.

This retained population is the new population, ready to be acted upon by different

genetic operators.
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6.3.6 Working of Genetic Algorithm for Virtual Topology

Design: An Example

Let us see step by step the working of our genetic algorithm for virtual topology de-
sign problem for a case of 3 x 3 x 3 i.e., each individual is a 3 X 3 x 3 tuning matrix. We
assume the values of lambda matrix, A;={{0,0.2,0.3},{0.8,0,0.4},{0.1,0.1,0}},
the mutation rate as 0.001 and the coefficient values to be A=1, B=1, C=5, D=5,

we also assume the value of T to be 2. The objective function is the same as that

given in the Equation 6.7.

Initially the tuning matrices are generated randomly. We start with the popula-
tion of 4 where each entry in the tuning matrix is selected by tossing a fair coin.
Then the fitness of each tuning matrix is found using fitness function (objective

function) and the traffic matrix A;;.

A generation of our genetic algorithm begins with the reproduction. We select
the mating pool of the next generation by spinning the weighted roulette wheel four
times. Actual simulation of this process using coin tosses has resulted in tuning
matrix 1 and tuning matrix 3 receiving two copies each and tuning matrix 2 and 4

receiving no copies each.

With an active pool of strings looking for mates, simple crossover proceeds in two
steps: (1) strings are mated randomly, using coin tosses to pair off the couples, and

(2) mated string couples crossover, using the crossing sites, which represents the
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column number in the tuning matrix being considered. The random choice of mates
has selected the first string to be mated with the fourth. With a crossing site of

two tuning matrices cross and yield two children. The remaining two children in the

mating pool are crossed at site 1.

The last operator, mutation, is performed on bit by bit basis. We assume that
the probability of mutation in this test is 0.001. With four 3 x 3 x 3 bit matrices
we should expect 108 x 0.001 = 0.108bits to undergo mutation during a generation.
Simulation of this process indicates that no bits undergo mutation for this probabil-
ity value. As a result, no bit position is changed from 0 to 1 or vice versa, during the
generation. Following reproduction, crossover, and mutation, the new population is
ready to be tested. To do this, we simply calculate the fitness function (objective

function) values for all the new generation individuals (tuning matrices) and repeat

the procedure.

6.4 Summary

The design of logical topology is complex as it requires fast solution, we have consid-
ered it in detail. The formulation permits channel sharing also. A genetic algorithm
for solving the virtual topology design problem is presented in this Chapter. At-
tempt was made to make the genetic algorithm as general as possible, so that it can

be used equally effectively for physical topology design problem and other combina-

torial optimization problems.
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Chapter 7

Validation and Experimental

Results

Chapter Synopsis: The way simulation was performed is discussed along with
the algorithmic parameters used. Results are illustrated graphically. Validation per-

Jormed to check the results of genetic algorithm are discussed. Interpretation of

results based on extensive testing is given.

7.1 Introduction

Considering the discussion of Chapter 5, about the solution to the design problems
for multi-channel networks, a Mathematica [35, 33] program was developed to obtain

the best tuning matrix with the maximum value for the objective function.
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7.2 Development of a Program for Virtual Topol-

ogy Design Problem

In this section we discuss in detail the development of program for virtual topology
design problem. We present the algorithmic parameters involved along with the

implementation details. The following algorithmic parameters are of significance:

¢ Number of nodes n and the number of channels m

¢ Population size N,

¢ Chromosome size i.e., size of tuning matrix (n x n x m)
¢ Number of generations N,

e Number of runs N,

e Weighting terms/penalty coefficients for different terms in the objective func-

tion A,B,C,D
¢ Probability of mutation P,,yqs.
¢ Number of transceivers at each station T’

¢ Load matrix \;; of size (n x n)
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7.2.1 Implementation Details

The flow of execution of program is as follows. In the beginning the program im-
plementing genetic algorithm reads various parameters mentioned in the previous
subsection. The main functions used are the objective function, flip function, mu-
tation function, crossover function, and display function. The objective function is
a straightforward implementation of the Equation (6.6) where constraints are given
in the form of penalty terms. This function measures the fitness of an individual
tuning matrix. We select parents with a probability which is directly proportion to
their fitness values. We construct a roulette-wheel on which each member of the
population is given a sector whose size is proportional to the individuals fitness val-
ues. Then we spin the wheel and whichever individual comes up becomes a parent.

We have implemented this method as follows:

Step 1: A list of the fitness values of all individuals in the population is constructed.
Step 2: A random number between 0 and the total of all of the fitness in the
population is generated.

Step 3: The first individual whose fitness, added to the fitness of all other elements

before it, from the list in Step 1, is greater than or equal to the random number

from Step 2 is returned.

Mutation is to escape getting stuck in local minima/maxima. Mutation operator
changes the gene value from 0 to 1 or 1 to 0. If all the genes are subjected to muta-
tion, we could end up with the situation where a favorable gene is altered. For this

reason we keep the probability of mutation very small.
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The crossover function returns two children to be added to the next generation
of the population. At the start of the first generation (first iteration of the DO
loop), the fitness of each individual of the population is found. Then the top n fit
individuals are displayed. Then two fit individuals are picked using the selectOne
function which implements roulette wheel scenario. These two individuals are mated
using the crossover function which returns two newly generated children. The pro-
cess of crossover is repeated until sufficient individuals are mated to produce enough
children for the next generation. Then the current population is combined with the
newly generated individuals by means of a union function that eliminates duplicates.
These distinct individuals become the population for the next generation. The op-
erations take place exactly in the same way, until the fitness values converge to a

certain value, which is the value of the highest individual required.

7.3 Simulation Detalils

The evaluation of each tuning matrix requires multiplication of the tuning matrix
with load matrix. The total traffic flow is obtained by summing the traffic flow at
all the channels. For example the traffic in the first channel is obtained by multiply-
ing load matrix (X;;) with the tuning matrix (X;;:) for k=1 which is added to the
product of load matrix and tuning matrix for k=2 and so on). Since negative values
can also be obtained due to the penalty functions used, fitness values are normalized

by subtracting smallest fitness value from all the other values.
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We used the elitism technique for generation of next population. We retained the
best n individuals of each generation, taking union of fitness values of n best in-
dividuals and the children obtained in each generation. Finally we took the best
individual found, after observing satisfactory convergence of the individual values.
We ran the algorithm many times for same number of generations and found the
best values to be close in fitness value with an experimental error of 2 - 3 percent,

even though the starting values were highly variant due to the random generation

of individuals.

7.4 Validation and Algorithmic Check

The virtual topology design problem was solved using exhaustive search technique,
linear programming technique and genetic algorithms. Validation of exhaustive
search implementation, linear programming solution and genetic algorithms was
done to compare the quality of results obtained. The results obtained from the
genetic algorithm were compared to the results obtained from linear programming

solution which was then compared to exhaustive search approach.

Linear programming technique for our problem was implemented using Mathematica
[35] ConstrainedMax function. The objective function for maximizing total traffic
and channel traffic was supplied to ConstrainedMax along with constraints and

variables. The constraints supplied were the connectivity constraints and the limit
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constraints (to ensure that every entry of the tuning matrix is a 0 or 1). The vari-
ables supplied to the ConstrainedMax function were the entries of tuning matrix. In
the exhaustive search approach, all possible vectors were generated for small sizes of

tuning matrices. The values of the vector generated was evaluated if they satisfied

the constraints of our problem.

