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Abstract

Reinforced concrete is per se neither elastic nor plastic material. It exhibits damage attributable
to irreversible changes; i.e. slip and microcracking. Three phases of bahavior exist and interact: elesticity,
plasticity and damage. An extensive literature review is carried out to figure out the phenomenological
aspects of damage along with the existing constitutive models.

New concepts in the framework of continues damage mechanics are established. The notions of
metaphorical generalized damage variables, generalized material degradation paths and generalized
effective stress are defined. Free energy terms are derived based on the concepts of thermodynamics of
irreversible changes. Incorporation with the classical theory of plasticity and micromechanics are made.
A canonical elastoplastic damage model is proposed for concrete. The model is initially formulated
through a rudimentary scrutiny of the uniaxial behavior. The derivation stems form recoverable energy
equivalence based on the formal split of the total strain to its components; elastic damage and plastic-
damage strain. On the basis of the proposed theory of dichotomy, the model is extended to handle biaxial
orthotropic damage associated with cyclic bahavior. Verification is carried out againts a wide set of
experimental data. The model is shown to properly predict strain softening, stiffness degradation,
volumetric dilatancy under compression, strength increase under biaxial compressive states. Furthermore,
a damage model is then proposed for the uniaxial behavior of steel.

Numerical implementation of the proposed damage model in terms of a computational framework
is carried out by development of two nonlinear finite element programs; DMGTRUSS and DMGPLSTS.
The first package deals with multi-dimensional trusses while the other handles two-dimensional plane
stress states. Practical applications to plain and reinforced concrete structural members are shown to be in
good agreement with well documented results.
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CHAFTER 1

INTRODUCTION

1.1 GENERAL

Reinforced concrete is the most widely used material in construction.
It has been in use for more than a century but the problem of
modelling the constitutive equations representing the salient notions of
its behavior remains one of the most difficult tasks in structural
engineering. Despite the inherent complexity of its chemical, physical
and thermomechanical responses, it always proves itsell as immutably
universal building material. Most of its phenomenological aspects which
disguised for decades were explored as a natural result of the present
state of technology concerned with Jaboratory facilities, econstruction
techniques and materials development. Thase keep modelling in the

chzllenging track and spin with theory in a rotating nrhit.

Along the lines of this chapter, the objectives of the current study
are summarized, then the followed procedures are outlined. The

organization of the wnrk is featured.

1.2 OBJECTIVES

Concrete modelling js not an end by itself hut the goal is the
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proper prediction of the overall behavior of a veinforced concrete
structure. Thousands of researches have heen conducted to develop a
versatile, simple and realistic model which is able to capture as many as
of its features, but unfortunately such a madel is still absent. Rolling
from elasticity to plasticity to fracture mechanics and currently to
continuous damage mechanics, knowledge is expanding and theory is

refining. The main objectives of the current work are summarized

hereafter:

1. Outline the main items for material behavior necessary f{or

proper modelling.

2. Stand at the previous proposals with emphases devoted to those

based on the concepts of continuous damage mechanies.

3. Develop a rigorous , yet, simple elastoplastic damage medel

capable of competing against existing models in its application.

4. Utilize the proposed model in one-dimensjonal and two-
dimensional plane stress nonlinear finite element computational

framework.

5. FExamine the present model through practical applications.

1.3 KNOWLEDGE BASE

Engineering is very different from science in critical ways.

Basically, science aims to increase understanding of the physieal world
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while engineering aims to solve practical problems. Informations may be

of many types and qualities to engineers, for example it may be

(Beeby, 1991) :

(a) theoaretical based on agreed assumptions;

(b) empirical from experiment-quantitative;
(c) rules of thumb; and

(d) anecdotal information.

The engineer would be failing in his duty if he did not take account
of any information which might assist him in arriving at a solution to
his problem. He could not, however, use this information uncritically;
he must make judgement about the relevance and quality of each piece
of data available. The statistical scatter of the propevties of cencrete is
distinctly larger than that of metals, polymers, and most other
materials. Thus, it is not surprising ta see a strong and certainly
justified tendency to keep the mathematical models simple (Bazant,
1983). In the current study, it is aimed at utilizing almost all types of

information available in order to achieve a realistic yet simple model.

1.4 PROCEDURF

The specific tasks involved in the development of the proposed

model are as follows:

1. Investigate the physical and mechanical features of concretle as

well as reinforcing steel. Some =olicitations concerned with
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10.

reinforced concrete ave discussod.

Classify the existing models for the sake of unbiased

comparison amnong them.

Provide a state-of-the art on damage mechanics utilizing the

concept of damage variable.
Investigate the rationality of the split of the state tensors.

Conceptually define some generalized terms in the frame of

continuous damage mechanics.

Integrate the phenomenological aspects of damage tn construct a

uniaxial elastoplastic damage moadel for both concrete and steel,

separately.

Investigate the possible elastoplastic damage uncoupling using

the concepts of thermodynamics of irreversible changes.

Derive rigorously the tangential elastoplastic damage

constitutive relations for yielding materials using the proposed

generalized concepts.

Develop a phenomenological-micromechaniecal damage model for
cyclic multiaxial state of stresses nusing the proposed

generalized concepts.

Develop a canonical elastoplastic damage mndel for eyclic hiaxial

state of stresses which overcomes many of the drawbacks of
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other madels.

11. Construct a nonlinear finite element FORTRAN 77 program to
examine the uniaxial model. 'This is handled by DMGTRUSS

which is a multi-dimensional truss package.

12. Construct a nonlinear finite element FORTRAN 77 program to
examine the canonical bhiaxial model. This is carried out

through the package DMGPLSTS.

13. Derive concluding remarks on the proposed mandel.

1.5 ORGANIZATION

This work has four folds as shown in Fig. 1.1. The first is an
extensive literature review as presented in Chapters 2 and 3. The
second is re-conceptualization of continuous damage mechanics as
established in Chapter 4. The third is the development of the
elastoplastic damage constitutive models as formulated in Chapter 5. The
final is the construction of nonlinear finite element programs in Chapter

6 to examine the model then applications in Chapter 7 ave made.

In Chapter 2, the phenomennlogical aspects of materials are
reviewed. Cowposition of conecrete, its structural levels, cracking and
mechanical properties are discussed. Mathematical formulation of the
stress-strain relationship for reinforecing steel according to as far as

possible up-to-date researches is highlighted. Problems associated with
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reinforced concrete such as bond, tension stiffening and shear retention
are presented. This background aims at providing physical insight of
the most observed material characteristics required to broaden the scope

of knowledge as a prerequisite to modelling.

In Chapter 3, the various models, yet developed are classified on
different bases. The adopted scheme is appealing since it facilitate
comparison purposes which indicates superiority of continuous damage
mechanies. Light is, then, shed on models arised from this concept.
The fundamental equations are reformulated. Various definitions of
damage variables along with concepts of strain equivalence and effective
stress are given. A state-of-the-art on damage models utilizing damage

variables is presented. Advantages and limitations of phenomenological

damage models are investigated.

In Chapter 4, new concepts in the framework of continuous damage
mechanics are established. The notions of the concepts of metaphorical
damage variables, generalized material degradation paths, generalized
effective stresses are defined. Incorporation with the classical theory
of plasticity is undertaken through a rigorous derivation of the
tangential elastoplastic damage constitutive relations for yielding
materials. Furthermore, the phenomenological and micromechanical

aspects of damage are merged altogether.

In Chapter 5, uniaxial elastoplastic damage models, for concrete, in
both tension and compression are formulated on the basis of the formal

split of the total strain tensor. These models are extended to biaxial
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loading by the proposed theory of dichotomy and the canonical
elastoplastic damage model for cyclic anisotropic plane stress states for
concrete is developed. Verification and validation of this model are
thoroughly made. A damage model for uniaxial behavior of reinforcing

steel is then suggested.

In Chapter 6, two FORTRAN nonlinear finite element programs are
develaped. The first is DMGTRUSS; a multi-dimensional truss software
package. The second is DMGPLSTS; a two dimensional plane stress
program. The formulation of these programs, the basiec structure and
their organization are described. This chapter represents the practical

implementation of the canonical model into a computational framework.

In Chapter 7, the numerical framework of the canonical model is
examined. Applications are made to investigate the behavior of plain
concrete as well as reinforced concrete structures. Emphases are made

to focus on the prolificy of the canonical model.

Finally the work is crowned by conclusions and recommendations.

Suggestions for future studies are also provided.
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CHAPTER 2

PHENOMENOLOGICAL ASPECTS

2.1 GENERAL

Complexity of reinforced concrete as a building material was the real
incentive of many investigators to devote a great deal of effort to
physically understand its internal structure and to mathematically try to
model its responses to different influences. The starting point in this
manuscript is a historical background aiming at framing out the current
stage of development. Describing concrete's composition, the salient
notions of its structural levels and cracking criteria are highlighted in
order to be able to elucidate its behavior.’ The various aspects of the
mechanical response of concrete are then illustvaterd. Seoma special
considerations, e.g. strain softening, structural effects and volumetric
changes, are discussed. The mechanical properties of reinforcing steel
are further investigated along with mathematical preposals te describe
the stress-strain relationship. Combined concrete-steel behavior in

terms of bond, tension stiffening and shear retention are finally

outlined.
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2.2 HISTORICAL BACKGROUND

Steel is one of the eldest materials known to humanity before
Christ. Perhaps its forming returns back to profit Dawood (David)
PBUH (Holy Quraan, 34-70). Steel reinforcement may consist of bhars,
welded wire fabric, or wires. For usual construction, deformed bars

having lugs or protrusions are used.

"Concrete" originates from "coneretus" which is the past participle
of the latin verb "conrescere”, meaning "to join together" or "to unit in
growth". Thus the word concrete is a verb form that defines a process
rather than a materijal. This is a good description as the term concrete
can be constructed to include a considerable variety of products

(Modeer, 1979). The main binding material in concrete is cement.

"Cement" originated from the lattin word "cementus", meaning "cut
stone". The hardened cement is thus an artificial stone, usually made
by a mixture of portland cement and water. Portland cement was
invented in 1824 by J. Aspdin, and named portland simply because its
color js the same as that of a natural rock from the island Portiand.
Previous trials to introduce hydraulic mortars were made by Greek and
Romans by adding the lime clays to silicious constituents (pozzolanas).
In 1845, Joseph Aspdin and Issac Charles, developed a better form of
the portland cement by calcining a mixture of lime stone and clay at
high temperatures (Elfgren, 1989). Joseph Monier introduced the
reinforced conerete in 1870. In 1890, Ransome built the Ieland

Stanford Jr. Museum in San Francisco, a reinforced concrete building
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two story high (Wang and Salmon, 1979). Eugene Freysinnet
introduced the prestressed concrete in 1928. The use of dispersants
and microsilica to increase density, strength and durability enjoyed a
surge of interest since the late of sixties. Special types of concrete

such as polymer, fiber-reinforced, and others are currently in use.

2.3 CONCRETE COMPOSITION

The usual engineering definition of concrete is expressed in the
British Encyclopedia, 1963 edition, that says, "Concrete is a building
material consisting of a mixture in which a paste of portland cement and
waler binds inert aggregates into a rock-like mass as the paste hardens
through chemical reaction of cement with water". The main constituents

of concrete are cement, water and aggregates.

2.3.1 Cementitious Matrix

Tri-calcium silicate, di-calcium silicate, tri-calcium aluminate and
calcium aluminoferrite, the major constituents of cement, react with
water to produce gel, calcium hydroxide and other minor products
(ettringite, monosulfate, and sulfate sulfoaluminate and suifo
aluminoferrite). A freshly mixed cement paste is a dispersion of cement
particles in water which has a certain structure owing to the forces of
attraction and repulsion among these particles. When the reaction

between cement and water takes place the products develop a structure
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that originates from this dispersion structure and that is called

hydrated cement.

Thr structure of the hydrated cement comprises a hierarchy of
aggregations or gel particles, the latter being a term for particles in
the submicroscopic range of the size called colloidal, i.e. from 0.001 ym
to 0.1 pm. These colloids have one of the three dimensions is often
greater than the upper limit 0.1 ym, they are thus needle-shaped. Many
models were hypothesized to describe the structure of the cement gel.
Among which are Powers', Ishai's and Feldman and Sereda's with

differences exist mainly in the interpretation of the interlayer water

(Mehta, 1986).

The most important colloidal particle of hydrated cement is an
impure calcium silicate hydrate (CSH) with properties like those of a
natural mineral called tobermorite. Althcugh hydrated portland cement
contains up to 25 percent of hydrated compounds other than the calcium
silicate, the hardened paste has properties that justify its classification
as a "tobermorite gel" (Mehta, 1986). It is also referred to as xerogel

in the literature (Wittmann, 1983).

Along with the colloidal particles in the paste there is crystalline
calcium hydroxide. The amount of calcium hydroxide is usually 15
percent per volume of hardened paste, a considerable proportion that
must influence the behavior of the paste in a significant manner.
Calcium hydroxide crystals are usually surrounded by and intergrown

with colloidal material, and thus they constitute an integral part of the
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solid structure (Idorn et al., 1966). The colloidal matter, together
with calcium hydroxide appear as a solid structure. The porosity of the
structure depends on the water to cement ratio (W/C), the rate of
hydration and air-entraining. The pores occur in a wide variety of
sizes and shapes. Gel pores, capillary pores and air-pores are the

typical pore types (Powers and Brownyard, 1947; Verbeck, 1966).

The main constituents of hardened portland cement paste are thus
unhydrated cement particles, tobermorite gel, calcium hydroxide, gel

pores and entrapped air voids.

2.3.2 Aggregate Particles

Aggregates occupy about 50 percent of the volume of mortar and
about 75 percent of concrete. Gradation, shape, surface texture,
specific gravity and mechanical properties strongly influence the
properties of the composites. Most aggregates are chemically stable rock
materials. A smoother shape, such as that of river aggregates, does
not raise such stress gradients as the angular shape of crushed
materials. The bond between the aggregates and the paste is mainly
influenced by the surface texture. Thus, river aggregates bond to the
paste in a weaker way than crushed aggregates (Modeer, 1979). The
influence of the aggregate grading on the properties of concrete
materials has been extensively studied since the invention of portland
cement and many methods have been proposed but non of them have

been universally successful. Grading specifications were developed such
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that on the average will give a concrete of satisfactory kind with

respect to workability, strength and density.

2.2.3 Entire Composite

The complex behavior of a material can be understood only by
studies of its interior structure. These structural studies can be done
in different levels, from the atomic scale up to a scale where the

material can be considered continuous and homogeneous.

Concrete may be considered as a two-phase material with one
homogenous and one particle phase. In cement paste the particle phase
is unhydrated cement particles and the homogeneous phase is cement
gel, in mortar the two phases are fine aggregates with diameter equal
to or less than 4 mm and cement paste, and in concrete are coarse
aggregates with diameter bhigger than 4 mm and mortar. However,
Mehta (1986) considered concrete as a three-phase material with each
phase being a multi-phase by itself. In sum, the composite nature of
concrete seems to have a decisive influence on the development and

propagation of microcracks {Ortiz and Popov 1982a, 1982b; Ortiz 1984).
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2.4 STRUCTURAL LEVELS OF CONCRETE

The nonlinearity of mechanical response of most engineering
materials can, in majority of cases, be attributed to the irreversible,
energy dissipating changes in their microstructure. While the atomic
lattices of constituent phases and their volume average determine the
elastic properties of a composite, the geometry of its mesostructure (in
terms of dispersions of the phases, specific area of weak interfaces and
the size and distribution of initial defects) plays the most important role
in the process which ultimately leads to the rupture of the material.
For example, the relatively {ragile bond at the aggregate-cement paste
interface is the inherent weakness of concrete which is the dominant
factor in the chain of events macroscopically observed as the
nonlinearity in the stress-strain curve. According to the classification
made by Wittmann (1983) there are at least three different levels (or
scales) on which the physical and chemical processes can be observed.
These scale levels with their representative features are presented in
Table 2.1 (Krajcinovic and Fanella, 1986). A rough estimate of range of

scale as suggested by Lemaitre (1986a) for various materials is listed in

Table 2.2.



Table 2.1 Hierarchy of structural scales defining the mechanical response of
concrete ( after Krajcinovic and Fanella, 1986 ).
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Scale

Yolume element

Defect

Model

Micro

Hardened cement
paste, xerogel,
aggregate

Atomic voids,
crystal defects

Matenial science
models

Unit cell containing
statistically valid
sample of phases

Microcracking,
large pores

Micromechanical
models

Macro

Concreie specimen

Macrocrack

Continuum theories,
fracturc mechanics

( after Lemaitre, 1986 )

Table 2.2 Macro scale of represcntative volume clement

Materiai Scale

H
Mztals 0.1 mm
Polymers 1.0 mm
Wood 10.0 mm
Concrete 100.0 mm
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Lemaitre (1992) suggested a representative length scale of 100 mm.
Modeer (1979) additively suggested that this length contain at least
three aggregates., Krajcinovic and Fanella (1986) suggested a cell size
criterion at the meso-level for concrete to be a cube containing 30-100
aggregates. Bazant et al (1991a) advocated to representative
elementary volume which is a sphere of radius equal to three times the
maximum aggregate size. They considered this volume to be sufficient to

include crack band formation and moreover the nonlocality effect of

damage.

It is clear that the cell-size is quite arbitrary. However, it should

give good representation of the behavior of the material

2.5 CRACKING OF CONCRETFE

The two most prominent modes of the irreversible changes of the

micro-structure are:

1. slip on the preferred crystallographic planes; and

2. nucleation and growth of microcracks and microvoids.

Slip is promoted by shear stresses available for moving and stacking
dislocations (line defects) into preferential configuration. For material
slips through the crystalline lattice, the number of bonds between
particles remains practically unchanged (Krajcinovie, 1984b). The
plastic deformation is phenomenological result of the slips on all active

slip systems in the solid. Concrete lack the crystalline lattice necessary
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for the sustained slip deformation. This phenomenon is studied within
the context of the theory of plasticity (or the slip theory). Response
dominated by slip in shear planes is usually perceived as ductile as for

concrete if partially or totally confined.

Ortiz (1984) pointed out that it is important to note, however, that
both the cracking and plastic flow of concrete exhibit a variety of
typical features that are not contained within the classical theories of
fracture mechanics and plasticity. It is a well-known fact (Wastiels,
1979) that when concrete is subjected to wuniaxial compression it
develops cracks that are parallel to the axis of loading. In some cases,
these cracks become so large to be the direct cause of failure of the
specimen. This situation persists even if the specimen is laterally
confined by means of a moderate compressive pressure. It is thus
concluded that cracks in concrete can open against compressive
stresses, which is in apparent contradiction to the second law of
thermodynamics that require that cracks open only in tension (Sneddon

and Lowengrub, 1969).

Whereas plastic strain does not significantly reduce the elastic
moduli, micro-cracking causes both inelastic strain and a reduction of
the elastic moduli (Bazant and Shieh, 1980b). Microcracking in the
cleavage mode occurs in planes perpendicular to the direction in which
the direct tensile strain exceeds some threshold value reflecting the
cohesive and/or adhesive strength of the solid locally. Since the

microcracking involves progressive loss of bonds between adjacent
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particles (grains) the elastic properties of the solid are affected as
well. Microcracks are actually not randomly oriented but exhibit a
prevalent orientation, thus giving rise to stress-induced anisotropy of
incremental elastic moduli (Bazant and Shieh, 1980h). Response
characterized by microcracking in cleavage mode is typically classified

as brittle as for a concrete specimen in unconfined uniaxial

compression.

The extension of microcracks, for iunstance is known to play a
decisive role in the inelasticity of concrete (Ortiz, 1984), as it results
in the degradation of the elastic compliances (Hsu et al., 1963;
Gardener, 1969; Karsan and Jirsa, 1969; Mills and Zimmerman, 1970,
1971; Linse, 1973; Palaniswamy and Shah, 1974; Wastiels, 1979) and
interacts with the plasticity of the material (Hueckel, 1975, 1976;
Hueckel and Mair, 1977; Dafalias 1977a, 1977b, 1978), an effect which is

known as elastoplastic coupling.

The cracking of materials results from creation, propagation and
coalescence of microcracks. For materials characterized by ductile

behavior, Chaboche (1990) considered four different levels of cracking:

1. crack nucleation;

2. micro-crack initiation;

3. macro-crack initiation; and
4. breaking up.

On the other hand, one must distinguish two other types of structural

materials (Bazant et al., 1991a):
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1. those failing at the initiation of the macroscopic crack growth
(i.e., the structure just before failure contains only macroscopic
cracks or other flaws, as in typical sorts of many ceramies and
fatigue-embrittled metal structures); and

2. those failing only after large stable microscopic crack growth

(which is the case of reinforced concrete structures).

These considerations give rise to the brittle damage. Damage is
generally termed brittle when it occurs by decohesion without any
sensible plastic strain at the mesoscale. For a unified classification it is
worth mentioning the two categories of brittle damage aligned by

Lemaitre (1992):

1. Pure-brittle damage : in which permanent micro strains (plastic
strains) may be neglected.
2. Quasi-brittle damage : in which the behavior is brittle at the

mesoscale but Jocalized damage growth occurs at the microscale.

For concrete, the heterogeneity of its microstructure associated with
great porosity of the binding material and with the presence of
granulates, is an essential factor of the phenomenological aspect of the
behavior. From experimental observatiens and from micromechanical
models which were proposed by several authors (cf. Lino, 1980;
Modeer, 1979; Buyukozturk et al., 1971 and others), the following

points can be described for concrete schematically:

1. a state of initial degradation (defects of compaciness, microcracks
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in the paste created by dilation and shrinkage);
2. a propagation of the microcracks around the biggest grains under

load; and

3. a dependence of the microporous structure of the cement paste

on the hydrostatic pressure.

A salient aspect of the material behavior of concrete that can be
deduced in the process of damage undergone by its elastic properties as
a consequence of microcrack growth (Gardener, 1969; Karsan and Jirsa,
1969; Palaniswamy and Shah, 1974; Wastiels, 1979; Ortiz, 1984). It has
been experimentally shown through crack surveys that crack textures
quickly become highly anisotropic (Kranz, 1979). This endows the

elasticity of concrete with a strong induced anisotropy (Ortiz, 1984).

The other main characteristics deriving from these phenomenological

considerations are (Mazars and Lemaitre, 1984b):

1. damage is the principal aspect of the behavior of the material;

2. damage only appears beyond a certain threshold of solicitation
but this point is in contradiction with other investigators. Lorrain
and Loland (1983) showed that damage takes place as early as

loading starts;

3. damage influences the macroscopic mechanical characteristic of the

material; and

4. damage modes differ according to the type of solicitation

corresponding to:
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Figure 2.1 Modes of loading: I. opening, II. shearing and III.
tearing
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type A: the solicitation applied allows extensions in one main

direction at least, the formation of microcracks in mode

I (shown in Fig. 2.1) is then possible and the behavior

of the material shows an instability. This type leads to
cracking of concrete.

type B: the solicitation applied allows no extension, the strong

hydrostatic pressure associated leads to the local

initiation of microcracks in modes II and III (shown in

Fig. 2.1), the friction between the lips yields a ductile
macroscopic behavior;

type C: the solicitation is a hydrostatic pressure, the essential

pPhenomenon is then the collapse of the microporous

structure which leads to a consolidation of the material.

2.6 BEHAVIOR OF CONCRETE

The material properties (i.e., its response to mechanical, physical
or chemical influences) are linked to its structure and the changes that
may occur within this structure. With reference to the three structural
levels adopted by Wittmann (1983): the macro-level, the meso-level and
the micro-level, most models are usually confined to properties or
Phenomena observed at the macro-level. The matrix, which can be
regarded as a continuum at the meso-level, consists of smaller
aggregates embedded in a hardened cement paste. The ratio between

matrix and inclusion stiffness, the matrix composition, the type of
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aggregates as well as the size distribution are examples of parameters
influencing the material structure and the response on the material

under load (Hobbs, 1977).

2.6.1 Uniaxial Compression

For most concretes, the aggregate volume concentration ranges
between 0.55 and 0.80 and as a result the elastic properties of the
aggregates have a very significant effect upon the deformation. Stress-
strain curves for rock, paste and concrete loaded in uniaxial
compression are illustrated in Fig. 2.2 (Hobbs, 1983). Rocks that are
used as the aggregate in concrete generally exhibit an approximately
linear relationship between stress and longitudinal strain up to failure,
whereas both paste and concrete exhibit markedly non-linear behavior.
The stress-volumetric strain curves for aggregate, paste and concrete
are generally non-linear. For pastes there is a continuous reduction in
volume as the applied stress decreases. The hehavior of concrete is of
similar form except that, at a stress of about 70 to 90 percent of the
peak stress sustained, the volumetric strain increases. The salient

notions of concrete hehavior under uniaxial compression can be

summarized as follows:

1. Unlike uniaxial tension, in uniaxial compression several longitudinal
cracks (Campbell, 1962; Guo and Zhang, 1981) and diagonal shear
type fracture plane develop (Hordijk et al., 1989). However, Shah

and Sankar (1987) traced the internal crack pattern and observed
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no shear band type of failure.

2. There is a non-linear trend in the stress-strain diagram with strain
softening in the post-peak and it is still not clear whether this is a
material phenomenon, an artifact of the method of testing and strain
measurement technique, a result of localized shear band formation,
or a result of distributed cracking (Read and Hegemier, 1984;
Sandler, 1984; Wu and Freund, 1984; Van Mier, 1984; Frantziskonis,
1986; Kotsovos and Cheong, 1984).

3. A reduction in the unloading slope during the first loading cycles
takes place at very low strains (Spooner and Dougill, 1975). Early
onset of permanent deformations are also observed (Karsan and
Jirsa, 1969).

4. During the strain-softening regime, the apparent Poisson's ratio can
be greater than one, indicating a substantial lateral expansion

(Case, 1984; Shah and Sankar, 1987).

It is apparent that the damage in concrete occurs at applied stress
well below the maximum stress supported by the concrete. Some
investigators (Hsu et al., 1963) have deduced that small cracks are
formed in concrete before loading these cracks propagate and grow. A
number of investigators (K. Newman, 1965; Kotsovos and J. Newman,
1979) took the view that the fracture process can be divided into a
number of discrete stages and have suggested that critical or
discontinuity stress levels exist. This is not supported by the work of
Speoner and Dougill (1975). To assess damage, concrete specimens

were subjected to series of cycles of loading and unloading (Fig. 2.3)
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and it was assumed that the reduction in the initial slope of the
reloading curve is related to structural degradation of the material.
Spooner and Dougill (1975) found that damage during the first loading
cycle occurs in concrete at very low strains, about 200 micro-strains,
and that once started the process is continuous. For the concretes
tested, no evidence to support the existence of any "critical" or
"discontinuity" stress was found. Spooner and Dougill (1975) and
others used such results for quantifying the various energy components
that were contributing to the fracture process of concrete as such.
Similar load-paths were followed by others (for example Sinha et
al.,1964; Karsan and Jirsa, 1969) and discussions evolved regarding
the uniqueness of the descending branch with respect to different load-
paths. However, in experiments by Hughes and Ash (1970), a
considerable influence of the initial stress on the uniaxial compressive
and tensile strength was reported and explanation of non-umiformity of

deformation in the softening regime was made by Van Mier (1984).

2.6.2 Uniaxial Tension

The tensile behavior of concrete has long been considered to be of
minor importance to failure analysis (Hordijk et al., 1989). This is due
to the fact that concrete is a material most suitable to withstand
compressive stresses rather than tensile stresses. With the introduction
of fracture mechanics, however, it became clear that the tensile

properties play even a dominant role in the failure of concrete



29

structures. This is reflected by the fact that the basic input for
fracture mechanics models is the complete stress-deformation relation for
discrete crack or stress-strain for crack band models for concrete
under tensile loading. Fracture mechanics proposed the following

quantifiers (Hordijk et al., 1989): (1) the fracture energy GF’ (2) the
maximum crack opening L (3) the characteristic length lch-’ and (4)

the band width. The salient notions of concrete behavior in tension

can be summarized as follows:

1. Cracking process starts at low level of stresses (Yankelevsky and
Reinhardt, 1987). A localized fracture plane develops perpendicular
to the tensile direction (Hordijk et al., 1989; Hordijk, 1992).

2. The initial tangent modulus for concrete in tension is mostly taken
to be equal to that for compression (Neville, 1963; Hobbs, 1983;
Gopalaratnam and Shah, 1985).

3. The Poisson's ratio ranges between 0.15 and 0.25 in the pre-peak
region, and varies considerably in the post peak or descending
branch prior to failure (Guo and Zhang, 1987).

4. Experiments show non-linearity in the stress-strain relation up to
peak load (Evans and Marathe, 1968). Gustafsson (1985) claimed
that this nonlinearity is due to experiment conditions and produced
by any type of initial stress or undesired eccentric loading.
However, this nonlinearity should be taken into consideration

regardless of its source.

5. A softening post-peak behavior, in which large strains are involved,
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is exhibited (Reinhardt, 1985; Shah, 1985; Wittmann, 1983;
Carpinteri and Ingraffea, 1984).

6. The descending branch of the stress-strain curve is due to the
reduction of the effective area (Guo and Zhang, 1987).

7. The stress-strain curve can neither be classified as elastic-perfectly
brittle, nor as elastic-perfectly plastic (Rots and de Borst, 1989).

8. The cyclic response has received scant attention with some authors
proposing  idealized branches of unloading and  reloading
(Gopalaratnam and Shah, 1985; Rots et al., 1985; Rots, 1985;
Yankelevsky and Reinhardt, 1987).

9. Snap-back behavior was reported by many investigators (de Borst,

1986; Carpinteri et al., 1986; Crisfield, 1986; Rots and de Borst,
1989).

2.6.3 Biaxial Loading

Investigations on the concrete behavior under biaxial stress states
showed a considerable scatter in the results (Linse et al., 1975; Linse
and Aschl, 1976; Kupfer et al., 1969; Kupfer and Gerstle, 1973;
Buyukozturk et al., 1971; Buyukozturk and Tseng, 1984; TLino, 1975;
Wastiels, 1979; Liu, 1971, 1972a,b; Van Mier, 1984; Kotsovos, 1974,
1979; Kotsovos and Newman, 1977; Vile, 1968). Some of the strength
envelopes determined experimentally are ; Grestle, 1981; Akroyd,
1961; Anson, 1962; Bellamy, 1961; Karni and McHenry, 1958; Launay

and Gachon, 1970). Some of the strength envelops are shown in Fig.
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2.4. This fact is mainly due to the type of end restraint. Loading
through solid platens, loading through brush platens, loading by fluid
pressure and loading and stressing hollow cylinders were some of the
techniques attempted to determine the strength (Hobbs, 1983). Brush
platens were claimed to completely eliminate friction at the interface

(Kupfer et al., 1969). The salient notions of the behavior are

summarized as follows:

1. Failure occurs by tensile splitting, with the fracture surface(s)
orthogonal to the direction of the maximum tensile strain (Tasuji et
al., 1978). However, another mechanism was given by Hordijk et al.
(1989) for multi-axial states of stresses.

2. The strength in biaxial compression is higher than the uniaxial

compression.

3. Compressive stress at failure decreases as the simultaneously acting
tensile stress is increased.

4. No significant change in strength was reported under biaxial tension
(Kupfer et al., 1969).

5. Similar to uniaxial loading, the residual strain in biaxial load
combinations depends only on the corresponding strain on the

loading curve at which unloading commences as shown in Fig. 2.5.
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2.7 SPECIAL CONSIDERATIONS FOR CONCRETE

2.7.1 Strain softening

A number of materials, such as concrete, rock and dense soils,
show a decrease in strength during progressive straining after the peak
strength is reached. This phenomenon is termed strain softening (c.f.
Bazant and coworkers, 1983g,m). Softening behavior of concrete is
still under tremendous arguments whether it is a material property or a
structural effect (Discussions, 1989). From experimental observations
of strain softening, it has been found that strain softening may not be
a material property of concrete, rock or soil treated as a continua, but
rather the performance of a structure (finite size specimen) composed of
microcracks, joints and interface that result in an overall loss of
strength (Bazant, 1976a; Frantziskonis and Desai, 1987a, 1987b). A
review on this subject is given by Sandler (1984) and Read and
Hegemier (1984). If strain softening is assumed to be a true
(continuum) material property, various anomalous conditions may arise
with respect to the solution of boundary and initial value problems. As
shown by Valanis (1985), these anomalies can lead to loss of uniqueness
in the softening part of the stress-strain response. Subsequently, loss
of uniqueness leads to numerical instabilities. This is illustrated by the
high sensitivity of the numerical solution to the finite element mesh size

(Sandler, 1984; Pietruszczak and Mroz, 1984).
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The softening effect of damage in the overall material response has
several potentially far-reaching consequences concerning the nature of
the associated boundary value problem (Ortiz, 1984). Foremost among
these is the loss of ellipcity with the ensuing possibility of localization
of the inelastic deformation. While the theory of localization is presently
well developed (Rice, 1976), it has mainly been applied to the study of
shear band formation in metals and soils. The case of concrete presents
an interesting variant of the process of Ilocalization, namely, the
localization of diffuse microcracking into discrete cracks. Such extended

cracks are observed to develop in reinforced flexural members.

2.7.2 Structural effects

Regardless of the strain softening of concrete , three ,well-
established , structural effects were reported (Bazant, 1983e; Bazant

and Kim, 1984c; Saouridis and Mazars, 1989):

1. the volume effect;
2. the strain gradient effect; and

3. the structural size effect.

The volume effect is caused by the heterogeneous character as well
as the initial microcracking of the material structure. That is there is a
random distribution of the local defects, and by consequence a large
volume will exhibit smallest macroscopic strength. The strain gradient

effect is observed when structures of identical dimensions are loaded in
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different ways. If the existence of microcracks are considered, the
presence of strain gradient is beneficial for the local strength since
compression applied in a direction lateral to that in which the crack will
propagate delays microcrack growth. The structural size effect concerns
with the variation of the fracture parameters which are assumed to be

material constants when geometrically similar structures are tested.

2.7.3 Volumetric changes

The inelastic volume dilatancy and compaction are the salient
characteristics of the inelastic behavior of concrete. Little attention
has, yet, been given to them in the literature. Care was given to this
phenomenon in few models; e.g. endochronic theories by Bazant and
coworkers (1976b,c,d,e, 1978a,b,c, 1980b), damage models by
Krajcinovic and coworkers (1981, 1983a,b, 1985, 1989), and Resende

(1987). However, three elements were observed to contribute to volume

changes in concrete:

1. dilatancy due to shear;

2. Shear compaction which occurs at the start of shear straining in
the presence of triaxial compression; and

3. hydrostatic compaction for which its significance can be observed

only at very high hydrostatic loading.

Unlike the first two elements, the latter is not a cross-effect due to

shear deformation and does not result from microcracking. Rather it is
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caused by a collapse of pore walls due to hydrostatic pressure or

volumetric compression.

