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CHAPTER ONE

INTRODUCTION

1. QUARK MODEL: INTERNAL QUANTUM NUMBERS OF
QUARKS.

Atoms and nuclei are built up from small number of
elementary constituents, namely from electrons and nucleons.
This concept was extended to elementary particle physics. It was
revealed that the subnuclear particles called hadrons ( among
them are protons, neutrons and the mesons ) are composite
rather than elementary. In 1964 Gell- Mann and Zweig
independently attempted to account for the bewildering variety
of hadrons by suggesting they are made up of the simpler
constituents called quarks 1-3 At first quarks were interpreted as
fictitious particles, or quasi-particles to be used in
phenomenological calculations of masses and widths, but they are
now regarded as fundamental particles. All known hadrons

( more than one hundred ) are attributed to combinations of

1



these fundamental entities.

The fundamental assumption of the quark model for
hadrons is that baryons are three quarks bound states, whereas
mesons are bound states of one quark and one antiquark4. Ina
schematic notation where spin and spatial degrees of freedom

are suppressed:

| Baryon ) = |qiqj qk> (1.1)

]
0
0

| Meson ) g ) (1.2)
i

In the above equation the indices i,j,k refer to the quark flavor.

Since baryon number is additive we assign B = 1/3 to all
quarks. Quarks were supposed to be spin 1/2 particles and
existing in different varieties termed flavor. Five of them have
been identified - the up ( u), down ( d ), charm ( ¢), strange ( s )
and bottom ( b ) quarks - and a sixth flavor, the top quark (t), is
believed to exist* ° . They also carry fractional electric charge ( Q)
and fractional baryon number ( B ), the intrinsic quantum

numbers are given in Table (1.1 ).

For the low-lying baryon states the total wavefunction is

* The top quark mass has not been found yet. Experiments at the TRISTAN ring in
Japan gives a lower bound for the t-mass m¢ > 26 Gev ( Takasaki 1988 )

2



symmetric under interchange of any two quarks. In fact in the
ground state the orbital angular momentum of the three quarks
is zero (1 = 0 ) and hence the spatial wavefunction must be
symmetric. Let's consider the A" resonance particle ( J = 3/2).
It is made of three u quarks ( flavor symmetric ), so the spins
wave function must be symmetric, with all three quarks spin
aligned up to give S = J = 3/2 . and the flavors of the three
quarks are equal. The combined spin, flavor and space wave

function:

w(A",4=32) = (UTUTUN) @ (x,, X, X)) (13)

where @( X4, X2, X3 ) is totally symmetric under any permutation of
x;.Therefore we have totally symmetric wavefunction for
particles with half integral spin, but this contradicts the Pauli
exclusion principle. The solution to this puzzle is to suppose that
the quark carry a further degree of freedom called color®,
According to this each quark can occur in three different

versions or colors; red (r), blue (b) and green (g):.

q - q, a=rb,g

Including this additional degree of freedom it is possible to
construct a three quarks wavefunction which is antisymmetric in

color. Hence the A™ wavefunction becomes:

3



Quarks Q B S C t b Y
u 2/3 /3 0 0 0 0 /3
-1/3 . 3 0 0 0 0 Y3
c 2/3 Y3 0 1 0 0 0
S -13 /3 -1 0 0 0 -2/3
t 2/3 V3 0 0 1 0 0
b -1/3 3 Q 0 0 -1 0

ks ud.,s,ctb ( @ is unit of

Table 1.1 Intrinsic quantum numbers of the six quar
electron charge)

Fig 1.1 Strong scattering via gluon exchange.

v(aAT u=3n) =L e (UTUTUN oK%, x)  (14)

J6

where €, = 1,- 1 for even, odd permutation of abc respectively.



In general equation ( 1.1 ) is replaced by the totally
antisymmetric baryon wavefunction which satisfies the Pauli

principle ( color singlet ):
| Baryon ) = Jg we | G 49 ) (15)

Correspondingly, the meson wavefunction in equation (1.2)

is replaced by :

-QI

| Meson ) = JE sl qa ) (1.6)

The states in equations ( 1.5 ) and ( 1.6 ) are invariant

under rotation in color space7.

To get agreement with
experiment it was necessary to assume that all hadrons are
described by quark states that are invariant under color SU(3)
transformation. Indeed all known hadrons are color singlets, i.e
hadrons are colorless. In order to explain the nonexistence of
unobserved states like free quark (q), diquarks (qqg), four-quarks
(qqqq) states, .. etc.,, one can make the confinement postulate,

which states: " all hadrons and all physical observables (currents,

energy-momentum tensor, .. etc. ) are color singlets"3



2. QUANTUM CHROMODYNAMICS

As far as quarks are concerned, each one exists in three
color varieties which act as strong charges and generate the
strong forces. The strong quark interaction proceeds by the
exchange of force quanta called gluons, which have spin 1 and
are believed to be massless. The gluons carry color back and
forth between the quarks as shown in the basic exchange process

( fig. 1.1).

The quantum theory of interaction of quarks and gluons is
called QuantumChromodynamics®%7 ( QCD ) just as the quantum
theory of interaction of charged particles with photons is called

Quantum Electrodynamics ( QED ).

Two types of tests which support QCD are stated below :
1)Hadron spectroscopy:

As already seen the color was introduced in order to satisfy
Pauli principle. At short distances the one gluon exchange
between two quarks inside hadrons fig( 1.2 ) give rise to
hyperfine splitting between the singlet and triplet spin states of
quark and antiquark ( cf.2.1.3 ) This is the source of p~=x, K - K*

and N - A mass differences.

- In fact m(p) > m(n) is found in nature. This supports



the theory that the gluons carry spin 1.

- And m(A) > m(N) is found in nature. This supports the

theory that the vector gluons carry color.
2) Deep inelastic lepton - hadron scattering.

At very short distances or high momentum transfer ( Q )
quarks behave nearly as free particles within hadrons, and this
implies that the strong coupling constant decreases as Q2 ----> o
( asymptotic freedom ). The essence of asymptotic freedom is

contained in the following equation:

12=n

> 2 >0 forn<16 (1.7)
(33-2n)Ln(Q /A )

o ( 02) =

n denotes the number of active quark flavors and A is a free
dimensional parameter of the theory to be determined by
experiment. A typical hadronic reaction which supports the

asymptotic freedom is :

€ + P =---ee--- > e + hadrons
At the quark level it is depicted in figure ( 1.3 ).

Indeed the cross section for the above process remains
large, is expected from the fact that hadron constituents are

point-like and interact weakly. There are two regimes:

7
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Fig. 12 One gluon exchange between two quark inside hadrons

—
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Fig. 1.3 Diagram for electron-proton scattering

- Stort distance ( high momentum transfer) the running
coupling constant Qg becomes small, and hadrons appears to

consist of weakly interacting quarks. One can apply perturbation

theory calculations.



- Long distances regime ( small momentum transfer ):
perturbation theory is not applicable in this case, the hadrons
interact strongly. Quarks and gluons are absent from the physical

spectrum (quark confinement).

In fact the quark model has led to important theoretical
developments such as ( QCD ), the theory of strong interactions,
and has played a part in electroweak theory ( Glashow, 1961,
Weinberg 1967, Salam 1968 ) as well as playing a part in many
interesting experimental discoveries involving new flavors of

quarks.

Supplemented with ideas from QCD the nonrelativistic
quark model has proved to be quite successful in describing the
spectroscopy, static properties, and decay amplitudes of hadrons.
The success of the quark model in its various guises ( the
nonrelativistic quark model, the bag model, .. ) is quite

impressive.

3. WEAK DECAYS

The strong and electromagnetic interactions do not alter
the quark flavor . In the weak interaction , on the other hand, a
quark can change its flavor ( but not its color ). The quark

picture allows us to write down a simple interaction which



describes a variety of weak hadronic decays.

Weak decays have always been an important source of
information about the form and symmetry of basic interactions as
well as the structure of the constituents of matter. Actually weak
decays are essential for testing the standard model and
determining its fundamental parameters ( quark mass, quark
mixing parameters, .. ). They also give valuable information about
the inner structure of hadrons not yet predictable from strong
interaction theory ( QCD ).

In recent years great effort has gone into theoretical
calculation of weak decays of particles containing a heavy quark ¢
or b. Despite this, it still has not been possible to get results from
the first principles. However, calculations based on various
plausible assumptions have led to a reasonable understanding of

charmed and beauty decays*.

In order to link theory with experiment one must
eventually find ways to calculate the hadronic matrix elements of
the effective hamiltonian. This proves not too difficult for
inclusive® decays of hadrons which contain a sufficiently heavy
quark Q. In fact many exclusive decay channels have been

calculated in a sophisticated version of the spectator model ( cf.

* A reaction in which all the final-state particles are identified is called exclusive,
whereas a reaction in which only one of the final-state particle is identified is
called inclusive.