7.4.1 Validation of Linear Programming Function Con-

strainedMax using Exhaustive Search Approach

Different examples with different objective functions were taken such as counting
the number of 1s in a 0-1 matrix, multiplication of two matrices. These problems
were solved using exhaustive search approach and the results were checked by hand.
Different kinds of objective functions with different constrained sets were solved
using ConstrainedMax function, the same problem with same constraints was solved
using exhaustive search. Figure 7.1 illustrates two examples. Example 1 shows
the results obtained by solving count-of-number-of-1s-in-a-0-1-matriz problem using
exhaustive search technique and linear programming technique. Siinilarly a small
instance of 3 x 3 x 3 of virtual topology problem is solved in Example 2. It can be
seen from Figure 7.1 that the values obtained from exhaustive search technique and

linear programming technique are same.
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Exhaustive Search Technique (Count of number of one’s in a matrix)

In[l) := <<ofd4d.math
4

Linear Programming Technique (Count of number of one’s in a matrix)
In[l] := <<cmd.math
Out[ll= {4, {x{1, 1] -> 0, x[1, 2] -> O, x{2, 1] -> O, x[2, 2] -> O,

x{1, 3] -> 0, x[2, 3) -> 1, =x[3, 1] -> 1, x[3, 2) -> i, x[3, 3] -> 1}}

(a) Example 1

Exhaustive Search Technique (Small instance 3.3.3 of virtual topology
problem)

Input set:

T=2;

nwl;

m=3;
1={{1.1,1.2,3.2}),¢1.3,1.1,3.3},{2.1,2.3,5.2});

In[l] := <<ofl.math
41.6

Linear Programming Technique (Small instance 3.3.3 of virtual topology
problem)

In[l] := <<cml.math

Out[l]= {41.6, {x[1, 1, 11 -> 0, =f1, 1, 2] -> 1, x[1, 1, 3] -> 1,
x[(1, 2, 1] -> 0, x[1, 2, 2] -> O, x(1, 2, 3] ~-> O, x[1, 3, 1) -> O,
x[1, 3, 2) -> 0, x[1, 3, 3] -> 0, x[2, 1, 1] -> O, x[2, 1, 2] -> O,
x[2, 1, 3] -> 0, x[2, 2, 1] -> O, x[2, 2, 2) ~-> 1, x[2, 2, 3] -> 1,
*[2, 3, 1] -> 0, x[2, 3, 2] -> O, x[2, 3, 3] -> O, x(3, 1, 1] -> O,
x[3, 1, 2] -> 0, xI3, 1, 3] -> 0, x([3, 2, 1] -> O, x[3, 2, 2] -> O,

x[{3, 2, 3] -> 0, %x[3, 3, 1] -> O, x[3, 3, 2] -> 1, x([3, 3, 3] ->1}}

(b) Example 2

Figure 7.1: Validation of Linear Programming Results with Exhaustive Search Ap-
proach Results on Two examples
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7.4.2 Validation of Genetic Algorithm using Constrained-
Max

Genetic algorithm for different sizes of tuning matrices such as 3 x 3 x 3, 4 X 4 X
4,5%x 5x 5, and 6 x 6 x 6 were run, the results obtained were compared with
the linear programming (ConstrainedMax) results for the same parameters. Figure
7.2(a) illustrate values obtained from different runs of the genetic algorithm for the
same instance of the problem. Figure 7.2(b) gives the results obtained from the
linear programming (ConstrainedMax) for the same instance of the problem that

are comparable to the results obtained by ConstrainedMax results with a deviation

of 2-7 %

7.4.3 Large Scale Testing of Genetic Algorithm for VITDP
Problem

We used a population of 40 chromosomes (i.e.,tuning matrices), each of size n xnxm
where n and m corresponds to nodes in the networks and channels in the fiber re-
spectively. The range of values of n was from 3-10. We ran the algorithm for 25
generations. We ran 10 runs of our genetic algorithm with 20 individuals and 25
generations. The results of Run 1 and Run 2 are shown in Figure 7.3(a) and Figure
7.3(b) respectively. The plots show how the fitness values of individuals improve as
the generations proceed. In the first generation many of the individuals have nega-

tive fitness values and in the final generation we could see a significant improvement
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RUN 1 RUN 2 RUN 3 RUN 4
Generation 6 Generation 6 Generation 6 Generation 6
182.5 169.2 181.8 182.1
174.5 165.4 178. 180.6
173.5 163.3 173.7 177.8
173.2 163.2 173. 175.3
Generation 7 Generation 7 Generation 7 Generation 7
182.5 180.6 183. 182.1
178.3 173.7 181.8 180.6
178.1 169.2 181.6 180.3
175.4 168.5 178. 177.8
Generation 8 Generation 8 Generation 8 Generation 8
183.4 180.6 187.4 183.9
182.5 180.3 185.7 182.2
178.3 176.4 184.5 182.1
178.1 174.6 184.1 181.8
Generation 9 Generation 9 Generation 9 Generation 9
183.4 182. 187.8 186.
182.5 180.6 187.4 183.9
181.2 180.3 185.7 183.6
180.8 179.8 184.5 182.2
Generationl0 Generationi0 Generationl) Generationl0
185.6 188.3 187.8 186.
183.4 182. 187.4 183.9
182.7 181.5 186.4 183.6
182.5 180.6 185.7 183.5

(a) Results obtained from Genetic Algorithm

In[1]:= <<cm4.math

Out[1]= {196, {x[1, 1, 1] -> 0, x[1, 1, 2] -> 0, x[1, 1, 3] -> 0, x[1,1,4]) ->0,x[1,2,1]->0,

x[1, 2, 2] -> 0, x[1, 2, 3] -> 1, x[1, 2,4] -> 0, x[1,3,1]->0, x[1,3,2)->0, x[1,3,3]->1,
x[1, 3,4} -> 0, x[1, 4, 11 -> 0, x[1, 4, 2] -> 0, x[1, 4, 3]->0, x[1,4,4] ->0, x[2,1,1]->0,
x[2, 1, 2] -> 0, x[2, 1, 3] -> 0, x[2, 1,4] -> 0, x[2,2,1]->0, x[2,2,2]->0, x[2,2,3]->1,
x(2, 2,4] -> 0, x[2, 3, 1] -> 0, x[2, 3,2]->0, x[2,3,3]->0, x{2,3,4]->0, x[2,4,1] ->0,
x[2,4,2]->0,x[2,4,3] > 1, x[2,4,4] -> 0, x[3,1,1]->0, x[3,1,2] >0, x[3,1,3] > 1,
x[3, 1,4] -> 0, x[3, 2, 1] -> 0, x[3,2,2]->0, x[3,2,3]->0, x[3,2,4)->0, x[3,3,1] ->0,
x[3, 3,2} ->0,x[3, 3,3] -> 1, x[3,3,4] -> 0, x[3,4,1]->0, x[3,4,2] >0, x[3,4,3] >0,
x[3, 4, 4] -> 0, x[4, 1, 1] -> 0, x[4, 1,2] -> 0, x[4,1,3]->1, x[4,1,4}->0, x[4,2,1] ->0,
x[4, 2, 2] -> 0, x[4, 2, 3] -> 0, x[4,2,4) -> 0, x[4,3,1]->0, x[4, 3,2]->0, x[4,3,3]->0,
x[4, 3, 4] -> 0, x{4, 4, 1] -> 0, x[4,4,2]-> 0, x[4,4, 3] -> 1, x[4, 4, 4] ->0}}

(b) Results obtained from Linear Programming Implementation

Figure 7.2: Validation of Genetic Algorithm Results with Linear Programming Re-
sults with One Example Instance
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RESULTS OF GENETIC VIRTUAL TOPOLOGY DESIGN ALGORITHM

FITNESS OF THE TUNING MATRICES IN DIFF. GENERATIONS
RUNY

RESULTS OF GENETIC VIRTUAL TOPOLOGY DESIGN ALGORITHM
FITNESS OF THE TUNING MATRICES N DIFF. GENERATIONS
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(a) Results obtained in RUN 1

(b) Resuits obtained in RUN 2

Figure 7.3: Number of Generations Vs. Fitness Values
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in the fitness values. Using a suitable stopping criteria like time or convergence in

values for three or more generations the algorithm can be stopped.