2.8 REINFORCING STEEL

It is now well recognized that the mechanical properties of steel
beyond the yield strength are of prime interest. In terms of strain the
ductility capacities are required for static plastic design and for seismic
design. In terms of strength, the ultimate strength is the main
parameter for determination of structural -capacity. Elastoplastic

idealizations give poor approximation since the post-yield region is

assumed linear.

Between the yield strength and the ultimate strength it is important
to know the behavior with enough accuracy where the rate of strain
hardening is a determinant parameter, or simply where the level of
stress is between these two values which is the customary case for
reinforced concrete. RILEM Technical Committee 83 (1990) has proposed
a tension testing method and some standardized mathematical expressions
for idealization. Ramborg-Osgood and Menegotto-Pinto models were
suggested. The latter seems to be more appealing for the so-called
"round house"” type of which the stress-strain diagram has no yield
point. However, modifications of the general Menegotto-Pinto model were
made to properly idealize the stress-strain curves for steel (Colson and
Boulabiza, 1992). Fig. 2.6 shows the general model, the modified one,

as well as the ranges of experimental data for parameter identification.
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Mathematical equations for the idealization are given as (Colson and

Boulabiza, 1992):

0<r.$r.y g = Ez¢g (2.1)
r.y<c<r.st c = fy (2.2)
E ¢
€26 ¢ = (2.3)
st
L +@fe )t R

in which ¢ is the stress,

B

is the strain, by is the yield strain, Rt is

the hardening strain, =

.o=<ro/E, E is Young's modulus, fy is the yield

strength, S is the ultimate strength and R is a material parameter. It

has to be noted that the curve (Equation 2.3) is tangential to the initial
stiffness (Equation 2.1). From experimental investigations (Colson and
Boulabiza, 1992) using the modified least-squares method proposed

earlier by Pilvin (1983), the following remarks were deduced :

1. The yield strength is directly dependent on the thickness
(diameter) of the specimen.

2. Other parameters, E,R, and o are independent on the

0’

thickness and could be considered as constant.

This emphasizes the idea of the existence of a skeleton curve for a
given grade of steel depending only on the chemical composition, the

skeleton curve is being governed by E,R, and Ogr On the other hand

the well known yield strength would be dependent only on the
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manufacturing process and to get the final shape of the product. With

such an understanding the main strength parameter would be o o This

idea fits quite well with the concepts of the ultimate limit states that

are widely used and in nonlinear modelling.

2.9 REINFORCED CONCRETE

Reinforced concrete is unique in that two materials, reinforcing steel
and concrete, are used together; thus the principles governing the
structural design in reinforced concrete differ in many ways from those
involving design in one material. Steel and concrete work readily of

combination for several reasons (Wang and Salmon, 1979):

1. bond (interaction between bars and surrounding hardened
concrete) prevents slip of the bars relative to the concrete;

2. proper concrete mixes provide adequate impermeability of the
concrete against bar corrosion; and

3. sufficiently similar rates of thermal expansion albeit other thermal

properties (conductivity, specific heat,...etc) are different.

The feature of concrete cracking enhances three main issues; bond,

tension stiffening and shear retention.

The transfer of stress across the interface between concrete and
steel reinforcement by bond is of fundamental importance to most

aspects of localized reinforced concrete behavior. Substantial difficulties
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in pull-out/anchorage and transfer tests resulted in a widespread

variation of results (Abd Al-Rahman, 1984).

Tension carried by microcracked concrete in zones adjacent to
macrocracks is usually referred to as tension stiffening. The effect of
tension stiffening is of major importance in under-reinforced concrete
members. Factors affecting tension stiffening are the bond
characteristics, tensile properties of concrete, macrocrack spacing and

the bar sizes and arrangements (Clark and Cranston, 1979).

The surface of cracks that develop due to excess tensile stresses in
concrete are usually rough and irregular. The mechanism of shear
transfer in cracked concrete is called the "interface shear transfer"
mechanism (Bazant and Gambarov, 1984b). Apparently the initial crack
width is the primary variable affecting this mechanism. Smaller crack
widths correspond to greater shear stiffness and strength. Aggregate
size, reinforcement ratio, bar size and concrete strength are less
important factors. Another important mechanism of shear transfer in
cracked concrete is caused by "dowel action" of reinforcing steel. In
sum, cracked concrete can still transfer shear through aggregate

interlocking, friction and tension and/or dowel action in the

reinforcement.
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CHAPTER 3

CONSTITUTIVE MODELING

3.1 GENERAL

Modelling of any physical phenomenon constitute an immortal
challenge to researchers. With the help of fast computers the number of
assumptions encountered with material idealization has been reduced
considerably. Moreover, laboratory facilities have highly developed and
experimental techniques declared several characteristics were not
previously known and thus the challenge is continuous. Many models
were proposed in various directions with no single trial to organize
their dispersion. In this chapter, different categories of existing models
are classified. Comparisons among the models themselves to distinguish
the most promising modelling technique is made. It is revealed that
continuous damage mechanics possesses superiority over others in many
aspects. The advantages and limitations of this concept, after brief
demonstration of its notions, are summarized. A state-of-the-art on
continuous damage mechanics utilizing the concept of damage variable
for concrete is presented. Finally, the local, the nonlocal, and the

distributed natures of damage are discussed and the strain-damage

coupling schemes are outlined.
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3.2 HISTORICAL BACKGROUND

Design aspects started with empirical rules, then linear elastic
theory was developed using the concept of allowable stresses at the end
of the nineteenth century. Ultimate strength design using the ultimate
capacity and elastic structural analysis (e.g. ACI-code) and limit state
design using the ultimate capacity and the theory of plasticity (e.g.
CEB-FIP code) were developed and are currently in use. Many other
approaches were further proposed to replace the latter methods aiming
at more realistic presentation of materials behavior. It was 1961
(Kaplan, 1961) that the concepts of fracture mechanics were applied to
concrete. Numerous researchers came up with the conclusion that linear
elastic fracture mechanics is not the proper way to model concrete, thus
shedding the light on nonlinear fracture mechanics techniques
augmented by the availability of fast electronic computers. Damage
mechanics is still under the development phase and great effort was
devoted to this area since the previous two decades. Other attempts
which were made to model concrete on the basis of numerical simulation,
stochastic theories, and homogenization gave good understanding of

some physical aspects of material response.

3.3 MODELS CLASSIFICATION

Many models have been proposed to capture the main features of
material responses and to predict its hehavior (Bazant, 1981, 1982b).
Experiments are liable to many sources of errors due to several

influences. A proper model can replace with confidence the costly
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testing. Classification of models is not an easy task since it is mainly

arbitrary and depends on many factors. For the sake of objectivity, the

following herd of categories can be schematically desecribed (Fig. 3.1):

3.3.1 Classification According to Loading Conditions

a.

Rate independent models : includes models adopted to predict

response attribute to static, quasi static and cyclic loading

conditions.

Rate dependent models : include rheoclogical models for dynamic
and long term sustained loadings. Examples of this type are
viscoelastic, viscoplastic, and elastic-viscoplastic models to predict

behavior due to creep, relaxation and shrinkage.

Alternate loading models : include models for low-cycle fatigue

and high-cycle fatigue due to alternate loading associated with or

without sign reversal.

Combined loading models : include models concerned with
interaction between two or more' of the previous models; e.g.

creep-fatigue interaction models.

Durability problems models : this category became necessary
after realization of the scientific community that durability
problems should obtain the proper consideration in modelling .
Currently, many researches are devoted to numerical modelling of

corrosion, alkali silica reactivity and sulfate attack induced
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structural deterioration.

3.3.2 Classification According to Formulation Basis

a.

Thermodynamics based models : include models emerging from
the free energy function (whether the Helmholtz's or the Gibb's
function). They utilize a group of state and internal variables
and consider a dissipation function or a yield surface provided by

Clausius-Duhem inequality (Lublinear, 1972, 1980).

Tensorial properties based models : In this type of formulation
the material's constitutive relations are often derived from the
fundamental tensorial partitioning of the stress or strain to the
deviatoric and spherical components. Bazant (1978a) recommended
such models since the information furnished by thermodynamics is

quite limited. Kachanov (1985) derived similar conclusions.

3.3.3 Classification According to Mathematical Form

a.

b.

Total models : have the form of algebraic equations; relating

the total stress to the total strain

lncremental models : have the form of differential or integral

equations; relating the strain increment to the stress increment.

Similar classification was suggested in the early history of

plasticity and was termed: (a) deformation theory; and (b) flow

theory. The former is based on a paper by Hencky (1926) which
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relates the plastic strains themselves to the actual stresses. The
flow theory follows the line of St. Venant (1870)-Levy (1870)-Von
Mises (1913)-Prandtl (1924)- Prandtl and Reuss (1950) which relates

the increments of the plastic strain to the actual stresses.

Lebmann (1982) gave the view that the deformation theory is
physically unsatisfactory based on the classical experiments reported
by Hohenemser and Prager (1932) and on the other hand, flow
theory failed in bifurcation problems (Hohenemser, 1931; Rice, 1976,

Christoffersen and Hutchinson, 1979; Sewell, 1974).

334 Classiﬁca(igl't_ According to Compressibility

a. Incompressible models : old plasticity models assume no volume
changes (Prandtl and Reuss, 1950). This, however, applicable for
metals and some alloys in certain strain range but this is usually
accompanied by change in density (Dufailly, 1980; Lemaitre,
1992). The density change is always neglected except in few

ductile damage or material science models.

b. Compressible/Dilant models : Concrete, rock and dense soils
whether totally or partially confined when subjected to distortional
compressive stress show compressibility then dilatancy can be
obviously observed. The reason for such behavior is the evolution
of microeracks. Many models were adopted with main target to

model this phenomenon (e.g. Resende and Martin, 1984; Resende,

1987; Bazant and Tsubaki, 1980e).
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Crack dilatancy models : the fact that cracked concrete
structures still have a considerable load carrying capacity is
attributable to such phenomena as bond slip, dowel action in
reinforced concrete in addition to tension-softening behavior and
aggregate interlock. The last phenomenon in particular, is often
assumed to contribute significantly to the load-carrying capacity
of concrete structures that show large cracks (greater than 0.1
mm) (Feenstra et al., 1991). Indeed, a large amount of research
has been conducted in the past two decades either experimentally
(Walraven et al., 1979; Walraven, 1980; Walraven and Reinhardt,
1981) or analytically (e.g. Bazant and Gambarova, 1980d;
Gambarova and Karakoc, 1983; Li et al., 1989; Walraven, 1980,
Walraven and Reinhardt, 1981). The mathematical models for crack

dilatancy can be classified into two categories (Feenstra et al.,

1991):
1. Empirical crack models

- Rough crack models (Bazant and Gambareva, 1980d;

Gambarova and Karakec, 1983).

- Aggregate-interlock relation (Walraven and Reinhardt, 1981).
2. Physical crack models
- Two-phase model (Walraven, 1980).

- Contact density model (Li et al., 1989).
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3.3.5 Classification According to Material Lincarity

a. Linear models : include linear stress elasticity and linear

elastic fracture mechanics.

b. Quasilinear models : include models approximating the nonlinear
material behavior to piece-wise linear segments or models which

are incrementally linear (Hodge, 1956).

c¢. Nonlinear models : include models accounting for material

nonlinearity even though the behavior is not elastic.

Linear elastic models based on either a strength criterion or linear
elastic fracture mechanics failed to distinguish the three structural
effects aforementioned in clue 2.7.2. These three structural effects
cannot be predicted if the damage zone is neglected. Nonlinear elastic

models can be helpful for zones stressed at low levels (Saouridis and

Mazars, 1989).

For materials exhibiting inelastic behavior such as concrete, the

stress increment drsij (i,j = 1,2,3), which is corresponding to a strain

inerement d"'ij’ is composed of two parts. The first is (an elastic)

stress increment assuming the intact material d(y?. = C?

ijkmd::km , where

C?jkm is the initial fourth order modulus tensor of the material. The

second is an inelastic stress decrement -—dogl, the expression of which

distinguishes among various models. Dougill (1975,1975) assumed, for

instance, a fracture surface which yields the fracture stress increment
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f)r by normality condition, then assumed that dn;].‘ = dnfr On the

ij °

do

other hand, in the plastic fracturing model, Bazant and Kim (1979)

considered the inelastic stress to consist of plastic and fracturing

components, dog and dngjr, respectively. These stress increments are

determined by two interacting loading surfaces. In the endochronic
models developed for concrete by Bazant and co-workers (Bazant and
Baht, 1976; Bazant and Shieh, 1980) used similar decomposition but
each component was expressed by proper intrinsic time increment which
was never negative.

Recently continuous damage mechanics emerged in various forms
to provide a simple and realistic understanding of the material behavior.
The inelastic behavior of concrete was characterized utilizing several
forms of the damage variable. The easiest approach is to consider a
scalar damage variable D through which the inelastic stress is

in _

. o i . . . .
expressed as dcs]j = Cijkmd(Dr'kmy tij’ fij is a tensorial function which

depends on the damage model and reduces to zero for brittle behavior.
Ju (1990) showed that such scalar type formulation need not represent
isotropic behavior. Moreover, he claimed, in another study (Ju, 1989),
that the damage process is associated to both the elastic and plastic
phases of concrete behavior. Following different approaches, the
damage variable was defined on the basis of either: (1) an assumed
potential of dissipation function (Lemaitre, 1985), (2) a kinematic
damage surface (Krajcinovic and Fonseka, 1981), (3) a phenomenological
consideration (Mazars, 1984), (4) an energy based (Simo and Ju, 1987),

(5) an exponentially decaying form (Desai and Frantziskonis, 1987), (6)
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micromechanically (Budiansky and O'Conell, 1976), (7) intuitively

suggested form in terms of strain rate and hydrostatic pressure

(Resende, 1987), or (8) bounding surface (Suaris et al., 1990; Taher

and Voyiadjis, 1993; Voyiadjis and Taher, 1993).

3.3.6 Classification According to Directional Properties

a.

Anisotropic models : include models where there are no material

symmetry at all (Lekhnitskii, 1963).

Orthotropic models : include models for material for which

three orthogonal planes of symmetry exist (Bazant, 1983n).

Aelotropic models : mainly developed for crystals of symmetry
group less than the full orthotropic group (Smith and Rivlin,
1958; Smith, 1962). In this case there exists a finite group of
symmetries, while isotropy and transverse isotropy are

characterized by continwous group (Malvern, 1969, Spencer and

Rivlin, 1959a,b).

Transversely isotropic models : include models [or materials
possessing a rotational symmetry with respect to one of the
coordinate axes and if moreover every plane containing this axis

is a plane of reflection symmetry (Spencer and Rivlin, 1959a,b,

1961).

Isotropic models : mechanical behavior is identical in all

directions
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For linear elastic material obeying Hook's law, the number of
material constants are reduced from 21 to 9 to 5 and to 2 for
anisotropic, orthotropic, transversely isotropic and isotropic,
respectively. For aelotropic materials, the number of material parameters
depend on the number of symmetry planes and is intermediate between

the orthetropic and transversely isotropic materials.

A salient aspect of the material behavior of concrete is the process
of damage undergone by its elastic properties as a consequence of
microcrack growth (Gardener, 1969; Karsan and Jirsa, 1969; Linse,
1973; Mills and Zimmerman, 1970, 1971; Palanswamy and Shah, 1974;
Wastiels, 1979). It has been experimentally shown through crack
surveys that crack textures quickly become highly anisotropie (Kranz,
1979). This endows the elasticity of concrete with a strong induced
anisotropy. Despite this fact, most models were isotropic (Kupfer and
Gerstle, 1973; Budiansky and O'Conell, 1976; Cedolin et al., 1977;
Bazant and Kim, 197%9a; Resende and Martin, 1982; Resende, 1984;
Mazars, 1980, 1983, 1986a; Lemaitre, 1992) or orthotropic (Liu et al.,
1972a, 1972b, Romstad and Taylor, 1974; Darwin and Pecknold 1977a,
1977b; Elwi and Murray, 1979, 1980; Bashur and Darwin, 1979). This
clearly restricts the wvalidity of such models to certain loading
conditions. Few theories are available that do account for induced
anisotropy (Dougill, 1976; Dougill et al., 1977; Costin, 1983; Ortiz and
Popov, 1982b; Ortiz, 1984,1985). These theories have invariably

characterized microcrack textures by controlling microcrack along

selected directions.
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3.3.7 Classification According to Structural Scale

a. Nano-/micro-/meso-mechanical models : include models emphasizing
the dominant mode of irreversible changes of the mesostructure
embedded, via an appropriate homogenization algorithm, into a
constitutive relation mapping macrostresses on macrostrains in a
homogenized solid (Krajeinovic and summarac, 1989). Elasticity takes
place at the level of atoms while plasticity is governed by slips at the
level of crystals or molecules through dislocations. Damage is debonding

from the level of atoms to the mesoleve! for crack initiation (Lemaitre,

1986b).

b. Phenomenological models : include models describing phenomena
only at macro and structural scales (Lemaitre, 1986a, 1986b). The
major weakness of all phenomenological models resides in the
arbitrariness of the choice of the kinetic equations which at the very
best only vaguely, if at all, reflect underlying processes on the

mesoscale (Krajcinovic, 1984a, 1984b).

In the micromechanical type of models, the microscopic mechanisms
are the primary object and the macroscopic response is then deduced.
This is the case of micro-plane models (Bazant, 1983c), models using
homogenization technique, as well as statistical models. This kind of
approaches must be better seen as very useful tools for material

modelling rather than tools for structural analysis.

In the phenomenological type of models, two approaches available are

the global and the local. Glogal approaches such as nonlinear fracture
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mechanics models were established in such a manner that fracture
properties were forced to remain size-independent. Local approaches
such as the continuum damage mechanics models which introduce for
damage a continuum variable generally affecting the elastic properties.
However, the criteria guiding the model's choice is the capability to
simulate or predict the localized as well as the non-localized failure
modes. Continuous damage mechanics is then convenient since nonlinear
fracture mechanics models could simulate only the localized failure modes
(Lemaitre, 1986b). It can be concluded that continuous damage
mechanics should gain more research considerations as a promising tool

to properly model the material behavior of concrete under wvarious

loading conditions.

3.3.8 Classification According to Material Heterogeneity

a. Homogenization models : most of the existing concrete models
postulate perfect homogeneity. However, this is a crude assumption
since strain softening never takes place in a homogeneous continuum
(Bazant, 1976a). Also, splitting failure in uniaxial compression could

not be justified if homogenization is assumed (Ortiz, 1984).

b. Homogeneous wmedium with cracks : many models assumes a
homogenization for the cracks in the matrix either using Taylor model
(1938) or self-consistent model (Budiansky and O'Comell, 19876). In
models assuming isotropy and homogeneity of the paste-aggregate

matrix, the complete geometry of the mesostructure is defined by

(Kanaun, 1983) :
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- Three random vectors describing the Bravais lattice formed by

the centers of cracks as nodes.

- Two scalars approximating the shape of the crack by a

ellipse.
- Three normals to the crack surface.

Composite models : Include models dealing with materials of various
phases. The complete description of each phase at the considered
structural scale should be specified assuming known behavior. The
most widely accepted models for composite materials considers
elasticity with load transfer between the phases (e.g. unidirectional
and angle ply composites). Orthotropic properties of prime

importance to utilize the composite action for intentionly oriented

reinforced elements.

Mixture models : These models are based on the theory of
interacting continua, or the theory of mixtures. The averaging may
bhe obtained using Hill, Voigt, Reuss approaches or combination of
them all (Zimmerman, 1991). For concrete, as a two phase material,
the constituents can be regarded as mortar and aggregate. Foremost
among the advantages of the theory of interacting continua is the
notion of phase stresses, i.e., that the externally applied stress
distribute unevenly between mortar and aggregate. These phase
stresses jointly equilibrate the external ones, but are in general

vastly different from each other. A detailed study of concrete as a

mixture has been presented by Ortiz and Popov (1982a). The
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aggregate phase stresses does not represent the stresses within the
aggregate particles but rather it accounts for the contact forces that
develop between them. The absence of diffusion between mortar and
aggregate results in strain compatibility between mortar and
aggregates. Such strains refer to the macroscopic deformation of the
phase and are not in any way intended as measures of deformation
processes that take place at the microstructural level. In other
words, the compatibility which is meant takes a completely different
meaning and serves a completely different purpose than the similar
one which is postulated in Taylor's method for composite materials
(Taylor, 1938). In this latter case, compatibility of deformations
between the matrix and the inclusions is postulated at the
microstructural level. This is a rather restrictive assumption that has

been relaxed in various ways is subsequent refinements of the

theory.

3.3.9 Classification According to Hypothetical Basis

a. Strength bosed models : include elasticity, plasticity and

frictional models.

b. Energy based models : include linear elastic fracture mechanics

and nonlinear fracture mechanics.

c. Stochastic models : include models utilizing statistical

distributions to predict failure.

d. Numerical simulation models : include techniques simulating the
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composition and behavior of concrete as a random process by

computer.

e. Damage models : include models featuring the material

degradation with the course of straining or loading the material.

This classification is the most general and cover a broad set of

models as illustrated in Fig. 3.2. Each category will be discussed

separately hereafter.

3.4 STRENGTH BASED MODELS

Many models were proposed to describe the behavior of concrete

under various loading conditions. These models may be categorized on

the following basis:

3.4.1 Elasticity Models

Elasticity is full recovery unpon load removal. Linear elasticity is
the simplest form of elasticity (Hook's law). The stress can be related
to the strain through an elastic response function. The relationship
should be reversible and path independent. The actual behavior of
geotechnical materials is nonlinear. A bevy of models were adopted to
simplify such a behavior including a bilinear, multilinear or piecewise
linear, hyperbolic (Christian and Desai, 1979), Rambor-Osgood (1943),
and similar models (Desai and Wu, 1976) and using other functions such

as spline functions (Desai, 1971; Ahlberg et al., 1967) or polynomials.
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Cauchy elastic material may generate energy under certain loading-
unloading cycles which violate thermodynamics (Eringen, 1962; Malvern,
1969). Restricted to the existence of an elastic strain energy function,
hypoelastic or Green elastic material is limited (Fung, 1965; Eringen,
1962; Green and coworkers, 1957, 1959; Malvern, 1969). Hypoelasticity
is used to describe the incremental elastic relations (Malvern, 1969;

Truesdell, 1955; Green, 1956).

3.4.2 Plasticity Models

A sheaf of models based on plasticity were developed merely for
metals then were applied to concrete and soils. These models can be

reasonably grouped under conventional and unconventional plasticity as

shoewn in Fig. 3.3.

a. Convenlional Plasticity

The theory of plasticity is a branch of the strength of materials

that can be traced back at least to Galiles (Braestrup and Nielsen,

1983).

Any deformational response to applied loads, or to environmental
changes, that does not obey the constitutive laws of classical elasticity
may be spoken of as an inelastic deformation. In particular, irreversible
deformations which result from the mechanism of slip, or from
dislocations at the atomic level, and which thereby lead to permanent
dimensional changes are known as plastic deformations. In the theory

of plasticity, the primary concerns are with the mathematical formulation
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of the stress-strain relationship suitable for the phenomenoclogical
description of the plastic deformation and often with establishment of
approximate yield criterion for predicting the onset of plastic behavior.

A tremendous amount of models were suggested in the literature, most

of which are listed in Table 3.1.

i. Associative plasticity

The phrase plastic flow is essentially a generalization to multi-
dimensional states of the concept of the yield stress in one-dimensional
loading. Continued loading after initial yield leads to plastic
deformati.ons which may be accompanied by changes in the yield
surface. For an assumed perfectly plastic material the yield does not
change during plastic deformations and the initial yield condition
remains valid. The alternative for strain hardening material is
hardening plasticity. It is accounted for by either strain or work
hardening. Three hardening rules were adopted: isofropic, kinematic
and mixed hardening. Bazant and Kim (1979a) introduced the jump-
kinematic hardening rule for unloading, reloading and cyclic loading. In

addition, anisotropic hardening (Mroz, 1979) and nonuniform hardening

{cf. Han and Chen, 1985) were proposed.

To sum up, the ingredients of the traditional elasto-plastic theory

can be summarized as follows:

1. A constant, symmetric, positive definite tensor of elastic moduli;

2. A "yield function" of the stress tensor which defines (as the



Table 3.1 Failurc theorics in chronologicul order
‘ 1
TX A0 A .
Reierence Criterion

Coulomib, 1774
Rankine, 1850
St. Venant, 1855
Tresca, 1364

Belirami, 1392
Von \Ims 19133,

Mohr, 1914
Gnifith, 1921

Hencky & Nadai, 1924

Leon, 1934

Kejic& Cheathem, 1947
Hill, 1948

Lame, 1950; Ciapeyrm,
1930

Drucker & Prager,
1952 a

Cowan, 1933

Sresier &Pister,1938a,b
SeClintock and Waish,
19462

Norris, 1953

Murrcli, 1963

Reimann, 1263

Baker, 1967

Mas

Two-parameter shear {riction failure,

Maximum principal stress.

Maximum principal strain,

Maximum tangential ( shear ) stress. Also |

known as Coulomb and as Guest's theorics.

Maximum strain encrgy density.

ximum distorsional strain eners £y density.

Also known as Maxwell's theory. 5

Modified Coulomb criterion.

Failure  Criterion  for  brittle

containing eiliptical minute flaws.

Maximum octahedral shear stress criterion.

Also known as Hencky-Mises criterion.
Parabolic Mohr cnvelop.

Modilied Mohr -Coulomb.

Maximum p principal deviatoric stress. '

Extended maximum principal stress criterion.

material

Smoeoth approximation to the Mohr- Coulomb

surface by a simple modification of the Von
Miscs criterion.

Combination  of  Mohr-Coulomi with
maximum sirengih cut-off,

Modified octahedral shcar SUCSs criterion.

Modified Griffith's thcory for compress
siress.

\I Ve

Faiiure  duc t.O yielding or fracture of

c
mrcc-d: ensional  extension  of Griffith's

roa.r-m‘r meier modei; meridians are 3

parabolic and the deviatoric sections are r.on ;
circuiar, l
Failwre criterion accoun iting for cracking due |
to differential stiffness batween the awrega vl
matrix and interfuce; failure I

|

surface is a
tetrahedron.,

[t



Table 3.1 (continuced )

ielerence

Criterion

Sub, 1959

Schimmeiplenning, 1971
Sandhu, 1972

Hobbs, 1974
Wiilam & Warnke, 1974

Argyrisetal., 1974a

Wikam & Warnke, 1974b

Wy, 1974

Chen and Chen, 1975
Otiosen, 1977 a, 1977 b,
979

iowe, 1973

Caen, 1979

Yangz, 1980a, b

Hsich et ai., 1979

Dangash, 1962
Zicnkicwicz and Pande,
1933

iade, 1982

Braestrup, 1983

Modified  Mohr-Coulomb accounting  for
dilatancy and compaction.
Modificd Reimann criterion.
Review  of theories of failure for
isotropic and anisotropic materials.
Empirical criterion for concrete.
Three-parameter  {ailure surface expressed in
erms of the average normal and shear stresscs.
Three-parameter  model involving  all three
Stress invariants; straight meridians and non
circular deviatoric sections.
Five-parameter criterion of ellipiic deviatoric
sections and parabolic meridians.
Dual failure criterion for plain concrete.
Modified Mohr-Coulomb.
Four parameter model; Meridians are parabolic
and tiic deviatoric sections are non circulzr.
Modificd maximum tensiic strain criterion.
Dual representation of fracture criterion in
terms of stress and strain. ,
Generalized Von Mises criterion for yield and
fracture.
Four-parameter failure criterion which contain
several earlier criteria as soecial cases (c.g.,
Von Mises, Drucker-Prager and  maximum
tensile cut-off).
Simplified two-parameter model .

Hyperdolic and paraboiic approximaticns of !

e Moir-Coulomb criterion with an added
sirain dependent cliiptical surface.
Three-parameter failure criterion for concrete.,
Parabolic failure envelop with circular tension
cut-off.

6
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locus where is negative) the current elastic domain in the space
of the stress components,

3. A plastic flow rule which relates plastic strain rates to stress
states which is assumed to be associated; and

4. A hardening rule according to which some parameters contained
in the yield function depend on on some measures of the
'irreversible' deformation process (such as volumetric plastic

strain or, more generally, "internal variables").

ii. Non-associative plasticity

For rock-like materials, the following significant phenomenoclegical

aspects were not captured in the framework of associative-plasticity

theories:

1. The plastic strain rate vector has a direction, still independent
from stress rates, but different from the outward normal to the
yield surface in the stress point and related to the plastic
dilatancy (non-normality);

2. The elastic moduli change as inelastic deformations develop
(elastic-plastic coupling); and

3. In an incremental yielding process, the yield surface may either
locally expand (hardening behavior), shrink (softening
behavior). or remain unaltered (perfectly plastic or critical
states).

Generalization was effected by the introduction of the loading function.

Strains are assumed to be perpendicular to the loading function by
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normality condition, thus giving non-associative flow rule. If the yield
surface replaced the loading function associated flow rule is recovered.
Hagmann et al. (1970, 1971) developed the stiffness relations for an
elastic, perfectly plastic material using a nonassociative flow rule based
on the assumption that all the plastic dilatational strains predicted by
the Mohr-Coulomb criterion with the associated flow rule are removed.
Such a derivation resulted in unsymmetrical stiffness relation which
implied that the material was unstable in Drucker's (1950) sense. Lade
and Duncan (1975) proposed a theory which incorporates special failure
and yield criteria, a non-associative flow rule, and an empirical work-
hardening law for cohesionless soils. The latter represented an
improvement in the non-associative plasticity. Investigating the material
stability, Maier and Hueckel (1979) outlined the possible ranges of
hardening modulus. Mechanical stability was considered as the
tendency to preserve the equilibrium configuration despite disturbances.
It was shown that the stability of time-independent materials in given
state under dead loading can be connected with the non-negativeness of
the second order work density performed by an external agency over
any infinitesimal path leading from considered actual situation to any
neighbouring (virtual) configuration. Hill's stability condition for
stability (1948) was utilized which turns out to be implied by the
Drucker's stability criterion (1964) in the smalil [ non-negativeness of
the second work density performed along any proportional path }. It
can be concluded from the stability consideration that the limits of the

hardening modulus are rather restrictive.
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tii. Limit Analysis

In the current century, the (upper, lower and uniqueness)
theorems of limit analysis were formulated by Gvozdev (1938) but his
work was not widely known till much later. The commonly used version
was developed after the Second World War by Prager (1955), Drucker
(1950), Hodge and Prager (1948), Hill (1950), Koiter (1953). Modern
accounts of the theory of plasticity in many languages may be found
(Braestrup and Nielsen, 1983) in the monographs by Martin (English,
1975), Kachanov (Russian, 1969), Massonet and Save (French, 1963),
and Reckling (German, 1967). Whereas Gvozdev (1938) formulated the
theory with explicit reference to structural concrete, the western
schools (e.g. Hill, 1950, 1964, 1967) was mostly concerned with metallic
bodies. Concrete was regarded as a brittle material, generally unfit for
plastic analysis, an exception being formed by cases where the strength
is mainly governed by flexural reinforcement. A prominent example is
the yield line theory for slabs, developed by Johansen (1962) before
the limit analysis theorems were formulated, i.e. The connection with
the theory of plasticity was not firmly established till the 1960s, mainly
through the work of Neilsen (1964). The implications of applying limit
analysis to reinforced concrete structures were discussed by Drucker
(1952, 1961), Chen and Drucker (1969) considered a problem of plain
concrete, using modified Coulomb criterion with a nonzero cut-off. The
same constitutive model has since been applied by Nielsen et al. (1978)
and Braestrup et al. (1978) to treat a number of cases, mainly shear in
plain and reinforced concrete. Similar research has been carried out

by Muller (1978) and Mart (1980). In May 1979, a colloquium on
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plasticity in reinforced concrete was organized in Copenhagen,
spensored by the International Association for Bridge and Structural
Engineering. Most of the results obtained so far were collected in the
conference reports (1978, 1979). A necessary condition for the validity
of the limit analysis theorems is that the internal forces can be
redistributed within the structure during loading to collapse. Thus a
certain duectility of the material is essential. It is an open question

whether concrete can be said to satisfy this requirement (Nielsen,

1984).

iv. Capped yield models

Conventional plasticity models developed for geotechnical materials
such as concrete, frictional soils and rocks (e.g. Mohr-Coulomb, 1914;
and Drucker-Prager, 1951, 1952a) were limited in accounting for certain
characteristics. Of the latter are: (a) volume changes, (b) stress path
dependence, and (c) nonassociative characteristics (Desai and
Farouque, 1984). To overcome these deficiencies, Drucker et al. (1957)
introduced a second yield function which hardens and, in the case of a
soil, softens; this is the cap, so called because it closes the cone
shaped yield surface of Drucker-Prager's in the principal stress space
(Resende and Martin, 1985). Therefore, from a general point of view,
a cap model falls within the the framework of the classical incremental
theory of plasticity {Sandler et al., 1976). The development at
Cambridge University (Schofield and Wroth, 1968), known as the critical

state soil mechanics concept, provided a rational basis for modelling
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volume change behavior and continuous yielding of materials (Desai and
Siriwardane, 1983). Detailed exposition are found in DiMaggio and
Sandler (1971), Rosco et al. (1958, 1963), Isenberg and Bagge (1972),
Schofield and Wroth (1968), in the Rosco Memorial volume (Parry,
1971), Farouque (1983a,b , 1987) and in many other publications. The
shape of the cap was chosen in various ways; models developed by
Sandler and coworkers (1976, 1979) use an elliptically shaped cap,
whereas Bathe et al. (1979) allow only for a plane cap. Isotropic
hardening cap models were proved not to be suitable for cyclic stress-
strain responses (Farouque, 1987). Some cap models were developed to
account for the directional properties as suggested by Humphrey and

Gondhalekar (1990) for materials with transversely isotropic elastic

parameters.

Several question have, however, recurred in the development of the
theory of capped yield criteria (Christian and Desai, 1979); some of the

most significant are as follows:

1. What is the shape of the cap ?

2. Does the theory apply to tests other than the triaxial ?

3. How should one account for anisotropy of yielding ?

In addition, some other points ecan be questioned with no
satisfactory answers, of which are:

4. Is the cap surface associative ?

5. Is the general yield surface fully coupled with the cap (Resende
and Martin, 1984) ?

6. Does the accuracy obtained deserve the cdetermination of
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28-parameters and using 7-functions subjected to G6-constraints

as required by the generalized cap model suggested by Sandler

et al. (1976) ?
a. Unconventional Plasticity

Viscoplasticity with strain-rate dependent viscosity (Schapery, 1968,
1969) has been crystallized as the endochronic theory (Valanis, 1971).
It consists of characterizing the inelastic strain accumulation by a
certain parameter called intrinsic time whose increment is a function of
strain increment (Bazant, 1974, 1976, 1978a, b, c, 1980a). In other
words, it uses the principal that the history of deformation is defined
in terms of a 'time scale' which is not the real time, but is in itself a
preperty of the material. No use of the classical yield surface concept
is required in the theory. Moreover, the intrinsic time replaces the real
time in the viscoplastic constitutive equations. A great deal of interest
was given to refine the theory (c.f. Valanis and coworkers, 1975a, b,
1976, 1977, 1979, 1980, 1982a, b, c, 1983, 1984) and to implement it in
a numerical framework (c.f. Watanabe and Alturi, 1985; Bangash,
1987). However, Sandler (1978) pointed out that the use of a simple
endochronic model implies the material to be unstable and, hence,
nonuniquness of problem solutions can result. Hsien (1978, 1980) found
out that the simplest form of the theory does show some 'material
instability' in the sense it does not satisfy Drucker's postulate when
subjected to certain conditions. Furthermore, it was shown that the
endochronic solution is at least as unique as that of the elastoplastic

theory and no numerical difficulties were reported.
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Incremental plasticity and fracturing (microcracking) material theory
are combined to obtain a nonlinear triaxial constitutive relation that is
incrementally linear. The plastic-fracturing theory combines the plastic
stress decrements with fracturing stress decrements, which reflect
microcracking and accounts for internal friction, pressure sensitivity,
inelastic dilatancy due to microcraking and strain softening degradation
of elastic moduli due to microcracking and the hydrostatic nonlinearity
due to pore collapse. Failure envelops are obtained from the constitutive
law as a collection of the peak points of the stress-strain response

curves. Six scalar material functions are needed to fully define the

monotonic response.