10



4.2.1 ) using model wavefunctions for the hadrons®. In such
model the light quark constituents act merely as passive

spectators.

The flavor-changing one-loop processes proved to be
successful in predicting various physical quantities. Particularly
successful was the Gaillard and Lee® prediction of the mass of the

charmed quark in the following processes :

K - p+Q , Kon+et+e

3.1 RARE B DECAY

Similarly the rare decay of B meson proceeding through
flavour changing neutral current transitions b ----- > s Y, which
are allowed at the one-loop level have been identified as a
valuable source of information on the standard model and its
extensions, in particular with respect to:

1) Top quark mass and Kobayashi-Maskawa mixing angles.
2) Perturbative QCD corrections which enhance the branching

ratio for transition b -—->s 1.

In order to illustrate the above points consider the process:

B - > K y involving the b ---—> s Y transition, which is at

the hadronic level is described by an effective interaction

hamiltonian, Heff, described in terms of operators involving

11



quarks and gluon fields 10.11,

Heff Cmbso q’ be (ms«mb) (1.8)

=15(1 +ys) b ,(where s and b are quark field.

qv is the photon momentum, and tsu its polarization.)

3.1.a QCD CORRECTIONS

The constant C is calculated in the model of interest, it
contains the dependance on the Cabibbo-Kobayashi-Maskawa
angles and the charm and the top quark masses. Without QCD
corrections, the decay b ----> s Y proceeds at the one-loop level

as shown in figure 1.4. In lowest order the constant C can be

written as follow:

G

J_4u

Gt : Fermi coupling constant.

V V F(m) where

th and Vts are the Kobayashi-Maskawa matrix elements.

The function F,; can be found in Inami and Lim!2. For
X << 1, F(x) ~ O(x) because of hard Glashow-Iliopoulos-Maiani

( GIM ) suppression, and only the t quark is important.

12



Fig 1.4 : Feynman diagram contributing to the’bsyvertex function at the one-
loop level

Y

Wy

Fig.1.5 Diagram responsible for the QCD corrections for the transitionb ——-> s
the curly line indicate gluon exchange.

The effective hamiltonian He.¢p eq.(1.8) is treated as an

effective - short distance operator. Therefore the constant C

13



should include all short - distance perturbative QCD corrections (
ref.13, 34 ) .In fact there are large QCD corrections to the
constant C, because there is an accidental cancelation of
Ln(miy/m.) in the lowest order evaluation of C. Taking gluon
exchange, between external and internal fermion lines, into
account ( fig 1.5 ) removes the Glashow - Iliopoulos - Maiani
suppression and turns it into a logarithmic suppression. The

computation of QCD correction to first order in as modifies the

constant C as follow 3,

m2

-2 v V+(F(m)+i‘—s—Ln(—t)) (1.9)
4apd b ts’ 271 3r m2 :

¥
-0

where m = myp is a typical hadronic scale of the process.

Numerical calculation!® show that the QCD correction factor

(40s/3n)Ln(my/m.) dominates over F2(xt) for m¢< Mw

In figure 1.6 we give the plot of the branching ratio?®® for
b -----> s ¥ as a function of m; with and without QCD corrections
(QCD corrections here include the summation of leading -
logarithmic contributions ). It is clear that the corrected
branching ratio is in the experimentally accessible range of order
1075, We conclude also that from figure 1.6 that the upper

bound of the inclusive decay b ---> sy, would imply a severe

constraint on the top quark mass.
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Fig. 1.6 Branching ratios for b --—-> s yas a function of m¢ , with ( solid line )
or without { dashed line ) the inclusion of QCD corrections ( Ref.49 ).

10* BR b —>sY B —> K vy

mt (Gev) NoQCD Qch No QCD Qch
40 0.08 2.18 0.01 0.13
65 0.34 2.73 0.02 0.16
80 0.48 3.05 0.03 0.18
100 0.74 3.46 0.04 0.21
120 1.02 3.83 0.06 0.23
150 1.43 4.33 0.09 0.26
200 2.02 5.00 0.21 0.30

Table 1.2 The branching ratios , with and without QCD corrections for b -----> s 7y, and
B -----> K yas a function of top-quark mass ( Rel.29)

15




Numerical evaluation of the QCD corrected and QCD
uncorrected branching ratios (BR) for B ----> K (892) y are given
in table 1.2 as a function of m;( Ref.29 ). We see that for m; = 40
Gev the ratio BRcorr /BRuncorr ~ 27 and for m¢= 120 Gev is about
4, This illustrates how the above decays can provide important

tests of higher order QCD corrections and top quark mass.

3.1.b HADRONIZATION MODEL

However, despite the above mentioned importance of B
decays in testing the standard model, there is a difficulty, which
hinders explicit calculation of the relevant matrix element, for
the above mentioned test. In fact the estimation of the exclusive
hadronic radiative mode is rather difficult and depends on the
choice of the hadronization model. Two frameworks have been
used in the literature for this purpose. One is based on QCD sum

rules embedded in a general Vector Meson Dominance!*!%,

An other framework which have been used extensively is
the constituent quark model ( CQM ). In the present work the
CQM based on the Schrodinger equation appropriate to the
Coulombic plus screening potential

o “Hr

V(r)=-%-r—s+ or1—il$— (1.10)

will be used to determine the spatial part of the final and initial

16



meson wave functions. To avoid extensive numerical calculations,
we will use variational solutions of the Schrodinger equation

based on harmonic-oscillator wavefunctions:
3
2 2
4 _pY
0@ = (%) e 2

in which the B's are employed as variational parameters.

The hadronic matrix elements involve those of a current
expressible in term of the relativistic quark operators. Each

matrix elements is expressed in terms of form factors.

In chapter two, we give a detailed account of quark
antiquark interactions at short distance, and a phenomenological
screening confining potential at large distances will be
mentioned. In chapter three we briefly describe the meson
states in the weak binding limit. Chapter four is devoted to flavor
changing radiative decays of B meson, while in chapter five we
extend the same procedure to flavor conserving radiative decays
of light vector meson, and finally a general conclusion will be

given in Chapter six.

17



CHAPTER TWO

QUARK-ANTIQUARK POTENTIAL

1. INTRODUCTION

In the quark model hadrons are built up from quarks and
antiquarks. Due to the fact that quarks must obey Fermi statistics
a new degree of freedom was introduced in mid 1960's known

as color charge or color ( cf. Chap.1, Sec.1).

The interaction which bind quarks and antiquarks to form
mesons is mediated by eight massless gauge bosons?®, the gluons.
The quark and antiquark carry the colour charge which is
analogous to the electric charge in QED, with a very important
difference : whereas the photon has no electric charge in QED,
gluons carry color, i.e, the field quanta themselves are a field
source; gluons couple both to each other and to quarks. The
theory of interaction of gluons and quarks is known as quantum

chromodynamics ( QCD ).

18
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Fig.2.1 The radial dependence of some ty;:ical QQ potential ( Ref.21 )

It is believed that QCD is the correct theory of strong
interactions. One popular approach to deal with this interaction
in many cases is the use of potential model supplemented with
ideas from QCD to motivate the asymptotic behavior of the

potential in two limits 17,

- For short inter-quark distance ( r ---> 0 ), the coupling

constant Og becomes small ( gluon exchange are very weak ) and

one gluon exchange gives rise to Coulomb-like potential
V@):-%%s (21)

is expected to be a good approximation
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- For large separation of quark and antiquark, the
intermediate gluon fields are thought to form a linear tube so that

the potential is expécted to increases linearly with distance.

There are many phenomenological potential models!8-19-20

which accommodate these two features appropriately. But all
approaches lead ( numerically ) to similar pctentials21 in the
region of distances from about 0.1 to 1.0 fm ( fig.2.1) all the

proposed models are essentially identical in the medium range.

2. COULOMB - LIKE POTENTIAL.

r'd
.

2.1 Quark anti quark scattering.

Fig. 2.2 Lowest order Feynman diagrams involving gluon exchange.
The color indices are ijk for the quark and A for gluon.

The - 4/3 factor which appears in the short range
potential ( eq. 2.1 ) comes from the color SU(3)gour group. It



may be justified as follow: each quark can have three color
degrees of freedom and couple with eight color gluon states:
averaging over quark color we get a factor 8/3 and we have to
divide by two because the coupling constant is defined as twice
the square of the strong color charge. However a rigorous

derivation of such factor can be done.

To form color singlet we have to combine final quark and
antiquark into a symmetric combination and similarly for the
initial quark antiquark. Thus summing over the color indices i,jk

and over the eight colors of gluons, we get:

dox dog
(_&) (Z)klf;ﬁ =° _)( klflfv%\/f\/—f Oy B
.4
3

=& 0 Ap=-E Tr(MA) =- 2=

The minus sign come from the fact that in dealing with
antiquarks Vv = - Uu ( u, v are Dirac spinors for particle and

antiparticle ).