A program (shown in Appendix C) was written to compare the linear program-
ming results and genetic algorithm results. This program finds out the following for

a given size of the problem:

best individual fitness value
e worst individual fitness value

e optimal fitness value which is considered to be the same as the linear program-

ming value

e maximum percentage deviation of genetic algorithm results from linear pro-

gramming result

¢ minimum percentage deviation of genetic algorithm results from linear pro-

gramming result

e average percentage deviation of genetic algorithm results from linear program-

ming result

The Mathematica program (shown in Appendix C) takes number of sessions Nj,
number of runs NV;, number of generations N;, number of individuals in the pop-
ulation NV, etc., as input. Genetic operations are carried out on different tuning

matrices in a generation. Many generations constitute a run of the program. The
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traffic matrix A;; changes with different sessions of the program. Many runs consti-

tute a session.

Results obtained by Varying Values of N

Figure 7.4 shows the testing of the genetic algorithm for virtual topology design
problem. The graph in Figure 7.4(a) shows how the best and worst values ob-
tained from genetic algorithm vary from the linear programming value. The graph
in Figure 7.4(b) shows the percentage deviation of genetic algorithm results from
linear programming results. The maximum percentage deviation curve shows the
percentage deviation of worst individual value (obtained from genetic algorithm)
from linear programming value. Similarly the average and minimum percentage de-
viation curves show the percentage deviation of average and best individual values
from linear programming value respectively. Tables 7.1, 7.2, 7.3, and 7.4 shows the
best individual values, worst individual values, linear programming value, maximum
percentage deviation, average percentage deviation, minimum percentage deviation

corresponding to the Figures 7.4, 7.5, 7.6, and 7.7 respectively.

It can be inferred from the graphs in Figures 7.4(a), 7.5(a), 7.6(a), and 7.7(a) that
the fitness values obtained from genetic algorithm are very close to the linear pro-
gramming values. The average percentage deviation of the genetic algorithm values
from linear programming values is very small i.e., in the range of 2-7 percent, as
observed from Figures 7.4(b), 7.5(b), 7.6(b), and 7.7(b). Table 7.5 shows the av-

~ erage values of maximum, minimum, and average deviations for different sizes of
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tuning matrices. Figure 7.8 shows the maximum, minimum, and average deviation

curves. From this figure it can be easily inferred that the average deviation of genetic

algorithm value from linear programming value lies in the range of 2-7 percent.

Session No. Results obtained for 3 x 3 X 3 tuning matrix

k BestValue | WorstValue | LPValue | Maz.Dev. | Min.Dev. | Avg.Dev.
1 118.234 115.922 119.242 2.78431 0.845498 1.43929
2 99.1591 88.0538 101.079 12.8862 1.89947 5.91547
3 114.354 108.179 118.675 11.6829 0.064951 5.73161
4 141.154 127.694 142.518 10.4018 0.957453 5.15496
5 91.9558 83.8085 92.3912 9.28951 0.471316 5.85088
6 152.23 139.451 153.906 9.39244 1.08937 5.723
7 91.1265 85.7078 94.5261 9.32896 3.59644 6.33702
8 123.579 115.716 124.147 9.32896 3.59644 6.33702
9 90.6829 84.1704 91.0671 7.57318 0.421853 4.89653
10 88.3484 86.7381 90.6727 4.33929 2.5633 3.30972

Table 7.1: Genetic Algorithm Values and Percentage Deviations for 3 X 3 X 3 Tuning

Matrix

Session No. Results obtained for 4 x 4 x 4 tuning matrix

k BestValue | WorstValue | LPValue | Maz.Dev. | Min.Dev. | Avg.Dev.
1 163.798 156.621 164.564 4.82694 0.465198 2.9035
2 152.23 139.451 153.906 9.39244 1.08937 5.723
3 197.147 193.837 199.086 2.63649 0.974263 1.54112
4 172.739 164.585 178.229 7.65565 3.08058 4.9918
5 166.927 160.152 171.613 6.67831 2.73053 4.60549
6 230.81 207.001 230.882 10.3433 | 0.0310591 | 4.35841
7 175.214 169.624 182.702 7.15831 4.09879 5.14854
8 91.1265 85.7078 94.5261 9.32896 3.59644 6.33702
9 175.517 166.134 183.383 9.40627 4.28928 6.41598
10 226.336 224.536 241.48 7.01667 6.27152 6.59504

Table 7.2: Genetic Algorithm Values and Percentage Deviations for 4 X 4 X 4 Tuning

Matrix
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Session No. Results obtained for 5 x 5 x 5 tuning matrix

k BestValue | WorstValue | LPValue | Maz.Dev. | Min.Dev. | Avg.Dev.
1 262.929 237.086 265.401 10.6686 0.931415 | 6.32016
2 325.121 302.854 334.212 9.38246 2.71998 5.16324
3 265.634 246.882 274.867 10.1812 3.35914 5.80526
4 360.635 331.534 364.926 9.15033 1.17572 4.27484
5 331.699 304.247 332.751 8.56613 0.316008 | 3.58874
6 313.111 293.572 322.291 8.91094 2.84821 5.88381
7 303.252 296.596 309.696 4.22999 2.08083 3.4294
8 267.587 250.185 277.663 9.89613 3.62891 6.49897

Table 7.3: Genetic Algorithm Values and Percentage Deviations for 5 X 5 X 5 Tuning

Matrix

Session No. Results obtained for 6 x 6 x 6 tuning matrix

k BestValue | WorstValue | LPValue | Maz.Dev. | Min.Dev. | Avg.Dev.
1 434.414 408.436 446.705 8.5669 2.75149 6.09734
2 543.16 489.968 546.252 10.3036 0.566047 | 5.55607
3 500.049 441.915 500.374 11.6829 0.064951 5.73161
4 467.584 443.237 479.231 7.51076 2.43028 5.5506
5 475.031 469.636 499.459 5.97109 4.89092 5.44995
6 482.039 436.403 490.168 10.9687 1.65848 4.8425
7 356.948 329.42 360.169 8.5374 0.894244 | 5.35852
8 410.953 376.135 412.681 8.85584 0.418671 3.49469

Table 7.4: Genetic Algorithm Values and Percentage Deviations for 6 X 6 X 6 Tuning

Matrix
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Tuning Matrix (type) Average Percentage Deviations
Xijk Maz.Dev. | Min.Dev. | Avg.Dev.