Dafalias (1975) and Krieg (1975) developed, independently, the
concept of Bounding surface. This concept was used to develop the
bounding/yield surface model, radial mapping model, the vanishing
elastic range model (Dafalias, 1981) and subloading surface model
(Hashiguchi, 1989). The main feature of the model is that the material
exhibits both a memory of past loading history and a projected foresight

of how far the current state is from a bounding state. Cyclic behavior

is efficiently captured.

The theory of plasticity was developed to deal with the phenomena
characterized by slip which is dominant for metals. Since microcracking
is the main prominent mode of irreversible changes in concrete rather
than slip especially if unconfined, it is, therefore, unrealistic to expect
that plasticity alone, irrespective of its incarnation, could account for

the behavior caused by the interaction of both modes of microstructural
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change. A recent surge in the interest in the continuum damage
mechanics raises a hope that it will be possible to analyze the behavior

of solids dominated by the nucleation and growth of microcracks

(Krajcinovic, 1984a).

In more details, the plastic response of concrete, or the
development of plastic or irrecoverable strains exhibits a number of
feature which are foreign to the classical theory of plasticity (Ortiz,
1984). For instance, lack of concrete with the normality rule has been
shown experimentally. On the other hand, the characteristic
descending branch of the uniaxial stress-strain diagram of concrete has
been commonly viewed as a violation of Drucker's second postulate.
Considerable effort has been devoted in the past to extending the
classical theory of plasticity to a framework suitable for the study of
such materials a concrete, rocks and granular media. Weak stability
criteria have been proposed that reliefs the requirements of Drucker's
postulate and allow for unstable behavior (Bazant, 1930a). However,
this work is mostly speculative and does not address the issue of why
concrete appears to violate the classical stability postulates (Ortiz,
1984). A further complication arises from the unloading hystretic loops
that develops when concrete is subjected to cyclic loading (Karsan and
Jirsa, 1969; Grestle and Tulin, 1964; Spooner and Dougill, 1975). These
unloading loops have heretofore defied explanation. Furthermore, their
numerical modelling in the context of plasticity has frequently involved
questionable artfices such as internal variables which experience sudden

jump in time (Bazant and Kim, 1979).
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3.4.3 Friction Models

A commonly accepted theory which accounts for the frictional
behavior of sliding surfaces of material (Hobbs, 1983) is the cohesion
theory of friction. In the theory, contact between two nominally flat
surfaces is assumed to occur at the tips of widely spaced irregularities
or asperities, even when the two surfaces are apparently smooth. It is
further assumed that at the areas of contact there is such intimate

contact between the two surface materials that molecular adhesion

occurs.

A number of models of increasing complexity, all of which have been
considered by Archard (1958). In all but the simplest model, the

number of contact areas is a function of the normal load.

The progressive damage in concrete leads to oriented anisotropies
near the ultimate failure zone. In order to account for this, the so-
called crack friction theory was proposed (Bazant and Tsubaki, 1980e).
This theory is based on internal friction, but it differs from the
classical Mohr-Coulomb friction theory in that the friction is considered
on one particular plane, the crack plane, rvather than as isotropic
frictional behavior as in the mohr-Coulomb criterion. It is further
assumed that the crack plane can have any orientation, which contrasts
with the Mohr-Coulomb friction theory for which the frictional slip
planes can have only one orientation as determined by the limiting

stress. A more detailed survey is given by Jaeger and Cook (1969).
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3.5 ENERGETIC MODELS

These models considers that crack initiation and propagation is
governed by the amount of energy release rate. These concepts are
covered by the concepts of fracture mechanics including linear elastic
fracture mechanics and nonlinear facture mechanics (Elices and Planas,
1989). The second got more attention because of the limitations on
applicability of the first to concrete and four sub-groups were proposed
to simulate the nonlinearity imposed in the fracture process zone: 1.
crack models including cchesive crack models without and with bulk
dissipation (Hillerborg's fictitious crack model, 1979; RILEM method,
1985; and Rice's J-integral method, 1968); 2. band models (c.f. Bazant,
1982a, 1983b) including the smeared crack band model, band models
with bulk dissipation, and general band models using nonlocal approach
(scalar or directed models); 3. two-parameter model proposed by Jenq

and Shah (1985); and 4. the highly stressed volume model (Torrent and
Brooks, 1985).

3.6 STOCHASTIC MODELS

These are the models inspired by statistical distributions. The
eldest well known models were the two and three parameter Weibull's
(1939). In this model, which is widely known as the 'the weakest link
model', a local strength distribution function was introduced from which
the probability of fracture was introduced. Freudenthal (1968) linked
this model to Griffith crack instability criterion to deduce the scatter of

fracture phenomena of brittle materials. Jayatilaka and Trustum (1979)
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developed a general expression for the failure probability of a brittle
material based on the flaw size distribution and the stress necessary to
propagate from an inclined crack. Mihashi and Izumi (1977) considered
four levels of sources for fracture (paste, paste-aggregate bond, initial
defects, aggregates) and was incorporated in a stochastic process.
Burt and Dougill (1977) modelled concrete heterogeneity by means of a
bar structure in which the bars have a random scattering in space.
Mazars (1984) used a Weibull distribution to find the threshold strain of
damage. Rossi and Richer (1985) introduced the stochastic process into
local scale of the material, considering that cracks are created within
the concrete with different energy dissipation depending on the spatial
distribution of the constituents and initial defects. Sentler (1985)
preposed a stochastic model in which the volume of the structure, the
loading intensity and loading time (also accounted for fatigue) intervene
in the brittle fracture of this structure. Fafitis and Shah (1984)
represented the behavior of concrete by an infinite number of
rheological elastic-plastic type of parallel elements , the properties of
which are statistically assumed. More recently, Fafitis and Won (1992)
developed a statistical model for concrete which was based on a space
truss analogy to construct the constitutive equations in hypoelastic
form. Bazant and coworkers (1991a, b) presented a modified form of
the Weibull model to consider nonlocality of damage in multiaxial space.
In addition, a tremendous amount of reliability models were proposed to

predict the life time of structural elements.

3.7 NUMERICAL SIMULATION MODELS
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Numerical simulation models include Semean's (1985) and Roelfastra
and Sadouki's models (1986). Generally speaking, this technique is
based on a numerical simulation with a computer. For example, the
shapes and location of aggregates can be simulated by a random process
based on statistical modelling of concrete cross section. The physical,
chemical and mechanical behavior of these computer generated

structures can be analysed with the help of suitable programs (Elices

and planas, 1989).

3.8 DAMAGE MODELS

Damage models, presented in Fig. 3.4, include scalar damage (cf.
Mazars' (1981), Resende's (1987), and Loland's (1981) models), directed
damage (based on [irst (Krajcinovic and Fonseka, 1981), second (Chow
and Wang, 1987), fourth (Chaboche, 1977), or eighth (Chaboche, 1979)
order damage tensors), unilateral (Ladevez, 1983; Mazars, 1985)
damage, mixture (Ortiz, 1985), micro-plane {(Bazant and coworkers,
1983c, i, k), highly stressed volume-continuous damage (Brooks and
Al-Samarie, 1990), damage with permanent strain and induced
anisotropy (Collombet, 1985), damage of high compressive loading
(Pijaudier-Cabot, 1985), softening with snapback (Neilsen et al., 1990),
combined fracture-damage (Janson and Hult, 1977; Janson, 1977, 1978a,
b; Lorrain, 1979; Loland and Gjorv, 1980a; Loland, 1980b, 1981la, b),
and coupled damage-elasto-plastic models (Simo and Ju, 1986, 1987a,b;
Simo, 1989; Ju, 1989a; Frantziskonis and Desai, 1987; Voyiadjis and
Kattan, 1990, 1991; Niu, 1989).
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In the past two decades, the damage mechanics approach has
emerged as a viable framework for the description of distributed
material damage including material stiffness degradation, microcrack
initiation, growth and coalescence, as well as damage-induced
anisotropy, etec. Damage mechanics has been applied, as shown in Fig.
3.5, to model creep damage (Hult, 1974; Kachanov, 1958, 1980a, 1984,
1987; Krajeinovic, 1983a; Leckie and Hayhurst, 1974; Leckie, 1978;
Lemaitre, 1984; Murakami, 1978, 198la; Murakami and Ohno, 1981b,
Rabotnov, 1963, 1968), fatigue damage (Chaboche, 1974; Lemaitre,
1971, 1984; Marigo, 1985), creep-fatigue (Lemaitre, 1979a, 1984,
Lemaitre and Chaboche, 1974; Lemaitre and Plumtree, 1979c), elasticity
couvpled with damage (Cordebois and Sidoroff, 1979; Ju et al, 1989a;
Kachanov, 1980b, 1985, 1987; Krajcinovic and Fonseka, 1981; Lemaitre
et al., 1979b, 1981, 1982a, b; Ortiz, 1985; Wu, 1985), and ductile
plastic damage (Cordebois and Sidoroff, 1982; Dragon, 1985a; Dragon
and Chihab, 1985b; Lemaitre and Dufailly, 1977; Lemaitre, 1984a, b, c,
1985a, b, 1986; Simo and Ju, 1986 1987a, 1987b). In addition damage
mechanics has been introduced to describe the inelastic behavior of
brittle materials such as concrete and rock (Francois, 1984; Ilankamban
and Krajeinovic, 1987; Kachanov, 1972, 1982; Krajcinovic, 1983b;
Krajcinovic and Fonseka, 1981; ILoland, 1980b, 1981a, 1981b; Lorrain
and Loland, 1983; Mazars, 1983, 1984a, 1986a, c; Mazars and Lemaitre,
1984h; Mazars and Legendre, 1984c; Mazars and Pijaudier-Cabot, 1986b;

Mazars and Borderie, 1987; Resende and Martin, 1984; Resende, 1987;

Simo and Ju, 1987, 1987b).
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Various applications incorporating damage mechanics
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Recently, micromechanical damage theories are propesed in the
literature to model non-interacting microcrack growth in an originally
isotropic linear elastic brittle solid; see, e.g. Wu (1985), Krajeinovic
and Fanella (1986), Krajcinovic (1987), Summarac (1987) (which extends
the work of Horii and Nemat-Nasser (1983) to a process model). In the
case of nonlinear elastoplasticity coupled with many distributed interface
microcracks, nevertheless, such micromechanical derivation of
microcrack Kinetic laws showed tremendous difficulties and challenges,
and is an objective for future research. Further, as was remarked,as
was remarked by Krajcinovic (1985), a purely micromechanical theory

may never replace a properly formulated phenomenological theory as a

design tool.

Continuum damage mechanics is based on the thermecdynamics of
irreversible changes of irreversible processes, the internal state
variable theory and relevant physical considerations (e.g.,
micromechanical damage variable, Kkinetic law of damage growth, nonlocal
damage characterization and plasticity-damage coupling mechanism,
etc.). A scalar damage variable may be suitable for characterization of
(homogenized) isotropic damage processes. Nevertheless, a tensor-
valued damage variable (fourth order) is necessary in order to account

for anisotropic damage effects.

Many researchers in damage mechanics focused on the linear
"elastic-damage" mechanics for brittle materials; i.e. Linear elastic
solids with distributed microcracks. For nonlinear elastic solids and

elastoplastic solids , nonetheless, their methods are not applicable in
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general. By contrast, some elastoplastic damage theories have been
proposed (e.g., Lemaitre, 1984, 1985a, 1986b; Dragon, 1985; Simo and
Ju, 1987a, 1987b). However, it appears that the thermodynamic free
energy function and the "damage energy release rate" proposed by
Lemaitre (1985a) may not be physically appropriate. In fact, the theory
advocated by Lemaitre implies that the thermodynamic force conjugate to
elastoplastic microcrack evolution is simply the elastic strain energy,
i.e. plastic strains do not contribute to the microcrack growth process.
On the other hand, the theory proposed by Dragon (1985) does not
offer thermodynamic damage energy damage criteria, nor provide
tangent moduli or numerical simulations or experimental validations.

Hence, coupled elastoplastic damage mechanics warrants further study.

It is important to clarify the term "damage" employed in the
literature . As was pointed out by Krajcinovic (1985) there are at least

three different levels of scale of "damage" in the material mechanical

responses:

(a) atomic voids and crystal lattice defects, which require the use

of non-continuum mechanics model at the atomic scale;

(b) microcracks and microvoids, which require micromechanical
damage models (to model microstructural changes and individual
microcracks growth) or phenomenological continuum damage

models (to model distributed microcracks); and

(c¢) macrocracks, which warrant fracture mechanics models to model

the growth of discrete maecrocracks.
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Different combinations of continuum damage and plasticity theories
have been proposed aiming progressively at reducing the number of
assumptions and thus giving great promise (Bazant and Kim 1979a;
Lemaitre 1984, 1985a, 1986b; Frantziskonis, 1986; Frantviskonis and
Desai 1987a,b; Dragon and Mroz 1979; Ju 1989; Ortiz 1985; Simo and Ju
1987a,b; Stevens and Krauthammer, 1989; Yazdani and Schreyer, 1990;
Simo, 1989; Schreyer, 1987; Cordebois and Sidoroff, 1982; Dragon 1985;
Dragon and Chihab, 1985; Lemaitre and Dufailly, 1977; Chow and Wang,
1987a,b). Tracing previous work on energy-based coupled elasto-
plastic damage theories, Ju (1989a) showed, effectively, the appeal of
the "strain split" elasto-plastic damage formulation and, severely,
criticized the work of pioneering colleagues in this field. He developed
sound thermodynamic constitutive model, but unfortunatelv was based

on an incorrect uncoupling assumption as will be shown later.

3.9 CONTINUOUS DAMAGE MECHANICS

Originally introduced by Kachanov (1958), the damage theory has
been used to describe the progressive deterioration of materials. Janson
and Hult (1977) suggested the term "Coutinuous Damage Mechanics" to
designate methods of rupture analysis involving damage concept. The
main characteristic of this method is that a mathematical parameter
replaces other physical functions. Rabotnov (1968), Lemaitre (1971),
Broberg (1974a, b, 1975), Hult (1974), Chaboche (1974), Janson and
Hult (1977), Lemaitre and Chaboche (1974, 1978) made the first trials to

extend Kachanov's idea and applied the damage concept to some
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practical problems. In the previous decade many mathematical models

were proposed seeking for the best idealization of the material behavior.

Damage corresponds to irreversible degradation of the cohesion of
the material under internal and/or external straining (Lorrain and
Loland 1983). This leads to failure of an elementary volume. In damage
mechanics, the strength of a loaded structure is determined by the
deterioration (damage) of the material caused by loading in terms of a
continuous defect field. On the other hand, in fracture mechanics the
strength of a loaded structure is determined by the severity of a single
defect such as a sharp crack and the medium around the crack is
assumed to be intact. Janson and Hult (1977), Loland and Gjorv
(1980a), Loland (198la,b), and Mazars and Lemaitre (1985) proposed
combining these two approaches for a more realistic assessment of the

behavior of a loaded structure.

At this stage a conceptual review of the basic Kachanov's damage
model will be helpful to understand the notions of the framework of this
theory. Consider a damaged body in which a volume element at the
macroscale level has been isolated. Let A bhe the overall sectional area
of that element defined by its normal n. In this section the microcracks

and cavities have intersections of different shapes of total area A Let

D

*
A be the effective resisting (net) area taking into account this area

AD’ the microstress concentrations in the vicinity of discontinuities and

the interactions between closed defects such that
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D (3.1)

The concept of effective stress associated to the hypothesis of

*
strain equivalence avoids the calculation of A , by definition, the

damage variable D associated with the normal A is given by (Lemaitre

1985):

n T (3.2)

From a physical point of view the variable Dn is the corrected area

of cracks and cavities per unit surface cut by a plane perpendicular to

n. From a mathematical point of view, as A approaches zero then Dn is

the corrected surface density of discontinuities in the body relative to
the normal ni. For isotropic damage, the cracks and voids heing equally

distributed in all directions, Dn does not depend upon T and the

intrinsic damage variable is the scalar D. Under wuniaxial states of
stress, the damage theory can be characterized by the same scalar
parameter, D, which denotes the concentration of microcracks
(microvoids, microdefects) existing in the elementary volume of the

material (Lorrain and Loland, 1983) where,

D =0 correspends to undamaged state
D =1 corresponds to failure of an elementary volume of the
material.

However, rupture or failure takes place earlier .at a critical damage and
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also starts after certain threshold limit of the state variables. In such
a case, the effective stress tensor @ replaces the stress tensor o in the

constitutive relations. The two stress terms are related by

7 o= 15 (3.3)

Associating this concept of effective stress with linear elasticity
using simplified description of the damage variable yields nonlinear
presentation of the tensile and compressive behavior of brittle materials
as shown in Fig. 3.6. The introduction of similar terms allowed the

definition of wvarious equivalence concepts which are summarized in

Table 3.2.

2.10 DEFINITION OF THE DAMAGE VARIABLE

Damage is defined in the literature in many ways. One of the broad

definition was the one cited by Talreja (1985) as:

"A collection of permanent microstructural changes concerning
material thermomechanical properties (e.g. stiffness, strength,
anisotropy, etc.) brought chout in a malerial by a set of
irreversible physicol micracracking process resulting from the

application of fhermomechanical loadings" .

The description of damage often vequires employing a damage

variable. Some of the definitions were summarized by Ju (1989a) as

follows:
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1) Define the second order damage tensor, D, as a spatial average

D=-L Y [ @xn+ nxmXask (3.4)
S
where
vV statistically representative volume;
u the displacement discontinuity vector;
n the unit normal vector across the surface of the kth crack;
and
Sk the kth microcrack surface

This definition was proved to be thermodynamically incoxrect since it

leads to energy dissipation during unloading (Krajcinovic, 1985).

2) Define the damage measure, d, of single microcrack

d = 3‘,3— (3.5)
where
a radius of an assumed single spherical microcrack; and
v the volume of the representative wnit cell in the
mesostructure.

This definition is related to microcrack porosity and leads to a
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fourth order damage tensor representation (Ju, 1989).

3) Define the damage variable, dn in the normal direction as

a -2 (3.6)
T
where
A d damaged surface area
AT total cross-sectional avea of a unit cell along a normal

direction n.

This definition is the most widely used since it may be utilized in
micromechanical as well as phenomenological models. Many other versions
of damage models emerged from this definition such as those relating
damage to the degradation of material parameters. Lemaitre (1992)

summarized the measurements of damage based on this definition as

follows:

i. Experimentally

The results are usually averages of mnonuniform quantities over a

mesovolume since mechanical experiments at the microscale are

difficult to perform.

1. Direct measurements by observing mierographic picture.
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9. Variation of the elasticity modulus using either the ultrapulse

velocity and/or strain gages to monitor the unloading slope.

3. Variation of the microhardness using a process of very small

indentation.
4. Variation of the electrical resistance.

5. Other methods such as variation of density and variation of the
cyclic plasticity response (stress amplitude drop). However,

these methods are recommended not to be tried for concrete.

il. Analytically

Using micromechanics concepts (c.f. Budiansky and O'Cenell,

1976).

311 A STATF, OF THE ART ON CONCRETE DAMAGE MODELS

Bazant and Gambarava (1984b) and Bazant and Oh (1985b)
developed the 'microplane model' which was extended latter to the
"microphone model'. The model uses a continnous distribution of
internal variables which are kinematically linked. The essence of the
model is the consideration that, at a microlevel, cracking occurs at
random orientations rather than in parallel array. For normal concrete,
the cracks occur through mortar surrounding fhe aggregates. The
model relies only on a scalar microplane stress-strain relation and on
two scalar constants Elices and Planas (1989) comment on the model

that it is, rather than a single model, a whole family of models
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displaying anisotropic general damage in a quite natural way.

Bazant (1984d) and Bazant and Belytschko (1987¢c) have proposed
nonlocal constitutive equations with a long-range interaction among
material particles. This was made to avoid the ellipcity of the
equilibrium equations of rate-independent form of softening laws.
Valanis (1991) criticized this approach that little physical evidence of
such interactions has been found in the materials considered when these

materials are in the undamaged state.

Bazant (1990b) used simplified micromechanical analysis to
demonstrate the nonlocality of damage. He claimed that continuum
damage due to microcracking must be nonlacal since the fracturing
strain due to damage is the result of the release of stored energy from
the microcrack neighbourhood, the size of which is not zero but finite.
Thuas if the nonlocality is expressed as a function of the spatially
averaged (nonlocal) strain in a certain neighborhood of the given
continuum to the given point, a size effect which is intermediate

between plasticity (no size effect) and linear elastic fracture mechanics

(largest size effect) will be captured.

Bazant and Cabot (1988b) studied the nonlocalization instability and

convergence using a nonlocal scalar damage variable and assumed strain

locality such that

o = A Gy g (3.7

The nonlocal damage variable & was related to the local damage variable
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o by the following relation:

m = —. \.u(ﬁ'-){) m(8)dV(s) (3.8)
Ve g
in which
V& = J'u(§~x) dv(s) (3.9)
v

where 8 and % are coordinate vectors of the neighborhood and of the

point considered. The weighting function «(¥%) is proposed to be
o) = expl- (kixl/1 )7 (3.10)

in which 1c is the characteristic length which was found experimentally

to be three times the maximum aggregate size (Bazant and Cabot,

1987b), while |%| is the norm of the vector % with k is given as n, 2

and ( 6 x )1/3 for 1-D, 2-D and 3-D, respectively. This formulation
arrived at nonsymmetrical tangential stiffness matrix and the finite
element analysis appeared to exhibit power-type convergence which was
almost quadratic. This model was latter criticized by Valanis (1991) that
the idea of an ‘imbricate' continuum seemed to have been supplanted
because the theory was proposed in terins of an evolution equation of

nonlocal character but local elastic constitutive response.

Bazant (1991b) extended further previous micromechanical arguments

(Bazant, 1987a) on the nonlocality of damage that :

1. Fracturing strain caused by damage is the result of the release
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of stored energy from a microcrack neighborhood, the size of

which is not negligible.
2. Existence of the interaction among microcracks.

3. Local and nonlocal damage do not have analogous physical

meanings; i.e. nonlocal spatial integral is not averaging.

4. Inhomogeneities.

It was stated that the two factors affecting the weighting function

were:

1. Weighting functions for nonlocal spatial integration is a [ixed

material property, independent of stresses, only if the stress is

hydrostatic and damage is small

2. Weighting functions for nonlocal spatial integration evolves a
function of the size and configuration of tiae microeracks,

proximity of the houndary and its shape.

Benallal et al. (1991) defined four numerical algorithms: (1)
mmeoupled; (2)fully coupled; (3) semi-coupled and (4) locally coupled.
Tmplementation to  elastic-perfectly-viscoplastic creep  damageable
materials was carried out using time dependent finite element by Wilson
0 method with 8-noded element by 2X2 integration numerical integration

rule. The critical damage variable D_=0.9 was postulated. The

constitutive equations were mathematically expressed as follows:

(1) the observed variables:
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E o a-mAS ! (3.11)

and

P o= f(a,0,D) (3.12)

(2) the internal variables:

a = Gla,a,D) (3.13)

and
D = H(s,u,D) (3.14)

in which « are a set of internal variables representing isotropic and
kinematic hardening. These equations were applied to investigate the
behavior of a sphere under external pressure and a cylindrical notched
bar. The uncoupled approach, which is of the lowest cost, was
recommended to he used when the redistribution of the stresses can be
neglected. This situation takes place when the dissipated damage energy

js =mall or when damage 7one is either small or large aund approximately

uniform.

Billardon and Doghri (1989) conducted a Jocalization bifurcation
analysis for damage softening elastoplastic materials. Fully coupled
elastic-damage plastic with kinematic and isotropic hardaning was used.
Biaxjal application on perforated plates loaded in plane stress conditions
was considered. It was proposed that the ultimate stage of diffuse

damage process was the onset of dramatic strain and damage localization
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which can be detected by a general material bifurcation analysis carried
out at each step of the loading process at each integration point of the

finite element mesh. The specific free energy w was chosen as
v = (/M) (1/2) (t‘."':‘,p) : (I—D)EO : (l‘.—l‘.p') + \Vp(V) (3.15)

where Eo denoted the usual Hookean operator which is a function of

Young's modulus and Poisson's ratio. The set of the internal variables

V incorporated the plastic strain tensor :P the hardening variables o
and r, and the damage variable D associated with the corresponding
thermodynamical forces A= -pay/éV, viz. the stress tensor o, the
kinematic hardening tensor X, the isotropic hardening scalar R and the

damage energy release rate Y. The yield function f was given in the

form

Jo(S-X)
- 2 “R-a 3.16
—s—"R-cy (3.16)

and the plastic potential F was particularized such that

o Y "o 1 .
: 4 B }'I Sl f" 2 .
P X : X ST «—-—S } ) ((x rpr) (3.17)

e o m e i

where JZ(S-X‘)r\"‘3/2 tr(S—-X)Z,S is the deviatoric stress, Ty is the

initial stress and a,b,Sn,so and r, are other material dependent

parameters.
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Brooks and Al-Samaraie (1990) modified previous work of Torrent
(1983) and Torrent and Brooks (1985) to improve the performance of
the highly stressed volume HSV approach. This concept was combined
with continuous damage mechanics to model the tensile failure of
concrete. The HSV was defined as the volume V in which the tensile

stress lies between the maximum stress % and 0.95(.Tm, so that

L BVv? (3.18)

where a and B are concrete parameters. The damage variable « defined

in terms of the effective area reduction as a ratio to the original area

was further expressed as

n
LR
o = { ____"_] (3.19)
K

where n and « are material parameters expressed as

[¢] f. — &
n -4 ii___ﬂ_] (3.20)
fd L%'d T “d
and
og 1/n
K = (ny -1 ll T —] (3.21)
d ° Eo"d

The subscripts o and d denote the threshold and direct tension

strength limits. The model assumed that the threshold strain Lo is
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dependent on the HSV of the member so that the threshold strain o od

a specimen having an HSV, V, is given by

a
5 _
Ty = gt bg [%] ~1 (3.22)
[4]

in which b which depended on n, was the slope of the approximate
straight line relation between the threshold and direct tensile strength.

In the finite element scheme the damage factor was used as

(3.23)

where ¢, was the maximum principal stress in each element.

Chen and Tzou (1990) utilized the results of Budiansky and O'conell
(1976) for penny shaped cracks to develop an isotropic centinuum
damage theory. They assumed that the cracks are activated by the

maximum principal tensile strain = and the density of activated
max

cracks Cd to be described by a Weibull statistical distribution as

Cq = ® :-_3 (3.24)
masl

The required material constants ( E, v, «, n ) were determined from

unjaxial tensile test data. The effective moduli were expressed as

(Budiansky and O'Conell, 1976)
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= 2
K _ 16(1—-+v") 395
gk -1 9(L-2v ~d (3.25)
and
S - 396y 3.26
G 1 45(2 - v) Ca (3.26)

Thus the constitutive relation can be written as

T 2Geij+3Kx:ii5ij (3.27)

in which eij is the deviatoric part of the strain tensor. The model was

implemented in a finite element scheme and was applied to concrete in

biaxial tension and showed good agreement.

Chow and Wang (1987a,b) developed an anisotropic elastic damage
theory by deriving a damage effect tensor M(D). With the help of the
effective stress concept ( & = M(D) : « ), the hypothesis of elastic

energy equivalence (Sidoroff, 1981) was used to find the effective

compliance C ' and was shown to have the form
1 — . 1 -
C =Mp:C :M (3.28)

The theory was illustrated in uniaxial tension and torsion tests. It was
further extended to include ductile damage and implemented in a finite

element scheme (Chow and Wang, 1988).

Collombet (1985) developed a damage model which exhibit permanent

strains and induced anisotropy. The Helmholtz total free energy was
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expressed as follows

Py = -%—IAI): e e P (3.29)

8= Ap e o= A Ly oo (3.30)

where LD is a fourth order damage tensor. The moduli A, and AD are

the undamaged and damaged fourth order material tensors. Tor

orthotropic materials, the following tensorial relation was derived :

i T Y3

Lpto = |ligly Iy (3.31)
13 23 '3

1o 15, 1

Specific equations for particular tests were given for directional

properties, i.e. Young's moduli and Poisson's ratios Ei,\~ij(i,j==1,2,3).

For instance, results on cubes and cylinders initially isotropic (i=3

represents the axis of loading)

AB(7 - Ko) +1
E3 = EO —m ’ El o EZ = EO (3.32)
and
Bil-(1-v )AF—K ) +v
Vem = von = -0 AlE-Kg) F g (3.33)
12 23 B~ Ko) ‘+1

in which A, B are additional material parameters to the conventional
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Young's modulus Eo of the undamaged material and the corresponding

Poisson's ratio Vo The threshold damage strain is Ko and the effective

strain is F.=\-/—|;|?,[ | denotes the positive eigenvalues.

Costin (1985) developed a continuum damage model for brittle
materials including the effect of interaction among neighboring
microcracks on the evolution of damage. The model included a limited
region of homogeneous softening beyond the peak. For only those
cracks that were currently open under tension participating in the

damage process were accounted for, the damage variable was expressed

as

1 : .
D; = -a—o \j’ n; (al0,9) -~ a) HEK 0, dV (3.34)

where a is the crack function defined over a wunit hemisphere
(dV=sin0 dt d¢) and a, was the initial crack length. The Heaviside
function H is unity for stress intensity factor KI greater than zero

while was null otherwise. The study considered time independent
compressive loading and allowed for time dependent damage under

suberitical conditions (KI<KI ). The constitutive relation was expressed
c

as

55 Sipg °nl (3.35)

where
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v

—3,.8
1
Eo ik

ey 1dve o
Sijkl = Eo Sij‘\jl

+ DDy + DDA - Gy DDy (3.36)

in which Cm(m=1,2) were material parameters. The evolution od damage

was viewed, in this study, a stress driven microcracking-process. In
many other damage model (Grady and Kipp, 1980; Krajcinovic and
Fonseka, 1981; Sauris and Shah, 1983; Ortiz, 1984), the damage was
computed from an evolutionary equation (or damage potential) which

usually involves the strain-rate and current state of damage.

Frantziskonis and Desai (1986, 1987a,b) decomposed the total
behavior into topical (elastoplastic) and stress-relieved behaviors as
suggested by Van Mier (1984). The damage was shown to be caused
from deviatoric stress component; thus the topical and average stress

lied on the same deviatoric plane. Therefore,

re—

JIp=Vviba - a (3.37)

where JZ=(1/2 Sij Sij)”z was the second invariant of the deviatoric

stress Sij and the superscript t denoted the topical behavior. The

stress tensor was, thus, expressed as
_ _ t , d t

the damage variable d was expressed as an exponentionally decaying
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function in the form

R

X

)
d=d,( - e P, (3.39)

in which « and R are material constants and dc was the critical damage

and §p=jd§p . dép was the norm of the incremental deviatoric plastic

strain. Consequently, it was shown that the damage was responsible for
the observed degradation of strength and unloading shear modulus , as

well as induced anisotropy. The incremental stress-strain relationships

were finalized as

t _ e .
Gij = Cijkl fxl (3.40)

for loading and

P -
o5 = CilkI™ rpy (3.41)
for unloading. The average stress increment was

= (1-adceP. ; d ep . _ t
i (1 DCiaa fa * 7 & Cppkl i — @ sij (3.42)

The elastoplastic tensors were expressed using conventional associative

plasticity and the modulus tensor was derived to be

aF _ oF c®

ij 7 ] mnkl
ceP _ e ~ pq ((qu “Smn
ijkl ijkl GF_ e 6F__ F _F F n /2
(’?Gu v uvrs ﬁcrs o Pckl (?le
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(3.43)

in which the yield surface F=F(IE,J§_,J§), It1 was the first invariant of

the topical stress tensor, Jt3 was the third invariant of the deviatoric

stress tensor of the topical behavior and F’p = jdﬁp and dEp was the

norm of the plastic strain tensor. The model required a total of eleven
parameters (3 for damage, 6 for plasticity, 2 for elasticity). Numerical
investigations of the model showed that unique solutions for rate
independent as well as rate dependent cases. Moreover, the (finite

element analysis showed mesh insensitivity.

Herrmann and Kestin (1989) in an attempt to lay down the
fundamental elements of an exact thermodynamic theory of damage in an
elastic solids, considered one-dimensional problem. The total energy was
assumed to consist of elastic energy, loss of energy due to formation
and growth of microcracks and microvoids and additional recoverable
energy due to diffusion (transfer) of material from microcracks and

microvoids. The expression for the total energy was reduced to

i a’
p oy = EO (L—+d) T + EO (L--Be) 5 (3.44)

in which p,y and § were material parameters. The damage variable d
was described, for small straining and slow loading (i.e. conjugate

thermodynamic force to damage, Y, was zero), as

d = % - (3.45)
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The stress was obtained by differentiating the total energy equation

with respect to the strain and was simplified to
o = Eo (r.—yr.3 /2—By2|:'1 /8) (3.46)

Having expressed the stress for unloading (Y=0) and equated it to zevro,

the residual strain was given as

2
.
= & 3.47
"p B2 ( )

where the subscript g denoted the greatest ever reached value.

Janson and Hult (1977) in one of the earliest investigations on the
applicability of the damage mechanics to concrete provided a fracture
mechanics viewpoint. A concrete cylinder with a damage zone of height
4b and a cross sectional area A was used to equate the external energy
W with the internal energy U at the critical condition of fracture to

calculate the critical damage parameter D c 3 follows

W=2pA (3.48)

in which jt is the specific surfacic energy

fZ

t
U =4 ——— 3.49
b A 2 E0 (1.~Dc') ( )

where ft and Eo are the tensile strength and Young's modulus of the

concrete specimen as found form uniaxial experiment.
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Ju (1989a) considered energy-based coupled elastoplastic damage.