2.2 Matrix elements

Perturbative QCD can be used to calculate the quark - quark

scattering amplitude:

qi (Pi) + gj(p;)  ---------- > qi(py) + q5(py)



Fig 2.3 Strong scattering via gluon exchange.

st
The Feynman rules ( Appendix B) for QCD gives the matrix

element of the above process.

S = 2m)* 8*(pi+p; - PP —Lrp [ 2 U (0)(-g W)U}
@en)* V EE;

(%) 1 [l G gy ig 1,)U(p:)
9> 2n)* V EE;

S =-i H 2n)* 8*(pi+p; - p;+p})

where,

~ 2 — .
H= g6 \/ = HTJ U (p.i) YuU(p)) m—l_'ml U (p;) WU (i) dpv
(27) q2 EE; EE;



- 8 M
(2r)?

The matrix element M is given by

M=L2 DT U @) wUe)A /25U @) Ui  (2.2)
9 E;E; EiE;

It is well known that it is possible to represent the wave
functions of free Dirac particle by two components instead of
four. This could be done by performing a canonical

transformation of the form eiS, where S is hermitian. The

transforming function is given by:

E(p)+m +i¥.p

~2E(E + M)

exp(iS(p)) = (23)

The above transformation known as Foldy Wouthuysen?%23

transformation and has the effect of removing all odd operators

so only even operators contribute. Using:

M y(p) = eiSC) , m yt =y etiS(p)
1/E (p) = ey VE (P)va=xe

0
Where 7 are Pauli spinors: (1)
0

D00 —

then the evaluation of the matrix element involves the calculation

23



of u(p’) I u(p), ie,

X e+iS(P) 1, eiS(P) X, where I, =74,y stand for Dirac matrices. The
Pauli spinors X and X on left and right respectively can be

omitted, and only even operators® will contribute.

2.3 NON RELATIVISTIC LIMIT.

Consider the non - relativistic limit to order ( Ipl 2/ m?2) of

—_ U(p"IsU
T @U(p) (2.3.1)

This is given in appendix A. Using the results of this

appendix, the matrix element M has the form:

)
M=1 l-g_ d 4+ 1 -_l_(_y' a X D: +_Lc_f a X D

+—L(-4p.p+4(p;-q)(Pi-9))+

4m;m;

i 2p.(0iXq)+—L—2(c; Xq).p;

4mimj P ( ! q) 4mimj (l q) P_;
-1 (&i.6) @+—L—5i.q4X ;. Q) ) (24)
4m;m; 4m;m,;

*Operators which couple the large and the small components of Dirac wavefunction are
called odd, whereas even operators do not couple large and small components.
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where:
p-P =P-p
i i i

g-=

The form of the potential in r - space is found by taking the

Fourier transform of the matrix element M:

V@) =- % gn f a7 M@) d% . g2 =41
0

u|A

I e M(q) d%q (2.5)

Evaluation of the integral gives the following one gluon

exchange potential

-‘J~-P.i I P|)Pl) E_83(')( 1 + 1

2m,mJ r m? mf

+10_§;5;-1 ~ ( Lz(l"xf’.i)-s.i - Lz(Fxf;}).E'j )- —2( (Fx). §;

V() = -—a( 1.

- (x5 Si+3 (i) §)-18.5))) (26.)

For 1 = 0, the S state of quark antiquark, the angular
momentum and tensor force part vanish. Thus the S - wave

interaction between quark and antiquarks is given by:
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V(r) = -‘la 1. (Pi-Pi FG.P)-Piy m§3c (L4 L

@ = ( 2m,m, T ) 5 @ ( . + 7

+—15—s 5) (2.6b)
3m;m;

The term:

1583(’)( L4L 1 +——Ls.s,)

gives the hyperfine splitting between 3S; and IS, states.

However at short distances in the leading non - relativistic

limit the Coulombic term can be considered as the dominant one.

V(@) = -fé- osl (2.7)

3. LONG RANGE POTENTIAL

3.1 STRING PICTURE

Free quark have never been observed, thus Coulomb-like
potential is not sufficient to confine quarks inside hadrons.
Although, one can knock an electron out of the hydrogen atom
( which is also bound by coulomb - like potential ), one cannot
knock out a quark out of hadrons by hitting it with sufficient
energy. Hence the one gluon exchange potential dominate at

short distances for qq system. At long range a confining potential

26



is needed.

As the distance between qq increases, the interaction ( eq.
2. 7 ) is modified in QCD at large distances of order one Fermi or
more. The chromoelectric flux lines bunch together into a tube
and the force lines tend to be paraue13'17 ( fig 2.4 ). This leads to
a constant force between quark-antiquark i.e the potential has

the form

V(@) =o6.r (28)

An infinitely rising potential such as (eq 2.8 ) permanently
confines quarks since an infinite amount of energy would be
needed to produce quarks as separate entities. The force
between quark and antiquark is transmitted by a color flux with a
constant energy per unit length corresponding to o. As the
interquark distances increase, one expects that the system will
breaks up as soon as there is enough energy available to create a
new quark-antiquark pair ( fig 2.4 ), which combine with the
initial pair forming two color singlets. These considerations form

a link to the string picture of hadrons.

In the string picture quark antiquark are linked by a string
( fig 2.5). Simple calculations based on such a picture,
supplemented with experimental data, permit rough estimation

of the string constant.
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Fig. 2.4 Hypothetical collimation of the flux lines in QCD. If energy exceeds the
threshold for quark pair creation the string breaks.
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Fig 2.5 String model used in calculating the relation between angular
momentum and mass of hadron,
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Assume now that the string rotates about its center and the
quark , antiquark located at the ends of the string are massless so
that the maximum velocity is equal to the velocity of light . The
angular momentum of the gluon tube is ( fig. 2. 5)

r

] rv(r)dr r
J=20 Nt where we have v (r) = - (velocity of lightc=1)
0 ,/ 1-v(r) 0

Thus J=——g— . 1, being half of the string length, while
rO
dr
thetotaimass E =M = 20_[ '—2— =0 r01c
0 ,/ 1-v7(r)
)| 2
Thus J = 5 —E (29)

Equation (2. 9 ) is known as the Regge slope. It holds for
cases of constant energy density of the string, i.e, for a linear
potential. The linear dependance of the angular momentum, on
the square of the mass ( eq. 2. 9 ) is in a good agreement with
data on the rotational excitation of different hadrons. This fact is

illustrated in fig. 2.6.a & 2.6.b
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3. 2 SCREENING EFFECT

The basic understanding of the confinement of quarks is
not yet complete and the increasing of linear potential V(r) ~ r
seems too fast. There are now many phenomenological potential
models which accommodate the end points2! ( r ----- > 0 and
r =--e-- > o ) to account for the experimental data of heavy
quarkonuim which are mostly in the region of short to
intermediate distances. It is uncertain whether the confining
potential has a linear form. In @QCD the interaction among gluons
leads to a diminution of the effective strong interaction charge at
short distances. Qualitatively, at large distances, the potential
would be strongly weakened by the screening effects due to the
quark pair creation, and the confining interaction potentials must
fall below the linear potentiall®, In fact many people proposed

different potential weaker than the linear onel7:19,

Recently F. Langhamer et al?4 used lattice gauge theory to
investigate the potential between quarks. They found indications
that at large distances the potential deviates from a linear
potential . This is expected from the fact that spontaneous quark
pair creation in the field stretched between the static quark
screens the charge of the color sources at a scale of order one
fermi and this turns the linearly rising potential at large

distances into a short range one.
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Fig 2.6.b Plots of spin J against mass, squared, for baryon resonances of the A
family (I = 3/2) and the A family (I = 0 ). Positive and negative parity states are
shown as full and open circles ( ref 51)
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For a system of a heavy quark and a heavy antiquark F.
Langhamer et al get a potential curve presented in figure 2.7 .
Such a curve could be fitted by superposition of a Coulombic and a
linear confining term. For the case where a light quark is
incorporated into the system their calculation gives the curve

shown in figure 2.8.

It is clear from fig.2.8 that for large distances the potential
is weaker than a linear one. F. Langhamer et al parametrize the
potential by an ansatz that corresponds to a cut - off confinement

form with screening length p 1.

Such parametrization maintains the Coulombic plus linear
behavior for small and medium range , but for large distances

the linear part is damped.