3 x3 x 3Case 8.700 1.552 5.070

4 x4 x 4Case 7.446 2.664 4.863

5 x5 x 5Case 7.099 1.707 4.098

6 x6 x 6Case 7.240 1.367 4.213

Table 7.5: Average of Percentage Deviations for Different Tuning Matrices
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Figure 7.8: Average Deviation Curves for Different Tuning Matrices for Different
Values of N

78



Results obtained by Varying Values of T

Figure 7.9 shows the large scale testing results obtained by varying values of T'. The
graph shows how the best and worst values obtained from genetic algorithm vary
from the linear programming value. Tables 7.6, 7.7, and 7.8 shows the maximum
percentage deviation, average percentage deviation, minimum percentage deviation
for different values of T'. It can be inferred from the graph in Figure 7.9 and Table 7.9
that the fitness values obtained from genetic algorithm are very close to the linear
programming values. The average percentage deviation of the genetic algorithm

values from linear programming values is very small i.e., in the range of 2-7 percent.

Results obtained by Varying Values of P, uate

Figure 7.10 shows the large scale testing results obtained by varying values of Pp,,ate-
Tables 7.10, 7.11, and 7.12 shows the maximum percentage deviation, average per-
centage deviation, minimum percentage deviation for different values of Ppyiaze. It
can be inferred from the graph in Figure 7.10 and Table 7.13 that average percent-
age deviation of the genetic algorithm values from linear programming values is very

small i.e., in the range of 2-7 percent.
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Session No. Results for T=1 Results for T=2
k Maz.Dev. | Min.Dev. | Avg.Dev. | Maz.Dev. | Min.Dev. | Avg.Dev.
1 13.524 0.845498 7.0725 2.78431 0.845498 1.43929
2 3.96887 1.88767 3.07386 12.8862 1.89947 5.91547
3 5.42163 1.22527 3.56151 11.6829 0.064951 5.73161
4 8.63409 5.45232 7.26105 7.57318 0.421853 | 4.89653
5 9.72648 4.00439 6.04321 4.33929 2.5633 3.30972
Table 7.6: Percentage Deviations for 3 X 3 X 3 Tuning Matrix for Different Values
of T
Session No. Results for T=1 Results for T=2
k Maz.Dev. | Min.Dev. | Avg.Dev. | Maz.Dev. | Min.Dev. | Avg.Dev.
1 5.49211 4.74952 5.18988 4.82694 0.465198 2.9035
2 7.63562 0.461681 | 4.48811 9.39244 1.08937 5.723
3 11.6396 1.2154 5.75677 2.63649 0.974263 1.54112
4 14.5551 4.70826 8.03628 7.65565 3.08058 4.9918
5 8.95491 5.35953 7.74484 6.67831 2.73053 4.60549
Table 7.7: Percentage Deviations for 4 X 4 X 4 Tuning Matrix for Different Values
of T
Session No. Results for T=1 Results for T=2
k Maz.Dev. | Min.Dev. | Avg.Dev. | MazDev. | Min.Dev. | Avg.Dev.
1 12.6179 1.95054 7.62304 9.38246 2.71998 5.16324
2 12.7748 5.81267 8.60355 10.1812 3.35914 5.80526
3 11.9831 0.34890 7.27017 9.15033 1.17572 4.27484
4 10.3977 3.63991 7.09717 8.56613 0.316008 3.58874
5 8.09536 4.75000 6.42250 4.22999 2.08083 3.4294

Table 7.8: Percentage Deviations for 5 X 5 X 5 Tuning Matrix for Different Values

of T
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Tuning Matrix Average % Deviations for T=1 Average % Deviations for T=2
(type) Maz.Dev. | Min.Dev. | Avg.Dev. | Maz.Dev. | Min.Dev. | Avg.Dev.

3 %3 x 3Case 8.262 2.806 5.400 8.700 1.552 5.070

4 x4 x 4Case 9.658 3.300 7.416 7.446 2.664 4.863

5 x5 x 5Case 11.174 3.300 6.964 7.099 1.707 4.098

Table 7.9: Average of Percentage Deviations for Different Tuning Matrices for Dif-
ferent Values of T
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Figure 7.9: Average Deviation Curves for Different Tuning Matrices for Different

Values of T
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Session No.

Results for Ppytate = 0.001

Results for P,yutate = 0.005

k Maz.Dev. | Min.Dev. | Avg.Dev. | Maz.Dev. | Min.Dev. | Avg.Dev.
1 2.78431 0.845498 1.43929 9.87509 5.31594 7.19612
2 12.8862 1.89947 5.91547 6.84177 1.49316 4.68203
3 11.6829 0.064951 5.73161 11.0721 2.94187 5.99864
4 10.4018 0.957453 5.15496 9.80994 5.49872 7.27304
5 9.28951 0.471316 5.85088 12.8984 0.569658 5.46479
6 9.39244 1.08937 5.723 9.59495 0.782671 6.03059

Table 7.10: Percentage Deviations for 3 X 3 X 3 Tuning Matrix for Different Values

Of P mulate

Session No. Results for Ppyiate = 0.001 Results for Pytate = 0.005

k Maz.Dev. | Min.Dev. | Avg.Dev. | MazDev. | Min.Dev. | Avg.Dev.
1 4.82694 0.465198 2.9035 5.57271 1.64352 3.99178
2 9.39244 1.08937 5.723 6.12751 4.57028 5.46723
3 2.63649 0.974263 1.54112 8.44458 0.752183 4.68935
4 7.65565 3.08058 4.9918 12.2612 1.16052 5.24113
5 6.67831 2.73053 4.60549 11.6811 0.231681 5.50362
6 10.3433 0.031059 4.35841 8.18524 1.96221 4.49661

Table 7.11: Percentage Deviations for 4 X 4 X 4 Tuning Matrix for Different Values

Of P mutate

Session No. Results for Py, y1ate = 0.001 Results for Pp,yqte = 0.005

k MazDev. | Min.Dev. | Avg.Dev. | Maz.Dev. | Min.Dev. | Avg.Dev.
1 10.6686 0.931415 6.32016 6.45817 2.82675 4.30725
2 9.38246 2.71998 5.16324 6.97678 3.27391 4.85807
3 10.1812 3.35914 5.80526 8.33408 1.41777 4.42019
4 9.15033 1.17572 4.27484 7.96947 3.85336 6.22589
5 8.56613 0.316008 3.58874 10.258 4.88383 6.98752
6 8.91094 2.84821 5.88381 9.63495 4.38367 6.83804

Table 7.12: Percentage Deviations for 5 X 5 X 5 Tuning Matrix for Different Values

Of Pmutate
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Session No. Results for Ppytate = 0.001 Results for Ppyiqte = 0.005
(type) Maz.Dev. | Min.Dev. | Avg.Dev. | Maz.Dev. | Min.Dev. | Avg.Dev.
3 x3 x 3Case 8.262 2.806 5.400 10.0167 2.7672 6.108
4 x4 x 4Case 9.658 3.300 7.416 8.7118 1.7185 4.898
5 x5 x 5Case 11.174 3.300 6.964 8.2733 3.4383 5.6083

Table 7.13: Average of Percentage Deviations for Different Tuning Matrices for
Different Values of Py, utate

TESTING OF GENETIC ALGORITHM FOR VIRTUAL TOPOLOGY DESIGN PROBLEM
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Figure 7.10: Average Deviation Curves for Different Tuning Matrices for Different
Values of P uiae
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7.5 Observations

In this section we discuss our experiences and observations with genetic algorithms.
The probability of mutation should be as small as possible. If the probability of
crossover is large then the possibility of thorough mixing of chromosomal izforma-
tion is more. If the probability of mutation is large then there is a possibility of
generating weak individuals. The elitism technique gives better results than total
generational replacement, this is due to the fact that there is no surety that the next
generation obtained in total generational replacement is better than the current gen-
eration, whereas in elitism best individuals of the current generation are retained in
the next generation population. Large population sizes give better results in fewer
generations but the computation is very slow. Final values obtained in different runs
are similar even though different initial configurations are used. This speaks for the
robustness of the algorithm. The number of crossover operations that are necessary
in a generation is about n/2. If the penalty coefficients are very large then feasible

solutions may not be obtained at all in a few generations.