Additive strain split was assumed and the total energy v which

corresponded to undamaged total energy \VO was expressed as
Wogr@d) = (1-d) v C, ) = A-d) g + vg@l (3.50)

in which q is a set of plastic variables and \,;I(;l(m:e,q) was the energy

associated with the behavior m of the undamaged material. The damage
energy was energy based and the plasticity equations were expressed in
terms of the effective stress tensor. The formulation was extended to
handle rate dependent models and to consider microcrack opening and

closing. On formulating an anisotropic elastoplastic damage model, the

total energy was expressed as
ve,4,C) = w 4(:%,C) + v_4(q,C) (3.51)
S B ed\” “pd ’ .

in which equivalently C=M(D) C0 was defined as the anisotropic damage

variable instead of D. The subscripts ed and pd denoted elastic damage
and plastic damage, respectively. Computational algorithm using the
operator split method (Chorin et al., 1978) was shown to be efficient

for numerical implementation of the models.

Ju (1990) pointed out that scalar damage variable need not mean
isotropic damage. It was also shown, by micromechanical arguments,
that even for isotropic damage one should employ an isotropic fourth
order damage tensor to characterize the state of damage in materials, in

accordance with the effective stress concept.
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Krajeinovic (1979) developed a theory for distributed damage for
beams in pure bending. The damage vaviable « was assumed to be
linear with the effective tensile stress with slope 1/D,D was the damage
modulus. The compressive behavior was assumed linear, i.e. the damage
variable is zero. Consequently, the assumption that plane section
before bending remained plane after bending (linear strain distribution
along the depth of the beam) was equivalent to linear effective stress
distribution. The derivation showed a ratio of the maximum tensile

strength at rupture in bending to that in tension of 1.42.

Krajcinovic and Fonseka (1981) developed a damage model for brittle
materials consisting of a multitude of flat, penny-shaped voids. The

damage variable was assumed in vectorial form, i.e. D",k denoted

damage fields. The Helmholtz free energy was expressed as

1 A
Py = 3 .+ 2p) xk 1 " \'(:'.kk T "kl 1K)

) ™ . () . mn
+ C1 Dk "kl D1 ‘mm C2 Dk X1 “Im Dm (3.52)

where p,Cl,CZ,?_ and + are material parameters. The associated

affinities with damage and strain were obtained from normality

conditions

O
R"i" = —-p ‘7(];;) {(3.53)
1

and
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6 = p N (3.54)
1) m‘.ii

Kinematics of voids growth was considered by a second order tensor
inj describing the change in the void geometry whose components
accounted for both slip dQNT and cleavage dQNN. The damage law was

obtained by assuming a damage surface f (as in Dragon and Mroz, 1979;

Kachanov, 1980a; Paul, 1961) and the damage rate dQNM was expressed

as

cf
CF NN

of
““NT

of
TNM

dr.NN +

dQNM = £ G(»,D) | dr’NT‘

(3.55)

in which 7 was a constant and G was a positive scalar-valued function
which was termed the softening parameter. The model was applied to

uniaxial tension and compression and plane strain loading of concrete.

Krajcinovic (1983a) slightly modified the energy equation in the form

= 1 4 - of g — . . ‘
=g 0420 rpy o YUk " k1 F1k/
. . 1 /2 ) 1 /2 o . “ 2
+ C1 ((-\pu-p) i * Op 4 C2 ((-»p(v\p) “k1 "Im “k ©
+ C_ (v ) 3/2 (ry 1 O o) (3.586)
3 pp kl "k 1 .

13 . 2 . g .
in which mn:Dn and C, is an additional material parameter. Another

modification was to generalize the theory to ductile and brittle
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behaviors. Also, the damage law was derived directly from normal
dissipative mechanism in conjunction with orthogonality property.
However, the theory in either form was criticized by Kachanov (1985)
for: (1) the undetermined coefficients (for one scalar damage variable
of Kachanov (1958) two parameters and of Mazars (1981) three
parameters were used), (2) linearity of potential in damage was not
insured, (3) Difficulty in forming combined invariants of strain tensor
and the damage vector due to the vectorial rather than tensorial
representation of damage and (4) difficulty in establishing a link

between the model and literature on effective elastic properties of solids

with many cracks.

It is remarkable to phrase a paragraph in which Xachanov (1985)
stated

"Although the framework of irreversible thermodynamics may provide

a general structure of constitutive equations, one cannotf obtain

sufficient concretization of these equations on the basis of

thermodynamics alone. Such attempts results in the introduction of

undetermined constants playing, essentially, the role of adjustable

coefficients, their number depends on the complexity of the damage

parameters used in the model."

Ladevez (1983) assumed different deviatoric and hydrostatic damage
modes in temsion and in compression. Consequently, the model was
based on stress split into its tensile and compressive components and

the choice of four scalar damage variables, dt,ﬁt,dc and Sc. The energy

is determined from the relation
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A . oy

= 4 (3.57)

O (e

ﬂ
Il
22

Therefore, the stress-strain tensorial relation is written as

: ['(1+"°)(3 ' —[tro] ] (lmz\b)lt I‘I}
to= g —ftrel I} + —————|tro
3E, | (-4 TEER '
1 (L) 3 tro} I _—_(1_2\'0) tro| 1 3.58

in which the brackets [ ] used denotes the function
X+ x| XXl

xj° = —5 s xt~ = 5 (3.59)

Lemaitre (1985a) developed a continuocus damage model for isotropic
fracture. In this model, it was assumed that the damage process

contributes only to the elastic process and hence the total free energy

was expressed as

¥ = e, T, D)4 w (T, p) (3.60)

in which T is the absolute temperature and p is the effective plastic

strain which is given as

p={pdt , p =32 P (3.61)

For isothermal process, a comparison of the basic thermodynamic

equation with those of Ju's (1989a) is presented in Table 3.3.
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Table 3.3 Comparison between two approaches for thermodynamies
of damage formulation.
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The damage evolution was derived from the transformed potential of

*
dissipation ¢ , which was obtained by Fenchel-Legendre rule, by the

normality rule as follows

*

- (7({)
D L (3.62)

the potential of dissipation was further postulated as power function

S _+1

S o

* o _y

o = —L P (3.63)
(so+1) [So}

Lemaitre (1984b) outlined the coupled and uncoupled framework for
constitutive equations. Elasticity coupled was damage was applied to
brittle failure and to high cycle fatigue. Elastoplasticity coupled with
damage was applied to ductile damage and to low cycle fatigue. Elasto-

visco-plasticity coupled with damage was also reviewed.

Lemaitre (1986a) summarized the limitations of classical fracture
mechanics and provided a precise summary for local approaches.
Different forms of the damage variable and the corresponding
constitutive equations as related to elasticity, elastoplasticity and
elasto-visco-plasticity were briefed. Various failure criteria postulated

in the literature were discussed. Finally applications with results were

provided.

Lemaitre (1984c) gave a background to ductile damage and fatigue

damage. Calculations of macrocrack initiation by coupled and uncoupled
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algorithms were discussed and conclusions were conducted that the
coupled algorithms are recommended for better accuracy. Fracture limits
of metal forming, initial value of damage, creep-fatigue damage and

bifurcation of cracks were the specific applications of the theory made

in this study.

Lorrain and Loland (1983) conducted a literature review and
formulated the basic equations using a scalar damage variable.
Applications to concrete by Mazars' scalar model (1980) and Loland's
scalar model in tension (1980b, 1981) are compared in Fig. 3.7. Also,
Loland's model for behavior of concrete in compression (1981),
Benounich's model (1979) for multiaxial generalization and for the
specific application to uniaxial compression, Janson's and Hult's damage-
fracture (1977) were summarized. In addition to the uniaxial
applications, the flexural response of reinforced concrete beams using
Marars' model (1980) were shown to be in good agreement with
experiments. Models of Zaitsev and Scerbakov (1977) for sustained

loading on concrete were briefly outlined.

Maier et al. (1990) derived four models to simulate the damage
behavior of masonry as a composite material, namely o, R, vy, and delta
models. The first was suggested for general rate independent

applications and the moduli matrix |K|=|K(Eb,Em,D)|,EbandEm are the

Young's moduli of the brick and mortar, was given. The bricks were
assumed to be linear elastic and to follow the maximum principal stress
criterion while the mortar was postulated to exhibit an elastic damage

behavior. The other three models were proposed to model, in sequence
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the unilateral, fatigue and damage plasticity responses.

Mazars and Lemaitre (1984) discussed the aspects of the behavior of
concrete in an attempt to elaborate the nature of damage process
encountered with material loading. Both damage mechanics and fracture
mechanics were pointed out to be applicable to material which is elastic-
damageable and material which is perfectly brittle. Energy equivalence
of the two approaches for notched specimen loaded under constant load

yielded the following relation for the crack length extension SA

[- ¥sD av

A = V (3.64)
Gc

in which G o is the critical fracture energy. Probabilistic aspects of

damage using Weibull distribution was discussed and applications to C-T

plate were carried out.

Mazars (1986a) showed that there are two types of structural
damage: (1) surfacic and (2) volumetric. Extending Ladevez's (1983)
model, in either tension or compression a single damage parameter was
assumed to be sufficient to describe both the volumetric and surfacic

damage. But with the help of the splitiing the stress temsor into its

positive and negative components, i.e
og=c¢' + o (3.65)
therefore the total energy could be expressed as

w(o) = w(o') + o) (3.66)
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the the strain tensor is expressed as

_dy vy 3 oy

¢ = - . 3.67
R Hol ( )
in other words the constitutive relation is written as

_ 1 4 (- ‘ } _ . os]?
= gy (g -+ a-ae

1 | e .
+ —-——sEo(l_Dc) {l(l+vo)(3o ~ltral DI + (1-2v )tro] I} (3.68)

With reference to Ladevez's (1983) model, the damage variables of

Mazars' are special case because
£~ 8¢ =Dy , d,=35,=D, (3.69)

Two damage surfaces Ft(Yt) and Fc(Yc) were defined in terms of the
damage energy release rates Yt and Yc for tensile and compressive

parts, respectively. Moreover the model was linked with fracture
mechanics by the relation defining the fracture energy G at failure

(denoted by the subscript f) as follows

g
Gy = [YFY)dY, (3.70)
Yy

Mazars (1986c) reviewed the micromechanical studies devoted for

concrete by Barnes (1978) , Modeer (1979) and Lino (1973). Based on
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the previous stress split the damage variable D was obtained by

Weighting the tensile and compressive damage variables DtandDo by the
functions T abd LR for the tensile and compressive components,

respectively. This was mathematically expressed as
D = L Dt +oa, Dc ' (3.71)

where the damage variables are obtained by the relation

rDo(l At) At
D) = 1.0 - _ " EEE o (3.72)
)
and
r‘Do(l—Ac) A,
D@ = 1.0 - i - exp|B (E - rp )i (3.73)
o

where At’Ac’Bt and Bc are additional material parameters while rp Wwas
o

the threshold damage strain. The weighting functions were given by

B

o = Y{H —‘—2—‘- . (3.74)

and

- i i
('lc = Zl: Hi ——_—2— ﬁt (3.75)
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where % is the effective strain defined from the positive strain eigen

values as follows

=3
P o= \/er'iL (3.76)

1

in which [r.il. are the principal tensile strains. The function Hi is the

Heaviside function defines as

Hi =1 if i >0

=0 if 6,20 (3.77)

the loading function (D) is defined by the surface
f(D)y = ¢ - K(D) (3.78)

where K(D) is a hardening parameter whose initial value is

KO: = K = ¢
] D0

Mazars et al. (1992) studied the behavior of the steel-concrete
bond. It was claimed that simulating smooth bars needs interface
elements to represent the frictional mechanism. On the other hand,
consideration that concrete is progressively damaging around the ribbed
bar is strictly equivalent to using interface elements if the bar
represents surface deformation. The same model as Mazars' (1986¢) was
used but the R factor used in the weighting functions was introduced
for the first time. This was suggested in analogy to the shear

retention factor in the smeared crack model. Values greater than unity
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were recommended. Nonlocal approach using Cabot's and Bazant's (1988)
model was used in association. Two possible mechanisms were captured,
each including the size effect. The first was the splitting failure by
radial pressure applied by lugs, while the other is shear failure. For
large concrete cover, concrete crushes in a shear band form. A

numerical conclusion was derived on the importance of simulating the

boundary conditions.

Mazars and Cabot (1986b) reviewed the models developed by french
colleagues; Mazars' model (1984a), Mazars' unilateral model (1985),
Collombet's damage model with permanent strains and induced anisotropy
(1385), Cabot's model for high compressive loading (1985). Analytical

solution for composite columns and finite element results for reinforced

concrete members were demonstrated.

Murakami (1989) developed a systematic theory to describe the
anisotropic damage states of a material. Two second order damage

tensors, which can be related, were introduced for loaded, D, and

elastically unloaded, D, configurations. The latter was shown to have

the following characteristics:

1. (I-D) is a positive tensor.

2. can be partioned into symmetric and anti-symmetric tensors.
The antisymmetric component is physically irrelevant as a

transformation which represents the net area reduction due to

damage.
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3. D has always three orthogonal principal directions ﬁi(i=1,2,3)

and the corresponding principal values ﬁi such that D can be

expressed in a canonical form
D = Z Diﬁi X T, (3.79)

4. D and D cannot describe the damage states which have more

complicated symmetry than orthotropy.

*
5. The effective stress ¢ which is related to the stress tensor ¢ by
the relation
* 1
¢ = (I-D) o (3.80)
is asymmetric. Symmetrization is achieved by the following
averaging technique

¢ = 1W-D) o+ o@D (3.81)

An alternative symmetrization was adopted by Cordebois and

Sidoroff ( 1982) as

*

o = (1-D) /% 5 q-py /2 (3.82)

6. The effective stress and traction are fictitious stresses that
represent the magnified effect of stress due to damage and do

not satisfy the equilibrium condition in the relevant
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configuration.

7. The unilateral Effect due to crack closure is taken into account

by stress split. In this case the symmetric effective stress

tensor will be given by

E 3
o = 2 {d-D) oI, +iol,1-D) *}
- 3 {a-cp) ‘ol +iol.a-coy (3.83)

in which C is a scalar quantity whose value is less than unity.

Najar (1989) extended previous work (Najar, 1987) to study the
transition from continuous damage to failure in uniaxial loading of
elastic-brittle behavior in both tension and compression. Three
characteristic values of the damage parameter were related. These were

the initial damage Do’ the damage at the maximum stress Dm and the

failure damage Df. The interrelating equations were

D
1-D =D ln(D—o) (3.84)
and
D
1.K_ ! K_,q_ f
Df D0 =(1 Df) ]nD—o (3.85)

in which « is a material parameter. Young's modulus at any stage of

loading can be related to that of the undamaged material. Therefore,
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Ei =E (l—Di) R i=o,m,f (3.86)

The strain was related to the damage variable and the nominal damage

*
energy W by the relation

’ *
_NWw D 2

The young's modulus for unloading Eu was further given as

E, = E 1-D (3.88)
p! K_p!K
1-— %
(1—Dnn(Dl
o
and the stress was related to the strain through the relation
c=E@0-D)r (3.89)

An algorithm was depicted for calculation purposed and it was shown
that the model was in good agreement with the experimental results for
cyclic behavior of Terrien (1980) and Spooner and Dougill (1975). It
was stated that:
"Since the fundomental Kachanov's idea (1958), the main thrust of
the research went towards 3-D generalization, as well as applications
to various types of solids and processes, ranging from creep in
metals to dynamic rupture in rock (Shockey et al., 1974). It left
behind, however, certain basic notions lacking clarity even in the

simplest case of uniaxial processes in elastic materials with internal
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damage ( Dougill, 1983). Here belongs : (a) lack of an instrumental
definition of damage parameter, experimentally verifiable and
independent of modelling assumptions, (b) misinterpretations of the
nature of the residual strain at damage, identified sometimes with
plastic strain, (Lemaitre eand Chaboche, 1985b), or simply neglected,
(Grady and Kipp, 1980), despite ample evidence to the contrary,
(Hult, 1987); (c) little interest with respect to unloading process
and energy distribution considerations, despite observations of the
relatively high losses on damage accompanying phenomena, like

acoustic emmision and heat production, (Davison and Stevens,

1976), etc.”

Neilsen et al. (1990) developed a structural constitutive algorithm
which was based on continuous damage mechanics for softening and
snapback. In uniaxial states, if the softening zone whose length is s of
a bar of length a had a damage variable =, then the structural damage

variable & could be derived in the form

- ®

S B | 3.90
Sa(l—(n)+Sm ( )
and the stress was related to the average strain through the relation
o = (1-%) Eos: (3.91)

This idea was generalized to two and three dimensional situations based
on the assumption that damage increases the compliance of the material
only in a direction perpendicular to the softening zone as postulated by

Bazant and Oh (1985b). The model was used in a finite element
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algorithm which was developed by Chen and Schreyer {1990) in which a
constraint that limited the amount of damage generated during each step

is introduced. The output results showed no mesh sensitivity.

Ofoegbu and Curran (1990) decomposed the total deformation into
elastic, brittle and ductile components. Assuming that the damage
process was due to cracking (no damage is associated to the bulk

modulus) then the effective shear modulus could be expressed as:

G = (1-d) G (3.92)
and therefore the stress tensor %3 was expressed in terms of the latent

. t
(or topical as marked by Frantziskonis and Desai, 1987) stress Gij by

the relation

= (1-d)yot + & 3.93

T (1-d) 5 + Fsij"kk ( )

Then the yield function and the plastic potential in nonassociative
plasticity were expressed in terms of the effective first and second

stress invariants. The model was in good agreement with experiments.

Patino (1989) studied the stability and energy minimization in
elasticity with damage. Free energy with penalization term was
compatible with Clausius-Duhem inequality. Free energies with and
without penalization indicated that minimizers of the total free energy
must be stated where damage evolution vanish. In this study the

dissipation inequality was expressed as
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p\ir+|\ST~6:s‘:+TJI“—gradT.qSO (3.94)

in which T is the temperature, S is the entropy and q is the heat flux.

Coleman and Noll's (1963) relations were written in the form

>

KA Sy %N _ g
oT S ’ P ¢ ’ 4 grad T
o % <o & grad T q < 0 (3.95)

Pijauder-Cabot  (1985) developed a damage model for high

compressive loading of concrete. The elastic free energy We is
expressed in terms of the deviatoric stress tensor S and the stress
tensor ¢ by using two damage variables. The first is a scalar § while

the other is a vector d. The energy is expressed as

(1—2\'0) >

where the scalar damage variable is given by

5 = 11 (3.97)
l—A(itm - ko)

and a is given by

1

a = 3(I-d) ’I—Entrm—d) n (3.98)
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shown to depend only on damage process. The tensorial relations were
not uniquely derived since seven modes of behavior could take place
(three in tension and four in compression). The resulting constitutive
equation Jacked symmetry in some cases. Also the shear damage variable

increment was allowed to be negative which was in contradiction with

thermodynamics. The constitutive relations were not in general

unconditionally stable. The model was calibrated and implemented into

finite element framework.

Ortiz (1985, 1987a) developed the mixture model which considered
concrete to be composed of mortar (m) and aggregates (a). and The
latter was assumed to exhibit non-asscciative plasticity following
Drucker-Prager loading criterion. The mortar was assumed to be
brittle material undergoing damage process. The strain of the two
components was the same and equal to the macroscopic strain since
diffusion was assumed to be prevented; i.e. 1 = fm = a. The
macroscopic stress was given as the volume average of the partial

stresses of the two components as
O = 0n O oo, 00 (3.102)

where ai(i=m,a) were the volume fractions. For the damage behavior of
the mortar, a novel view point was to consider the compliance Sd as an
internal variable. In the recent paper, another internal variable was
considered which was a plastic second order of the strain tensor ’:rlr)l

such that the partial stress strain relation was given as
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m T (Sg * S e+ ::5‘ (3.103)

Interdependent flow rules were given for r.ﬁ and S a’

dr

= o]
i

1 ([rsml, + c |0m] } du | (3.104)

and

ds

a = d=a) {dogl, = ol fopl x o,

toefopl *lopl) ol x o]} du (3.105)

where o,c and p were two material constants and the damage evolution
multiplier, respectively. The model displayed hystretic behavior in

unloading-reloading cycles due to the coupling of mortar and aggregate

behavior.

Saouridis and Mazars (1989) used the so-called multiscale approach
which was a modified version of Mazars' (1984a) model taking into
account nonlocality of damage using Cabot' and Bazant's (1987a, b)
spatial integral. The model was implemented in a finite element scheme
and was applied to simulate the splitting test, the size effect of 3-point
loading on centrally notched beams and the structural size and gradient
effects on concrete beams in bending. The results were in good
agreement with experiments and the damage zone seemed to be wider

than that predicted by local approaches.
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Saouridis and Mazars (1992) used a Weibull based theory to
determine, in a statistical sense, the value of the initial damage

threshold. The damage probability function was given as

(1) for uniform loading
Py V) = 1 - exp (-x™V) (3.106)
(2) for non-uniform loading

Py @EV) =1 - exp(—mfgéhde) (3.107)

in which ¥ is the equivalent strain defined earlier by Mazars (1984a),
the subscript g denotes the greatest value, V is the volume and x,h,

and m are material parameters.

In this study, the different localization limiters were summarized as

follows:

1. Limiting the finite element size (Bazant and Oh, 1983b).

2. Using stress-displacement relation rather than stress-strain law
(Hillerberg et al., 1979 : Fictitious crack model; Willam et al.,

1986; Pietruszezak and Mroz, 1981 : Composite models).

3. Introducing some viscosity or strain-rate formulation (Needleman,

1987).

4. Including in the definition of the strain tensor the gradients of

higher order (Belytschko and Lasry, 1989).
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5. Taking into account in the constitutive law the influence of

strain gradient (Triantafyllidis and Aifantis, 1986).

6. Using a nonlocal fermulation of the constitutive law for both

damage and strain (Bazant, 1984a).

7. Using a nonlocal formulation of the damage evolution (Cabot and

Bazant, 1987a, b).

8. Introducing a localization shape function added to the finite

element formulation (Ortiz, 1987b).

Sidoroff (1981) on a study on the description of anisotropic damage

to elasticity assumed that the effective stress tensor 5 is related to the

stress tensor ¢ by the relation
§ = Md) o (3.108)

in which M is a linear operator on second order symmetric tensor, i. e.

4th order tensor. However, it was shown that the inverse tensor of

M(d) is not insured to be symmetric unless it is symmetrical and
represents isotropic damage. This situation was encountered in the work
of Chaboche (1979) when used a fourth order damage tensor and earlier

(1978) when used eighth order damage tensor. Symmetry is obtained

when the effective stress is expressed in the form

g = %{(I—-D) Lo v sa-mty + tric D (I-D) "} 1

v
1-2v

(3.109)
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This approach keeps symmetry condition to be satisfied under axes
transformation. Unfortunately, it was pointed out that this description

of damage is rather complicated and essentially relies on elasticity which

may not be an essential phenomenon.

Simo and Ju (1987a, b) considered the strain and stress based

continuum damage models. For the strain based model the free energy

potential y was expressed as
v(e,0P,q,d) = (L-dy’) - & : 6P + Z(q,oP) (3.110)

. . o . T . . .
in which v is the initial elastic stored energy which is a convex

function, oP is the plastic relaxation stress tensor, = is the plastic
potential function, and q represents a set of plastic variables.

Clausius-Duhem inequality, which is written for isothermal process in

the form

-\t o820 (3.111)
yields the following inequalities

mdzo o & - =g - (=P 2o (3.112)

0

In this type of formulation the stress tensor was derived to take the

form

= (- &L - P (3.113)
('
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The plastic stain P is formulated in terms of local unloading

corresponding to zero stress, i. e.

~ Q
P _ - 4] N = Sy (®)
S r (l—d) . () T (3.114)

The damage was characterized by an energetic criterion which led to
symmetric formulation contrary to Lemaitre and Mazars (1982b) who used
the strain second invariant norm. The plasticity formulation which was
extended further to include viscous behavior was expressed in terms of
the effective stress in Rabotnov's (1968) sense. On the other hand, the
stress based formulation also considered a scalar damage variable and

the complementary free energy A was expressed as

A@,P,q,d) = d, A%, - o : P - =(q,P) (3.115)

«

where A° is the complementary energy of the virgin material, d_ is the
reciprocal of (1-d) The formulation was quite similar to that of the
strain based model and was given in a systematic way. Variational

formulation and subsequent numerical implementation of these models

were further discussed and a a three-step operator split algorithm was

proeposed.

Stevens and Liu (1992) proposed a strain based constitutive model
with mixed evolution rules for concrete. Combined damage and plasticity
was considered and two second order damage tensors were adopted for
tensile and compressive behavior. Same surfaces for damage and

inelastic deformation was used. Kinematic evolution rule and shifted



131

elastic strain were used for the tensile surface g’ while isotropic

evolution law was used in compression for which the surface is g . The

surfaces were mathematically described by

g =1 - r6 . o= \‘/(cé - a') : c? . (tié - a')
(3.116)
and
g =1 -1, , v o= Ve 1 O (o) (3.117)

in which r('),ré and a are the radius of the unshifted tensile surface,
the radius of the compressive surface and the shift of the tensile

surface. The 4th order tensor C° represents the virgin moduli tensor of

the material. The incremental moduli Ct* and Ct for tensile and

compressive loading were obtained by

_ - (3.118)
{'f,e X m;e
and
= 5 0y 8" 3.119
Ct # H(tr'e) e X ( )
e e
where i’

are the consistence parameters in tension and compression.

The heaviside function H(trr.é) was suggested by Yazdani and Schreyer

(1990) to accommodate pressure effect. The plastic stress evolution was
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given by

< B, B (3.120)

Suaris et al. (1990) developed a damage model using the concepts of
the bounding surface for monotonic and cyclic behavior of concrete. An
elastic potential A was introduced in terms of the principal stresses and
a compliance tensor dependent on the accumulated damage and used
circular loading and bounding surfaces defined in terms of the

thermodynamic forced Rj conjugate with the damage variables oy The

model is a stress based one and the plastic strain was assumed to be
coaxial with the damage strain. An experimental scheme was adopted to
detect microcrack growth and hence evaluate the damage variables with

ultrasonic technique. The model was expressed mathematically by the

following set a equations:

_ (7/\ .
rij = p - l] (Oij,t,('li) (3.121)
(8]
and
oA \

1

The damage variables were obtained from the normality rule to the

loading surface f as
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o = L (mi—) (3.123)

L = % (5-) Ry (3.124)

in which

H = K‘Kis\ (3.125)
“in
and
1 , I =0 & >0
C = (3.126)
0 , otherwise

where « is a constant, & is the normalized distance between the Joading

and bounding surfaces. The complementary energy was expressed as

pA = % o Cpo’ 40 Cpel (3.127)
where
1 -\ -\
. 1 10w 1 -\
(-’I - E—o . 1—'(1(02 1 (3'128)
-\ - 1 i)

and
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- .
(1-~[¥.-;2)1(1--ﬁm3) (1—(-\1) (1—~m2) (1--(‘»1) (1 —n,)
1 -V 1 -V
Cu = E, |To) =w) TRy T-fo) T-e) @0
—v -\ 1
(1= ) (1~w)) (I-er ) (1-w ) (1=fe ) (1- Ber,)

(3.129)

It was stated that :

"The scalar damage variable used by Krajcinovic (1979), Loland
(1981) and Mazars (1984a) is sufficient to model isotropic damage.
However, the cracks that occur in concrete under loading are highly
oriented and a vectorial - or tensorial - valued damage wvariable
would be required to model this crack-induced anisotropy
(Krajcinovic and Fonseka, 1981; Suaris and Shah, 1984; Kachonov,

1980b; Cordebois and Sidoroff, 1982)."

Voyiadjis and Taher (1993) considered a bounding surface approach
for damage formulation. The initial fracture, loading and the bounding
surfaces were modelled using a modified Ottoson (1977a) surface
including the Lode angle, damage variable (maximum accumulated
damage) using a scaling factor according to the nonuniform hardening
rule (Han and Chen, 1985). Similar equations as those of Suaris et al.
(1990) were used and their incremental form was derived. Different

moduli for loading, unloading and reloading were allowed, thus the

hystersis loop was captured.

This model was merged with plasticity with the help of two bounding
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surfaces by Taher and Voyiadjis (1993). The hardening behavior was
claimed to be controlled by both damage and plasticity while the strain-
softening regime to be controlled by the damage process only. The
damage surface was shown to dominate at low confinements while the
plasticity surface dominate at large confinement. However, the damage
contribution to the plastic behavior was neglected. For plasticity, a
modified Ottoson (1977a) including the Lode angle 0 and a strain

parameter which was chosen as the maximum principal compressive

strain *max’ and the ratio d=%, § is measured along the tensile
[

meridian for unloading whereas on the compressive meridian for

reloading. The plastic strain increment was expressed as

S

Kl | i B 1
d-P = [— + &. Ly da,, + 8, ——0 dr.rkk (3.130)
ij 3Hpto T, ij 3 k1 9K,

where Hp is the plastic modulus, Kt is the tangent bulk modulus, { is
the shear compaction-dilatancy factor and T is the octahedral shear

stress. The material parameters were in good agreement with

eXperiments.

Willam et al. (1984) considered a series model similar to that
suggested by Bazant (1976a) of an intact elastic 7zone and a localized
damage zone. The dimension of the damage 7zone was assumed
h x d,2 =t, s fort tension and shear respectively. Considering a

tangential damage variable, the constitutive relations were written as

(1) in tension
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¢ ~E ¢ , E --E_ 5, -} f’E‘* (3.131)

(2) in shear:

: : G G

T = G_y , G_ = E— , Ly T dg rI (3.132)
_‘_sw1 s,d
h

where CS,Cq d,C=E,G are the undamaged, composite, and localized
~

damage zone and b,E=t,s are the damage wvariables in tension and

shear, respectively. Implementation of this procedurn in finite element

scheme showed how the mesh sensitivity was eliminated.

Yazdani and Schreyer (1990) combined plasticity with damage
mechanics for concrete. The damage surface was a consequence of a
damage evolution law based on the physical aspects associated with two
modes of cracking; thus displaying softening and harvdening modes. The
plasticity surface was the classical von Mises with strain hardening but
not softening. The model gave accommodation for anisotropy and showed
that dilataney arised from microcraking not frem plasticity as reported
by Tapponnier and Brace (1976). 'The uncoupling rvelation between
plasticity and damage was derived from thermodynamic formulation by

expressing the Gibb's function as follow

G(o,q) = %0 :C% 64 % oo Cc(m T a :.’(q) [N .a\ltq)

(3.133)
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in which Co is the undamaged compliance, Cc is the added [lexibility,

A is the free energy to form microcracks (surface energy), x is a set
of damage variables, q=«,y and vy is a set of plastic variables. The
internal dissipation inequality was expressed as

dy o+t Tk20 Lo = £G vo= 2 (3.134)

ay K

3.12 LOCAL, NONLOCAL, AND DISTRIBUTED DAMAGE

A continuum with nonlocal damage has recently been shown to be an
effective approach for the analysis of strain softening structures
(Bazant, 1987a). The basic idea of the nonlocal continuum model is
that only the damage is nonlocal, being a function of the strain average
from a certain neighbourhood of a given point, while all the other
variables, especially the elastic strain is local. By contrast, in the
original nonlocal continuum models for elastic models for elastic materials
(Kroner, 1968; Krumhansl, 1968; Kunin, 1968; Levin, 1971; Eringen
and Edelen, 1972; Eringen and Ari, 1983; etc.), as well as in the first
nonlocal model for strain softening continuum (Bazant, 1984a), the
elastic strain and total strain were nonlocal. This Jed to certain
numerical difficulties (Bazant and Pijaudjer-Cabot, 1987b), for example
the existence of spurious zero-energy instability modes (which had to
be suppressed artificially by overlay with local continuum), the
presence of spatial integrals or higher-order derivatives in the

differential equations of equilibrium or motion and in boundary and
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interface conditions, and an imbricate structures of the finite element

approximation which however proved cumbersome for programming.

These difficulties were later shown to be a consequence of imposing
symmetry on the integral or differential operators involved. The
symmetry is lost with the nonlocal damage concept, which means that
the tangential (but not the elastic) structural stiffness matrix of the

finite element approximations is nonsymmetric (Bazant and Pijaudier-

Cabot, 1987b).

The nonlocal damage characterization is physically very appealing at
the  microscale. However, experimental  determination of the

characteristic length lc may be major problems. Nevertheless, Bazant

and  Pijaudier-Cabot (1987b) proposed an interesting method to
determine the characteristic length from experimental data. Further,
nonlocal computation is to some extent incompatible with local finite
element calculation and further enhancement in consistence and accuracy
is needed. On the other hand, the viscous damage model proposed by
Ju (1989a) is not suitable for accommodating dynamic rate effect but
also offers a possibility for controlling loss of ellipcity. This model
satisfies the pesitiveness condition in Valanis (1985) and leads to well

posed initial boundary value problems.

In the recent years, the applicability and limitations of distributed
damage model to brittle materials such as concrete have been questioned
by some researchers (e.g. Read and Hegemier, 1984). The fundamental

question is to what extent the softening that is observed experimentally
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(for a boundary value type sufficiently large specimen) is a
manifestation of local material behavior or, on the contrary, a global
structure  (boundary-value) effect brought about by fracture
(macrocracks) and strain localization (such as shear band formation).
Ju (1989b) answered this question by separating the issue into two
parts. The first part concerns the boundary value type experimental
testing of specimens. The second part focuses on the local constitutive
behavior (not boundary-value problem) within the framework of the
unit-cell-based mesomechanics, the concept of characteristic length,
together with the self-consistent method or homogenization technique. It
is noted in the case of concrete, the characteristic length is

approximately three times the maximum aggregate size.

For a sufficiently large (bigger than unit cell) experimental
specimen , the observed force-displacement curve indeed represents
the global boundary value type response, rather than the local stress-
strain behavior of a material element. In fact in this boundary-value
problem, there are factors contributing to the apparent softening which

is vbserved experimentally. These factors include:

a. the nucleation and growth of of many distributed microcracks in
the specimen, leading to local material softening in the sense of

the unit cell based meso-mechanics;

b. the strain localization phenomenon, resulting from the loss of
ellipcity and stability of materials (e.g. Ortiz and Simo, 1986;

Ortiz, 1987a, 1987b, 1987c); and
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c. the formation and propagation of global boundary-value-type
macrocracks which are the direct products of microerack

coalescence in the specimen.

Based on the alluded statements, it is conducted that the true material
softening is less than the global softening observed in experiments.
Therefore, the global force displacement curve should not be divectly

interpreted as the local stress-strain curve of a material element.

On the other hand, within a statistically representative unit cell
(meso-mechanics), distributed microcracks and strain softening (at the
meso-scale) do make sense since distributed microcracks (within the
unit cell) do influence stiffness degradation and strain and strain
softening. One can apply the self-consjstent method or the
homogenization technique to compute the degradation of elastic and
plastic material properties od a unit cell. These computations are, of
course, related to the scale of the characteristic length of a material.
Further, the so-called size effects (e.g., Bazant, 1984a, 1984d 1985a;

Bazant and Kim, 1984c) are also closely related to the scale of

characteristic length.