While the Coulombic term is flavor dependant through the

running coupling constant o, only the linear term which is flavor
independent will be damped, therefore, in the presence of a

light quark the potential has the form:

=-ia 1- eWr
V(@) 3_r& +0r—-¢—ur (2.10)
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Fig. 2.7 Radial variation of Potential between two heavy quarks ( ref.24)
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CHAPTER THREE

MESON STATES

1. MESON WAVEFUNCTIONS.

The meson wavefunctions may be explicitly constructed as
a product of the usual three-dimensional momentum
wavefuctions and the internal space wavefunctions. In the weak

25-28 starts

binding limit, the construction of the meson state
with the construction of a free quark-antiquark momentum shell
in its center of mass frame with definite JP and definite relative
momentum p. The general quark-model states are superpositions
of such states weighted with a wavefunction that depends on p.
Then noting that

m m

P-—P-p ad P .2

M MP+p

where P; is momentum of antiquark with m; = mg and P2 is that
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of the quark with mz = mq and P is the center of mass
momentum. The ground state meson wavefunction ( since the
orbital angular momentum is zero, thus there is no spin angular

momentum coupling ) takes the following form:

IM(P,S,S,)> = Idsp 6, (P) X(S,S )¢, ¢ x

o o i
b(ﬁl’+p)d w P-p) 10> (81)

where ¢y , X(S,S3), ¢7 and ¢, are momentum, spin, flavor and

color wavefunctions of the physical meson M.

The operators b*, d* create a quark and antiquark
respectively, while |1 O > is the vacuum state ( which should not
be confused with the null vector ). The vacuum state is

normalized sothat <01 0>=1.

The function ¢p(p) is the Fourier transform of the ordinary
Schrodinger wavefunction y( x).
3
dp 1ip.

X
vix) = [ =B &' Po (p) (3.2)
(2m)

2
note that: Jld3pl oI =1
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It is convenient to normalize the meson states to a

momentum conserving 3-function i.e:

<M(PS.S',)| MPSS)>=5_35  5(P-P) (83)
33

SPIN PART:

From a spin 1/2 quark and spin 1/2 antiquark one can only
construct total spin zero ( singlet ), or spin one ( triplet ) states.
Denoting the spin projections Sz = * 1/2 by an arrow pointing up
or down respectively, the resulting spin wavefunction x ( S, Sg)

takes the form :

- Symmetric ( spin 1 )
S=1, S =1 x(1,1) =|TT>
S. =0 x(1,0)=:/1§-[|TL>+|lT >]

(34)
S =-1 x(1-1) =4 >

- Antisymmetric ( spin 0 )

S=0, S =0 x(o,0)=-];[|u>-ln >]
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COLOR WAVEFUNCTION:

The hadrons have no net color ( hence they are "colorless"),
i.e. they are color singlets. Thus a meson consists of quark and
antiquark having equal and opposite color. The color singlet

wavefunction is given by

L(RR+BB+GG ), symmetric

WC=J3_

FLAVOR WAVEFUNCTION:

The following table gives the flavor wavefunctions for the

different mesons to be studied.

mesons flavor wavefunction
g ub
@° (1/2)"* (ut + dd)

px ud

0’ (1/2)"/* ( vt -dd )
P T du

K K ds

kK" K us
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2. EXPLICIT SPACE WAVEFUNCTION.

In the nonrelativistic limit the hamiltonian of the quark and
antiquark system is:
2
H= p/2m + V(1)
where m stands for the the reduced mass of the quark -

antiquark system. The potential is given by2%

o -
—rs--lt-()’l'1 e

V(r) = - (35)

w|s

The average value of the energy is: E = <y|Hly>,

where the y states are normalized to unity. To proceed further

we take a Gaussian wavefunction:
_ B
y(r,B) = 5, € (38.8)

as a trial function with B as the variational parameter. Hence the

expectation value of the hamiltonian is:

2
E(B) =fw‘(r. B) (%,— + V() )i BydT (3.7)
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which on using equations ( 3.5 ) and ( 3.6 ) for the potential and

the wavefunction respectively, yields the following result

n
2 _—
o3 2B 2

3 2 89 A .016% (1.2 [ &
E@) =7~ '3JEB+%+—J1%F'(2|32+“)G (1 J,;! e d)

( 3.8)

REMARK:

As p goes to zero ( the screening length 1/pbecomes
large) the potential V(r) behave like a coulombic plus linear
potential. In fact one can calculate the limit of E (B) as p
approaches zero. Then the expectation value is the same as the
129

one obtained by Deshpande et al“”, in the case of a linear

confining potential

The values of B will be needed for the numerical
estimation of the different form factors involved in the hadronic

matrix elements ( in Chap.4 and 5 ). Thus these values are those

for which the expectation value E ( B ), is minimum.

We take the same numerical values as Deshpande et al for
the different parameters in the equation E(B) which are:
as = 0.50, o= 0.18 Gev» Mu =M, = 0.33 Gev, Ms = 0.55 Gev:
my = 5.12 Gev.
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While, for the screening length we used the numerical

value (ref, 24): p! = 1.24 fm.

To determine the desired values of B which minimize E(B),

one has to solve:

2
EB) _oaa 2EB®

oB 2%p (3.10)

This can be done by use of the Mathematica ( ref. 50 )

software as illustrated in the next section. The minimum of E()
occurs for B = 0.32 Gev, and B = 0.24 Gev, for B and K meson

respectively.

41



3. NUMERICAL COMPUTATION

In what follows we show the output of the
Mathematica program; b, e[b] and k[b] stand
for the variational parameter ( beta), the average
energy for B and K mesons respectivly. The
numerical values of beta which minimize e[b] and
k[b] will be determined as follow:( The unit used

is Gev)

m = 5.12; m2= 0.33; 6 = 0.18 ; as = 0.50
L =0.244687; mB = m1 m2 /(m + m2);

[l The average energy for B meson is

e[b_] := 3 b*2/(4 mB) - 8 os b/ (3 Sqrt[Pil)+ o/u+
o/ (Sqrt[Pi] b) - (0 K/ (2 b*2) +o/u) Exp[u~2/(4 b 2)] *
(1- (2/8qrt[Pi]) Integrate[Exp[-t~2], {t,0,u/(2 b)}1])

ml =0.33; m2 = 0.55; mk =ml m2 /(ml +m2 );

[l The average energy for K meson is:

k[b_] := 3 b*2/(4 mk) - 8 as b/ (3 Sqrt[Pi])+ o/u+
6/ (Sqrt[Pi] b) — (0 B/ (2 b*2) +o/u) Exp[u~2/(4 b*2)] *
(1-(2/8qrt[Pi]) Integrate[Exp[-t*2], {t,0,i/(2 b)}])
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[l Plot of e(b) and k(b) as functions of b.

text = {Text["Variational Parametexr b (Gev)",

{0.8, -0.6}],
Text ["Expectation Value of H (Gev)", {0.38, 3.7}],

Text ["B meson”, {0.95, 1}],
Text ["K meson", {0.8, 2.8}]};

plot = Plot[{e[b], k[b]}, {b, 0.06, 1},
Ticks -> {Rangef[0, 1.2, 0.2], Automatic},
PlotRange -> {{0, 1.2}, {-1, 4}},
Framed -> True]

-Graphics-

Show[Graphics[text], plot,
AspectRatio -> .8]

4.
Expectation Value of H (Gev)
3...
K meson

2...
1.4 B meson

0.2 0.4 0.6 0.8 1. 1

Variational Parameter b (Gev)

-1,
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[l Determination of minima

The above graph shows that e(b) and k(b) have minima
for b around 0.3 and 0.2 respectively so the required

values are given below.

FindMinimum([e[b], {b, 0.3}]
{0.412149, {b -> 0.315975216539}}

FindMinimum[k[b], {b, 0.2}]
{0.504904, {b -> 0.242289}}
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CHAPTER FOUR

FLAVOR CHANGING

1. INTRODUCTION

The lightest mesons containing one b or b quark will be
stable with respect to the strong and electromagnetic
interactions. They can decay by weak interaction, since emission
of charged boson W ~ takes one from the lower to the upper

components (u, ¢ or t) of the weak isospin doublets.

ol (2L )

In this chapter we will use a relativised constituent quark
model to evaluate the different form factors and estimate the
recoil effects for the flavor-changing radiative B-decay. In
particular we will focus on the standard model prediction for the

rate of B-meson decay to a hard photon and a strange hadronic
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final states: B ----- > K*(892) ¥ . The rate for this inclusive
process is likely to be dominated by short-distance physics
which give rise to a local b ----> s ¥ single quark transition. The
short-distance dynamics is described by an effective hamiltonian

10-13

Herr, which can be calculated using the short-distance

techniques of QCD.

If QCD corrections are not taken into consideration, the
contribution from one-loop diagrams, due to W-exchange, are
more or less suppressed due to the GIM mechanism. The QCD
corrections for the process B ------- > K®* y change the
GIM suppression in the amplitude from being a power law,
( mt2 - mc2 )/sz, to the softer form of a logarithm, ln(mtzlm,:2 ),

thus enhancing the amplitude of the indicated process13

The long-distance effects of the strong interactions, on the
other hand, are too weak to affect the quark decay, and they are
taken into consideration by taking the matrix element of the

concerned operator ( H_, ) between the hadron states( For a

recent study of long distances effects see ref. 30 ).