7.6 Summary

The results obtained by applying genetic algorithm to the virtual topology problem
are interpreted and compared with the results obtained from linear programming
technique which in turn is validated using the brute force approach. Finally, obser-

vations and inferences were discussed.
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Chapter 8

A Distributed Virtual Topology

Design Heuristic

Chapter Synopsis:A distributed heuristic for the design of virtual topology of
multi-channel networks is presented. The prototypes used for parallel implemen-
tation of genetic algorithms are presented. Various messages exchanged between the

nodes for correct implementation of distributed genetic algorithm are also discussed.

8.1 Introduction

Distributed heuristics are required for realistic implementation of virtual topology
design in multi-channel networks. For decentralized nature of computation and for

quick updates on topology for changing loads distributed heuristics are needed. De-
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sign of distributed heuristics for adapting the logical network topology to changing
traffic patterns in multihop network is an i.iteresting problem. Two simple ap-

proaches which can be considered for distribution of information are as follows:

The first approach is based on exchanging information between neighbors, even-
tually creating a global picture, in each node. This approach is useful when the life
time of the information is long with respect to the information propagation time.
However if the life time of the information is short and the propagation time is long,
nodes will be making decisions based on out dated information most of the time.
This approach will also incur an additional complexity due to the cost of bandwidth
dedicated for control purposes. The second alternative is to emulate global knowl-
edge by implementing a global policy. This can be done by allowing nodes to take
decisions, using the same rules. This is what our heuristic will do. Thus for a vir-
tual topology satisfying new traffic requirements distributed virtual topology design
heuristic attempts to emulate centralized virtual topology design solution. This is
done to maximize throughput as the centralized virtual topology design problem

has a superior ability to adapt the virtual topology to changing traffic patterns.

8.2 Parallel Genetic Algorithms

Genetic algorithms are inherently parallel. Until recently little work has been done
in mapping genetic algorithms to parallel hardware. In this section we examine the

implementation of our virtual topology design algorithm on parallel architectures [7].
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The four prototypes which are mostly used for parallel implementation of genetic

algorithms are:

e Synchronous master-slave.
e Semi synchronous master-slave.
e Distributed, asynchronous concurrent.

o Network model.

The synchronous master-slave prototype is shown in Figure 7.1. In this proto-
type as the name suggests master process coordinates k slave processes. The master
process controls selection, crossover, mutation and the performance of genetic oper-
ators. The slaves perform fitness function evaluation. The scheme is straightforward
and easy to implement, however it suffers from two major drawbacks. First a fair
amount of time is wasted if there is variance in the time of function evaluation.
Second, the algorithm is not very reliable, since it depends on proper working of the

master process i.e., if the master goes down the whole system halts.

The semi-synchronous master-slave solves the first drawback of master-slave proto-
type. This prototype relaxes the requirement for synchronous operation by inserting
and selecting members on the fly as slaves complete their work. This prototype is

also unreliable (like master-slave) because of its dependence on a single master pro-

Cess.
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Figure 8.1: Synchronous Master Slave GA

In asynchronous concurrent prototype shown in Figure 7.2, k identical processors
perform both genetic operations and function evaluation independently of one an-
other, accessing a common shared memory. The shared memory requires that the
processes avoid simultaneous hits on identical memory locations otherwise, there are
no further timing requirements for this configuration. This scheme is slightly less
straightforward to implement than either of the master-slave prototypes, but the
reliability of the system is much improved. As long as one of the concurrent pro-
cesses and some of the shared memory continue to function, some useful processing

is performed.

The network prototype is depicted in Figure 7.3. In this scheme, k independent
simple genetic algorithms run with independent memories, independent genetic op-
erations, and independent function evaluations. The k processes work normally, with
the exception that the best individuals discovered in a generation are broadcast to

the other sub-population over a communications network. With the relatively inter-
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Figure 8.2: Asynchronous Concurrent GA

mittent need for communication, link bandwidth is reduced as compared to other

schemes. Reliability of this scheme is high because of the autonomy of the indepen-

dent processes.

For the design of virtual topology which would help in adapting to changing traffic
pattern in multi-channel network we explore the following approach: Independent
simple genetic algorithms for the virtual topology problem are run in each node,
but there will be interaction of information among nodes from time to time. This
interactions would be in the form of messages. The best individuals discovered in
a generation in a node are broadcast to other nodes over the network. Here also
we assume a master node which would issue the initialize and hangup messages as

discussed in the next section. The objective function of each genetic algorithm in
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Figure 8.3: Network GA

each node will be a combination of actual function for méximizing throughput and
the constraints meant for proper usage of resources (transceivers per node). Here
also penalty would be imposed for violation of constraints. Due to autonomy of the

independent processes, this scheme is more reliable and acceptable.

8.2.1 Distributed Genetic Algorithm for Virtual Topology

Design Problem

In the distributed genetic algorithm for virtual topology design problem five types of
messages are exchanged between the nodes. These messages are Initialize, Request,

Accept, Reject and Hangup. The details of theses messages are given below:
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¢ INITIALIZE(nid)
This message is sent to every node from an arbitrarily chosen supervisor node every
6t seconds which would pass the traffic requirements of the other nodes. Every node

after receiving this message will start processing its own genetic algorithm.

¢ INFORM (Source, Destination,CON)

This message is sent to Destination node from the source node in order to send the
best individual (tuning matrix) obtained by it at the end of a generation. After
receiving this message the destination node will include these best individuals re-

ceived from other nodes in its population and processed for genetic operations.

e SENDBEST(Source, Master, CON)

This message is sent by each node to master node to inform it about the best indi-

vidual obtained by it after all the generations.

¢ REJECT(Source, Destination)

This message acts as a rejection notice, issued when the request by a node is blocked.

¢ BROADCASTBEST(Master, Destination, CON)
This message is sent by the master to all the nodes, to broadcast the best individual
it has selected from the best individuals sent to it by all the nodes. After receiving

this message all the nodes will update their information (tuning matrices)
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It can be seen that we are occasionally sending best individuals obtained in each
generations in each node to the neighborhood node, in this way we are improving
populations in parallel. We call this activity of sending best individuals to all the
other nodes as migration. The advantage of migration is that by occasionally mi-
grating individuals new, high fitness genetic material will be introduced into the
evolving population of the node. The migrated individuals will replace the worst
individuals in the population of other nodes. Migration like crossover can result in
degradation if performed too frequently, and that is why it should be limited to best
individuals and this operation should be less frequent. Thus, we have introduced
an extra genetic operation (apart from selection, crossover and mutation) which is

migration, which makes distributed genetic algorithm better in performance if used

correctly.