In summary, distributed damage models are suitable for modeling
distributed (many) microcracks and material vesponses (not necessary
softening) in structvral members before macrocracks, one can switch to

fracture mechanics approaches provided that one takes into account:

a. the damage process zones in front of macrocracks {i.e. the

macrocrack-macrocrack interactions); and
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b. the damage induced stiffness degradation and anisotropy in many

(distributed) unit cells.

Without these accounts, the resulting fracture calculations are not
realistic nor meaningful. Conversely, direct application of a distributed
damage model to solve a problem involving a single dominant macrocrack
(in a boundary-value setting) is not likely to yield accurate results
regarding macrocrack geometry and macrocrack opening displacement.
Finally, distributed damage models are not directly suitable for

predicting localization instability in materials.

313 RATIONAL SPLIT OF STATE TENSORS

The basic step in constructing a sound nonlinear constitutive model
is in the accounting of the inelastic deformations. Different
investigators partition the state tensors in various ways. Two
fundamental approaches have heen followed in the past to account for
the inelastic response of purely mechanical process. The first
considers stress split to introduce the conventional elastoplastic
behavior in addition to a complementary response which provides
particular characteristics such as strain softening and stiffness
degradation. For example, Bazant and Kim (1979a) assumed the total
stress to consist of interaction between plastic and fracturing
components. Frantziskonis and Desai (1987a) used a concept introduced
by Van Mier (1984) to decompose the total bhehavior into topical
(elastoplastic) and stress relieved behavior. Another split was

proposed by Dougill and Rida (1980) in which the stress tensor was
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decomposed into elastic and fracturing components. On the other hand,
the second approach embarks with strain split which produces anomalies
if not properly used. The latter will be considered in more details
along this study, since it is more appealing in formulation (ju,1989a).
Also, it elaborates the characteristic ingredients of general nonlinear
material response.

In addition to the conventional elastoplastic partitioning of the
strain tensor, other possible combinations between elasticity, plasticity
and damage have been proposed in the literature: (i) elastic and
damage components, (ii) elastic-damage component, (iii) elastic-damage
and plastic components, (iv) elastic, damage and factorized damage
components, (v) elastic, damage and plastic components and (vi)
elastic-damage and plastic-damage components. The implications of

using each of these partioning techniques is investigated hereafter.

The split of the strain tensor is proposed according to the
experimental findings for the material response under possible load
combinations. For example, in the case of uniaxial loading of rigid

perfectly plastic materials for which the initial slope is almost vertical

the total strain is almost plastic, i.e. & = P and all the energy is

irrecoverable. The other extreme occurs for linear elastic materials

(_r. = ::e) in which all the energy is recoverable. Such idealizations can,
of course, never be found in reality. More practically the strain tensor
is partitioned into elastic and plastic components, thus characterizing
the elastoplastic behavior as shown in Fig. 3.8a. The material is

initially elastic and unloads parallel {o the initial slope, En. The total
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strain, in this case, is & = € + P The plastic strain was the subject

for extensive research for more than eight decades. Conventional

plasticity expresses x:?j through the following relationships

2o i)

i T = (nonassociative flow rule) (3.135)
(Gs

q; = ) hi(“ij’qi) (plastic hardening law) (3.136)

f(oij’qi) <0 (yield criterion) (3.137)

where (.) is the time derivative, Q is the plastic potential function, i

is the stress tensor, q; is a suitable set of plastic variables, [ is the

yield surface, hi is the vectorial hardening function and ). denotes the

plastic consistency parameter.

As the concepts of damage mechanics evolved and came into
practice, different techniques were followed for partitioning the strain

tensor as shown in Fig. 3.8. Of these are:

(1) Elastic and damage components: as usually follewed by models

based on micromechanics where the strain tensor is expressed as

_ 0 ) * )
i SiL kL S{ikLCKL (3.138-23)

_ e, d ]

= 5Ty (3.138-b)
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. . . . e _ Lo
in which the elastic strain tensor "ij = SijkLﬁkL and the damage

i a _ o . 0 .
strain tensor r.ij = SijkLGkL where SijkL Is the undamaged

*
compliance and SijkL gives the damage induced added flexibility

(additional inelastic compliance). Such an approach is conceptually
sound but following unloading slope parallel to the initial tangent
(Fig. 3.8b) which is not the case for a general elastoplastic
material. In some cases, the unloading slope is assumed to pass

through the origin (Horri and Nemat-Nasser, 1983; Krajcinovic et

al., 1991).

Elastic-damage component: This approach is also followed by
micromechanics based models idealizing microcrack weakened brittle
solids. The elastic moduli are changed continuously, thus yielding
effective moduli based on either no-interaction (Taylor),
differential (Kuster-Toksoz, Norris) or self-consistent approaches
(Zimmerman, 1992). The well-known model developed by
Budiansky and O'Conell (1976) falls in this category. In addition,
the early proposed models for rate independent response using the
concepts of continuous damage mechanics assumed nnloading to the

origin (Fig. 3.8c, path 2) and a stress-strain relation in the

general form (ju, 1990)

0 ed
% < Mijuv(D) CuvkL "KL (3.139)

where M(D) is a fourth order tensorial function of the fourth order

damage tensor. Examples of these models are those of Loland
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(1981), Krajcinovic and Fonseka (1981a), and Mazars (1984a). It

is obvious, of course, that idealization of concrete, which
represents a general elastoplastic damage material, in this manner
is not proper. It is more suitable for modeling brittle matrix fiber

or particle composites as well as ceramics rather than concrete.

Elastic-damage and plastic components: This pactitioning associates

damage with the elastic process (Fig. 3.8d) only by postulating
that the total strain energy o= \ye(ﬁ;},D,T) + \yp('::g,T) » Where
Vo is the elastic damage energy, p is the plastic energy, D is
scalar damage variable and T is the temperature. A typical
approach was followed, among others, by Lemaitre (1985) This
hypothetical assumption was criticized by Ju (1989a) since it is not
physically appropriate to decouple the plastic mechanism from

microcrack growth process. In this case, for uniaxial loading

shown in Fig. 3.8d, it has to be emphasized that the determination
of the plastic strain r.ll) should be different from jts evaluation in
elastoplastic type models where no damage is taking place. The
variance bhetween the two components P (determined from egns.
(1) and which is shown in Fig. 3.8a) and ::I: (shown in Fig. 3.8b)

should be erystallized in considering the plastic mechanism
inclusive damage. Therefore, it can be concluded that if the
unloading path is neither elastoplastic (path 1 in Fig. 3.8) nor

brittle (path 2 in Fig. 3.8) then the plastic strain contains a

certain damage fraction in it.
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Elastic, damage and factorized damage components: In this

approach the total strain is decomposed into elastic and damage

component, i.e. & = ;= + r_czl‘ To account for the inelastic

behavior, however, the plastic strain associated with crack growth

is assumed to be coaxial with the inelastic strain due to fracturing,

i.e.? 1212) = ur.czl, a is a constant (Fig. 3.8e¢). This assumption

was used by Ortiz (1985) to model mortar in his mixture model. It
is evident that the simplified idealization for the plastic behavior is
too restrictive to be considered as rigorous for generalization.
Another aspect is that damage behavior is dominant for low
confinement while the behavior of rock like materials is ductile at
large confinements (Yazdani and Schreyer (1990). Therefore. the
ratio of the plastic strain to damage strain is not the same for all
stress paths.

Elastic, damage and plastic components: To achieve more
generalization this partitioning (r. = & ::(31 + r.I:), as shown in
Fig. 3.8f, was used by Yazdani and Schreyer (1990). In their

formulation, Taher and Voyiadijis (1993) used this strain split but
the plastic strain ’72 was determined independently from the damage
process. Again this assumption, to be distinguished from
elastoplastic partitioning, is physically incorrect unless s:g includes

damage effect (as originally proposed by Yazdani and Schreyer,

1990). Another important aspect is that the material may not be
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initially elastic and therefore Yazdani and Schrever's proposed

partitioning (1990) is not general.

Elastic-damage and plastic-damage components: This approach was
followed by Ju (1989) to characterize the elastoplastic damage
behavior of concrete (Fig. 3.8g). This policy of partitioning is

quite logical since the damage process, in comparison with the

elastoplastic behavior, adds some flexibility to +® and decreases the

plastic strain P as defined in the classical sense (shown in Fig.

3.8a). This means that the damage does have res! contribution to

both the elastic and plastic behaviors.

3.14 COUPLED STRAIN-DAMAGE SCHEME

Solution techniques bifurcated inte two directions;: analvtically
and numerically (Fig. 3.9). Analytical mathods of calculation were
used te investigate elastic strain coupled with brittle damage
(Bazant and Cedolin, 1979b; Bui et al., 1933; FEhlers, 1985;
Krajeinovie, 1984a, 1984b; Krajcinovie and Tonseka, 1981),
elastoplasticity coupled with dnetile damage (Broberg, 1975;
Chitaley and MeClintock, 1971; Keoning, 1977; Dougili, 1975; Norris
et al., 1978; Shih et al., 1978), and elastovisco-plasticity coupled
with creep dawmage (Broberg, 1974a, 1974h; Bui et al., 1984;
Chrzanowski and Dusza, [980: De Langre, 1984; Na Langre et al.,
1983; Hayhurst et al., 1933; Janson and Hult, 1977; Janson, [935;

Kachanov, 1958, 1980a; Krajeinovic, 1983f; Kubo ot al.,



149

surorqoxd aBrwuep 1oy sanbruida) uonn[os SNOLLA i € 'Ol

ouiagos

adewep-urens

voﬂ&:oU

ouIoos

oZvurep urens

pardnooun

[

I

I

uonexe[dI 9POL 1[)IM JLIDUID]D dJTUL]

auoz padeurep Him JUaura[d NIL]

]

I

Aestrawmnpn]

Aqeondeuy

]

I

STNOINHIDIL NOILLNTOS




150
1984; Makik, 1982; Murakami, 1981a; Murakami and Obhno, 1978,

1981b; Riedel, 1984; Riedel and Wagner, 1981).

Numerically, finite element method is widely wused. Two
algorithms were utilized. The first wuses relaxation of nodes
whereas the other uses damaged zone. Following the nodes
relaxation, elasticity-brittle damage (De Borst and Nanta, 1985;
Grootenhoer, 1979; Hillerberg et al., 1976; Kobayashi, 1979;
Petersson, 1981; Ramakrishnan, 1985; Suidan and Schnobrich,
1973), clasticity-fatigue damage (Lemaitre et al., 1981; Newman,
1982), elastoplasticity-ductile damage (Abdouli, 1982; Andersson,
1973; Devaux and D'Escatha, 1979, Devaux et al., 1985; Geegstra,
1976; Light et al., 1876; Varanasi, 1977), elastoplasticity-fatigue
damage (Angquez, 1981; Lemaitre, 1984; Miller and kfouri, 1974;
Newman, 1977) and elasto-viscnp]asticity—creep damage (Ehlers and
Riedel, 1980; FEllison and Musicen, 1981: Gonelaves ana Owen

>

1983) were investigated.

On the other hand, uncoupled strain-damage using damaged
zone algorithm was emplayed in elasticity-brittle damage (Bazant
and Cedolin, 1979b; Bazant and Cedolin, 19832; Cedolin and
Bazant, 1980; Marchertas et al., 1982),elastop]asticity—duc-‘.ile
damage (D'Escatha and Devaux, 1979; Rousselier, 1977, 1978) and
elasto-viscoplastieity—creep damage (Benallal, 1985: Bensoussan et
al., 1985, Cailletaud and Chaboche, 1982; Chaboche, 1982; Dyson
and Loveday, 1981; Hayhurst, 1975; Hayhurst et al., 1981; Leckie

and Hayhurst, 1974, Murakami, 1982; Folicella and Culie, 19871;



Saanouni, 1984).

Finally, coupled strain-damage using damaged zone algorithm
helped investigating elasticity-brittle damage (Legendre and
Mazars, 1984; Lemaitre and Mazars, 1982b; Mavzars, 1981; Mazars
and Lemaitre, 1984b; Saouridis and Samake, 1985), elasticity-
fatigue damage (Beremin, 1983; Billardon and Lemaitre, 1983),
elastoplasticity-ductile damage (Benallal et al., 1984a, 1984b,
Beremin, 1981a, 1981b, 1981c; Rousselier et al., 1985),

elastoplasticity-fatigue damage (Billardon and L.emaitre, 1981), and

elastoviscoplasticity-creep damage (Benallal, 1984; Saanouni and

Chahoche, 1985).

The classical way te calculate the critical (rupture) conditions

of a component (Fig. 3.10) is to operate in three steps (Lemaitre,

1984):

(1) The geometry of the structure being known, together with the
history of loading and initial conditions, the fields of stress and
strain are first calculated by means of strain constitutive
equations and a numerjeal procedure (finite element method).

(2) Then, by means of a damage criterion, the most critical point(s)
with regard to fracture is (are) determined and, the load, or
the time, for rate dependent models, or number of cyeles, for
alternate loading models, corresponding to a macro-crack
initiation at that point is calenlated, by integration of damage

constitutive equation if rate function is used, f{or the history of

local stress or strain.
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(3) In a third step the fracture mechanics concepts may be applied
in order to calculate the evolution of the macro-crack up to the

final rupture of the whole structure.

In the local approach using continuous concepts, the crack tip is a
process zone in which damage increases until the rigidity and strength

vanish. This gives rise to a continuous definition of a crack (at the

structure scale):

"A crack is a flat zone of high gradients of rigidity and strength

in which the critical conditions of damage have keen reached".

This means that the third step of the previous scheme may be
avoided considering that the crack evolution is the that of the damaged
7one as calculated element by element (for constant strain elenents) or
Gauss points with recalculation of stresses. The geomefry of the
damaged zone is taken into account but not the possible coupling

between damage and strain (Fig. 3.10a).

A further step is to take into account the coupling bhetween strain
and damage due to the fart that damage decreases the rigidity and the
strength of materials. Then, by means of coupied constitutive
equations, strain and damage fields are calculated in one step and the

crack as a damaged 7zone is obtained at the same time as the strain

(Fig. 3.10b).



CHAPTER 4
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CHAPTER 4

RE-CONCEPTUALIZATION OF DAMAGE MECHANICS

4.1 GENERAL

In this Chapter, fundamental aspects of elastoplastic-damage are
deliberately outlined. The concepts of generalized damage variables,
generalized material degradation paths and generalized effective stresses
based on the hypothesis of strain equivalence are defined. For more
insight of generalized elastoplastic damage uncoupling, a demonstration
is made by investigations of uniaxial compressive behavior of concrete
and copper 99.9% as well. Then, the Lemaitre's ductile damage model
(1985) is revised. The decoupled free energy terms are derived bases
on  the concepts of thermodynamics of irreversible changes.
Subsequently, the tangential tensorial moduli ave formulated for the
case of yielding materials. Phenomenological and michromechanical
aspects of rate-independent isotropic elastoplastic-damage are merged to

construct the constitutive relations of strain softening materials,

4.2 GENERALIZED DAMAGE VARIABLES

Damage can be defined as a collection of permanent
microstructural changes concerning material thermomechanical properties
(e.g. stiffness, strength, anisotropy, etc.) brought about in a material

by a set of irreversible physical microcracking processes resulting from
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the application of thermomechanical loadings (Talreja, 1985). Among the
various definitions of the damage variable is the ratio of damaged
surface area over total (nominal) surface area at a local material point
(Janson and Hult, 1977; Loland, 1981; Lorrain and Loland, 1983). This
definition gave guidance to alternative forms as the change in the
elastic compliances (stiffnesses) {(Mazars, 1982, 1984a, 1986a; Lorrain
and Loland, 1983; Resende and Martin 1984; Resende, 1987; Lemaitre,
1984a, 1985, 1986a; Frantziskonis and Desai, 1987a,b; Ladeveze, 1983;
Mazars and Lemaitre, 1985a). Therefore a broad definition of the

generalized damage variables can be adopted as follows:

"If a materiai has n generalized degrading properties, zi,i = 1,n,

then at any time, t, the damage wvariable associated with any

property Z;» dz (t), is given by
i

d_(t) = 1 AN (4.1)
% zi(tdy) )
&

in which zi(td ) is the value of the ith property at its threshold
7.
i

time t g @t which its degradation takes place".

Z.
1

The generalized damage variables have the following properties:

1. Non-decreasing variables in the process of thermomechanical

loading.
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2. Zero values correspond to undamaged state al time td
Z»
i

3. Critical values dc are maximal values taking place at times

Z,
1

tc need not define rupture as in Kachanov's sense (1958).

Z.
1

Rupture criterion is required to interrelate the generalized

damage variables.

C_. zZ.

*
4. d e[~y , d_ = |0, dc ]
zi i zi

5. Rate values, dz » are equal to zero through unloadings (i.e.,
i

unloading is an elastic process).

4.3 GENERALIZED MATERIAL DEGRADATION PATHS

Rock-like materials exhibit all sorts of irreversible changes.
Response of such materials is characterized by strain softening in the
post peak region. Irrespective to its incarnation, this behavior is still
in argument whether it is a material or structural property (Read and
Hegemier, 1984; Sandler, 1984; Wu and Freund, 1984; Van Mier, 1984;
Frantziskonis, 1986; Discussions at the France-US Workshop, 1988).
However, a typical stress strain relation is shown in Fig. 4.1 for which

five unloading paths can be described schematically, if initially assumed

An ijllustration is made in Art. 4.3.
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elastic, based on the recovered energy density @ (all notations are

shown in Fig. 4.1):

Path 1:

Path 2:

Path 3:

Path 4:

Elastic unloading with no permanent deformation and full
energy recovery. It represents a typical form of nonlinear

elasticity and damage concept is trivial ;

o :dey , o=, r.;) =0 (4.2-a)

® =
r

Q Crnm

Perfect plastic unloading with neither deformation nor energy
recovery (as that used in the "Bounding surface theory"
(Dafalias, 1981) and in the "Sub-loading surface" models

(Hashiguchi, 1989);

21 2
r;( b ‘_( )

o SR S (4.2-b)

Ductile unloading with flow stress degradation (Elices and

Palanas, 1989). It represents a typical form of elasto-

plasticity
-1 _ . 3 1 (3 o (3 (3)
Op = 5Ol = T fe E0 e s T fe * ‘b
3 _ -1, _
o Eo to (4.2-¢)

Brittle unloading with stiffness degradation. All microcracks
are assumed to close wupon unloading and permanent

deformation is zero. It represents a typical form of secant

type model

1 4 1 (4 4y (4)
W, = Z 0 ! g = g :(1-d )E o
Op 2 e 2 ‘e ( e o o] ’
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5:=r.(e‘)=E~1(t):U R :‘.g“=0 ,

4 _ - p 1. -
de =1 Eo : E(t) (4.2-d)
Path 5: Generalized damage (Elices and Palanas, 1989) giving energy

recovery intermediate between the previous two cases. It

represents damage-elasto-plastic coupling

=1 o5 _ 1 s, _as . 15
® = El o, = 7 e ¢ (1 de )Eo N ,
€ = r.(es) + ag’ » g = E_l(t) o,
d> =1 - E': E@®) (4.2-e)
e o :

Strictly speaking, path (5) is capable of capturing the features of
path (2) if d‘es’ approaches —«o:, In this case E(t) = (1 d‘:’) Eo = 4+,
which is consistent to Fig. 4.1. Paths (3) and (4) are captured, as

well, if d‘:’ =0and 1 - E;l : 0 ¢ ', respectively. After all, it is

important to underline that a particular solid is per se neither brittie

nor ductile (contrary to the numerous models developed on these

bases).

4.4 GENERALIZED DECOMPOSITION OF STRAIN TENSOR

The format split of the total strain tensor, &, in the case of
generalized damage for isothermal process into the "elastic-damage" and

"plastic-damage" components is assumed at the outset (Ju, 1989a), i.e.,

(Fig. 4.2.a).
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B(8) = g * (4.3)

For this decomposition the stress tensor ¢ may be correlated to

the total strain tensor and its components as follows:

o(t) = A(t) : (t) = A(t) : (rg*vp) 3 (4.4-a)
o(t) = E(t) : ¢ (t) , and (4.4-b)
o(t) = o, + P(t) : () (4.4-¢)

where A, E and P are fourth order tensors whose initial tangents are

Ao’ E0 and Po, respectively and a, is the stress tensor at the onset of

plastic deformations at time t;. Plots of Eqns. 4.4 are sketched in Fig.

4.2 in which A(t), E(t) and P(t) can be implemented as secant moduli
that can be easily expressed in terms of their conjugate generalized,

namely total elastic and plastic damage variables da’ d o and dp,

respectively given in (4.1), i.e.

At) = (1—da(t)) Ao (4.5-a)
E(t) = (l—de(t)) E0 (4.5-b)
P(t) = (l—dp(t)) Po (4.5-¢)

Unloading in Fig. 4.2.a follows the generalized damaged path
(path 5) with slope E(t), while in Figs. 4.2.b and 4.2.c follows "quasi
sub-brittle" (path 4) and "quasi sub-perfect plastic" (path 2) schemes,

respectively. For a general behavior, attention should be paid to some

solicitations:
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Elastic damage may only appear beyond a certain threshold limit;
l.e. time tg associated with de’tg 2 0. The elastic damage

threshold was reported by many investigators (Lemaitre, 1984a,
1985, 1986a; Mazars, 1980, 1984a, 1986a; Simo and Ju, 1987a,b;
Ju, 1989). Ju (1989) used the term "energy barrier" before any
loading is applied for this threshold. By contrast, Krajcinovie and
Fonseka (1981) and Loland (1981) took the notion, for concrete, of
initial damage due to inherent flaws or cracks due to

nonhomogeneous shrinkage during curing.

Initiation of plastic deformation may take place simultaneously with

loading application, i.e., t; 2 0. Thus, existence of Og» which

represents a yield limit, is doubtful and in this case ¢ 0 - 0 for t°
= 0, hence Ao z Eo' This can be observed from the behavior of

many materials (e.g., concrete). This is contradictory to
Newman's (1964) discontinuity postulate and the computational
models on this basis (for example Owen et al. , 1983).

Plastic damage may start as early as plastic deformation takes

place, i.e. tg > t;. Lack of experimental evidence, till now, leads

further to unreliability of any assumption that plastic deformation
onset follows elastic damage (t; 2 tg). However, Simo and Ju

(1987a,b), Ju (1989a) used effective stress-quantities based on

elastic damage variable in their formulations assuming that plastic

deformation is subsequent to damage.
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Elastic and plastic damage variables are independent in the sense
that they need not evolute at the same time or by the same rate.
Therefore, the Helmholtz (total) free energy, v, cannot be simply

partitioned using a single damage parameter, i.e.
v a,d) = (1-d)y°6®,q) 2 (1-a) (2% +v (@) (4.6)

as postulated by Ju (1989a); in Eqn. (4.6) q,d denote a suitable

set of plastic variables and damage variable. \u(r.e,q,d) is a locally

averaged (homogenized) free energy function of damaged material,
\yo(ae,q) signifies the total potential energy function of an
undamaged (virgin) material. \uZ(r.e) and \y;(q) are the uncoupled
elastic and plastic potential energy functions, respectively.

Partitioning of this sort is valid only if € and q are related to the
stress vector, o, by the same modulus as given in Eqn. (4.4-a).

The proper expression of the Helmholtz functional as a weighted

function should be

¥eS,2,dg,dp) = (-d vl + (1-d () (4.7)

in which d q is the conjugate damage variable to q.
dp = 0 for linear hardening and d e =0 for linear elasticity.

The alternative to consideration of damage in formulations is to use
a pre-defined law accounting for nonlinearity, e.g., Ramberg-

Osgood law replaces plastic damage (Eqn. 4.4.b).
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4.5 GENERALIZED EFFECTIVE STRESSES CONCEPT

Based on the hypothesis of strain equivalence introduced by
Lemaitre (1971): "The strain associated with a damage state under the
applied stress is equivalent to the strain associated with its undamaged
state under the applied the effective stress". Thus, substituting from

Eqns. (4.5) to Eqns. (4.4) the strain equivalence can be expressed as

follows:
1 o N S - o
£ = A = A g , G = (4.8-a)
o l—da o l—da
_ -1 S U SR g = 9 -
£0 = E0 i—q = Eo G y Gy = 1=d (4.8-b)
e e
o-a g
-1 -1 - o )
L =p @ .-5), o = y O =
o - o o - o -d
p 3 dp P p 1 dp 1 p
(4.8-¢)

in which 7, Ee’ Ep and 60 are the total, elastic, plastic and initial
plastic effective stresses, respectively. Fig. 4.3 shows the equivalence
of total strain and its components. It has to be figured out that for an

element, of normal n subjected to force F, its effective area, S, can be

expressed in terms of the total area, S, through the total damage

variable, da’ ie.,

S = S(1-d,) (4.9)

and the effective traction vector T (T = 7 . n) is related to the total

traction vector T (T = ¢ . n) by the same damage variable
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Si-d.) 1-d_ (4.10)

Eqns. 4.9 and 4.10 are reconciled with the effective stress concept
originated by Rabotnov (1968). Consequently, Eqn. (8-a) is sufficient
for constitutive relations formulation. On the other hand, for ductile

unloading path; de =0; o = Og = Ty * G A0 need not be equal to Eo’

uniqueness is lost. If A0 = Eo’ then "p T ETRg = A(')1 : o(l/(l—-da)—l)

= A" o(da/(1=dy)y = d A" : G, thus 5 = A (p‘;l D3 )/d, =

o/(l—da) ; therefore uniqueness is achieved since 7 is related to g . A

very important special case arises when d a’- d =

o dp = d, thus leading

definitely to a unique effective stress 5 = Ee = 6p = o/(1-d) and Ju's

formulation (198%a is recovered. However, for full representation of
both the stress and strain histories, only two relations out of Eqns.

(4.8) are sufficient. This is achieved by using Eqns. (4.8) in (4.3),

yields requirement of at least two damage variables, say, de and da’
since
E 1 P 1 P—l
e e R e e B =a %
“Ta e p p
- A R S S S
= A0 : _Eo 2 8,tp, t (op ) (4.11)

In other words, elasto-plastic damage follows constraint uncoupling.
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4.6 DEMONSTRATION OF ELASTO-PLASTIC DAMAGE UNCOUPLING

Inasmuch as concrete experiences all kinds of irreversible
changes, its behavior in uniaxial compression will be investigated in
addition to Copper 99.9% as a ductile material. This demonstration will

elucidate the adopted generalized concepts and link theory to practice.

4.6.1 Concrete

Two well established correlative equations were proposed in the

past from experimental evidences:

1. A stress-total strain (¢-+) relation by Popovics (1973)

(4.12)

n |-
T 2
c £
no—l + [T]
c

where n o is a material property depending on the peak stress f c

and £o is peak strain. Adopting a value of n = 2 for t‘; = 17.2 MPa

(2500 psi), Eqn. (4.12) becomes (Fig. 4.4),

2. A plastic-total strain (ap—r.) relation by Karsan & Jirsa (1969)

(4.13)
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Normalized total sirain (E/Ey)
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Figure 4.4

Idealized  stress-total strain relationship for
concrete under uniaxial compression
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£ 2
[_E] =.0.145 [L] + 0,127 [L] (4.14)

£ f £
C C C

Exploiting the same notations aforementioned in arts. 4.5 and 4.6,

the moduli and damage variable conjugate to the total strain are

al——“ ]

f ’ f ’ zf 13

A = dc) = c .i = *c (4_15_3)
£ .

° de/ o ,‘[_'] e o
£
¢ -0
_0_]
£ £’
=9 - p S+ _c _ 1 c
A £ AO £ 2fc' 2 AO [L}
£
(o4
A
- % A, —2 = 0 (4.15-Db)

and

(4.15-¢)

The elastic strain component can be calculated using Eqns. (4.3)

and (4.14), thus gives (Fig. 4.5)

£ S 2
[_e] = L] - [_P] = 0.87 {L] - 0.145 [L] (4.16)
Ec Ec 1 f,c F.c

[r)
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The moduli and damage variable conjugate to the elastic strain

component are

O F - £ _f—
e a[_e] /a[L (]
e ac r.c
£-6 0
e
A
= 2 s+ 0 _ B}

33 3 1.15 A (4.17-a)

f ’

E(f) = .;(.’_ = - > 2 * F_c

e 1+ |5 [lo.873-0.145] % ¢

] F.c F.c
A
= - — 0 (4.17-b)
1+ i] 0.873-0.145| -5
_ sc - Ec -
and
d, =1 - EELQ =1 - — - 0.873 (4.17-¢)
0 1+ [f_] [0.873—0.145[L]
£ f.
) C C

Eqn. (4.17-a) remarks the important evidence that E0 z Ao' The
assumption of their equality is common in the literature where A o is

considered as the elastic (Young's) modulus (even in its nomenclature,

A0 is termed, incorrectly, Eo in the literature). However, based on

some assumptions it will be shown later that this is not completely

wrong for n, = 2.
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Similarly, the moduli and damage variable conjugate to the plastic

strain component (Fig. 4.6) are

o= )10 —] .

p - [_d_] _ [‘] [ s

0 dr.p o a[r—p]/a[-rﬁ] o
p £

£
¢ ¢ nnae—O
A
= —l— i _.0_ = _
0.127 2 .87 A, (4.18-a)
AO
Pe) = = = - = (4.18-b)
P 1+ | =] llo.127+0.145 L]
. ‘e F‘c‘
and
-1 - PE) _ ¢ _ 0.127 )
dy=1-$==1-+ - (4.18-¢)

—0.127—0.145[}-“-]
‘¢

LN

Examination of the pre-derived relations reveals the following:

1. Onset of plastic deformations starts simultaneously with load
application. This conclusion is in accord with, for instance,

Spooner and Dougill (1975).
2. Elastic strain contribution to the total strain starts at a higher
rate than the plastic strain. Equal share takes place at a total

strain ratio (a/r,c) equal to 2.552 corresponding to stress ratio
(cy/fc’) of 0.679, after which the plastic strain contribution gets

higher than the elastic strain. The maximum elastic strain ratio
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(r.c/r.c) is 1.305 at which (r./r.c) = 3 and ((T/fc') = 0.6. After this
value of strain ratio the elastic strain decreases. This is the
reason for the retrogression appearing in Fig. 4.5. In contrast,
the plastic strain keeps on increasing until the total strain is

irrecoverable. Mathematically speaking, this occurs at /e c = 6,

off e 0.324 but physically damage will be considered at lower

value as will be shown later.

The total damage variable, da’ is a continuous function and its
limit as (e/r.c - oo) yields unity while its value @ r./r.c = 6 is 0.973.
The trend of da along with d o and dp is shown in Fig. 4.17.

The elastic damage variable, d o’ is a singular function at r,/r.c = 8,
but it is continuous in the domain r./r.c £[0,6] though it has an
inflection point at (r./r. c) = 3.915. At this value of the strain ratio,
the elastic damage parameter is critical since it should be a
nondecreasing and its value dec is 0.824. The -corresponding
other parameters are: r.e/r,c = 1.184, s:p/r.c = 2.731, o/fc' = 0.048,

da = 0.939 and dp = 0.989. Practically, these values may be

considered critical values for complete damage. Moreover, a

threshold total strain ratio s:/r.c = 0.175 is associated with d e at

which c/fc' = 0.34; r,e/x:c = 0.148, r‘p/r’c = 0.03, da = 0.03 and dp =

0.188. At this stress level the plastic strain is negligible and the
total damage variable as well. This gives physical reasoning to the

good results obtained, in this region, from elastoplastic
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computational models assuming linear elastic for stress ratios less

than 0.3 (e.g. Owen et al., 1983). In this case, E0 may be
reduced to Ao. However, this will not violate the aforedefined

generalized concepts. It has to be pointed out that elastic damage
threshold is much less than the peak and is more closer to the
origin.

The plastic damage variable, dp, is a continuous function and

follows asymptotic trend; Lim d_ = 1.0. It grows at much higher
£—20

rate than both da and de‘ This indicates that: a) damage causes

more degradation in the plastic stiffness than both the elastic and
overall stiffness of concrete; b) onset of plastic damage commences
prior to elastic damage and ¢) linear hardening or perfect
plasticity are inappropriate approximations for elasto-plasticity as
applied to concrete.

Intuitively postulating the damage variables' evolution as
exponentially growing functions in modelling Ilacks confidence

concerning threshold and critical values. Also the trends may

deviate from the correct ones.

4.6.2 Copper 99.9%

'Complete set of experimental data was provided by Lemaitre

(1984a, 1985, 1992). It is very ductile material and shows elongation

almost equal to its original length at rupture. The elastic strain is

negligible when compared to the plastic or total strain. Fig. 4.8 shows

the stress-total strain relationship which can be decomposed to stress-
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elastic and stress-plastic strain relationships as shown in Figs. 4.9 and
4.10. Original data fitting using Ramberg Osgood hardening law of the
i/M

form ¢ = kr.p (where k and M are coefficients) gives poor correlation

and blurs any computational modelling. But if the law used in the form
- Im . . . ceps .
o =a,* k;.p it will give good fitting but not better than a cubic

polynomial. This note on regression is appreciated when revising
Lemaitre's model (1985). Fig. 4.11 shows the evolution of the three

damage variables da’ de and dp associated with the total, elastic and

plastic stiffness degradation, respectively. The following implications

can be conducted:

1. The total damage variable is zero up to yield (very small
domain) then abruptly increase then evolute asymptotically to
unity.

2. The plastic damage variable threshold is intermediate between
thresholds of other damage variables.

3. The elastic damage variable evolution may be approximated
by linear relation as given by Lemaitre (1985, 1986a, 1992).

4. At high values of strain, near rupture, the elastic stiffness
degrades more than the plastic stiffness. This is signed by
the higher evolution of the elastic damage variable at later
stages.

5. Unlike concrete, the total damage variable is not intermediate
to other damage variables. This is attributed to the fact

that the initial total slope A0 is very high compared with E0
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and P0 (almost vertical). This is observed in Fig. 4.8 in

comparison with Figs. 4.9 and 4.10.

4.7 ON LEMAITRE’S DUCTILE DAMAGE MODEL

Ju (198%a) criticized Lemaitre's ductile damage model and stated:
"The fundamental problem of the ductile plastic damage formulation
advocated by Lemaitre (1985) is the non-optional choice of the locally
averaged free energy potential. In particular, damage is associated
only with elastic strains and the damage energy release rate is shown to
be the elastic strain energy in Lemaitre (1985). This treatment amounts
to wuncoupled plasticity and damage processes, thus in a sense
contradicting experimental evidence that plastic variables also contribute
to the initiation and growth of microcracks".

In Lemaitre's (1985) formulation, he did consider the following:

Y
1. The Von Mises equivalent stress for plasticity o eq = (—% S:S) ;S

is the deviatoric stress tensor.

Y
2. Ramberg-Osgood hardening law Teq = kp]'/M, p = (% r.p:s:p) ; k
and M being material parameters; p the equivalent strain and P is

the Euler-Almansi plastic strain tensor in large deformation theory.

*
3. Postulated a potential of dissipation ¢ .