The B-meson has several advantages; the emitted photon in
B-->K*y is monochromatic'® and the branching ratio of few
times 107 is accessible to presently planned experiments. The
presence of a heavy b-quark permits the use of the spectator

32,33

approximation . This reduces the problem to the free decay
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of a b quark, and neglects contributions from u and d quarks.

2. MATRIX ELEMENTS

2.1 SPECTATOR MODEL

To proceed with the hadronic matrix element calculations
it is advantageous to make certain approximations. Firstly the
partner of the b quark in B meson is treated as a spectator.
Figure 4.1 shows a diagram contributing to the process B --->K" y
. The calculations of the matrix element of the effective weak
hamiltonian are carried out at the qt;}ark level®! . In fact, since

the typical momentum transfer in the inclusive decay of hadrons

Q:U,d q':U,C/t

Fig 4.1 Quark level diagram depicting an amplitude contributing 1o
B —> K°y
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which contain a sufficiently heavy quark Q, is of order its mass
mg , one can neglect all other effects such as bound-state effects,
soft hadronic interaction,.., on the decaying hadron, since the
heavy-quark mass is much larger than the ordinary hadronic
scales represented by light constituent mass, confinement

radius,. etc. . Such a model is called the spectator model*?

In the spectator model one directly carries over the quark
level calculation as the hadronic results. Furthermore we assume
that the spectator quark and gluon arrange themselves to form
final bound state particles together with the quark coming from

the decaying ( heavy ) quark with no benefit in the overall rate.

2.2 FORM FACTOR.

It is straightforward to calculate the inclusive process
B ----- > X v ( where X contains no charm ) by equating it with

b ----- > s Y. The matrix element, for b ----- > s vy is eq.(l1.8).

Without the approximation m, << m, it is given by
M(b---->sy)—C[m s, ,a by +m So, ,a b 1@ (41)
b=J(1+30b , by=3(1-7,)b
|. 2 2 s

and the rate 29:
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m’ 2 2, 2
N(b-—->s7) = —2— (1-1;)(1+E§- (4.1-a)
" "

The small correction caused by the second term of eq.
(4.1) is given by MYM | s and b in eq, 4.1 stand for the quarks

field which is decomposed as follows

Sx)=1 d Ps( %:' )% 2 [Uﬁ( Ps) bg.c( Ps)eip"x +vi( ps) dfl::-( ps)e” ips.X ]
(4.2)

here S=s"v;, nc are spin and color indices. b.f,,c( Po) » dg}( pPr)

represents the annihilation operators of a quark and the

creation-operator of an antiquark, with spin-n, flavor-f, color-c,

and momentum p, respectively. u and v are free Dirac spinors

defined by
Ef+myg 1
uf(pp) =4/ =—— XF 4.3)
me —
C.Pr
Ef+mg |
o. P
Ef+m¢ |
vE(p) = 4 / ELHIE X8 (4.4)
sz 1

where %§=102)X§ and the spinors are normalized to one, thatis:
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u(p)u(p)=1
2.2-a LORENTZ STRUCTURE OF MATRIX ELEMENTS

Considering Lorentz invariance the matrix element can be
expressed in terms of a few real Lorentz scalar functions ( form
factors ) which allow one to parametrize the internal structure of
the particle in a very condensed form. This is achieved by
making use of some general properties of the matrix element,
such as its behavior under Lorentz transformations, current

conservation, hermiticity, parity conservation, etc.

As the operator '§o-“v q b, contain a vector and an axial

vector , its matrix element between initial and final meson states
must be a linear combination of vector and axial vectors. For the
construction of such a vector and the axial vector we have at our
disposal the vectors ( momentum of B and K* ) P, K and the
polarization vector €(K). Therefore the most general Lorentz
invariant decomposition of the above operator between the

vector and pseudoscalar mesons state K® and B is

M, =i [2K, 2P, <K(K)| 50,q" bRI BF) > (45)
. v A
= ig,, €0P ¢ f(¢) + (m} - m) e, £,(q)

+@ €®) (P, +K)f (@) + (@ e XN (P,-K)f(Q) (4.6)
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where q = P - K, is the four momentum transfer, and fi(qz) are

the real form factors - functions of the square momentum

transfer q2.

The states we are using satisfy the non-covarient
orthogonality condition equation ( 3.3 ), and this is the origin of
the square root factor on the right-hand side of the above
eqs.( 4,5 ).

The different functions fi(qz) must be Lorentz scalars and
2

thus can only depend on Lorentz scalar quantities such as PZ K

and q2 . Since, the final and initial meson state are on-mass-shell

states of a given momentum and spin, then P2~ mB2 , K2~ mK2

are constants, so the only variation must be in the scalar invariant

variable q2 .

2.2-b GAUGE CONDITION

The decay B ----- > K® v, with a real photon, is described by
the interaction M = Mu&:’l (g). Due to the gauge condition qu&:u (@ =
0, the fourth term in eq. (4.6), which is proportional to f4(q2).

does not contribute.

2.2-c CURRENT CONSERVATION

The current conservation condition q‘l M, =0, gives
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(m?-m?,) e,(K) q" £,(@)+ (. € ) (P, +K,) ¢ £,(@) =0

2 2
Since (P, +K)) Cl'1 =P -K = m: -mlz(_, it follows that
f, + f; = 0 . We are thus left with two form factor instead of four.
Eq. (4.6) expressed in term of the independent form factors f;

and f, becomes:

. v A o 2
M, =g, €KPqf@)+

[(m}-ml)em- @e@n(p,+Ky |H@)  (47)

As far as Lorentz invariance is concerned we cannot go
further. In the rest frame of B meson, py =0, P, = m; and we

take the fourth component of the polarization vector of the K*

meson equal zero, €4(K) = 0. The equation ( 4.7 ) then reduces

to:

M =-im(qxe@).&K) f,(@) +

[-(m-m)E@E® +2mL@T E®|f@)  (48)
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3. MATRIX ELEMENT IN QUARK MODEL

For B at rest equation ( 4.5) becomes

M = \/%<m§+m§.) [-i@xE@- ¢ E@ +"@T |-
.<K'(K)| §8(1+y5)b|B(P)> (49)

In the absence of rigorous methods to calculate the matrix
element from first principles, we adopt the quark model as a
phenomenological model valid in the non-perturbative regime of
QCD where | M(P)> is the quark model state vector in the weak
binding limit eq. ( 3.1).

Because B and K* mesons have the same parity, the term

containing y; makes zero contribution to the process B ----> K®.

Calculated in any quark model the matrix element has the form
< K*(K)| 58b| B> =EX M q°) ( 4.10 )

Using eq. 4.10 ) and by identifying eq.( 4.9) and ( 4.8 ) one
finds that.

2
m.
f(q*) = /%<l+;§—>x=<q2>, f (@) =%£,q) (4.11)
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where F (q2) is the wave function overlap to be evaluated in the

constituent quark model The partial width for B ----- > K* v is2°

2
C 2 3 . 3
I(B - K*v) = g—m, my(1-—5 ) (£+4£) (4.12)
Therefore the ratios of exclusive ( B ----- > K* v) to

inclusive ( b -----> s vy ) processes is

I(B—K*y) m,,(mB mK. m? -1
=TS T —[mnmb g ]( = LEr4t) (413)

1

3.1 CALCULATION OF F(q%)

The effective weak hamiltonian involves the product of the
s and b quark field at the same point, and this gives rise to a
divergence. However this problem can be avoided by introducing
the normal-ordered prcduct or normal product of quark field
denoted by a pair of colons as shown in equation ( 4.14 ) below.
“In the normal product, all creation operators are made to
operate as they stood to the left of annihilation operators, and for
every exchange of Fermi operators a factor -1 is introduced

corresponding to their anticommutation rules"?
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Because of translational invariance we may take the field

operator at x = 0. Using eq. ( 4.2 ) for s and b quark fields, we
get

= = el 303 (Msmp)l
:s(0) o b(0): —fd psd° Py EsEb2

w cub bk (ps) bla( Ps): + ...
g[ s m( Ps) 6 u2n( Pb) brm( Ps) bea( Ps ] ( 414 )

The other terms of eq. (4.14) do not contribute to the
relevant matrix element. Here n and m are spin indices and

summation over color indices r, ¢ is understood.