8.3 Summary

Distributed heuristics are needed for realistic implementation of virtual topology de-

sign problem in multi-channel network. A distributed genetic algorithm is presented

in this chapter.
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Chapter 9

Conclusion

9.1 Summary

In this thesis we studied different phases of design of multi-channel network Ar-
chitectures. In Chapter 3, we gave brief introduction to multi-channel network
architectures then we talked about different goals and advantages of multi-channel

architectures. Chapter 4 deals with the methodology for design of Multi-channel

architectures.

In Chapter 5, we proposed and formulated three different problems namely physical
topology design, virtual topology design, optimal routing, the design of physical
topology which is to determine the optimal deployment of optical fiber and optical

components to minimize the cost of fiber, the design of virtual topology is the se-
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lection of optimal channel assignment, maximizing the throughput of the network.
Once a logical connectivity diagram is obtained, flows have to be optimally assigned
over the links of the logical diagram, yielding the optimal routing problem, which is

the minimization of maximum flow, subject to flow constraints.

Since the design of logical topology is complex as it involves real time responses, we
have considered it in detail. The formulation is valid for sharing of channels since,
the physical resources are limited, sharing of channels become necessary, assuming
a collision free protocol. A genetic algorithm for solving the virtual topology design
problem is presented in Chapter 6. Attempt was made to make the genetic algo-
rithm as general as possible, so that it can be used equally effectively for physical

topology design problem and other combinatorial optimization problems.

The results obtained by applying genetic algorithm to the virtual topology prob-
lem are interpreted in Chapter 7. Validation of experimental results obtained using
Genetic Algorithm is done using the linear programming technique which in turn
is validated using the brute force approach. The results obtained from the genetic
algorithm are comparable to the result obtained by the linear programming tech-
nique. The factors which favours the use of genetic algorithm over other normal
optimization techniques and search procedures are:

o GAs converge fast and are easy to implement .

¢ GAs search from a population of points, not a single point.

e GAs use payoff (objective function) information, not auxiliary knowledge.

o GAs use probabilistic transition rules, not deterministic rules.
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Distributed heuristics are needed for realistic implementation of virtual topology

design problem in multi-channel network. A distributed genetic algorithm is pre-

sented in Chapter 8.

9.2 Future Work

We have considered that the number of transceivers per node are fixed, this can be
extended to the case of variable number of transceivers and buffers. Experimenta-
tion with different parallel techniques to find out which approach is best suited for
virtual topology design problem can be done. Fine issues in the parallel implemen-
tation still need to be addressed. Future work can be carried out to design efficient
protocols specially the lean protocols. With respect to multi-channel architectures
work can be carried out for the development of new parallel operating systems for
efficient allocation of resources to tasks, and to explore how different topologies can
be realized by tuning to different channels. With respect to genetic algorithms ex-
perimentation can be done on different methods of crossover operation, probability
of mutation and crossover used, use of advanced operators and techniques in genetic
search like inversion, micro-operators, effective parallel implementation of genetic

algorithm, tuning of penalty coeflicients used.
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Appendix A

Abbreviations and Nomenclature

A,B,C,D
CSMA /CD
DQDB
FDDI
FOLAN
GA

LAN

LP

MAN
MCA
M-LANs
0SI
PTDP
VTDP
WAN
WDM
Xijk

P mutate
Pcrossover

Weighting terms / Penalty coefficients
Carrier Sense Multiple Access / Collision Detection
Distributed Queuing Double Bus
Fiber-Distributed Data Interface

Fiber Optic Local Area Network

Genetic Algorithm

Local Area Network

Linear Programming

Metropolitan Area Network
Multi-Channel Architecture

Multichannel Local Area Network

Open System Interconnection

Physical Topology Design Problem
Virtual Topology Design Problem

Wide Area Network

Wavelength Division Multiplexing

Tuning matrix (decision variable)

Traffic matrix or load matrix

Number of multi-channel network stations
Number of multi-channel network channels
Number of transceivers per node
Population size

Number of generations

Number of runs

Probability of mutation

Probability of crossover
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Appendix B

Mathematica Preliminaries

Introduction

Mathematica is a general computer software system and language intended for mathemat-
ical and other applications.

Mathematica can be used as numerical and symbolic calculator, visualization system,
high-level programming language, modeling and data analysis environment, system for
representing scientific knowledge, software platform, control language for external pro-
grams, and embedded system called from within other programs.

The simplest way to use Mathematica is like a calculator. Mathematical computations
can be divided into three main classes: numerical, symbolic and graphical. Mathematica
handles these three in a unified way.

The Mathematica Language

The most complete reference on Mathematica is [35, 33], which includes a full language
description. With a programming language as rich as Mathematica, comprising about 800
different functions, it takes a good deal of experience to find the correct way to write
a particular program. Meader’s Programming in Mathematica [20] is an excellent tuto-
rial, and is written by one of the developers of the system. To the reader who has never

programmed in any language before, the book written by Abelson and Sussman [9] is
recommended.
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Mathematica supports several programming styles, including Procedural programming,
Functional programming, Rule-based programming, etc.,. To a greater extent than impera-
tive programming languages, such as Fortran, Pascal and C, the Lisp way of programming
is the Mathematica way.

The self-help facility in Mathematica provides a brief description of each function avail-
able on-line. Typing ?Append gives you a description of function Append, while ?? Append
provides additional information which may or may not be useful.

Mathematica Interfaces

Many Mathematica systems are divided into two parts: the kernel, which actually per-
forms computations, and the front end, which handles interaction with the user. The
front end for Mathematica supports sophisticated interactive documents called notebooks.
Mathematica follows many software standards that allow it to exchange material with
other programs. Thus, for example Mathematica graphics are represented in PostScript.
In addition, Mathematica can read data in various formats, and can generate output for
systems such as C, Fortran and Tex.

Mathematica can communicate at a high level with other programs using the MathLink
communication standard. With MathLink, one can use Mathematice to control external
programs. One can also use MathLink to create programs that call Mathematica as if it

were a subroutine. In this way one can set up ones own front end or control system for
Mathematica.
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Appendix C

Implementation of Genetic
Algorithms for VITDP Problem

Genetic Algorithm for Virtual Topology Design Problem

BeginPackage ["GeneticAlgorithmVTDP‘"]

1={{5.9,2.9,9.0,2.2,3.3,4.5,8.9,8.7,9.9,4.8},
{1.1,2.2,2.0,9.0,4.5,3.4,3.3,3.3,4.5,8.9},
{3.3,3.4,2.8,9.0,4.5,4.6,2.2,4.4,6.7,5.5%},
{4.6,2.2,4.4,6.7,3.9,4.5,3.4,2.9,6.8,5.9%},
{56.9,7.7,1.1,2.9,3.3,4.5,2.2,4.4,6.7,6.7},
{1.1,2.2,2.0,9.0,4.5,3.4,3.3,3.4,4.5,8.9},
{3.3,3.4,2.8,9.0,2.2,4.4,3.4,4.5,3.4,6.7},
{4.6,6.7,3.9,5.5,3.3,4.5,4.4,6.7,3.4,3.3},
{6.9,7.7,4.4,4.5,3.4,3.3,2.2,3.3,4.5,3.4},
{2.3,4.4,3.3,3.4,4.5,3.4,3.4,2.9,6.8,4.5}};