Took into account only the elastic damage as the degradation in the
elastic (Young's) modulus E, i.e. D in Lemaitre's (1985) is simply

de in this study. Therefore it contributes only to elastic
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behavior.

5. Only one damage process, which is the elastic damage.

He 'correctly' derived the following rate equation

- so
02 o 2
d =£, & %(1+\') + 3(1—2\')[—§—] (4.19)
e 2ES (1-d )* “eq

where v is Poisson's ratio, q is the mean hydrostatic pressure; og =

-;‘?tr(c). S0 and s, are temperature and material dependent parameters.

(.) implies derivative with respect to time.

Now, the hardening law should be used in its form as written
before in the Ramberg-Osgood law. WHY?! The elastic damage

parameter, de’ is: a) conjugated to the elastic processes and appears

only in the elastic free energy, b) it is found experimentally from
degradation of Young's modulus, c) effective stress is not unique in

elastic-damage plastic as declared previously. This leads that damage

evolution is given by

2

(¢7
20144 + 3(1—2\-)[_11] p2/M (4.20)
3 Geq

. . 2
e 2ES_(1-d,)

Equation (4.20) is different from that of Lemaitre by the term (1-—de)2
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appearing in the denominator on the right hand side. Integration of
Eqn. (4.20) for proportional loading or even uniaxial cases will yield

nonlinear expression for de which should be linear as shown by
Lemaitre (1985) from experiments. This proves that his assumed

*
potential of dissipation ¢ is questionable.

4.8 DECOUPLED FREE ENERGY TERMS

Based on the generalized decomposition, the stress tensor can be
related to the total strain and the strain components by three

alternative equations in analogy to the generalized Hooke's law as

follows
% = Aijkm "km (4.21)
= Eijkm r']e(m (4.22)
= Pikem “km (4.23)
in which Aijkm’ Eijkm and Pijkm are fourth order moduli tensors

representing total, elastic-damage and plastic-damage behaviors whose

initial values are A o , E0 and P0 , respectively. The
ijkm ijkm ijkm

degradation of these moduli can be expressed in terms of three distinct

fourth order damage tensors Dzi‘jkm’ D and DF,

. in association with
ikm in assoc

e
ijkm

the total, elastic-damage and plastic-damage moduli;
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a _ _ -1

Dikm = Tijkm = Ajjuv Ao vim (4.24)
D, =1IL. - E. E ! (4.25)
ijkm ijkm ijuv ouvkm

b, =-1. - p. p-! (4.26)
ijkm ijkm ijuv O uvkm

in which Iijkm is the fourth order unit tensor. Symmetry, inversibility

and the other properties of the damage effect tensor discussed by

Cordebois and Sidoroff (1979) and Murakami (1989) are assumed to be

satisfied. The free energy density Ud that incorporates damage, can

be expressed as

d _ 1 .
uY = 3 ij i (4.27-a)
_ 1 e p -
= 3 % (r.ij + r.ij) (4.27-b)

- 1 e 1 P -

Thus the Helmholtz total free energy is, excluding the temperature-
entropy and eracks surface energy terms, \(r:\yd l-\llp. Apart from the
damage independent plastic energy \yp, eqn. (4.27-a) can be expanded

to provide the damage energy qrd(;:,da') as

d _1 A
=5 (Iijuv Dijuv.) Ay "km"ij (4.28)

uvkm

in which p is the mass density. Substituting for the total strain in

terms of the generalized strain split, Eqn. (4.28) reduces to
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d _ 1 | e e e P, P p
o= g (Iijuv Dijuv) A, "km “ij + 2"km i b

uvkm

(4.29)

The middle term in the last bracket on the right-hand side shows the

interaction between the elastic damage and the plastic damage energies,
which would be ignored if only one set of damage variables (D:iijkm) is

used (which may be a scalar in its simplest form). In Ju's model
(1989a) the three initial moduli were implicitly considered the same and
only one scalar damage variable was chosen and was equally applied to
both the elastic-damage and plastic-damage components by simply
replacing the stress tensor by the effective stress tensor. This
assumption is not correct in view of the previous argument. In other
words, if the energy equation is expressed using scalar damage variable

s
daa

r.‘ld = n (1 —da) ‘I'O(r'iej’r'%- (4.30)

where \yo(r.lfej,r.l%) is the total free energy of the undamaged material,

then v, cannot be decoupled by simple averaging as

\yo(r.iej,r.%)j) z ‘lls(ﬂ?j) + \yg(::?j-) (4.31)

where \|r§ and vg are the elastic and plastic energy of the undamaged

material.
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The form given in Eqn. (4.27-¢) provides the possible
ancoupling for the elastic and plastic damage energies. By substituting

for “ij from Eqns. (4.22) and (4.23), then the Helmholtz free energy

associated with damage q:d = \yd x:%,l;ﬁ) is expressed as
d _ 1 e e e 1 / _nP P P
= 5 (T Dijuv)Eouvkm"km 50 7 (Gijuy Dijuv)Pouvkm"km i
(4.32)

In this case, in terms of two scalar damage variables de and d) for

elastic-damage and plastic-damage, the damage energy can be expressed

as

d

W= (l‘de)\glg + (l“dp)\['g (4.33)
he Jo0:8y - 1g e e 1 o P(RPYy = lp P P oare the
where p "0( 1]) 2 oi:;kmlkm 111 ana g 10(5”) 3 oijkms km ’l]

undamaged elastic energy and plastic energy. It can be concluded that

to decouple the energy terms, two sets of damage variables must be

used.

4.9 INCORFORATION WITH THE THEORY OF PLASTICITY

In order to simplify the formulation, scalar damage variables are

chosen and Eqns. (4.21,22,23) will have the form

n].j = (1-—da') Ao “lem (4.34)

ijkm
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1-d \ E ey (4.35)
( e) oijkm km
= (1-d_\ P P 4.36
(-5) Poyy o 30
The tensor Eo is the conventional moduli tensor in linear elasticity.
ijkm

Differentiating Eqn. (4.35) with respect to time t yields

6 = (1-d ) E e - d E ey
ij ( e) oijkm km e °ijkm km
od
= (1-d\ E e~ € 8 g r& (4.36)
( e) oijkm km &im km oijrs rs

where for unloading, ae = 0. The elastic damage variable can be

assumed to be a function of the elastic damage strain. In this case

Eqn. (4.36) can be expressed as

6. = E o (4.37)
ij oijkm km

in which the tangential fourth order elastic moduli tensor

= o1 3 (A a8 € g
E, - (1 de)Eoijrsfrskm » frskm = Ieskm (' do/ ”’km)r'rs/ (1 de)

The incremental total strain r'ij can be written as

.ij .ij :ij

; P
c + Ei. (4.38)
oijkm km ij
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With reference to the conventional associative plasticity flow rule but
with the yield surface now expressed in terms of effective plastic

stresses (so called because it is conjugate to the plastic damage variable
dp)
o2 = o../(1-d (4.39)
| 1} ( P)
then the yield function can be written as
F (afj,qi) =0 (4.40)

The idea of expressing the yield surface in terms of effective
values was used previously by Simo and Ju (1987a, b) and Ju (1989a).
However, the overall concept herein is somewhat different.

By differentiating (4.40), one has the consistency condition

F - gp, dF

= g, = 0 (4.41)
P i aq; i
(,oii i
with the flow rule in the form
‘P _ ¢
£, = A e (4.42)
1 P

The rate form for the effective plastic stress can be obtained

from (4.39) as

P _ .
B = £y O (4.43)
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where the tensorial secaond order function grj =

. -1_P 7} . .
[‘\rj + “rs“sj dp /(1 dp) , ﬁrj is the Kronecker delta.

Having expressed suitable hardening rules in terms of effective

plastic stress using (4.42) and (4.43), Eqn. (4.41) becomes

¢F - > ¢F

5 &rj %ir + ) a h, = 0 (4.44)
(Oss 1
ij
i.e.,
. iF iF
A= - L g .6 /2 h (4.45)
mﬁ ry 1r 5qs S

Now it is possible to express an incremental stress-strain relation
as
r.].j = Sijkm Okm (4.46)

where the tangential elastoplastic damage compliance Sijkm is defined,

by using (4.45) in (4.42) and then substituting the result in (4.38), as

¢F ¢F
. —p gmr
-1 (iGee G
= kr
S. = - A (4.47)
ijkm °ijkm éF h
f;qs S

By contrast to Ju's formulation (1989a) in which a single damage

variable was used, the present form of the degraded tangential
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compliance employs two damage variables: the elastic damage and plastic

damage variables.

4.10 INCORPORATION WITH MICROMECHANICS

4.10.1 Formulation Layout

A trial to convene the dispersion of phenomenological and
micromechanical aspects of damage is presented in this investigation.
Some of previous models based on this approach were developed by
Krajcinovic et al. (1991) and Chen and Tzou (1990). However, a
completely different approach is suggested in the current study.

Considering the uniaxial tensile response of a rock-like material,
three phenomenological behavior genera are distinguished as suggested
earlier in this chapter. The formal split of the total strain into elastic-
damage and plastic-damage strain is used. For each phase a congruous
damage variable is derived. Second law of thermodynamics is used to
determine the threshold and critical limits. The tangential relation for
loading is derived. Micromechanical concepts through the self-
consistent method after the work of Budiansky and O'Conell (1976) are
then applied to the elastic-damage phase of behavior. Such
consideration allows deriving damage variables conjugate to both the
bulk and shear moduli. Generalization to multiaxial states is carried out
in a similar manner to the one suggested by Mazars (1984). Finally,
the tensorial stress-strain relationships for loading and unloading are

formulated for multiaxial loading. The model is then particularized to
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concrete and the results are shown to yield good predictions.

4.10.2 Phenomenological Behavior Genera

Assuming an idealized stress-strain relationship for a rock-like

material under cyclic uniaxial tension, shown in Fig. 4.12, of the

following for

o= o) = f(r) *« (4.48)

in which ¢ is the stress, r is the total strain and f is a scalar function.
Eqn. (4.48) is assumed to satisfy the condition of strain free

corresponding to stress-free state with respect to the loaded direction.

The inelastic strain, Y can be related to the total strain through a

polynomial, i.e.

2 3

o T r.p(r.) = o bast ant (4.49)

where Tg» 7y %,,... are polynomial coefficients. These coefficients

can be obtained experimentally by regression analysis utilizing the

residual strains in cyclic loading. Consequently, the elastic component,

R is

e = r.e(:;) = (1~(10) £ - nlr.z - (12:‘.3 - ... (4.50)

The initial modulus Ao is defined as the initial slope of the

stress-total strain diagram i.e.
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e
(3128

A, = & | = (%X« )+ £(0) = f(o) (4.51)
o ‘n O

On the other hand, the initial modulus, Eo’ is the initial slope of the

oy relationship and is achieved by the following simple differentiation

_ 6o dofdt
Eo r N (4.52)
T.e' (¢] I’.e’l‘.‘ o
Using (4.51) and the derivative of (4.50) in (4.52) we get
E, - o)
1-a - 20,8 — 3a_r” -
(1) = e =,
A
f(o) . o (4.53)
l—n0 l—no

It is interesting to notice that Eo is greater than A o by the fraction
1/(1—00) for positive values of a less than unity. Therefore, the

initial total tangent modulus is different from the initial elastic modulus.
This conclusion is valid for all materials which exhibit nonlinear
behavior and unload linearly or in general whose behavior anticipates

early inelastic deformation.

The initial plastic modulus, Po’ for the o relationship can be

obtained in a similar manner by the differentiation
ac /o,

ar [on
£ f-0

P P

]

(4.54)




195
Using (4.51) and the derivative of (4.49) with respect to the total

strain &, yields

(4.55)

Again the initial plastic modulus is greater than the initial total modulus

for positive values of % less than unity, i.e. noe|0,1|. The ratio of the

initial elastic to initial plastic moduli is obtained by dividing (4.53) to

(4.55) which leads to

_ o
E, = 1—— P, (4.56)

1-a
° 51 (4.57)
o
which means
0, < 0.5 (4.58)

In this case, the initial rate of plastic deformation is of less significance
than the elastic one.

Equations (4.53) and (4.55) elucidate the importance of the
conceptual distinction of the behavior genera, i.e., total, elastic and
plastic phases of behavior from the first instant of leading. This is in

complete contradiction to the concept of yielding subsequent to an initial



196

linear elastic response of the material.
The secant moduli for the total, elastic and plastic components,

A, E, and P, respectively, at any stress level can be derived as

follows:
A = ir’. = f(r) , (1.59)
E= 9 - ot _ ()
fa s.e/r. (l—no) - aEe - (121:2
- A (4.60)
(l—no) - aE = 021:2 - ...
and
) F'p/F’ Mg *oan + aar,a +
= A (4.61)
"o + an. + ﬂzr.2 + ..

Defining scalar damage variables, namely total, elastic and plastic
damage variables, conjugate to the degradation of the moduli A, E and

P as da’ de and dp, respectively, vields,

_ _ A
da =1 —A—o s (4.62)

Using (4.60) and (4.51) in (4.64) we get

a S (4.63)

and similarly
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d =1- & (4.64)
e E
(o]
Using (4.60) and (4.51) in (4.62) we obtain

1

4 - (l—uo) da - la. s + azr.z + l
e

: n (4.65)
(l—uo) - I,ﬂla tooe t |
Similarly,
P
= T 4.66
= 1- 3 ( )
o
Using (4.62) and (4.55) in (4.66), we arrive at
ad +[qr+qr2+ |
a, = oa 1 2 (4.67)

2
a + |lae + u.e + ...
o] [11 12 I

4.10.3 Thermodynamical Considerations

On the common assumption that unloading is an elastic process
and on the basis of the work of Patino (1989), the elastic damage
variable is, according to the second law of thermodynamies, non-

negative, non-decreasing quantity. Furthermore, postulating linear

unloading, its increment is zero.
The condition to obtain a non-negative de, as provided by

Clausius-Duhem inequality, is to satisfy
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d, 20 (4.68)

Substituting from (4.65) in (4.69) we get

’ 2
(l—no) da B LT PO l 20 (4.70)
provided that
(t=ag) = [on + a,s’ + I >0 (4.71)

Eqn. (4.71) implicitly requires that r.e/x: 2 0 which limits the plastic-

damage strain to be, on the large, equal to the total strain.
Substituting from (4.50) and (4.63) in (4.70), it can be easily shown

that the inequality corresponds to

A
S < 1f£°) = 1_: (4.72)
F'p (10 0
or
1—2nto
P<E, »d > — (4.73)

The equality in Eqn. (4.73) gives the threshold limit for the damage
evolution which never coincides with the origin as far as Eqn. (4.58) is
fulfilled.

The condition to establish a non-decreasing elastic damage

parameter is to locate the strain level for the critical state at which d e

is maximum. Differentiating (4.65) with respect to » and using (4.50),

we get
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de r.e/r.

Simple mathematical manipulation leads to the condition that

" .
P _‘_-S_ ¢ Q (r.el :.)
ar r cr

Positive and increasing characteristic for the total damage

are satisfied for all cases if Ao > A and also unconditionally

plastic damage variable if polynomial coefficients o (i=1,2,3,

all positive.

4.10.4 Condition of Softening

The stress-total strain relationship as inferred from Eqns.

and (4.62) can be expressed as
o = (‘l—d,l) Ao L
The tangential modulus, At’ is derived as

. Pda
A= 2= (1-dy) — =«

A

o T Y

Using (4.51) and (4.63) in (4.77)

At = Irf(r.) + -{:—f r.l
) o
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(4.74)

(4.75)

variable

for the

...) are

(4.59)

(4.62)

(4.77)

(4.78)
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Zero or negative slope in the descending branch takes place if 1\t <0,
i.e.,
i) < - e (4.79)

(%%

Similar procedures can be followed to derive the tangential elastic

and plastic moduli. However, At is sufficient to determine the tangent

to the loading path for incremental formulation while E gives the

unloading slope.

4.10.5 Micromechanics of the Elastic-Damage Behavior

Having established the stress-elastic-damage strain (G"r'e)

relationship using Eqns. (4.60) and (4.64) in the form
o = (l_de) Eo fo (4.80)

It can be shown that the behavior is quasi sub-brittle and always
unloads to the origin. Application of self-consistent method to this
phase of behavior is more plausible rather than to its application to the
total behavior. Utilizing the work of Budiansky and O'Conell (1976) for

long narrow elliptic cracks (Eqns. 39 and 42 of the cited reference)

along with Eqn. (4.64), we get

2(\‘-0 - v)(5 —~ 4v)
de = 10, —v (17 8v,)

(4.81)
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in which Vo is the crack free value of the effective Poisson's ratio v at

any strain level. It foliows from (4.81) that

— 4 . T — [ 4. — » V '2_- v o
- 9+(1 de)(h 8 0) N Lg | (1 de)(1+8 o)J 320 o (1 de) (4.82-2)
16

A plot of Eqn. (4.82-a) is shown in Fig. 4.13. It is clear that a
straight line approximation for the relationship between effective

Poisson's ratio and the elastic damage variable is still rigorous and can

be expressed as
v=Y (1—de) (4.82-b)

However, the trend by which Poisson's ratio is evolving is not
unique in tension and compression (Ju, 1990). Also, the initial
Poisson's ratio itself is dependent on the state of stress (Tasuji et al.,

1978). Therefore, it is suggested to modify Eqn. (4.82-b) to have the

form
V=Y (l—de) h (4.82-¢)

in which h is a modification function and to keep formulation as simple

as possible it is advantageous to postulate it as a function of the

hydrostatic pressure at the peak strength oﬁ, i.e., expressed as

h =h (oﬁ) (4.82-d)

and Eqn. (4.82-c) can be rewritten as
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voE vy (l*de) (4.82-¢)
in which Vo T Voh is a modified undergraded Poisson's ratio.

The degraded elastic-damage bulk and shear moduli Ke and Ge

whose initial values are Ge and Ke are also obtained from the work of
0 o

Budiansky and O'Conell (1976). Using Eqns. (36) and (44) of

Budiansky and O'Conell (1976) besides consideration of Eqn. (4.82) in

the current study, one obtains

K lO(l—v)(v _\,)
d, =1-_°% = o 4.83
Ke Keo (1—2\')!‘10\'0—\' (1+ 8\'0)| ( )
and
G (10—7\')(v -—\')
d, =1 - & = ° 4.84
Ge Geo (1+\~)| 10vo—v (1+ 8"0)[ ( )

in which dK and dG are the elastic damage parameters associated with
e e

the degradation of K and G, respectively. The original values can be

found [rom conventional elastic relations together with Eqn. (4.53)

3Eo 3A0 1.85)
K = = (4.85
eo 1-- 2\'0 (1—00)(1 - Zvo)
and
E A
G = -2 = o (4.86)
€ 2(.1 + vo) (1 -«1.0)(1 - vo)

Assuming that the degraded moduli for the total behavior Ka and
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Ga are related to A by

k - 34 (7% % (4.87)
a” T-2v 12
and
G. = A - (1"%) 4 (4.88)
a 2(1+v) 2(1+v)

Eqn. (4.62) has been used to arrive at (4.87) and (4.88). The value
of v given by (4.81) is assumed to hold in these two equations. The
initial values of both the bulk and shear moduli are recovered by using

da =0and v = Vo in (4.87) and (4.88), respectively, and expressed as

the conventional bulk and shear moduli K a and Ga
o 0

K. = o (4.89)
30 1—2v0
and
G - o (4.90)
a, 2(1 + \'o)

The conjugate damage variables to Ka and Ga which are dK and dG
’ a a

are obtained as

K
a
= - 2. = —— — .9
de =1 K. 1 e (1-dy) (4.91)

and



Ga 1+v0
dG =1 - E—‘ =1 - ﬁ'— (1"da) (4.92)

At this stage, it has to be pointed out that the role of
micromechanics is crystallized by finding the change of Poisson's ratio
due to the presence of cracks induced by the damage process through
loading. Another salient feature can be observed by comparing Eqns.
(4.83) and (4.84) with (4.91) and (4.92). It demonstrates the clear
distinction between loading and unloading stiffnesses by the total and
elastic damage variables.

To predict the cyclic behavior under multiaxial loading, the

constitutive equations are expressed as follows:

(a) Loading:

-
‘kk
O = 2/1-d G_e. + (1-d K Sse (4.93)
ij ( Ga) B N ( Ka) 3 3 1
(b) Unloading:
Tek
e 'k
o = - M - 8ss .9
%ij 2(1 dGe) Geoeu v (_1 dKe) Ke0 5 O (4.94)
where T4 is the stress tensor, eij = g 1/3 ik ﬁij is the deviatoric

strain tensor, r.ij is the strain tensor and Sij is the Kronecker delta.

The superscript e denotes the elastic part. The values of the elastic
damage variables used in Eqn. (4.94) are calculated on the unloading
point of the loading path, i.e., the maximum ever reached strain level.

For numerical framework, algorithms for materials with memory are to be



206

adopted. Inasmuch as isotropic damage is caused by microcracking in
the cleavage mode, the damage variables are scalar quantities which

should be calculated by considering the tensile portion of the strain

tensor, hence

¥
£ = \/<r.1>2 + o >t 4 < P (4.95)

in which < > is the McAulay bracket and T (i = 1,2,3) are the principal

*
strain values. Similar procedures based on this effective strain = were

followed by other investigators (c.f. Mazars, 1984).

4.10.6 Applications to Concrete

Behavior of concrete is neither brittle nor ductile. Tensile
cracking in the cleavage mode (mode I) is observed to be the dominant
phenomenological aspect in the concrete damage process (Mazars, 1984;
Simo and Ju, 1987). An investigation on the capability of the present
model to correctly predict the response of concrete under wuniaxial and
biaxial states of stress is carried out hereafter.

Although many formulae were adopted to describe the uniaxial
tensile behavior of concrete, Ortiz (1984) employed successfully in the
mixture model Smith and Young's formula (1955). This formula was
originally developed for wuniaxial compression and is used herein.

Accordingly, the f-function alluded in Eqn. (4.48) is taken as



Table 4.1 Material constants from uniaxial cyclic tension
test for concrete.

Polynomial cocfficients

Initial modulii

a, = 0.474
a, = 0.253
o, = -0.050

0y = 0.0034

A, - 2718 =
El
g
E, - 5.167
E!
g
P - 5734 -

207
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x

£ d 5y
t "t

in which ft' » Ty are the peak stress and total peak strain in uniaxial

*
tension, respectively. The effective strain ¢ as given by Eqn. (4.95)

reduces to the total strain for the pure tension test. With reference to
the prediction of the permanent (inelastic, plastic-damage) strain upon
full unloading in uniaxial tension test as expressed by Gopalaratnam and
Shah (1985), a regression analysis, with the help of Eqn. (4.96), is
carried out. The objective of this operation is to express the plastic-
damage strain as a continuous function instead of two discrete relations
for pre- and post-peak as proposed by Gopalaratnam and Shah (1985).
In view of Eqns. (4.49), (4.51), (4.53) and (4.55), the material

constants are listed in Table 4.1. It can be noted that Po > Eo and, of

course, Po > Ao because a o is less than 0.5 as deduced from Egqn.

(4.57).

Plots of the three damage parameters are drawn in Fig. 4.14. The
threshold elastic damage strain is calculated from Eqn. (4.75) to be 0.1
the peak strain. The critical state takes place at 6.4 times the peak
strain as obtained from Eqn. (4.70). Fig. 4.15 shows the unijaxial
tensile cyclic response of concrete as predicted by the model and it is
in good agreement with the experimental data.

In general, the range of Poisson's ratio for concrete ranges

between 0.14 and 0.24 (Branson, 1977). A value of Vo © 0.16 is chosen
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for the following investigation on the biaxial strength. A simple form
of the function h defined in Eqn. (4.82) is postulated for the given

Poisson's ratio to have the form

P
O

1 for G—m- < %

c
h = (4.97)

(Yp O’p

2.75 G—m for o—m > %
L c c

in which 9o is the uniaxial compressive strength.

For biaxial state of stress (o 3 = 0), if = £, and = 5 are the

1?2 T2
total strain corresponding to the Euclidean principal space, then it can

be easily shown that

R X R (4.98)
v f (I-4,)

and

Yo (1—de)(1+[x)
£, = —&
3 t l—voﬁ (l—de)

(1.99)

in which f{ is the principal stress ratid; iie. B = 62/61 , Where o, and
¢, are the principal stresses. The value of the maximum principal

stress is related to the corresponding strain through

Lo A -4y
PN TR (T4

(4.100)
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loop over different values of A
loop over different values of £ (starting value § = 0)
Assume no damage and find ¢, , €; forh = 1.0
Calculate € corresponding to no damage
-» > Determine d,, d,, v, €,, €; including damage effect
Calculate the stresses o, and o,

Determine corrected value of h

L Manitor convergence of h versus given accuracy

*
Calculate corrected €

3 3 * -
Monitor change in € versus given accuracy
Determine the stress norm

Store the parameters corresponding to the maximum norm which
represents a strength point on the envelope

Figure 4.16 Numerical scheme for determination of the piaxial
strength envelop based on the incorporation of
micromechanics
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Substituting for A0 from Table 4.1 and expressing r, as a multiple of

the peak uniaxial tensile strain £is i.e., nyoT )_r.t , then Eqn. (4.100)
reduces to
o, 2.718 A (1-~da)
-f-—’ = 1-v l—d (4.101)
t ) \oﬂ( e)

For the tensile-associate response, ) is positive and in general

the effective strain in Eqn. (4.95) reduces to

I

\/ . 2 2
% < > <;;3>
g o= ).r.t 1+ l )2 ] + [ 3 ] (4.102)

The dependence of the elastic strain as well as the damage variables on

the effective strain value, which is not known in advance, necessitates
the construction of an iterative technique. For every value of ) a
certain damage surface exists in the stress plane. This envelope, in
reality, represents the failure envelope for load/stress controlled tests
giving the maximal stress norm. To this end, the algorithm shown in
Fig. 4.16 is employed in a FORTRAN 77 computer code. Comparison of
the predictions of the model with other experimental data and existing
damage models is shown in Fig. 4.17.

It is remarkable that the model predicted reasonably the uniaxial

compressive strength; rvc/ft’ = 9.025. It may be emphasized that this

was attained without any input of uniaxial compressive parameters. In
addition, the function h allowed for improved strength prediction in the

compression-compression quadrant which is the main disadvantage of
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Experimental Dafa :

E-1 : Rosenthal {1970). Damage Models :

E-2 : Gachen {1972}

E-3 : Schickert & Winkler (1977) for rough platten. M-1 : Mazars (1984).
E-L : Vile {1965). M-2 : Suaris et al {1990).
E-5 : Schickert & Winkler (1977} for flexible ptatten. M-3 : Ortiz 11984).
€-6 : Andeneas el al (1977).

E-7 : Tasuji et al  {1978).

£-8

: Kupfer ef al  (1968).

Figure 4.17 Prediction of the biaxial strength envelope for

concrete based on the incorporation of
micromechanics
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damage models utilizing a single damage variable as pointed out by
Suaris et al. (1990). The ratio of biaxial strength to the uniaxial
compressive strength is equal to 1.23 which is in very good agreement
with the experimental findings. Better behavior could be obtained if a
more sophisticated form of the h-function is chosen and probably in a

similar form to the shape factor used by Han and Chen (1985).

It is  worth mentioning that although the presented
phenomenonlogical-micromechanical model captures many features of the

behavior, it is limited to low levels of confinement where extensional

modes of deformation do exist.

4.11 INCORPORATION WITH UNILATERAL DAMAGE MODELS

In many situations the damage can be reasonably characterized by
adepting the generalized damage variables for the uniaxial behavior in
both tension and compression. Generalization to multi-axial hehavior
can be attained by using the notion of equivalent strain employed in the

unilateral damage model proposed by Mazars (1984) as follows:

- — \’v Pl 2
oY et (4.103)

where j = t,c for tension and compression, respectively and <}:>j =

(x + R(J) IxP/2 and fi(j) = 1,-1 for j = t,c, respectively. g (i=1,2,3)

are the principal strains. The generalized damage variables di{ (k =
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a,e,p for the total, elastic and plastic responses) can be determined
using formulae for uniaxial temsile and compressive components and then
replacing the uniaxial strain = (as derived in Chapter 5 for MGDV) by

the appropriate Ry The coupling for multi-axial loading conditions is
given by the following relation:

- j
4, = ;wj dy (4.104)

where the weighting parameters Wj depend on the state of stress with
Wt = 1 and Wc = 0 in pure tension whereas Wt = 0 and Wc = 1 in pure

compression. For the general case, the sum of Wc and Wt must always
be unity.

Inasmuch as the initial moduli for the elastic and plastic behaviors

are not equal in tension and compression, the weighted moduli are

defined as

o]
1

j
0 = Z Wj E0 (4.105)
)
and

- i
P, = ;wi P (4.108)

Finally, the tensorial constitutive equations can be expressed by

modifying Hooke's law for the three phase of behavior as follows:
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= Cok (l—dk) O (4.107)

where C0 is the conventional initial stress-strain matrix but employing
k

the initial moduli Ao, Eo and Po for k = a, e and P, respectively.
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CHAPTER 5

CANONICAL ELASTOPLASTIC DAMAGE MODEL

5. GENERAL

Concrete is neither elastic, plastic, elastic-perfectly brittle, nor
elastic-perfectly plastic. Hence, a prudent start towards modelling is to
consider uniaxial elasto-plastic damage behavior of concrete.
Decomposing the total response into elastic-damage and plastic-damage
requires the derivation of the metaphorical generalized damage variables
(MGDV). Along with the concepts established in Chapter 4, MGDV are
the generalized damage variables associated with the decomposition
processes in both tension and compression. Metaphorical bears in its
meaning that the generalized damage variables adopted, herein, are of
the lineage of, but not exactly the same as, Kachanov's (1958). For
generalization to biaxial states, the theory of dichotomy is proposed.
The theory allows the reduction of the constitutive equation to a
conineal tensorial form. As it is customary in concrete practice, the 28

day compressive strength, fc', and Poisson's ratio, vor are regarded as

the major material parameters, due to ease in their experimental

determination. Verification of the model is investigated against a wide

set of experiments.
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5.2. DAMAGE VARIABLES FOR CONCRETE IN TENSION

5.2.1 Stress-Total Strain Relationship

The simplest relation describing the tensile behavior of cpncrete,
among the numerous proposals, is as suggested by Guo and Zhang
(1987) (Fig. 5.1). A gage length of 35 mm was used in their
experiments (note that a gage length effect was reported by, among
other investigators, Yankelevsky and Reinhardt (1987) and they

advocated a reference gage length of 40 mm). The steeply rising

branch is given by

6
% =1921E] -0.2|& £ < 1.0 (5.1)
t "t *t “t
The descending branch is expressed by
.f_s_}
£
o _ l t L >1.0 (5.2-a)
ft' >

where o is a parameter dependent on the tensile strength, ft' (MPa),

which is given as
= 2 -
a = 0.312 ft (5.2-b)

The superiority of this regression model over others stems from:
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1. Its explicit description of the o-r relation contrary to models
relating stress to crack width (see for example Gopalaratnam and
Shah, 1985).

2. Use of reduced number of material parameters and yet providing
good correlation with experimental results.

3. Continuity of both value and slope between the ascending and
descending branches at peak. By contrast, models adopting linear
relation up to the peak fail to provide such a continuity (Petersson,
1981; Scanlon, 1971; Lin and Scordelis, 1975; Bazant and Oh, 1983;
Gylltoft, 1983; Mazars, 1981).

4. The asymptotic nature of the regression model simulates experimental
findings of other investigators (see for example Yankelevsky and
Reinhardt, 1987). It is remarkable that Hughes and Chapman
(1966) recorded, with old facilities, axial strains of magnitude 30

times the strain corresponding to the peak stress.

Several other attempts have been made to represent the post-peak
softening branch, including a straight line (Bazant and Oh, 1983), a
piecewise linear curve (Gustafsson, 1985; Gylitoft, 1983; Rots et al.,
1985), stepped branch (Scanlon, 1971), exponential (Petersson, 1981;
Gopalaratnam and Shah, 1985), polynomial (Lin and Scordelis, 1975) and

combined expressions (Yankelevsky and Reinhardt, 1987).

5.2.2 Strain Components

The formal split of the total strain, &, for isothermal time-
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independent mechanical process into the elastic-damage (":e) and plastic-
damage (lr'p) components expressed in a scalar form (as discussed in

Chapter 4) is assumed at the outset (Ju, 1989a), i.e. (Fig. 4.2)
=g tor (5.3)

Distinction between this split and the conventional elasto-plasticity split
(Malvern, 1969) should be noted, inasmuch as each component of strain
contains contributions of damage effects in addition to elastic and
plastic effects.

Test data of unijaxial cyclic behavior of concrete in tension is
rather limited. Many of the existing models consider the monotonic
loading curve only, with some proposing a simplified unloading-reloading
option (Gopalaratnam and Shah, 1985; Rots, 1985; Yankelevsky and
Reinhardt, 1987). Gopalaratnam and Shah (1985) gave two equations
relating the residual displacement to the total displacement at point of

unloading and which can be expressed in terms of permanent strains as

follows:

!*1
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e ——
=
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—
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| I
v
It

(5.4-a,b)

A i b = . (5.4-c,d)



223

*
where a and b are constants related to the initial tangent modulus of

o-—r curve, Ao , and the secant modulus of the peak, At(l) = ft'/s:t. In
t

Egqn. (5.4-c) unloading slope for pre-peak region is assumed to be Ao .
t

Guo and Zhang (1987) reported the ratio A0 /At to vary from 1.04 to
t

1.61 with an average value of 1.202 and a standard deviation of 0.0791.

Using this in (5.4-c,d) and then in Eqns. (5.4-a) and (5.4-b), yields

0.166 [F_‘-] T’. <1
€ t 't
%)
t L| - o.834 £ >1
ﬁt r't

Interpreting the permanent strain as the plastic damage strain,

the elastic damage strain ratio r.e/r.t can be obtained by using Eqn.

(5.5) in Eqn. (5.3), yielding

Q
0
&
iy
—_——
Icn
N
- |"
IA
[y

[;‘i] = t (5.6)

>

Fig. 5.2 shows plots of Eqms. (5.3), (5.5) and (5.6) in which
the post-peak value of the elastic damage strain component appears as a
constant while the plastic damage component is continuously growing
parallel to the total strain. An equal contribution of the elastic and

plastic components to the total strain takes place at a strain equal to

1.664 £y
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5.2.3 Stress-Strain Components Relationships

With the relationships between r.s/[‘t’ - :r./;:t . r.e/r.t - r./r.t and

r.p/r.t - r./r.t established, data points of c/ft’ - r.e/s:t and o/ft' - r.p/r.t

are plotted in Figs. 5.3 and 5.4, respectively. Following relevant

relations between stress and appropriate strain variable may be written

in terms of secant moduli as:

or) = Al * ¢ (5.7-a)
= EYr) * o (5.7-b)
= Py * (5.7-¢)

L

where At(r.), Et(r.) and Pt(a) are the total, elastic and plastic secant
moduli at any strain level whose initial values are A(t), E(t) and Pf),

respectively. It is interesting to note that Young's modulus is defined
as the elastic modulus of Iongitudinal deformation (Timoshenko and

Goodier, 1951; Neville, 1963; Rygol, 1983; Bangash, 1989), i.e

b

relating the stress to the elastic strain, and not the total strain.
Precisely, EE rather than A:; is the initial modulus of elasticity.
Misapprehension of this abecedarian concept is commonly encountered in
the literature where Af) is considered synonymously with EE.