Using eq( 3.1 ), K* and B meson states take the following
m ]

form called "mock-meson states

= =11 g Y b p-
| B(P,53=0) > vzfd pos@) [GF(LP+p) BRI P - )

-d?ﬁ(ﬁﬁ-P+p)b§(%§P-p)]lO> ( 4.15)

* = = L[| a3k ¢
IK'(K,S3=1) > B.fdkcpx(k)

[ dﬁ(%"il(+k)bﬁ(%l(-k) 10> ( 4.18)
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Substituting equations ( 4.14 ), ( 4.15 ) and ( 4.16 ) into
(4.10 ) we obtain the following

<K*(K,S3=1) | :5(0) 6 b(0):| B( P,S3=0) > =

s+ mg)(Es+ mb)\;_
4E.Fy /

v—%r? &p d’k @ py A ps & k(K )0B(P) €

> X po) G ube(pp) x <01 Bp( K - k)i ( LK + k)

nm jjr.c I
|

] ] 1
:08%( ps) bRa po): [ afi( L P + p) bEY (2P - p)

d+
-di,l,(ﬁg-P+p)b}’ﬁ(%g-P-p)]l0> ( 4.17 )

After contraction, as indicated ( the contraction with the

second term vanish ), and integration over d® , a3 d®k and
g ps pb

for B at rest (P = 0 ) we have for eq. ( 4.15) the expression

—1-8m,78m¢f dp ¢'x'(p - % K) ¢s(p) (K - p, p)

z
= (O(K-p)o(©p)
"*‘[" B m)Eer my) |20 (4.18)

The form factor F(q2?) is computed from eq.(4.18) and is found to
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be

F(q2)=f dp ok (p - %K)%(p)a(K-p, p) 1'3(55:;;15(;33%)
( 4.19 )

where Mg =mg+mg, Mp=mp+myg and
E=Vmf +(K -p)? , Ep=vVmf+p? ( 4.20 )
o«(K-p,p)= (E’“:"E)s(g:*m") ( 4.21)

3.2 RELATIVISTIC CORRECTIONS

Equations ( 4.19), (420) and ( 4,21 ) show that our

calculation includes both recoil as well as the relativistic

correctionszg'34.

3.2-a RECOIL CORRECTIONS

Recoil corrections are caused by the motion of the hadron
as a whole. The momentum mismatch k' = myMg K term

appearing in F(q?) arise since the B meson rest frame is not the

center-of-mass frame of K meson because mg >> myge.. This term

is in fact very large consequently its effects are very important. It
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gives rise to the damping exponential factor, as will be shown in

the next section, which describes the main recoil corrections.

3.2-b RELATIVISTIC CORRECTIONS

There are two sources of relativistic corrections in

equation ( 4.19):

- Those in the function (K - p, p) contribute a factor 1¥2Z

, because the s quark is quite energetic, and very relativistic so
that Es >> ms while the b quark is extremely non-relativistic,

Eb~mb.

- Corrections caused by the motion of the quarks inside the

potential mix with ones from the recoil. They are given by the

p.(K-p)

term
6Es mp

4. NUMERICAL COMPUTATION OF F(q?)

The overlap integrals ( 4.19 ) are evaluated with the use of
Gaussian wave functions [ c.f. eq. ( 3.6 )] which were used in the
solution of the Schrodinger equation utilizing the variational
method ( chap. 3 ). The momentum wave function is determined

by the Fourier transform of eq. ( 3.6 ) is:
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0 (P)=(xp ) exp(-p%/2Byy), M=K',B (4.22)

With these wave functions and the approximations E_ ~

IKl, E, ~m_ and IKlI= mb/2 we can perform analytically the

integral ( 4.19 ). The analytical expression for F(q® is given by

m2K2
F(q°)= ( )exp( d ).
* 2 ML(B+ By)
2 2 2 2
- K
PO L U L LN RPPP

2 2
(B + B 3MB,  MBgr By

One can show that K2= MK.(tm-qz)/ My where tm is the square

of the momentum transfer corresponding to the zero recoil of the K* meson
ie K=0, hence tm = (mg-my. )Z.Tht.s

Rq) = 7‘-2- (K=0).eP@? R(q2K#0),

3

2 20¢ . 2
where I(K=0)=(_23_z_;£;c_)2 ' D(q) = md(mzq )2
Po* Be 2 MM, B+ By
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2 2
By By 1— m, (tn - q°)

R(g> K=#0) =1+ — 3
mb(BK+BK) 3MBth

mabs )
M, B+ B,)

Note that we have to evaluate the form factors at the

(1-

physical point q? = 0 which is far from the zero-recoil of the K*
meson, i.e K = 0. With the numerical values from chapter 3 for p
and values of the different masses, the following table 4.1
summarizes the numerical calculation for both linear and

screening potential

table 4.1 numerical results for linear and screening potential

linear®® screening

L 0.34 Gev 024 Gev

Ps 041 Gev 032 Gev
KK=0) 0.974 0.941
R(0.K#0) 0996 0994
D(0) 0.767 1.365
exp(- D(0)) 0.464 0.255
RO) 0319 0.169
£(0) 0.228 00121
£0) 0.114 0.0605
n 0.06 0015
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The calculations ( cf. table 4.1 ) show that the corrections
to the form factors is due to , mainly, the sharp exponential
damping factor ,exp(-D(0)), because of recoil and the relativistic

Y2 | In fact neglecting these two

correction factor (1/2)
corrections factors one can see that F(0) is nearly equal to one (
0.94). From our results it is clear that the Kaon's momentum K

plays a very important role in the decay B-----> K* 7.

The process B----- > K* v is suppressed by a sharply
exponential damping factor. A realistic calculation of f,(0)
requires an understanding of nonperturbative effects of QCD
responsible for binding the quarks into hadrons; since this is
lacking the approach followed here is the best one can do at the

moment.

Comparison of our results with those of Deshpande et al,
obtained in case of linear confining potential, shows that the
ratio | is reduced, by introducing the screening potential. The
main correction comes from the recoil effect which is more
important than in the case of linear potential. Future
experimental results would hopefully test this, as the present
calculation shows the flavor changing radiative decays of heavy B

meson is sensitive to the screening effect.

The estimation of the branching ratio depends on the

particular choice of hadronization model Depending on the
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choice of the hadronic wavefunction, the predictions of n in the
different attempts made in the framework of the Constituent

Quark model span the range ( 5 -- 40 )% ( ref.15, 31, 34 ).
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CHAPTER FIVE

FLAVOR CONSERVING

1. INTRODUCTION

Since the time of proposal of the non-relativistic quark
model ( NRQM ) many attempts have been made to apply it to
various processes involving elementary particles ( hadrons
decays, hadrons spectroscopy, .. ). We note that in application to
hadrons containing heavy quarks, the ( NRQM ) works well
However, attempts35 to calculate the radiative decays of the

ground-state mesons ( V —» P+vy), where V ( P ) are vector

( pseudoscalar ) mesons, gives unsatisfactory results. Even using
symmetry breaking through quark mass differences the

experimentally known results could not be reproducedse.

Many improvements37 taking into account different
possible corrections ( recoil, relativistic, ..) have been made to

reduce the discrepancies between theory and experiment. Singh
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et al®® used the concept of effective mass ( this was suggested by

39 to explain the observed

Sogami and Oh' Yamaguchi
characteristics of baryon magnetic moments ) to study radiative
decays of vector mesons. They got improved results for the decay
rates which are close to experimental ones. In radiative decays a
final meson ( especially a final n-meson ) generally moves
relativistically because of large mass difference between initial

and final mesons, hence a relativistic treatment is necessary4°.

In fact a nonrelativistic treatment of hadrons containing as
constituents light quarks u, d, and s is not justified in the weak-
binding limit. The relative velocity of light quarks is so large that
relativistic corrections cannot be neglected. Calculations show
that the role of relativistic corrections increases as the quark
mass decreases. So its effect increases and substantially changes
nonrelativistic predictions for decay widths especially for mesons

in the light sector.

As mentioned above several authors have attempted to
improve different theoretical approaches to fill the gap between
theory and experimental results. S. Godfrey and N. Isgure”
proposed a unified quark model, using a universal one - gluon
exchange plus a linear confining potential motivated by quantum
chromodynamics, to study both heavy and light mesons. They
have attempted to identify all possible types of relativistic effects,

including smearing, nonlocality, and momentum-dependent
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effective potentials. Another approach which includes relativistic
corrections was followed by R. N. Faustov and V. O. Galkini%41,
They used a relativistic quark model based on a quasi-potential
formalism and found that relativistic corrections play an
important role in meson decays and strongly depend on the

Lorentz properties and the shape of the confining potential

The relativised constituent quark model, with the
screening confining potential eq. ( 3.5 ), used for the study of
flavor changing radiative decays of ( heavy) B meson (cf. Chap. 4 )
will be extended to investigate the radiative decay of light vector
mesons to pseudoscalar one. Calculations will include estimation

of relativistic as well as recoil corrections.

2. MATRIX ELEMENTS

2.1 MAGNETIC DIPOLE M; TRANSITIONS

The process V(1) - P(0)+y is a magnetic dipole
transition ( M, ), since the parity of the initial and final state does

not change. ( For a review of M; with regard to relativistic M,

transitions in atomic and particle physics see ref. 42. See also
ref. 40, for recent studies of M, in the framework of a relativistic
quark model ). In the quark model the M; transitions take place

in analogy with ordinary M, transitions in hydrogenelike atoms
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3 1
for decays S, S, +7.