(*Load Matrix above*)

a=1; (*Penalty Coefficient*)

b=1; (*Penalty Coefficient*)

c=20; (*Penalty Coefficient*)

d=40; (*Penalty Coefficient*)

e=40; (*Penalty Coefficient*)

n=10; (*number of nodes inthe networkx*)

m=10; (*number of channelsx*)

T=2; (*number of transceivers per nodex)
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Np=20; (*number of individuals in the population*)

Ng=25; (*number of generations#)
pCrossover=0.75;  (*crossover probability#)
pMutate=0.1; (#*Mutation probability*)

pop = Table[Random[Integer, {0, 1}1, {Np}, {m}, {n}, {n}]1;
(rkkckkrrkkkrrkkkkiFunctions Startskkkikrkkkkikkrrikkk)

MatrixMult [matrixi_,matrix2_]:=Table[
Apply[Plus,Transpose[matrixi[[i]] matrix2],{1}]1,{i,1,n}]1;

myOr=(Apply [Plus,Union [{#}]])&;

selectOne[foldedFitList_]:=
Module{{randFit = Random[] Last[foldedFitList]},
Position[foldedFitList, _?(#>=randFit&%)]
// First // First ];

displayBest[fitnessList_, number_]:=
Print [ColumnForm[
Take[Sort[fitnessList, Greater], number]]];

takeBest [fitnesList_, numb_]:= Drop[Sort[fitnesList], numb];

ObjectiveF[fgh_]:=

a Apply[Plus,Apply[Plus,Apply[Plus,Apply [Plus,MatrixMult[1,fgh],{2}]1],{1}1]+

b Apply[Min,Apply[Plus,Apply[Plus,Apply[Plus,MatrixMult [1,fgh],{2}1],{1}1]-

¢ Apply[Plus,Apply[Subtract,{Apply[Plus,Apply[Plus,fgh,{1}],{1}1,1}1] -

d (Apply[Subtract,{n T,Apply[Plus,Apply[myOr,
Table[fgh(l[i,j,k11,{i,1,n},{j,1,m},{k,1,0}],{2}],{1}13 )2 -

e (Apply[Subtract,{n T,Apply[Plus,Apply[myOr,
Table[fgh[[i,j,k]],{i,1,n},{k,1,m},{j,1,n}],{231,{1}131)"2;

flipfa_]:= Random[] <= a;

Mutate [pmutate_,asd_]:=

If [flip[pmutate] ,ReplacePart [asd,ReplacePart [dsa=asd[[
Random[Integer,{1, (n-1)}]]],dsal[Random[Integer,{1, (n-1)}11],
Random[Integer,{1,n-1}1] ,Random[Integer,{1,n-1}]] 1;

crossOver [pcross_, pmutate_, {parenti_, parent2_}]:=

Module[{crossAt},
If [flip[pcross],
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(* True: select cross site at random *)
crossAt = Random[Integer, {1, n-1}];
(* construct children *)
{Join[Take[parenti, crossAt],
Drop[parent2, crossAtl],
Join[Take [parent2, crossAt],
Drop{parenti, crossAt]}l},
(* False: return parents as children *)
{parentl, parent2}
] (* end of If *) ];

Dol
fitList = Apply([Plus,Map[ObjectiveF, popl,{1}];

Print["Generation ", i, ": Fitness of Best ", n];
displayBest [fitList, nl;
(*MAKE THE FOLDED LIST OF FITNESS VALUES*)
(*NORMALIZING FITLIST*)
fitList=fitList-Min[fitList];
fitListSum = Rest[FoldList[Plus, 0, fitList]];
extendedL=Table[{fitList[[il],i},{i,Length[fitList]}];
nT=takeBest [extendedL,Max[(Length[extendedL]-Np),0]];
indices=Table[nT[[i]] [[2]],{i,LengthnT]}];
newPop=pop[[indices]];
(*DETERMINE THE NEW POPULATION=*)
pop=Union[newPop,Flatten[
Table[
(*SELECT PARENTS*)
parents =
pop[[Table[selectOne[fitListSum],{2}111;
(*CROSSOVER & MUTATE*)
crossOver [pCrossover, pMutate,parents],{Np}], 111;
(*END OF FLATTENED TABLE*)

(* perform mutation *)
Mutate [pMutate,popl,

{i,Ng}];
fitList = Map[ObjectiveF, popl;
extendedL1=Table[{fitList[[i]],i},{i,Length[fitList]}];
nTi=takeBest [extendedLl, (Length[extendedL1]-1)];
indicesi=Table[nT1[[i]]1[[2]],{i,Length[nT1]}];
newPop=pop[[indicesi]]

EndPackage[]
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Genetic Algorithm for Large Scale Testing of Virtual Topol-
ogy Design Problem

BeginPackage["GeneticAlgorithmSimulator ‘"]

1;
b=1.5;
1.5

.

T=2;

pCrossover=0.9;

pMutate=0.01;

Np=40; (*number of individuals in the starting population*)
Ng=15; (*number of generations*)

Nr=5; (*number of runsx*)
Ns=20; (*number of sessions*)
m=6; (*number of channelsx*)
n=6; (*number of nodes*)

(k+tttrt bbbttt rtFunct ions+++Start+++tt sttt bbbttt bttt bbbt %)
ss=Arrayl[q,{6,6,6}];

myOr=(Apply [Plus,Union[#]1]1)&;

(*Matrix Multiplication#*)
MatrixMult [matrixi_,matrix2_] :=Tablel
Apply[Plus,Transpose[matrix1[[i]] matrix2],{1}],{i,1,n}];

(*¥Function for calculating fitness of the individual#)
ObjectiveF[fgh_]:=Apply[Plus, Apply[Plus,Apply [Plus,MatrixMult [fgh,1],{2}]1,{1}]]
b Apply[Plus, (Table[(Apply [P1us,Map [myOr,
Table[fgh{(j,k]1,{j,1,n}],{1}11-T),{k,1,m}]) 2]~
¢ Apply[Plus, (Table[(Apply[Plus,Map [myOr,
Table[fgh[[j,k11,{k,1,m}],{1}11-T),{j.1,n}1)"2];

selectOne[foldedFitList_]:=
Module [{randFit = Random[] Last[foldedFitList]},
Position[foldedFitList, _?(#>=randFit&)]
// First // First ];

displayBest [fitnessList_, number_]:=
Print [ColumnForm[

Take[Sort [fitnessList, Greater], number]l];

takeBest [fitnesList_, numb_]:= Drop[Sort[fitnesList], numb];
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flip[a_]:= Random[] <= a;

(#Mutation Operation#*)

Mutate [pmut_,asd_]:=

If [flip[pmut] ,ReplacePart[asd,ReplacePart [dsa=asd[[
Random[Integer,{1,(n-1)}1]1],dsa([Random[Integer,{1, (n-1)}11],
Random[Integer,{1,n-1}]],Random[Integer,{1,n-1}1] 1;

(*Crossover Operation*)
crossOver([pcross_, pmutate_, {parentl_, parent2_}]:=
Module [{crossAt},
If[flip(pcross],
(* True: select cross site at random *)
crossAt = Random[Integer, {1, n-1}];
(* construct children *)
{Join[Take[parenti, crossAt],
Drop[parent2, crossAtl],
Join[Take[parent2, crossAt],
Droplparentl, crossAt]]},
(* False: return parents as children *)
{parent1i, parent2}
] (* end of If %) 1
G A RS S S e
Do[
Print ["++++++ttttttttitbbttttttetbbben] ;
Print["Session", il;
Print ["+++++++ttttibtbtdtttttrb bbb ++40]
1 = Table[Random[Real, {0, 10}], {n}, {n}];
restorel={0};
Dof
Print ["++++++++t+tttttttrbtrbtbbtes+0]
Print["Values obtained in the run ", il;
Print ["+++++itttttttrttbtbtbttttbdrt+41] ;

pop = Table[Random[Integer, {0, 1}], {Np}, {m}, {n}, {n}];