The initial total tangent modulus is calculated using Fqn. (5.1) as

follows
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N
t |t fe

t
At = — = 1.2 — (5.8)
° ( -() (.,[_s_] Bt "t
"t

Similarly, the initial elastic damage and plastic damage moduli, E; and

Pg, can be shown to be

o dr s 2
eJ. 0 a[—i]/a[i ’
€ t et
t-r -0
e
£, £
_ L2 Lt St g
o 1.44 e 1. A (5.9)

and
ag C
pt - [dc] - t t x _t
o dr. . Tt
Ple. o (7[—p] /e L
P £ £
t t g0
P
f.’
_ L2 Tt gttt
0166 . 7.2 - 6 o (5.10)
t t
From the stress-strain components curves the following can be
deduced:

1. The stress-elastic damage strain curve (Fig. 5.3) has the shape of

an elastic perfectly-brittle response but has a distinet
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characteristic. This is attributed to the fact that the stress level

reduces gradually and not abruptly at r.e/r.t = 0.83. This means
that every point on the locus r.e/r.t = 0.83 represents a certain

degraded stiffness and which unloads to the origin (refer to Fig.
4.2b). The relation is independent of the strength factor a, i.e.
valid for all concretes. Such a behavior can be termed "quasi
subperfectly brittle".

2. The stress-plastic damage strain curve (Fig. 5.4) exhibits softening
behavior. The characteristic of the plastic strain is different from
that for metals. It incorporates microcracks cleavage as well as the
localized macrocrack opening. There is apparent degradation of the
plastic stiffness and wunloading proceeds vertically (Fig. 4.2¢).
Such a behavior, based on the unloading path, may be classified as

being "quasi subperfectly plastic".

5.2.4 Uniaxial Tensile MGDV

The essential feature of Kachanov's model (1958} resides in the
introduction of a special internal (hidden) variable defining the state of
damage locally and recording its accumulation. Krajcinovic and Silva
(1982) pointed out that the most sensitive aspect of a realistic damage
model consists of the establishment of a rational damage law (i.e. the
response function defining the rate of the damage accumulation in terms
of the current values of other state and internal variables). As long
as uniaxial behavior is concerned, each stress-strain component includes

a single damage variable representing the state of degradation. With
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reference to Egqn. (5.3) which can be looked upon as an uncoupling
constraint, only two (of the three) damage variables are sufficient to
give a clear picture of the state (stress and strain constituents).
These two damage variables are, therefore, generalized. Apart from
the existing variability in literature in assigning a unique definition to
the damage variable, emphasis is placed on the degradation of stiffness
{Mazars, 1982, 1984, 1986; Resende and Martin, 1984; Ladeveze, 1983;
Lorrain and Loland, 1983; Resende, 1987; Mazars and Lemaitre, 1984;

Frantziskonis and Desai, 1987a,b,c; Frantziskonis, 1986).

The damage variables d;, d:; and d; conjugate to =, fa and ¢_,

respectively, may be expressed as

t
at =1 - A (5.11-a)
a At
0
t E!
at =1 - E (5.11-b)
e Et
0
t
at =1 - B (5.11-c)
P ot
o

Using Eqns. (5.1), (5.2), (5.5) and (5.6) in Egns. (5.7) and
then substituting the results in Eqns. (5.11), the damage variables can

be expressed as
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S
0.167 | &= X<
“t "t
at = {1 - 1 LI (5.12)
. 1.7 "t
1.2{a| | & -1 + =
1t _ t
r 5
0.167 | = £ <1
,-t rt:
t _
de = . r./r.t £y (5.13)
1.7 T B
1.2[(1 L | + i}
L Af.t lt
( 5
0.167 | = LENS
F,t l,t
t _
dp = L ::/r.t oy (5.14)
1.7 F.
7 2[« £ 1) +_"_] £ _ 0.834 t
Ft Et f.t

Figs. 5.5, 5.6 and 5.7 show the evolution of total, elastic and
plastic damage, respectively, as given by Eqns. (5.12-14). In the

t

prepeak region all of the MGDV evolute in similar patterns while only d,‘

possesses smooth transition for both value and slope at the peak strain
Fig- In the post-peak region, d; increases more rapidly than d; and dz,

and with the least sensitivity to the value of v. This is attributed to

the steep descent gradient in o/ft' - r.p/r.t curve in the proximity to the
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peak. The elastic damage variable, dz, shows the greatest sensitivity

to a and the least damage rate. The total damage variable, dt

a)

represents an intermediate trend with respect to the other MGDV.

5.3. DAMAGE VARIABLES FOR CONCRETE IN COMPRESSION

5.3.1 Stress-Total Strain Relationship

The overall monotonic loading behavior can be described by

Popovics' formula (1973) which is given as (Fig. 5.8)

£ = (5.15)

in which fo is the peak strain and n, is a material parameter dependent
on fc' (e.g. for t’c’ = 17.25 MPa (2500 psi) n, = 2 and fc' = 34.5 MPa
(5000 psi); n, = 3). For no=2, it reduces to Saenz's formula (1964)
and to Desayi and Krishnan's formula (1964) provided that the initial
tangent modulus (Ag) is equal to twice the peak secant modulus (f c’/r. c)'

Other existing formulae for wuniaxial compression are Madrid parabola,
Hognestad formula (1951) and Smith and Young's formula (1955).

Popovics' formula was used previously in many studies (see for
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example Bazant, 1976; Bazant and Kim, 1979; Bazant and Tsubaki,

1980; Buyukozturk and Tseng, 1984).

5.3.2 Strain Components

Data available about compressive cyclic loading of concrete are
more than those related to tensile cyclic loading (see for example
Karsan and Jirsa, 1969; Sinha et al., 1964; Shah and Chandra, 1970;
Spooner and Dougill, 1975; Shah and Winter, 1966; Buyukozturk and
Tseng, 1984). The subsequent analysis makes use of the work of
Karsan and Jirsa (1969) in which a series of 46 short rectangular test
specimens were subjected to repetitions of compressive stress to various
levels. They developed an analytical expression relating the permanent
strain to the total strain at unloading r, and given as a continuous

function in the form

€ 2
[_E] = 0.145 | -5 + 0.127 i} (5.16)
8c i'.c T.c

This expression was used by Darwin and Pecknold (1974, 1977) in
concrete modelling and yielded satisfactory results. Interpreting the
permanent strain as the plastic-damage strain, and using Eqns. (5.3)

and (5.16), the normalized elastic-damage strain may be shown to be

given by

£ 2
[_e] - 0.873 [_] ~ 0.145 [_.] (5.17)
e Ea fo
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Unlike Eqns. (5.4) used in tension, the strain components in
compression exhibit nonlinearity. Fig. 5.9 shows plots of the total

strain and its components. The following can be noted:

1. For i < 2.55 £ o the contribution of the elastic damage strain to the

total strain is larger than that of the plastic damage strain.

2. While the elastic damage strain has an inflection point, the plastic
strain grows continuously.

3. The maximum elastic-damage strain is 1.3 times the peak total strain
occurring at normalized total strain of 3 and then decreases.

4. All strain is supposed to be unrecoverable at normalized total strain
of 6. However, this is a very high strain ratio in compression, and

failure usually occurs before this value.

It is apparent here as in the case of uniaxial tension that the
plastic-damage behavior is of the same, if not of more, importance as
the elastic-damage behavior. This illustrates the amount of

approximation associated with postulating either completely plastic or

brittle behavior.

5.3.3 Stress-Strain Components Relationships

Similar to the procedures carried out in tension, the following

secant relations are adopted

o) = A% * ¢ (5.18-a)

- B0 * o, (5.18-b)
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= P%r) * D (5.18-¢)

where Ac(r.), Ec(a) and Pc(n) are the total, elastic and plastic damage

moduli at any strain level, r, whose initial values are Ag, Eg and Pg,

respectively. The initial total tangent moduli is

a_m —_ —
BN f ' n |
¢ _ ,do _ c c _ 0 4 ¢
S| TR ew
1e
¢ £-0

For n, = 2, Eqn. (5.19) and the initial tangent modulus obtained from

Hognestad's ascending parabola (1951) are reconciled. Since the initial

tangents in tension and compression are almost equal, the peak total

secant modulus in tension, A; = ft'/r.t, can be expressed in terms of

that in compression A; = fc'/r,c by using Eqns. (5.8) and (5.19)

yielding
t _ no c _
Ap = 1.2(n —1) Ap (5.20-a)

In addition, the peak strains can be correlated to the peak stresses in
both tension and compression (Guo and Zhang, 1981; Popovies, 1973),

leaving the characteristic strength f ¢ 25 the only material parameter,

since
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f’ n
c 0
£, = o O —————— (5.20-b)
c ft t 1.2(n0—1)
The initial elastic modulus, Eﬁ, can be shown to equal
g €
EC = [do] _ c c « .C
o de £ . £
€ .0 a[_e]/()[‘_'] ¢
e £ £
c c k0
T.e 1
n f’
0 ¢ c
= — = 1.15 .
0.873(n0—1) fo 1.1 AO (5.21)

Again, Eg z Ag, but in comparing with the equivalent in tension,

indicates the faster growth of elastic-damage strains, with respect to

the total and hence the plastic-damage strains. The initial plastic

modulus, Ps, is derived as follows

|
[sV)
yr—m
"
|a
~
| SU—
S~
~
'ﬁl,,1
~n

pe - do c c x _C
o dr. £ C
Pl. o a[_P_]/a £ ‘0
P T f.
¢ ¢ . -n-0
p"
n f’
(1] (] C
= — = = 7.87 5.
0.127(n_—1) v, Aq (5.22)

Fig. 5.10 shows a helmet-shaped knot in the elastic-damage
behavior. The post-peak response consists of sirain-softening followed

by retrogression (in bceth stress and strain). The pattern features
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a new characteristic countenance concealed in the concrete's uniaxial
total response from which it cannot be directly grasped. In contrast,
the plastic post-peak behavior (Fig. 5.11) shows only strain softening.

Similar unloading paths are followed as in tension, i.e.
generalized damage for total behavior, quasi sub-perfect plastic for

plastic-damage behavior while quasi sub-brittle for elastic-damage

behavior.

5.3.4 Uniaxial Compressive MGDV

The damage variable, d:, d: and d; conjugate to =, £a and r_,

respectively, are simply expressed as

(o]
a =1 - A (5.23-a)
a Ac

Q

C
a€=-1- E (5.23-b)
e Ec

[4]

and

C
a -1 - B (5.23-¢)
P pC

"0

Using Eqn. (5.15) in Eqns. (5.18) to find A®, E® and P®, then
substituting in Eqns. (5.23) with the help of Eqns. (5.19), (21) and
(22), the MGDV can be reduced to the following form:
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d: = (5.24)

at - 0.166[3'_]
a £
at = c

_ 5.25
¢ - 0.166[i] (.20)
£
C
and
d® + 1.142[L]
c a o
i - 5.26
Py v e (5.20)
r’c

Figs. (5.12-14) illustrate the evolution of the MGDV for different

values of n,n, = 2, 2.25, 2.5, 2.75 and 3). 'Total and plastic damage

starts with the first load application but this is not the case for the
elastic damage. The threshold elastic damage is delayed slightly (Fig.

5.13) and depends on the value of n,. The corresponding total strain is

evaluated as follows:

The initial behavior of the compressive elastic damage variable,
d:, shows a small reduction followed by an increase in its value.

According to Clausius-Duhem inequality

c
;>0 (5.27)
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Therefore it is advisable to discard any negative values of dg. In order

for dz > 0, one notes from Eqn. (5.25) that

(dg) > 0.166 [rL] (5.28)
ed ¢ ed

in which subscript "ed" denotes elastic damage threshold. Using Eqn.

(5.24) to eliminate (d:) from (5.28), the following equation is
ed

obtained

n (no-l)

[L] -6 |-= + (n-1) =0 (5.29)
£ o

ed ¢)ed

Closed form solution of Eqn. (5.29) is mathematically formidable.

Solving for specific values of n o’ getting the correct threshold total

strain ratio, then fitting using quadratic regression by least square

technique (values are listed in Table 5.1), the approximate strain ratio

is found to be

f.

[—E—] = —1.3274 + 0.9572 n, - 0.1039 ns (5.30)
c
ed

Growth of plastic damage rates is faster than the total damage.

Asymptotic behavior of d; and d; {lim d: = 1.0, lim d® = 1.0) can be

£ s

proved from their functional behavior (Eqns. 5.24, 5.26). By contrast,

behavior of dg described by Eqn. (5.25) depicts not only singularity at



Table 5.1 Threshold and cntical compressive parameters.

Threshold Critical
& 4 €, ¢ A £ £, &y 9 value
€, <. e | £ € €, €, 1’

a ] ) . - 1 3915 | n1se | 2731 | oss0 | 093
e | 0175 | 0.148 | 0.027 | 0340 § 3.915 | 1.184 | 2751 | 0.480 | 0.824
o ) ) A - 1 so1s | 184 | 2731 | o04so | 0980
. ] ) ] - 0 4088 | 1.133 | 2955 | 0368 | 0.9¢8
e | 0207 | 0.246 | 0.051 | 0.508 | 4.088 | 1.133 | 2.955 | 0.365 | 0.843
o ] } i - || 4088 | 1.133 | 2.955 | 0388 | 0.990
. ] ] . - 4237 1 1083 | 3.154 | 0275 | 0.961
e 10417 0338 | 0079 | 0647 | 4237 | 1.083 | 3154 | 0275 | 0.867
o . ] i - i 4237 | 1.083 | 3.154 | 0275 | 0.993
. . ] ] - 1 4363 | 1.05. | 3335 | 0202 | 0.970
e 1051910412 0107|0745 4368 | 1.034 | 3335 | 0202 | 0892
. ) ) ) - I a368 | 1038 | 3335 | 0202 | 0.005
. ] ] b o L ars | o0 | suss | 0147 | 097
e 10510 0477|0133 10821 4475 | 099 | 3.485 | 0.147 | 091s
. ) ) ) - |l 4475 | 09% | 3435 | 0.147 | 0.096
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exhibiting sign reversal, thus violating the second law of
thermodynamics. These can be alleviated by using Clausius-Duhem

inequality (Patino, 1989) to establish the critical MGDV as follows:
Considering Eqn. (5.27), the onset of the maximum compressive
elastic damage variable is required to determine the critical strain state.
Differentiating Eqn. (5.25), substituting for d: from Eqn. (5.24) then
equating the product to zero, the total strain ratio corresponding to the
critical dg and therefore other damage variables can be determined from

the following equation:

0
(n,+1) [Fi] - on, [£ + (ng-1) = 0 (5.31)
- :
(]

in which the subscript "c" denotes critical state. Similar fitting

treatment to that done for the threshold values to obtain reasonably an

approximate feasible solution [—c—]  [0,6]| yields
£
c

c

- ) _ 2
[F—] = 1.7925 + 1.395 n, 0.167 n, (5.32)
]

Using the value of (r/: obtained from the previous equation in
(1),

the compressive MGDV (Eqns. 9.24-26) yields the critical MGDV. (The

correct values are listed in Table 5.1 for comparison).
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Although the procedure presented seems to fully uncouple the
total, elastic and plastic damage behavior, a cursory inspection of
Eqns. (5.25) and (5.26) indicates that the three damage variables are
interrelated. Table 5.1 lists the threshold and critical values of the
damage variables along with the corresponding normalized stress, total

strain and its components.

At this stage, the following features can be elucidated for both
tensile and compressive behaviors:
1. The higher is the concrete strength, the higher is the critical
MGDV in compression or their post peak values in tension (for a
given r).
2. In all cases the threshold MGDV takes place before the peak.
3. The plastic damage variable shows the least sensitivity to

concrete grade and the fastest growth rate.

5.4 CONCRETE UNDER BIAXIAIL LOADING

In several practical situations, biaxial states of stress do exist in
many structural elements and the proper modeling is necessary for
accurate analysis. Unfortunately, many of the existing damage models
(c.f. Krajeinovic and Fonseka, 1981; Mazars, 1986; Simo and Ju, 1987;
Suaris et al., 1990) failed to predict the strength increase due to
biaxiality as reported experimentaily (c.f. Kupfer, 1972; Tasuji, 1978;
Aschle et al., 1973). Another set of models idealized concrete as
brittle material (c.f. Loland, 1981; Krajcinovic and Fonseka, 1981;

Mazars, 1984). Thus, the residual deformation upon complete unloading
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can never be determined.

In the following, an orthotropic model which accounts for the
inelastic behavior of concrete elements loaded biaxially is developed
using the theory of dichotomy. The proposed theory replaces the
continuum by a system of orthogonal springs. The behavior of concrete
is idealized as elastoplastic-damage through splitting the strain tensor
into two main components. Consequently, three possible forms of
constitutive relation are presented which associate the stress tensor to
the total strain, the elastic-damage strain and the plastic damage
strain, respectively. These relations are adopted in diagonal tensorial
form in the principal space using proper damage variables. The
interdependence between the stress components are taken into account
using the biaxiality ratio for all possible combinations of the principal
streéses, i.e. compression-compression, compression-tension and
tension-tension. Thermodynamical considerations in view of the
proposed theory are discussed. The model is shown to be simple and
in close agreement with a wide set of the well documented existing
experimental data where the salient features of concrete behavior - such

as strain softening, stiffness degradation, volumetric dilatation - are

captured.

5.4.1 Theory of dichotomy

To predict the overall behavior of any material point under various

load combinations, the following theory is postulated:
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"For an element of a deformeable material, the continuum can be
equivalently replaced by an orthogonal nonlinear spring system
whose stiffness depends on the ratio of the principal stresses.
For each principal direction, the total strain is decomposed into
elastic-damage and plastic-damage components. The comprehensive

loading history can be deduced using the appropriate stress-

strain spaces."

The proposed dichotomy scheme for a material point loaded under
proportional biaxial stress states is dipected in Fig. 5.15. For the

considered case, six stress-strain spaces are deduced.

5.4.2 Canonicalization of Constitutive Equations

The incremental strain tensor dr.ij is composed of two main

components: (1) incremental elastic-damage strain dr.?. and (2)

incremental plastic-damage strain dr.})j. The relationship between the
incremental stress tensor dcij and each of the strain components is
highly nonlinear and depends on the stress path. The total quantities
1ii=nii,zii,n§ or "?j are obtained by accumulation over the loading
increments 1 i.e. Zijzjdxif}l:dx%j' Motivated by incremental formulation
based on variable secant moduli (Chen and Saleeb, 1981), the total

quantities at any load increment can be interrelated in a similar fashion

to that of the generalized Hooke's law as follows:
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O = Aijkm kem (5.33-a)

= Eijkm r';a{m (5.34-a)

" i B @350

in which Aijkm, Eijkm and Pijkm are fourth order moduli tensors.

Using Von Karman (Voigt) notations, these relations can be reduced to

op = Ay v (5.33-b)
= e -
= p -

Further reduction of these equations can be obtained if the principal
space is considered for a material point which is loaded biaxially

(°1 20,, 0, = 0) and the relations are written in a canonical form.

The matrix format of the constitutive relations reduces to

ol A, 0| |5
= (5.33-¢)
T2 0 Al %2
r 3
E 0 | |*
= (5.34-¢)
0 E2 \,._‘23)
P 0 rlﬂ
= (5.35-¢)
0 Pz_ LEI:‘
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An example for reducing the conventional Hook's law for biaxial states

of stresses to the canonical form is formulated hereafter.

The general form of the linear stress-strain relationship
expressed in the principal space, for plane stress states, can be

written in the following matrix form in the principal strain space

(5.36)

o Ao
C12 = C21 = . 3 (5.37a)
Yo
and
Ao
C“ = C22 = 3 (5.37b)
l—\ro

in which A o and ve are the initial Young's modulus and Poisson's ratio,

respectively. For linear elastic materials the initial moduli for the total

and elastic behaviors are the same, i.e. A 0=E0.

These relations can be reduced to the following canonical form

= (5.38)
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in which
C T
cC =¢C 1+ 12 _2] (5.39)
% 1 [ Cu ¥y
and
C £
cC =2¢C 1+ =2t _‘] (5.40)
02 22 [ sz 1;2

and the principal strain ratio ¢ ‘/r. , can be easily shown to be expressed

as a function of the biaxiality ratio B1 =a, /o 29 i.e.

5y By B10.22 N C12

e LBy = EpLY = (5.41)
€ 3 ( ‘) ( 1) C - BIC21

2 2 11

Substituting (5.41) in (5.39) and (5.40), gets

in which
C C
C =¢ A, [ = [1+ ‘2] (5.42)
0o, 1 o 1 A, EC,
and
C EC
cC =¢ A , U = =22 [1+'2‘] (5.43)
o, 2 o 2 Ao sz

Using index notation with the exception that summation is not
implied over the repeated index, Eqns. (5.33,34,35-¢) can be

alternatively rewritten as

o = A 5 (5.33-d)
- E i (5.34-d)
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I
<]
ot

s &

(5.35-d)

The manner in which the above set of equations are expressed indicates
that the stress components are independent. This suits the postulated
spring system but apparently differs from the conventional constitutive
equations that compensate for the cross effect of the stress components
through Poisson's ratioc. However, the existence of the process of
damage makes the stress components interrelated indirectly. Another
aspect is that the canonical form is preserved as far as the material
point is loaded proportionally. Otherwise, this diagonal form is held

only in an incremental sense.

5.4.3 Total and Incremental Stress Components

As far as for each stress components three moduli are presented in
Eqns. (5.33-35), three scalar damage variables are introduced in
association. The damage process is described through monitoring the

degradation of these moduli. Therefore, the constitutive equations can

be expressed as

o; = (l—dai) Aoi £ (5.33-¢)
= (l-de_') Eo. r.? (5.34-¢)
1 1
= ¢1-d_\ P_ P (5.35-¢)
( p;) To; i

in which dc (c = a,e,p) are the damage variables associated with the
i
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pseudo initial moduli Co. (C = A,E,P) in the ith direction (i = 1,2). In
i

order that the constitutive equations account for the path dependence
as prevalent in concrete and other rock-like materials, the forms of the
pseudo initial moduli and the damage variables as well, and
consequently the secant moduli, have to be selected carefully. The
pseudo initial moduli are chosen to be dependent on the biaxiality ratio

B1 = 01162’ and the current state of strain in the ith direction, i.e.

The pseudo initial moduli are chosen to be dependent on the biaxiality

ratio Bx = 01/02, and the current of state of strain in the ith

direction, i.e.

C"i = C°i R (5.44)

In a similar manner, the damage variables are chosen to be dependent

on the same quantities, thus,

dci = dci (n1 » Ty s r'.i) (5.45)

It is intended to utilize the damage variables derived previously for
uniaxial behavior of concrete in both tension and compression. For the
generalization to biaxial situations, the peak values are to be modified

using the functions g and n, for the peak stresses and strains,
i i

respectively. These functions are schematically sketched in Fig. 5.16

and 5.17 and their mathematical form is given later. However, it is
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worth mentioning that . and n,, are functions of the biaxiality ratio
1 i

Ry~ As a result, the stress increment can be expressed in the form

o, = s1-d C ¢ —C_ =’ d
1 ( Ci) Oi 1 Ol 1 Ci
ad
¢ el .c
= Co_ 1 - dc. - S %i | (5.46)

1 1 o

where () is the time derivative while r‘i”;'i are meant for ¢ = a in r.? and

é;:, respectively. Additionally, for unloading in the jth direction ae. =

]

0, since the process is purely elastic. Equation (5.46) represents the

canonical form of the incremental stress-strain components relationships.

5.4.4 Thermodynamical Considerations

Using the concepts of thermodynamics of irreversible changes, the

Helmholtz total free energy function y can be expressed as
L + v, (5.47-a)
where

_ 1 _ 2 _
M = g (1 dai) Aoi £ (5.47-b)

where p is the mass density. If the total strain is replaced by its

components, Eqn. (5.47-b) can be written as
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2
= E (14 Ay (5 + )

1 e? ep, p
=5 (1 dai) Aoi [ei + Zr.i £ + £

> 2
- % (1=%)Ae, o+ -;- (1420, P (1~ %.) A0, 6 o

It is clear that if just one single set of damage variables are to
be used, one set of moduli is used in association. In the case given
above are the parameters associated with the total strain. Another
implication of using one set of damage variables is the existence of a
coupling term between the elastic and plastic components (the 3rd term
in Eqn. (5.48)). In other words, if the damage process is to be
separated from both the elastic and plastic behaviors, the total energy

can be expressed as
e.p = _ oce p
Vi[r'i ' ,dai] = (1 dai) Vi (F'i o5 ) (5.49)

2 2

where \v;’ (r.;' ,r.,P) = %Aoi[sf + r.}) + 2;:;a rF] denotes the total

potential energy function of an wundamaged (virgin) material and
therefore the assumption that the elastic and plastic potential energy

functions can be wuncoupled (as postulated by Ju, 1989a), i.e.
\V?(ﬁie,i-‘.?) = ve:(r.?) + \;IP:(E?) is incorrect. This leads to the result

that
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¥ [r.?,r.}),dai] s (l—dai) l:\ye;)(r.ei) + ‘ilp?(gpi)‘l (5.50)

This conclusion is in contradiction with Ju's energy based model (1989).

With reference to Eqn. (5.47), the constitutive relation and the

generalized thermodynamic forces of the ith damage components Ya_
1

derived subject to thermodynamic restrictions are given by
oy
g, = p — = s1-d_\ A_ =, (5.51)
i v ( ai) o, i

Obviously, Eqgn. (5.51) is reconciled with (5.33-¢), and

_ - _ ey _ 1 2 _ 0 e p -
Yai p % 3 Aoi £ 2] (r.i,r.i) (5.52)

It is obvious that the damage energy release rate defined in (5.52)

which is conjugate to the total damage variable, is the undamaged

energy function.

In general Eqns. (5.51) and (5.47) can be combined to arrive at

1
[\\yi = E Te Fo.

11
_ 1 e . p
= 5 % (s + "i)
1 e 1 P
= 5 %% + 7 % i (5.53)

Substituting for S; in the first and second terms of Eqn. (5.53) from

Egqns. (5.34-d) and (5.35-d), the total energy is reduced to
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1 e? 1 p2
+ &= sl-d _\P_ &: {5.54)
2 ( pi) % 1

™i = g (17 %)%, i
The above equation gives the correct form of the uncoupled energy
terms by weighted components of the energy of the undamaged material.

This can be easily concluded if Eqn. (5.54) is expressed as

“'l[ l,rP d d ] (1 de) wei( 1) (l—dpi) \yp;’(r.pi) (5.55)

It can be concluded that at least two sets of damage variables are
required to provide complete elastoplastic damage uncoupling.

As a consequence of introducing the damage variables d c.? © F
i

e,p, the following thermodynamic forces Y £ ; ¢ = e,p are defined as

%

follows

—Y = -p 5\V = l E F,-ea = \[Io £ (5.56)

& ad_ ~ 2 o i e ("e)
i
for the elastic-damage behavior, and
oy 1 p2 o
—Ypi = _.O = = 3 PO. o = \|/p (f:p) (5.57)

d i
P

for the plastic-damage behavior.

The damage energy determined from Eqn. (5.56) is the same

elastic energy considered by Lemaitre (1984).

The entropy production rate n , as given by the Clausuis-Duhem,
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is inequality

2

pMmo= —py + y A {:i >0 (5.58)
i=1

Consideration of Eqns. (5.49) and (5.55) once in a time with (5.58),

the following dissipative inequalities are obtained

o/ e P\ : ] o/ e\ o/ P\

\vi(ei,r.i) dai >0 “’ei("i) dei + ¥p, r.i) dpi >0 (5.59)
which leads further to non-negative rate of the damage variables, i.e.
flc 20 , c¢ = a,e,p (5.60)

It has to be pointed out that the damage variables d a. are
i

sufficient to describe the loading process while de are needed for the
i

idealized linear unloading or reloading and hence determination of dp
i

becomes of minor importance.

5.4.5 Identification of Parameters

As long as biaxial states of stress are concerned three possibilities
can be thought of in terms of stress combinations: (1) compression-
compression, (2) compression-tension and (3) tension-tension. In the
current study, the initial moduli as well as the damage variables are

phenomenologically determined by fitting the available monotonic and
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cyclic experimental data and exploiting some of the existing regression
formulas. These data include those of Andenaes et al. (1977), Kupfer
et al.(1969), Nelissen (1972), Tasuji et al. (1978), Van Mier (1985),
Aschl et al. (1972), Schickert and Winkler (1977),; Karsan and Jirsa

(1969}, Popovics (1973), Guo and Zhang (1987), and Gopalaratnam and
Shah (1985).

In order to keep the mathematical form of the incremental
expressions of the biaxial MGDV as simple as possible it is advantageous

to introduce the following functions:

(1) The functions f L.y fO be used in defining the incremental damage
variables:

f1 = £, (5.61)

i

o
fz = r.ci (5.62)

_ _ 2

f4 = ("i 1+ fz) (5.64)
fs = 1--k1 £ (5.65)

£, = -k, 7 (5.66)
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£ =k, f, (5.67)
£, = 5k ", (5.68)
kZ
f ==+ + a ¢, -1 (5.69)
T ()
kz—l
f” = k2 a (r.ti—l) (5.70)

and k‘ ,ka are constants whose values are

k, = 0.166 (5.71)

k, = 1.7 (5.72)

where 2 is the normalized ith strain components in the biaxial
i

space for j<t,e¢ corresponding to tension and compression,

respectively. The strength parameters g and n; are the modified

Guo and Zhang's and Popovics parameters taking into account the

effect of biaxiality.

(2) The functions g, , to be used in the expressions of the

incremental damage variables

g, = L/, (5.173)

: 5 2
8, = (Fofs *E I+ E) /(L) (5.74)
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g, = I, (5.75)
2

8, = ~(A+I, )/, (5.76)

B, = 8, 7~ (5.77)

1

(3) The function f(l to be used in evaluate the pseudo initial moduli:

— m -—
fgi = Zi + H(yi) v; (Zi Ci) (5.78)
where m is a material parameter and the functions y; are given as
V. = Ve = 1 — &, (5.79)
1 ’( ]i) %

in which j= t, ¢ for tension and compression, respectively. The

Heaviside function H(yi)=yi for positive values of \A and is zero
otherwise. The functions Zi depend on the peak stress and strain

multiplied functions defined ahead and are given as

n
%
“r.i in tension
Zi = (5.80)
"cri ni—l in compression
n no—l
1

\

in which n_ is the value of n, for |n_|=1.0.
o i 5
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(4) The peak stress multiplied functions Mg for each of the three
i
stress quadrants

i. Tension-Tension

n, =1 (5.81)

n. o=n_ B (5.82)
()'2 0’1 2

in which Bz is the reciprocal of the stress ratio Bl. The trend of

the functions is illustrated in Fig. 5.18.

ii. Tension-Compression

n, =Bh, “02/K1 (5.83)

1
(5.84)
%2 34, (rc')”" - 0.8

=
I

in which « X is the ratio of the peak strength in uniaxial tension to

that in compression. The trend of the functions is illustrated in

Fig. 5.19.

iii. Compression-Compression

=
I

.
o By ncz (5.85)

=
i

-1.0 - 0.7952 p_ + 0.6244 B2 (5.86)



1.00

0.90

0.80+

0.70-

0.60-

Bioxialfty ratio
=]
i

0.30-

0.20+

0.10-

0.00

Noy

Figure 5.18

T

n &0 6 R

Peak stress functions

Stress functions in the tension-tension quadrant

1.00

1.20

140

272



273

hd
N -—
.
H o
: =)
.
. «©
H <
.
.
.
.
: L
. P=)
© .
- .
= .
.
n M | o
° N o
> :
. —
. o~
: w )
™ : L s N —
<= . - (EN
X . 5 i~
o : —
S : = |E
m : - S |-
" H L=
. :
-~ . 1
- .
.
.
: m
. =l
5o B
. o~
M [—3
: |~
. (=)
p o
. L5 =
o [ =] o
' @ = o ~r °°, ~
- o o =] [~ (= -

suoljaung ssaJdisS

Figure 5.19 Stress

functions in the
quadrant

tension-compression



1.00

0.90-

=
=

(=]

~—

[ =)

1
e

=§_0.60-
=
& 050
= ‘T‘a.z 1-\0'1
Boa
\
0.30- “
\
020 \
\
\
0.10- \
\
\
o.m ] \I t T T 1
40 -1X -l -B0 -60 -4 N0
Peak stress funclions
Figure 5.20 Stress functions

quadrant

00

274

in the compression-compression



275
The trend of the functions is illustrated in Fig. 5.20.

In all cases N, = 0.0 since only biaxial states of stress are of
3

concern in the present study.

(5) The peak strain multiplied functions n. for each of the three stress
i

quadrants

i. Tension-Tension

nﬂ1 =1 (5.87)
n“z = —vg t (1+vo) B, (5.88)
nca = —Kz(l + ﬁa) Vo (5.89)

The trend of the functions is illustrated in Fig. 5.21.

ii. Tension-Compression

Expressing n, in terms of § = tan ! B> gets

1

0.6 + 3.7955 + 6.49132p%)/x, B2 -0.2

n, =

1 [(0.11395+0.14925x2) + (0.0903+0.92167« ) B p<-0.2

+ (0.0113093 + 0.93155«,) B°] / «,
(5.90)



1

~1 — 2.06673 + 8.684p°
2 (~0.3018-0.14925v «,) + (—0.4491-0.92167v x )

+ (~0.16357 ~ 0.93155v x ) p2

0.6 + 6.1406p + 16.16425p°
3 (0.03105-0.14925v x,) + (0.0593-0.92167v x,) P

+ (0.02517 - 0.93155v ) p2
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B> —-0.2
B < -0.2

(5.91)

g 2 -0.2
B < -0.2

(5.92)

where Vo is the initial Poisson's ratio and « » is the ratio of peak

strain in uniaxial tension to that in uniaxial compression. The

trend of the functions is illustrated in Fig. 5.22.

ifii. Compression-Compression

n, = 0.6 - 1.8645 B + 0.36068 p°
‘1

n, = -1.0 - 1.53225 §  + 1.62847 p°
‘2

n. = 0.6 + 0.758023 p — 0.10891 B>

The trend of the functions is illustrated in Fig. 5.23.

(5.93)

(5.94)

(5.95)
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5.4.6 Biaxial Tensile MGDV

280

The incremental damage variables associated with any tensile

component are chosen to be linear with the strain increment and can be

determined from the relations

g3 ét.

t 1
d::1. = .

1 B, tti

for the elastic damage variable.