A common feature of nearly all quark models?® is that

V — P+7v is triggered by a single quark q — q+7 and the full

amplitude is obtained by summing over all the constituent quarks
in the vector meson. This assumes that the spectator model is
approximately valid?’. The mesons decay by the electromagnetic
interaction. Therefore, the quark flavor will not be altered,
hence, the name "flavor conserving". At the quark level the

electromagnetic current® is given by

m S—
J, =2f',e,\vfw, : ( 5.1)
where the summation is over all flavors forming the meson state,

e, is the flavor electric charge, y; is the quark field ( eq. 4.2 ),

and the Y, are Dirac matrices.

The Lorentz - invariant hadronic matrix element operative

in V - P +7y may be written in general as.

_ . . o w, P _o
M, =<P(K)I: J, O):1V(Pe)> e W, €405 K P (52)

em
T

where L, is the matrix element of the magnetic transition from

vector to pseudoscalar meson state, and et denotes the
polarization vector of the vector meson. We shall derive in some

detail the expression of p,,, for the particular decay o? - n° +7.
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( The procedure is same for all other decays ). The meson states

are
| =0 K,S3=0) > =f d®p éx(p) va(uﬁ-da')Vlf(Ti-iT)x

1 + g + M o
& 2 G Kmb (K p]10> (53)

| @O( P,S3=1) > = f & p' du(p') le_—(ui+d3)(TT)X

1 + g NbH(Tp.p
EjZdj(MP+p)bJ(MP p]10> (54)

Due to translational invariance the electromagnetic current
is evaluated at x = O. Introducing the normal product, to avoid

divergences as in chapter four, we have

W0 =2 WO W@ =Y, Y, e| dadiq (nslfflxsnf)
f

f nmcc
[ Gm( Q) %uba( @) : bEm( @) bla( @) : +
f:
V& m(a") Wavin( ) : dim(q") dem( Q) i +..]  (55)
In equations ( 5.3 ), ( 5.4 ) and ( 5.5 ) the indices i, j, ¢ and

¢' refer to color while n and m refer to spin, and f stands for the

flavor. From equation ( 5.5 ) we see that two terms contribute to
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the matrix elements of flavor conserving processes while only
one contributes in the case of flavor changing processes.
Substituting equations ( 5.5 ), ( 5. 4), ( 5.3 ) in the left hand side

of equation ( 5.2 ), one obtains in the rest frame of the ® meson

(P = 0) the following result

Mugt=-1 %Jf%)é’.(é‘xfc’) (5.6)

where € is the photon polarization. Therefore the matrix element

of the magnetic transition is

b =4[+ B

where 14, I, are overlap integrals to be evaluated. They are equal

to unity in the non-relativistic limit.

2.2 OVERLAP INTEGRAL

Calculations show that the overlap integral Iy has the

general form given below

= &3p o p-BL 20}, [ Etmr
Iy fdp%(p MK)¢v(p)(Mm EE(E +mp (5.7)

where M = m; + mg, , m; and mg, are the mass of the decaying

and spectator quark which form the meson and;
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E=Vp?+m} , E = \/(%tx-f;')ﬂm% (58)

op and ¢, are pseudoscalar and vector meson momentum

wavefunctions given by ( eq.(4.22))
-3/4
0o(P)=0,(p)=(nB" )" exp(-p%/28") (59)

Following the same procedure, as with ® decays, one can
get the same overlap integrals for the process plonl+y |
However, calculations show that the overlap integrals are
somewhat what different for the other decays of interest. They

have the form

m;sp E+m

I = f d® p' (P’ - v K) ¢v(p')mf'\,‘m ( 5.10)

E=Vp?+mt , E = V(K-PP+m? (5.11)

The transition moments, ppy expressed in unit of electron
charge, for different radiative decay are grouped in table 5.1.
Comparison with the results of ref.27 shows that our results are
more or less in agreement with theirs. However, this reference

uses an ad hoc smearing factor of the type ( m/E )r where the

exponent f is chosen to fit p - n+y, without any theoretical
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justification. On the other hand our calculation has theoretical
basis in the sense of using a screening confining potential where

the screening length becomes more important in the light

sector.
process Hpy
0 ->nly -%(%+2—nhl-“—)
e
e
X Ky 4l + 2]
KK )
Table 5.1 Magnetic moment of vector mesons
REMARKS:

-If we go to the nonrelativistic limit, i.e, put all the overlap
integrals equal to one, we obtain the well known transition
magnetic moment for nonrelativistic quark model

-Assuming the isospin symmetry with equal u- and d-quark

masses, I; and I'y will have the same shape.
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2.3 RELATIVISTIC CORRECTIONS

Equations ( 5.7 ) and ( 5.10 ) show that both recoil and
relativistic corrections are included in our calculations. They are

described by the momentum mismatch mgK/M and the factor

E + my .
mf'\/ EE(E +mp respectively.

Contrary to the case of B-meson radiative decay where
recoil is very important, because of the large mass difference
between B and K® mesons, in the ground meson state radiative
decay the mass difference my - m, is not quite large to give rise
to a high momentum recoil caused by the photon emission.
Taking the nonrelativistic limit, i.e, putting E = E' = my, then
only the recoil corrections will be included in the overlap
integral Iy and are given by exp(- ( m' K)%/(28M)? ), where m' is ms
or mgp depending on the decay in interest. which is of the order
of and 0.86 for w and p decays. On the other hand in the Kaon
radiative decay the recoil corrections are more important for the
( light ) u, d quarks, and calculations of recoil effects shows that
Is ~ 096 while I,q4 ~ 0.87. These values give strongly
overestimated decay rates, hence the necessity of relativistic

corrections.

Including relativistic corrections, the different overlap
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integrals are strongly damped especially for u and d quark. ( Both
recoil and relativistic corrections are evaluated numerically in
section four ). It turns out that relativistic corrections are much
important in the radiative decay of ground-state mesons and they

drastically modify the non- relativistic quark model decay rates .

3. DECAY RATE

Having obtained the transition moment, the calculation of
the decay width is straightforward?®-47, and is given by the
formula

VoP+y
’ ( 5.12)

I =4ap3, K3 [1/3] for
1 PoV+y

where a = 1/137 is the hyperfine constant, [lpy is the transition
magnetic moment, and K is the photon momentum which is
given by (m?, - mg ) 2m, in the rest frame of decaying vector

meson of mass mv, while mp is the mass of the pseudoscalar

meson. An additional factor of 3 appears for the reversed reaction

P— V+y since there is no averaging over initial spins. The
evaluation of the decay rates requires the numerical values of the

overlap integrals.

Using equations (5.9), (5.8) and (5.11) the overlap integral

takes the form
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1 meK | * 2
I = _2m e'i( M dpj do p2e PP ,‘/l-kL Expl—2-p K cos@ | x
vz p° P ) 0 ~ pHm¢ Mp* )

0

sin® (5.13)
V K2 + p2 - 2 p K cosd +mf +m{\f K2+p2-2pKcosd +m?

Note that we have assumed isospin symmetry so that Ir and
I't are identical One cannot perform this integration analytically.
However, numerical estimation is possible by using the
MATHEMATICA software. For the quark mass in this calculation
we use typical relativised quark masses27%8 : mu = md = 220 Mey,
and ms = 419 Mev. The value of beta in the integration is fixed
such that we get the best fit for the predicted decay rate with the
experimental results table ( 5.3 ) . It is found that required values

are B = 0.24 for p and ® meson and f§ = 0.28 for K - meson decays.

Once the values of beta are known we can determine the
screening length 1/p such that the energy expectation value E(B)
equation ( 3. 8 ) is minimum at the points where B is equal to the
above values. ( Recall that B is the variational parameter ). It is
found that for p = 0.0736585 Gev and p = 0.0545048 Gev, and
the minima of E (B) occur at B = 0.24 Gev and B = 0.28 Gev

respectively.
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Radiative decay width I'(kev)
Process NRQM (Ref41) Presentcase Results of (Re£ 41) Experiment

pt- nty 122 64 71 67.1 + 8.8
@ — n® vy 1210 579 782 717 +51
K*—> Ky 203 122 105 115 + 12
K* > K'y 133 56 47 50 5

Table 5.3 Radiative decay widths of ground state mesons: present calculation
and results of (Ref. 41 ) are presented together with the experimental values.The
results of simple quark model ( NRQM ) are also given.

CONCLUSIONS

The radiative M, - decays widths are calculated and
summarized in table( 5.3 ), in the framework of a relativised
quark model with a screening confining potential. As mentioned
before the relativistic corrections are very important in decays of
ground-state mesons. The agreement obtained with the
experimental data is quite good-within 10 % ( except for the @
decay ) and is at least as good as that obtained in ref41, where a
very different approach has been used to obtain agreement with

the experimental data.

Comparing predicted results with the experimental data
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we can extract important information on the quark - antiquark
interaction at large distances. Compared with heavy mesons our
calculations show , as was expected, that the screening length

increase by a factor of three for p and o systems, while, it

increase by a factor of about 2.2 for K meson.
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5. NUMERICAL CALCULATIONS OF
THE OVERLAP INTEGRAL.