Dol
fitList= Map[ObjectiveF,popl;
Print["Generation ", i, ": Fitness of Best ",4];

displayBest [fitList, 4];

(*MAKE THE FOLDED LIST OF FITNESS VALUES*)
(*NORMALIZING FITLIST*)

fitList=fitList-Min[fitList];

fitListSum = Rest[FoldList[Plus, 0, fitList]];
extendedL=Table [{fitList[[i]],i},{i,Length[fitList]}];
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nT=takeBest [extendedL ,Max [(Length[extendedL]-Np),01];
indices=Table[nT[[i1] [[2]],{i,Length[nT]}];
newPop=pop[[indices]];
(*DETERMINE THE NEW POPULATION*)
pop=Union[newPop,Flatten(
Table[
(*SELECT PARENTS*)
parents =
pop[[Table[selectOne[fitListSum],{2}11];
(*CROSSOVER & MUTATE*)
crossOver [pCrossover, pMutate,parents],{Np}], 11];
(*END OF FLATTENED TABLE*)

(* perform mutation *)
Mutate [pMutate,pop],

{i,Ng}l;
fitList = Map[ObjectiveF, popl;
extendedLi=Table [{fitList[[i]l],i},{i,Length[fitList]}];
nTi=takeBest [extendedLl, (Length[extendedL1]l-1)];
nTi=Flatten[nT1];
11=First[nT1];
restorei=Join[restorel,List[11]],

(*Print ["Best individual >* Max[restoreil];
Print ["Worst individual >" ,Min[restore1l],*)
{i,Nr}];

ObjectiveF2= a Apply[Plus,Apply[Plus,Apply[Plus,

Table [MatrixMult[ss[[i]],1],{i,1,n}],{2}],{1}1];
listi=Flatten[Table[0<=ss[[i,j,k]]<=1,{i,1,n},{j,1,n},{k,1,n}]1];
list2=Table [Apply[Plus,Map[myOr,Table[ss[[i,j,k]],{i,1,n},{k,1,n},

{j,1,m}3,{2}],{1}1 [[yl]<=T,{y,1,n}]);
list3=Table [Apply [Plus,Map[myOr,Tablel[ss([i,j,k]],{j,1,n},{k,1,n},
{i,1,m}},{2}],{1}1 [(y]1<=T,{y.1,n}];
constraints=Join[listl,list2,1ist3];
12=First[Flatten[ConstrainedMax[ObjectiveF2, constraints,
{ss(l1,1,11], ss(f{1,1,2]], ... ,ss[[6,6,611}11];
restorel=Rest[restorell ;
Print ["+++++tttittttttbbbbbtbttbtdttttttttttbt bbbt bbb bbb 41]
Print ["++++++4+++4+++++RESULTS OBTAINED+++++dttdttttttttttstt+++"] ;
Print ["+++++ttbtttttbbrttttttttbtbttbbbbdbb bbbttt bbbt bbb +4+1]
(*Print [restorel] ;*)
Print["Best individual >" Max[restorelll;
Print ["Worst individual >" ,Min[restoreill;
Print["Value obtained from linear programming solution-->", 12];
13=12-11;
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15=12-restorel;

(*Print [15] ;*)

16=Min[15];

17=Max[15];

18=(Apply[Plus,15])/Length[15] ;

(*Print ["Difference (LP value-GA best individual values)-->", 15];#)
141=((17/12)%100);

142=((16/12)*100) ;

143=((18/12)*100) ;

Print["Maximum percentage deviation >", 141];
Print["Minimum percentage deviation >*, 142];
Print["Average percentage deviation >", 143];

Print ["+++4++44+ttttdtttttbbbbttttt bbb bbbttt bbb bbb bbb b bbb ] |
{i,Ns}]
EndPackage[]

Linear Programming Implementation of Virtual Topology
Design Problem

BeginPackage["LinearProgrammingVTDP*‘"]
(*This program is the genetic algorithm implementation of VIDP problem*)

a=1; (*Penalty Coefficientx*)

T=2;

m=6;

n=e;

1={{1.1,1.2,3.2,1.0,3.1,4.5},
{1.3,1.1,4.9,0.0,3.3,3.1},
{2.0,9.0,9.0,4.5,3.4,3.3},
{2.1,2.3,5.2,5.6,3.2,8.0},
{2.2,2.0,9.0,3.3,4.5,3.4},
{1.0,3.1,4.5,1.3,1.1,4.9}};

myOr=(Apply[Plus,Union[#]])&;
ss=Array[x,{6,6,6}];
MatrixMult [matrixl_,matrix2_] :=Tablel
Apply[Plus,Transpose [matrixi[[i]] matrix2],{1}1,{i,1,n}];

ObjectiveF= a Apply[Plus,Apply[Plus,Apply[Plus,
Table [MatrixMult[ss[[i]],1],{i,1,n}],{2}]1,{1}1];
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listi=Flatten[Table[0<=ss[[i,j,k]]1<=1,{i,1,6},{j,1,6},{k,1,6}]];

list2=Table [Apply [Plus,Map [myOr,Table[ss[[i,j,k11,{i,1,n},{k,1,n},
{3,1,m}1,{23]1,{13]1 ([yl1<=T,.{y.1,4}];

list3=Table[Apply [Plus,Map[myOr,Table[ss[[i,j,k1],{j,1,n},{k,1,n},
{i,1,m}1,{2}1,{1}]) [[yl1<=T,{y.1,4}];

constraints=Join[listi,list2,1ist3];

ConstrainedMax[0ObjectiveF, constraints,{ss[[1,1,1]], ss([1,1,2]], ...,ss[[6,6,6]11}]
EndPackage[]

Exhaustive Search Implementation of Virtual Topology De-
sign Problem

BeginPackage ["ExhaustiveSearchVIDP ‘"]

a=2; (*Penalty Coefficientx*)
b=15;

T=2;
1={{1.1,1.2,3.2},{1.3,1.1,3.3},{2.1,2.3,5.2}};

Ored[x_] :=Apply[Plus,Union[x]];

MatrixMult [matrixi_,matrix2_] :=Tablel
Apply[Plus, Transpose[matrixi[[il] matrix2],{1}},{i,1,3}];

displayBest[fitnessList_, number_]:=
Print [ColumnForm[Take [Sort [fitnessList, Greater], numberll];

MatrixForm[pop=Partition[Partition[Partition[Flatten[

Outer[List,{0,1},{0,1},{0,1},{0,1},{0,1},{0,1},
{0,1},{0,1},{0,1},{0,1},{0,1},{0,1},
{0,1},4{0,1},{0,1},{0,1},{0,1},{0,1}11,31,31,211;

ObjectiveF[x_List] := a Apply[Plus,Apply[Plus,Apply[Plus,Table[1*x]1]1]1]+
b Apply[Min,Apply[Plus,Apply[Plus,Table[1*x]],{1}1];

EndPackage[]
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