We present here the method by which the overlap integral
equation ( 5.13 ) is evaluated. The calculations are performed
for o decay; for the other processes one just changes the input
values of the different parameters.In what follow mf, msp are
the mass of the decaying and spectator quark. K is the photon

energy and b stands for the the variational parameter beta.

mf = 0.22

msp = 0.22

mt = mf + msp

K= 0.379

b=20.23

a = 2/(b*3 sqrt[Pi]) mf Exp[- (msp K)~2/

(2 (b mt)~2)] //N

14.5307

p*2 + KA2 - 2 p K Cos[t] + mf 2
Sin[t] Exp[msp p K Cos[t]/(b*2 mt)]/
Sqrt[Sqrt([f] mf + f£]
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3.58223 p Cos|[t]
(E Sin(t}) /

2
Sqrt{0.192041 + p - 0.758 p Cos[t] +

2
0.22 Sqrt[0.192041 + p -~ 0.758 p Cos(t]]]

B Lets first integrate over the angular variable t from zero

to m.
y = Integrate[s, {t, 0, Pi}]

3.58223 p Cos|[t]
Integrate[ (E Sin[t]) /

2
Sqrt[0.192041 + p - 0.758 p Cos[t] +

2
0.22 Sqrt[0.192041 + p - 0.758 p Cos[t]]]

{t, 0, Pi}]

h = Sqrt{p”2 + mf*2])

g = a y p*2 Exp[-(p/b)~2] Sqrt[h + mf]/Sqrt([h]
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2 3.58223 p Cosl[t]
(14.5307 p Integratel[(E Sin([t]}) /

2
Sqrt[0.192041 + p - 0.758 p Cos([t] +

0.22

2
Sqrt[0.192041 + p - 0.758 p Cos|

2
{t, 0, Pi}] Sqrt[0.22 + Sqrt[0.0484 + p 1]

2

18.9036 p 2
(E (0.0484 + p ) )

e

B Now we integrate over the variable p from zero to infinity.

N[Integrate[g, {p, 0, Infinity}]]

0.463257

78



CHAPTER SIX

CONCLUSIONS

In studying the flavor changing and flavor conserving

radiative decays P - V yor V — P vy ,a relativised quark

model has been used in the following sense:

i) In writing the relevant operator responsible for the above
decays in terms of a two components Pauli form, no relativistic

approximation has been made.

ii) Recoil effects due to the large mass differences between
the initial and final meson states are fully taken into account in
calculating the overlap integrals in the evaluation of the relevant

operator.

iii) Although Schrodinger equation, appropriate to short
range Coulomb type potential arising due to one gluon exchange
and QCD inspired long range confining potential is used, but only

to the extent in fixing the variational parameter in a trial wave
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function which is used in calculating the overlap integrals.

iv) The new element in our calculation is the use of a
screened long range confining potential instead of a pure linear
term. Such a potential is indicated by lattice gauge theory

calculations when a light quark is involved in @9 or q@ system.

For the flavor changing radiative decay of B meson:
B — K'(892) 7 in the spectator approximation, where in the
weak hamiltonian responsible for this decay, the QCD corrections
arising from one gluon exchange between the internal and
external lines of the decaying quark are taken into account.
Numerical evaluation shows that the form factor is damped by an
exponential term arising mainly from the recoil effect because
of large mass differences between the B and K* meson. The
relativistic corrections of the type mentioned in (i) above are
found not to be very important but also are not negligible.
However, the recoil effects are much more important. Moreover
the results are found to be sensitive to the screening parameter
introduced previously by lattice gauge theory calculations in study
of spectroscopy of a heavy quark ( antiquark ) and light antiquark

( quark ) system.

We extended the above model to study radiative decays of
ground state mesons which are flavor conserving. It is found that

the relativistic corrections are more much pronounced for the
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light sector. The recoil as well as relativistic corrections are
taken into account in evaluating the decay rates. Here the
screening length is used as a free parameter to be fixed by
making a best fit to decay rates. In fact one obtains a good
agreement with the experimental data ( except for ®) for mesons
involving strange quark for a screening length ul to be twice as
larger as for B meson , while it is about three times larger in the
case of non strange mesons. As one would expect we found that
the screening length 1/p increases as we move from the heavy to
the light sector. Thus our calculation give some information on
the quark - antiquark interaction at large distances particularly
when lighter quarks are involved. Previously the flavor conserving
radiative decays were fitted by using an ad hoc factor ( E/m)f
where the parameter f was fixed from p — n y.In our case the
screening parameter has a physical meaning in terms of

screening of the linear confining potential at large distances.

Finally we may mention that the calculations presented
here are not fully relativistic, because of using Schrodinger
equations although in limited form. One may use the Bethe
Salpeter equation or some version of it, for the quark antiquark
system for fully relativistic calculations. This, for instance, has
been done in ref40, 41; and as table 4.2 indicates our
calculations are not very different from those in ref41. We note

also that more realistic calculations must include contributions
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coming from gluon exchange with the spectator quark, but such
calculations requires an understanding of QCD at large distances

which is not well understood at the present time.
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Appendix. A

MATRIX ELEMENTS

A detailed calculation of the matrix elements arising from
one gluon exchange ( cf. Fig. 2.3 ) approximation between two

quarks will be performed.

I';=7v4, we have:

A UEU() = e*15®) 3 eiS®)
EE P ¥

(E' + m) - i}.p’ , E+m) - P _ E + m)(E +m) V.pYsY.P
J2E(E +m)  A2EE+m)  24EE(E + m)(E + m)
_1VE+mE+m) CANCAD)
2 YEE' WEE'E + m)E + m)

G.p)EP) =pPp+id( P XP)

We made the following approximation:
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E=VmZ+ 7 —m(l+~L)2 mi E= m+-P_-

2m?
(E+m)z—(2m+—L)2—V__(l+—2——)2~V_(1+J’—-)
2m i 4m? 8mj_2—
_l_ 1- > =1 (- , (B+m)z =—l_(1-
L 2m) =g -5 (B+m)'2 (1)

Substituting in the above equation and keep only term of
order p2/m2 we get the following:
- 2 = =2
Yo=1-E . P B P, i_g( P'XP)
8m? 8m? 4m? 4m? 4m?

= _=\2 .
=1_(P'P) + -0 p'Xp)
8m? 4m?

For I'g=v:

e-iS() 7 e-iSp) = E+ m) - iy.p' = (E +m) - iy.p
Y JIEE +m) | V2EE+ m)

i@ +mT(F.P)-i(E+m)(7.p)Y
WEE(E + m)E + m)

= -] \E' + m "(8 p)-i JE + m (3.;’)3
"'2JEE(E + m) 2/EE'E' + m)
~ -J_(p-l(cxp))-—i—(ﬁ"-i(?ixx?’))
2m 2m

eiS®) ¥ ei8®) = - i (F+5)4LGx (- p)+0<'f"3>

In the non relativistic limit the matrix element M is given by

the approximation:
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D e —
M= J—|:l-(p' p')+ '20i.(pi'xpi)].

q? 8mi2 4m;
e . . —
[1_(p, 12)’) + lzoj.(pj'ij)]-l-
8mj 4m;

['-'i—(ﬁ_i:'*I_).i)'*'Lia'ix(S?'I_”i)]-
2m; 2m;

- (o +p) +L1_ G x L
[ij(p.l pj) 2m; i X ( pj PJ)]

M=Ll(1-L +i_g&.(gdxp) -1 -—6.@xp)
2( 8m? 4m? AR 8m? 4m? ) (AP

-—L_(G+2p)(2F-4)- - (d+2pi) (Gxq)

i@ xT)(2h-3) L@ xT) (Fx3
@ XD (2B D) - - @ X D) (S i) )
with:

2 2
2 2 2 2 . % 1 %

g g g
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2 2 2 =
_ pl - pi _ p] pl
%= Tzm T T 2m
2 4 PFaF
0 = 1 ] + l (-—-o —o+-—o
_2 2m m 2m m Q- pi q-
q i i

M has the form given in equation ( 2.4 ).
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Appendix B

FEYNMAN RULES OF QCD

We present here the Feynman rules necessary to perform
the calculations of one gluon exchange matrix element ( chap.2 )

ref4, 7 and 16.

Particle ( spin 1/2) Factor included

quark initial state

incoming quark line \ q ?) u(p)

quark

outgoing quark line (i( P) u(p)
quark in final state
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incoming quark line ,7( P) v(p)
antiquark in final state

antiquark

outgoing quark line q(P) v(p)
antiquark in initial state

Propagators

quark

s P

gluon
. cab[ Bpv
i (_)
Ve 1 0L JUX L LR q?
Vertices

/I,O

U

P4 \?
L%

The parameters g and m; appearing in the above Feynman

an rules are the coupling constant and the quark mass

respectively.
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