A

IA

(5.96)

(5.97)

The functions g, 8, and g, are

given by Eqns 5.75-77. For proportional loading these relations are

integrable to yield the following simple expressions

0.166 atf
1
t _
dai— 1 - 1
ni(st-—l 1'7+
L i ) i
[t
da.
t l
d =
% 1 -¢ (1-at
R

A

IA

(5.98)

(5.99)

In the current case the superscript t signifies the tensile component,
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and the modified Guo and Zhang's strength parameters a; are

determined from the relation
a, = 0.312 f," n_\° (5.100)
i ( t Gi)

The introduction of the peak stress multiplied functions in Egn. 5.100
causes the strength parameters to be implicitly functions of the
biaxiality ratios. Such dependence is plotted in Figs. 5.24-26 for all

possible tensile stress components. The term T is the current strain
i

in the ith direction as a ratio to peak strain in the same direction and

is defined as

6, = ——T (5.101)

5.4.7 Biaxial Compressive MGDYV

The incremental damage variables associated with any compressive

component are chosen to be linear with the strain increment and can be

determined from the relations

c - .
4% = g, i, (5.102)

. c . .
4’ =g, i (5.103)
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for the elastic damage variable. The functions g ' and g, are defined

by Eqns (5.73,74). For proportional loading these relations are

integrable to yield the following simple forms,

o= , (5.104)

d® - 0.166 Fo.
dec = 1 1 (5.105)
i 1 - 0.166 ¢,
i

where the superscript c¢ signifies the compressive component and the

modified Popovics' strength parameters n, are defined as

n;, = 0.058 fc’ nci +1 (5.106)
The introduction of the peak stress multiplied functions in Eqn. (5.106)
causes the strength parameters to be implicitly functions of the
biaxiality ratios. Such dependence is plotted in Figs. 5.27-29 for all

possible compressive stress components. The term ¢ e is similar to Tt
i i
but Fy is replaced by = c which is the peak strain in the uniaxial

compression test; i.e.

e
1
£ = — 5.107
¢ fo |Y|r_i| ( )
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5.4.8 Pseudo Initial Moduli

The pseudo initial moduli conjugate to the total behavior are
obtained by slight modification to the diagonal terms of the canonical

matrix, derived for linear elastic Hookean material, as follows

o. o fr (5.108)

in which the functions t‘c depend on the current strain state and on
i

the biaxiality ratio as shown earlier. The material parameter m=2 is
found to yield good correlation with the experimental results for almost
all biaxiality ratios. However, it can be easily shown that the peak
quantities are not sensitive to the value of m except for its null value

which reduces Ao to Do. for linear elastic materials. It may be noted

i i

that the moduli Ao change through the course of loading due to path
i

dependence with the material initially (at r,i=0.0) possessing linear

elastic isotropic properties then followed by stress induced orthotropy.
The ratios of the elastic and plastic moduli to the total moduli in both

tension and compression are given in Table 5.2.

5.4.9 Stress Free Straining

The principal strain £y, OF any strain component corresponding to

the stress free direction is of minor importance in attacking real

boundary value problems using numerical technique. However, for



Table 5.2 Ratio of the elastic and plastic moduli to the total moduli
in tension and compression.

Initial moduli Tension Compression Remarks
ratio j=t j=c¢
(EJSAY} 1.2 1.15 The ratio is
independent of the
®JA) 6.0 7.69 value of 3,

290
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completeness and to illustrate the volumetric changes taking place

through loading, a special treatment will be considered hereafter apart

from the damage framework

>
For o, Iczl

.
€
s 1
n, —/l(2 if o, <0
€ 1 t
A=
€
t €
nr*—l if 0,20
.i [:t
"

(5.109)

where i corresponds to the considered stress free strain component and

K, is the ratio of the peak strain in uniaxial tension to wuniaxial

compression, and

>
For lozl 2 lG‘I

( ¢ 3.4
4.55 |—>—| - 5.55v_ + 2.0
n & o
F.z C
F'j 82 £ 3.4
== = von. |=| * { -4.55|3- —-5.55v_+38.25
A Ee {1 £’ 0
c J|7e £, C
2
38.25 - 5.55v
\

(5.110)

Eqn. (5.110) is mainly derived by modifying Poisson's equation
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adopted by Fafitis and Won (1992). It allows the use of assigned value

of the initial Poisson's ratio Vo rather than a fixed value of 0.18 and

facilitates the general use for any peak value of the siress free strain
other than unity. Using Eqn 5.110 the variation of Poisson's ratio in

uniaxial compression is illustrated in Fig. 5.30.

5.4.10 Decanonalization of Constitutive Relations

The proposed theory of dichotomy facilitated establishing the damage

model in the principal space in a canonical form which yielded the
degraded moduli C , and C » corresponding to the strains r.c, where the

superscript ¢ = a, e, p for the total, elastic and plastic genera,
repectively. Although this form is ample to get the stress components
in terms of the strains, for completeness an inverse process is
presented in order to obtain the conventional form of the constitutive
laws. It is convenient to postulate on-axis orthotropic directional
properties in the principal space for which the moduli matrix can be

expressed as ( Darwin and Pecknold; 1976, Tsai and Hahn; 1980)

Dy Dy, 00
[C} =|D,, D, 0.0 (5.111)
D
0.0 0.0 33

where

-—— y ,_“——~¢
D, = v /D, D, (5.112)
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and

D =%(D + D.. - 2D_) (5.113)

33 11 22 12

in which v is Poisson's ratio. Having equated the stress components
obtained using both of the canonical and conventional forms, the

following relations are arrived at

_ 1
c, =D, + < D, (5.114)
1

and

Q
il

c
» & D, +D,, (5.115)

where §(:=r.(:/r.g is the principal strain biaxiality ratio which is related

to the stress biaxiality ratio f§ . by the relation

5y 7 '61— R, (5.116)

Substituting from (5.112) in (5.114) and (5.115) a qguadratic equation is

obtained which has the form

aD’> -bD _ +c=0.0 (5.117)

a=1-+v , (5.117a)
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b=2C -+ C + "2 c, , (5.117b)
EC
"1
2
Cl
c = — + C2 (5.117¢)
e
=

The second diagonal term is obtained by eliminating D1 » from (5.114)

and (5.115).

5.5 PREDICTIONS OF THE CANONICAL MODEL

The canonical model is utilized to predict strength characteristics in
uniaxial and biaxial load combinations. The results are checked against

a large set of experimental data. This verification is carried out in the

following scheme:

1. Comparison of model predictions for wuniaxial loading under

monotonic loading.

2. Comparison of model predictions for biaxial loading under

monotonic loading.

3. Comparison of model predictions for cyclic behavior.

The verilication of the uniaxial behavior includes tensile as well as
compressive loading. On the other hand, in biaxial load combinations
the strength envelop, stress-strain curves and volumetric strain
predictions are investigated. In most of the studied cases including

compressive components, stress free straining is provided to show the
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apparent Poisson's ratio.

5.5.1 Uniaxial Behavior under Monotonic Loading

In order to distinguish the salient features of the canonical model,
it is advantageous to carry out a schematic comparison with some of
existing models. Conceptually, the present formulation alluded to three
damage variables for each loading condition i.e. tension and compression

and a single material parameter, f e’ is required as far as wuniaxial

behavior is concerned and where other peak parameters are not
provided. Additionally Poisson's ratio is needed for biaxial states of
stresses. In order to conduct a comparison with existing uniaxial

damage variables as defined by other authors, the present variables are

recapitulated in that

- d; represents the damage variable associated with loading

- dL represents the damage variable associated with unloading

where j = t,e. The existence of the plastic-damage variable dl in
concrete behavior can be ignored due to the redundancy inherited by

virtue of split of strain tensor. However, for ductile metals di) may

replace d]a in loading since the elastic strains are rather small. The

novel notion of the present formulation is its ability to predict cyclic

behavior, albeit approximately, on a conceptually sound basis and in
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terms of one material constant. In addition the stress-strain curves are
more realistic than many of the existing analytical models in both
tension and compression as shown in Figs. 5.31 and 5.32.

Inasmuch as a large number of damage models have been proposed
in the last decade, comparison is limited to three of the early models:
1. Mazars' model (1984), 2. Loland's model (1981), and 3. Krajcinovic
and Fonseka's model (1981). Mazars' model predicted brittle behavior
and was originally adopted for tensile behavior and then extended to
compression. Two damage variables were adopted for these loading
conditions. Each required two material parameters (a,b) in conjunction
to the peak strain. The model proposed by Loland also predicted
brittle tensile behavior and was extended to compression. For each
loading condition, the corresponding damage variable required two

material parameters (s ) in addition to the peak stress and the initial

damage. Krajcinovic and Fonseka's model (1981) was applied to uniaxial
conditions as a reduction from general tensorial equations. It also

predicts brittle behavior and requires three material parameters (C L
C ,» B,-B 5) in addition to threshold damage strain (r.o';, initial damage

(wo) and the conventional parameters (f ', E, ). This comparison
c

indicates:

1. The parameters for the three models are unrelated although they
describe the same behavior (brittle) for the same material

{concrete).

2. Identification of each of the parameters is not a simple job and
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may require automatic identification procedures as remarked by
Saouridis and Mazars (1989).

3. Most of the parameters lack a simple physical interpretation.
Rather, they can be looked upon as mathematical coefficients.

4. Since the behavior is assumed to be brittle for the
aforementioned models, the plot of the material response in
various strain spaces is reduced merely to a single graph as
shown in Fig. 5.33a. Therefore, the space of the plastic-
damage strain becomes trivial but for completeness, however, the
stress plot is illustrated in Fig. 5.33b. In this case, one

damage variable is ample for either tension or compression.

Predictions of the canonical model is performed for two sets in each
of tension or compression. In tension the available experimental data are
relatively limited when compared with those in compression. For uniaxial
tension, The predictions are compared with ‘two analytical models and
experimental data corrected for the reference gauge length as suggested
by Yankelevsky and Reinhardt (1987). The analytical models considered
are those of Gopalaratnam and Shah (1985) and Yankelevsky and
Reinhardt (1987). The model is first used to predict the stress-strain
curve of concrete of relatively low tensile strength as shown in Fig.
5.34. The experimental data were reported by Hilsdorf et al. (1969).
For relatively high tensile strength concrete, the stress-strain curve is
illustrated in Fig. 5.35 against the experimental data of Gopalaratnam
and Shah ( 1985). The model is shown to be in close agreement with

other curves and to be able to predict strain softening characteristics.
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For uniaxial compression, the predictions of the model are shown for
concretes of different strength. Fig. 5.36 depicts a comparison with
experimental data of Hognstaad et al. (1955) for strengths ranging from
8.79 MPa to 49.52 MPa while Fig. 5.37 undertakes a range between
20.70 MPa and 42.75 MPa following experimental data of Smith and
Young (1956). The model is shown to be in close agreement with
experimental data which covers a broad range of concrete grades. It

can be noted that strain softening is captured reasonably.

To sum up, based on the previous verification for uniaxial behavior

under monotonic loading, the canonical model has the following

advantages:

1. Unilateral nature since behavior in tension and compression are
quite different.

2. Realistic description of the stress strain curve in both of the
pre-peak and post-peak regions in both tension and

compression.

3. reduced number of material parameters which are of physical

sense.

5.5.2 Biaxial Behavior under Monotonic Loading

Accurate determination of the strength envelop is one of the major
limitations of many of the existing models as discussed elsewhere. The
canonical model has the ability of predicting this envelop as shown in

Fig. 5.38. The model is compared with numerous experimental data
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points collected from the literature. This includes those of Kupfer et al.
(1969), Aschl et al. (1972), Andenaes et al. (1977), Liu et al. (1977),
Schickert and Winkler (1977), Tasuji et al. (1978) and Van Mier (1985).
Moreover, the model is then compared with the analytical model of
Kupfer and Grestel (1973) as shown in Fig. 5.39. The envelop shows
the strength increase in biaxial compressive combinations and the
reduction of the tensile strength in the tension-compression quadrant.

The tensile strength is kept unaltered for tension-tension stress

combinations

To have a more global picture about the predictions of the model the
stress-strain curves are compared against the experimental data of
Kupfer et al. (1969), Tasuji et al. (1978) in the tension-compression
and in the compression-compression quadrants. Additional set of
experimental data were selected in the compression-compression
quadrant after Schickert and Winkler (1977). These data are selected
because they are well documented and also reflects the possible
boundary effect and specimen size on the stress-strain trends.
Volumetric changes in the compression-compression quadrant are also
shown. Kupfer et al. (1969) used 200X200X50 mm concrete specimens
and brush platens to avoid frictional end effects. Tasuji et al. (1978)
subjected 127X127X13 mm thin concrete plates to biaxial load
combinations using comb-like platens. Schickert and Winkler (1977)
reported for BAM testing program results on 100 mm concrete cube

subjected to biaxial loading using rigid (rough/unlubricated) and

flexible platens.
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In the tension-compression quadrant, the predictions of the model
are firstly plotted versus the experimental data of Kupfer et al. (1969)
for biaxiality ratios of 0.204/-1.0, 0.103/-1.0 and 0.052/-1.0 as shown
in Figs. 5.40-42. A comparison with the experimental data of Tasuji et
al. (1978) for biaxiality ratios of 0.25/-1.0, 0.10/-1.0 and 0.05/-1.0 are
illustrated in Figs. 5.43-45. In each case the three strain components of
the biaxial curves are drawn altogether with those of wuniaxial
compression. It can be noted that strain softening is predicted for all
stress combinations and for all of the three strain components. The
peak stress and strains are dependant on the biaxiality ratio and are
not kept constant in this quadrant as postulated in many of the existing

models. The peak values decrease with the increase of the tensile stress

components.

In the compression-compression quadrant, the following biaxiality
ratios are used for (1) Schickert and Winkler (1977): -1.0/-3.0,
-2.0/-3.0, and -3.0/-3.0 as shown in Figs. 5.46-48, (2) Kupfer et al.
(1969): -0.52/-1.0 and -1.0/-1.0 as shown in Figs. 5.49-50 and (3)
Tasuji et al. (1978): -0.50/-1.0 and -1.0/-1.0 as shown in Figs.
5.51-52. The trend of the predicted curves is seen to resemble that of
the experimental data. The variation of the peak stress and strain
values are reasonably predicted. The strain corresponding to the minor
stress ration is noted to correctly reverse sign from small biaxiality

ratios to large ratios (compare for example Fig. 5.46, 47 and 5.48).

The volumetric changes as predicted by the model are compared with

the experimental data in the compression-compression quadrant as shown
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in Figs. 5.53-55. Compression (compaction) takes place in the early
stages of loading and then starts to decrease such that dilation can be
eventually observed for all the biaxiality ratios. Such a phenomenon
represents a characteristic feature of rock like materials and granular
cohesionless seils. However, limited number of models provided such

volumetric changes (cf. endochronic theory for concrete).

5.5.3 Behavior under Cyelic Loading

The introduction of the elastic-damage variable in the formulation
enables the determination of the degradation of the unloading slope
(stiffness degradation). Alternatively, the plastic-damage variable may
be utilized for the same purpose. Of course the idealization of the
hysteresis loop as a straight line is a reasonable postulation as declared

before. This feature is employed for the prediction of the cyclic

behavior in both tension and compression.

For relatively high strength concrete subjected to cyclic tensile
. loading the loading envelop as well as the unloading paths are shown in
Fig. 5.56. The predictions of the model are compared with the
experimental data of Gopalaratnam and Shah (1985) and with the
predictions of the analytical model of Yankelevsky and Reinhardt
(1987). It is illustrated that both of the strain softening and the
stiffness degradation are reasonably captured. In uniaxial compression
more experimental data concerning cyclic loading are available. The
loading and unloading schemes as predicted by the model are compared

versus: (1) the experimental data of Sinha et al. (1964) as shown in



o
7 ] d
a L © 328
e
o [ 1>
- —_
= m _. |
Z E3 |
v ug:
: 'D -
— o ® c o I <
_g'DE m g ° [}
M N
o — m© =2
e @ ¥ E |
== a !
- © >
n ¥
wuEwm . YY I
-—.—_afumé—
C - muwn D=
OUQ_m-é_.
cC Qoo [
mer—mC o
oo = > ® e
. ~T
i |
- .
) |

E
2>~
<
S
m c
aJ
=
o
J
(1]
—
a.
-4
O,D
(=]
o
<
(=
~—
(===

3.6

T
(=]
m

2.4
1.8
1.2 ]
0.6
0

‘| B4l ) SS3J4S jeixy abedsay

Figure 5.56 Model prediction for

the cyclic behavior under
uniaxial tension



Canonical model
----Sinha, Gerstle and Tulin.

( 1964 )

\
|
I
/
s
/s
-~
-

1.2

Figure 5.57

1.0 -

1 { T
@« 0 ~
= o o

0.2 1
0.0.

/-0 SS344S pazijewsoN

Comparison of the model's prediction for the cyelic
behavior versus the experimental data of Sinha ot

al. (1964) under uniaxial compression

3.0

2.5

2.0

15

1.0

0.5

0.0

E/ ¢t

Normalized Strain

329



k=)
=]
—_ O — ¥
= el
o D*O -~
o ot
E &
-5 Lv
Qo 2
c C I~
o (]
c ©O
T o
 w
| wn
1 s
1
|
i
[ =]
aal
~
[=
N -
I~ e~
*
=
) (1]
~N =
w
%}
_V—'
o
S
v
=]
~
~
[

21.0

Figure 5.58

17.5.
4.0
0.5
7.0-
3.5

{8dW) SS3HS

Comparison of the model's prediction for partinl
cyclic behavior versus the experimental data of

Spooner and Dougill (1976) wunder wumiaxial
compression

330



(1)
puu |
—_ o
a O
©
o T©—
E So
—_  yd
F @ .
U
-
S o
c o
] (=X
w W
1
1
1
]
]

103

Strain X

Figure 5.59

42.01

35.0 4
28.0-
21.0 -
14.0

(BdW) SS3dS

Comparison of the model's prediction for full cyelie
behavior versus the experimental data of Spooner
and Dougill (1976) under uniaxial compression

331



332

Fig. 5.57, (2) the experimental data for partial cycling after Spooner
and Dougill (1976) as shown in Fig. 5.58, (3) the experimental data for
full cycling after Spooner and Dougill (1976) as shown in Fig. 5.59 and
(1) the experimental data of Buyukozturk and Tseng (1984) as shown in
Fig. 5.59. The uniaxial compressive stress is plotted against the
uniaxial compressive strain. The loading and unloading patterns are
shown to be in good agreement with the experiment curves. For the
data of Buyukozturk and Tseng (1984) the transverse strains are also
given as shown in Fig. 5.59. This indicates that the free stress
straining can be reasonably predicted in cyclic behavior using the

proposed canonical model for concrete.

5.6 UNTAXIAL DAMAGE MODEIL FOR REINFORCING STEEL

Behavior of steel in tension is almost typical to that in compression.
In many situations stress-strain characteristics are of concern up to the
peak. Unfortunately, experimental data on stiffness degradation of local
reinforcing steel is not available. A series of wuniaxial tension tests
using strain controlled machine (INSTRON) was carried out and a bevy

of results is shown in Figs. 5.60-63.

Deformed reinforcing steel bars of 680 mm length and 16 mm
diameters were used. The deformations were measured by 20 mm length
LVDT. Additionally strain gages were mounted to the steel samples. A

control sample labelled T1 was subjected to monotonic loading, as shown

in Fig. 5.60, such that effects of load cyecling on the loading envelop
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could be observed. Three other samples labelled TZ’TS and T4 were

subjected to cyclic loading as shown in Figs. 5.61-64. For all samples,
necking occurred after the peak in the usual form of cup and cone.

The f{inal minimum diameter at the ruptured section was 11.5 mm.

The results demonstrated that load cycling did not affect the pre-
peak stress and strain parameters where as tended to increase the
strain at rupture. The delay of the necking process to the post-peak
region indicated the reliability of the damage exploration in the pre-
peak where damage may be considered to be distributed. No stiffness
degradation was noted since the unloading slope was nearly unchanged
or atmost negligible in all unloading paths. This appeared to be similar
to that of the experimental paths shown by Dafalias (1981). Therefore,
the presence of elastic damage is absent and the enhancement of damage
variables other than the elastic one is a must. The concept of skeleton

curve seemed to be plausible as suggested by Colson and Boulabiza

(1992).

Based on the such an understanding, the total damage variables can
be derived using the modified Menegotto-Pinto relations that were
reviewed in Chapter 2. However, minor changes have been carried out

in order to distinguish between the lower yield stress o "0y and the
1

upper yield stress o v ':"’Gy as shown in Fig. 5.65. The mathematical
u

form can be easily shown to be expressed as
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where Egt is the strain corresponding to the upper yield stress at which

strain hardening takes place which can be calculated from the relation

0 R 1 RI/R
ty = {;_] - [;_] (5.119)

d, = 0 (5.120)

Applying the previous relations to the data provided by Kato and
others (1990) for which the strength parameters of structural steels
SS41 and SM50 are listed in Table 5.3, the total damage variable is
calculated for o=1.0 and drawn in Fig. 5.66. The trend is highly
nonlinear and the steel of lower ultimate strength shows higher damage

rate than the higher strength steel. However, the final values are

eventually the same.
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CHAPTER 6

NUMERICAL IMPLEMENTATION

6.1 GENERAL

The most general strain-damage coupling algorithm is used for the
numerical implementation of the elastoplastic damage constitutive
relations developed in this study. Considering time independent quasi-
static loading, two FORTRAN 77 finite element programs are
constructed. The first is DMGTRUSS for multi-dimensional trusses used
to explore uniaxial behavior. The second is DMGPLSTS for plane stress
formulation to investigate the applicability of the damage models derived
in Chapter 5 for plain as well as reinforced concrete. Main features of

both software packages besides with the basic structure, data flow and

communication requirements are illustrated.

6.2 NONLINEAR FINITE FLEMENT

Nonlinear finite element proved its superiority over other numerical
methods, e.g. boundary element and finite difference method. This is
due to the fact that the concerned domain is fully analysed by updating
changes caused by any source of nonlinearity in both the bulk and
damaged zones. Nonlinear schemes reached a stabhilized stage of
development and its nse is fairly reasonable. Tnasmuch the procedures

are systematic with respect to the incremental formulation of element
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and overall equations, well-established nonlinear solution techniques,
and convergence criteria, Appendices I, II and IIl provide general
review of these topics in order. The latter will be frequently waved to

through the next sections.

The two programs developed during the course of this study are
coded in the FORTRAN 77 language and are tested against the available
compilers on the IBM 370 and AMDAH, 580 machines by VM operating
system. Minor changes are required to handle these programs on PC

FORTRAN compilers, mainly in file communication.

6.3 COMPUTER PROGRAM “"DMGTRUSS”

DMGTRUSS is a nonlinear finite element, FORTRAN 77 software
package of multidimensional trusses; i.e. bar system (one-dimensional
truss), plane truss (two-dimensional truss) and space fruss (three-
dimensional truss). It accounts mainly for material nonlinearity through
the concepts of damage mechanics. The structural geometry is updated
in the end of every load/displacement increment (if required). Thus,
the geometric nonlinearity is not considered neither in the Lagrangian
nor the Eulerian sense. A two noded truss element is used which is

suitable for prismatic members. The package has the capability of

analysing:

1. linear elastic materials;
2. hyperelastic materials;

3. elastic perfectly-plastic materials;
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4. elastic hardening materials;
5. rigid perfectly-plastic materials;
6. rigid hardening materials; and

7. general nonlinear materials with and without stress discontinuity.

DMGTRUSS can handle materials following some of the well-known
damage models. These models form a library which can be easily

expanded. Description of the main features of DMGTRUSS are

summarized hereafter.

6.3.1 General Material Nonlinearity

For each material, different behaviors in tension and compression
can be separately described. The most general stress-strain curve for a
given material can be subdivided into five zones (Fig. 6.1). FEach zone

is characterized by (Fig. 6.2):

1. Initial strain: the absolute value of the strain in the bheginning

of each zone, Lo (Fig. 6.2).
i

2. Initial stress discontinuity; three codes can be used to specify

the initial stress discontinuity in each zone through ISTEP (Fig.

6.3),

ISTEP = 0 initial discontinuity is zera

1 perfectly brittle material and stress drops to

zZero

2 initial discontinuity has a prescribed value,
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Sno , that is called STEP in the program. Sign
i

convention for the STEP value is illustrated in

Fig. 6.4,

3. Unloading path: five unloading paths are considered in

DMGTRUSS following the code KUNLC (Fig. 6.5),

KUNLC = 0 elastic unloading (typical for hyperelastic
materials)
1 ductile unloading
2 regionalized ductile unloading
3 brittle unloading

4 generalized damage unloading.

For KUNLC = 4, degradation of the initial modulus, Eo’ is

considered in a general polynomial form for materials oviginally

elastic,
g =Er¢,
E = E0 (1.0 - de) (6.1)
d =a_ + a;,n+t o r2 £.27, (6.2)
e o 1" 9 F s 21 .
d
where,
E the unloading modulus at any strain level,

E0 the initial modulus,
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d the damage variable associate with, E,

a. real coefficients generalized for the material response
in both tension and compression (i=0,1,2),

L the strain level,

fo the threshold damage strain.
d

4. the loading pattern:

The stress-strain relationship for each zone is considered within the

context of damage theory as follows (Fig. 6.2),

o = (I.O—da) Aoi T (6.3)
dg = Bo 7y + By 7 + By 7y (6.4)
i i i
Aoi = & Eo (6.5)
where,
Ao the initial modulus of 7zone, i related to the initial

tangent of the first zone Eo through the regional

multiplier E_i s

da the damage variable associate with regional secant

modulus, A,
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Bj real regional coefficients described for each zone in

tension and and compression, separately (i=0,1,2),

oS
=ty

initial tangent multiplier to provide the regional initial

tangent modulus,

byl

E the strain level with respect to each zone i, i.e.

It is remarkable that the alluded loading scheme makes it possible to
easily utilize a tremendous amount of idealized stress-strain
relationships found in the literature. For example, linear, bilinear,
trilinear, combination of multilinear and nonlinear, hardening and
softening behaviors with or without stress discontinuity can be

successfully employed as shown in Fig. 6.6.

6.3.2 Displacement Model

Two noded element is chosen. The element is straight, prismatiec,
and its geometry and displacement are culled to be linear, i.e.
isoparametric element. Fig. 6.7 illustrates the considered uniaxial one
dimensional element, of length L, orientation in both the local and the
global systems of axes, and the nodal degrees of freedom. The local
system is that for which the axis S coincides with the element's center

of gravity and the nodal displacements in the local system d1 and dZ’

by definition of a truss element, are in the S-— direction. In this local
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system the displacement, d, at any distance s from the nodal point 1,

is given by the following matrix equation:

(@ = [N| (@ , (6.6)
IN| - [, Ny, (6.7)
N, = 1.0 - {- , (6.8)
N, = 5, (6.8)
{d) = |d1 d2:]T (6.9)
where,

[ﬁl the interpolation matrix in the local system,

{a) the local nodal displacement vector,

ﬁi the interpolation functions in the local system conjugate

to the nodal point i , i= 1, 2.

The interpolation functions are, of course, generalized functions
whose value is unity at the conjugate node and zero at all other nodes.
In this case the interpolation functions and the natural coordinates are
the same. The global system is the structural Euclidean system X-Y-Z

at which the nodal displacements are given by the global matrix (7)),

where,



@) = |u1 vy wy u, Vg W, T (6.10)

in which u,, v; and wi,(i=1,2) are the nodal displacements in the X,Y

and Z- directions, respectively. The relationship between the two

(local and global) systems of axes is

X

Y (6.11)

in which Cx’Cy and Cz are the direction cosines of the S axis with

respect to the global system. In the same manner the nodal
displacements in both systems are related by
@ =111 @ (6.12)
in which [T| is a transformation matrix given by
C C C 0 0 0
ITp =] % y 2 ¢ C c (6.13)
o 0 0 0 X y y/
Substituting Eqn. (6.12) in (6.13) yields
{dy = [N] {& , (6.14)
INjy = [N]yT) (6.15)

where [N] is the interpolation matrix in the global system of axes.
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6.3.3 Strain-Displacement Relationship

The infinitesimal strain, (s}, for the chosen element is constant

along the length and can be expressed as

= {

Substituting Eqn. (6.13) into (6.14), yields

mla:

} (6.16)

r} = |B] @ (6.17)
in which [B] is the strain displacement matrix which may be easily

proved to be equal to

T
181 = | 55| 1T
_ -1 —l-l Cx Cy Cz 0 0 0
L Lijo 0 0 Cx N Cz
S _ _
=T [% c, C, Cx Cy ©C | (6.18)

The [B] is constant and consequently the incremental strain-nodal

displacement is
{dr} = |B] {d® (6.19)
where,
{dr} the incremental strain vector,

{d§)} the incremental nodal displacement.
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6.3.4 Tangential Modulus

The stress-strain relation in an incremental form can be expressed

as
{da} = [Ctl {dr) (6.20)
where,

{da} the incremental stress vector,

[Ct'l the tangential modulus matrix.

The tangential modulus matrix depends on the stress path, i.e. loading
unloading and reloading paths. With reference to the proposed canonical

uniaxial model, I'Ct'l can be easily derived as follows

1. for loading: |Ct| can be obtained by differentiating Eqn. (6.3)

with respect to {s} and utilizing the relation P=ETrg i. e.
i

6/64:=r‘./r“=?-.i, the following equation is arrived at

)
[%] = @&

‘ ad
_ . - a
(1.0 - d) A, — AT, = (6.21)

2. for unloading/reloading: In DMGTRUSS, several unloading
paths are allowed. For elastic unloading/reloading, the tangential

modulus is the same as for loading equal to Eo' For generalized
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damage unloading path given by Eqn. (6.1), ICtl can be obtained

in a similar way to that of Eqn. (6.21) by differentiation of Eqn.

(6.1) with respect to {r)={rg}, which leads to

[,Ctjl {ée}

E, (1.0 - d) (6.22)

For other unloading reloading paths, [Ctl is given by the path

slope which can be easily obtained since the other paths are straight

lines. In DMGTRUSS the maximum ever reached strain is stored in the

memory.

6.3.5 Tangential Stiffness

The tangential element stiffness matrix is evaluated according to the

relation derived in Appendix I as
_ ST
[Ktl = [ |B] ‘Ct| [B] dV (6.23)
- v . -

Since the element is prismatic and both the strain-displacement matrix
and the tangential stress-strain in the current local approach are

independent of the position, then Eqn. (6.23) reduces to

K| = AL BT [Ce| 1B] (6.24)

where,



361

IKtl the tangential stiffness matrix.

A the cross sectional area of the element.

6.3.6 Residual Forces

In DMGTRUSS, the idea in -calculating the element's stress is
completely different from that of elastoplastic behavior which was
described by Owen and Hinton (1980). As a matter of fact, there are
two main differences from the elastoplastic procedures. The first comes
from coupling the strain-damage scheme utilized in DMGTRUSS. That is
after the strain increment is obtained from displacements determined by
solving the structural incremental system of equations, the damage
parameter is updated either through a specified damage model in the
program library or through the generalized loading scheme. At this
stage, the stress-strain is mathematically known and there is no need to
try incrementally finding the element's stress. The latter algorithm is
straight forward (which represents the second main difference) and as
usual for carrying out this operation two loading cases are detected in

DMGTRUSS and are clearly distinguished:

1. The element's stress level at the current increment experiences
nonlinear behavior whether in tension or compression. This occurs
in either of two situations: (a) reloading or loading on the
nonlinear loading path or (b) unloading with sign reversal.
Coding is identified by the flag KUNLE = 0 (Fig. 6.8). For

demonstration purposes, a positive/negative zero is shown in this
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figure. The positive zero indicates tensile loading captured by
DMGTRUSS by the matrix LNCOD (IELEM, ISTRE) = 1 , both
arguments are described in the variables glossary (Appendix IV).
On the other hand the negative zero points out leading in the
compression side stored by LNCOD (IELEM, ISTRE) = 2.
Afterwards, a SEARCH-FIND scheme is established for multiple

zone stress-strain relationships. The total strain is updated and

searching process is executed till the proper zone is found, then

the element's stress is calculated.

2. The element's stress level at the current increment is on the

linear unloading/reloading path and the coding flag KUNLE = 1 is
raised (Fig. 6.8).

6.3.7 DMGTRUSS Structure

Program DMGTRUSS consists of seven main modules as shown in

Fig. 6.9:

1. Data input and initialization module: -calling two subroutines

DATA and INITAL.

2. Stiffness matrix and load vector module: this module formulate
the structural system of equations by communications with
MODTT, BMATT, INCDAT, STIFT and ASSEMB. Subroutine

INCDAT calls subroutine TEMP.

3. Solution module: for equation solution through subroutines
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END

DAMGE

i

Figure 6.9 Main calls in program DMGTRUSS
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GREDUC, BAKSUB, and/or RESOLV.

4. Residual force and convergence module: in this module elements'
stresses are computed by calling REFORT which gets assistance
from Subroutines STNFN, EQYNG and DAMGE. Residual forces are

calculated and convergence is monitored through subroutine

CONUND.

6. Instability module: this module communicate with subroutine

CHKBUK to check occurrence of instability in compression

members.

6. Geometric nonlinearity module: updating the structure geometry

in subroutine NGEOM.

7. Output module: output the information obtained for all nodes and

members in subroutine RESULT.

Depiction of the master program and the appended subroutines
requires familiarity with the variable and arrays used in the program.

A glossary of variables and arrays utilized in DMGTRUSS is provided in

Appendix IV.

6.3.8 DMGTRUSS Master Program and Subroutines

DMGTRUSS includes, besides the master program, 22 subroutines.
The main segment controls the calling of the (18) major subroutines and
is described by the Nasi-Schneiderman (N. S.) chart shown in Fig.

6.10. The function of every subroutine is given downwards.
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Start

Call DATA to read Input data

Loop over each load/displacement increments

Call BMAT to construct the strain-displacement matrices

Call INCDT to read the current incremental parameters

Call LOADT to construct the consistent load vector due to thermal loading
Call INCLOD to increment the applied load

Loop over each iteration

Call NONAL to set :ndicator to identify solution algorithm

Call STIFT to calculate elements' stifiness matrices

Call ASSEMB to formulate the structural stiffness matrix

Call GREDUC,BAKSUB, and RESOLY to solve for the unknowns
Call REFOR to calculate the elements' internal forces

Call CONUND to calculate the residual forces and hence chech convergence
Call RESULT to output the results

Call CHBUK to check elements instability

Call NGEOM to update the structural geometry
End

Figure 6.10 Nassi-Schneidermann chart for main calls from
master DMGTRUSS
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SUBROUTINE FUNCTION

ASSEMB*  Assemble elements' stiffness matrix, ESTIF into the

structural stiffness matrix, ASTIF.

BAKSUB* Back substitution stage in Gauss elimination solution

technique.

BMATT Formulate the elements' strain-displacement matrix,

BMATX and elements' length

CHRBUK Check occurrence of buckling in compression members

using Euler formula.

CONUND* Construct the residual forces array and monitor

convergence.

DAMGE Subroutine include damage models library in which the
damage parameter for loading and wunloading are
calculated. For some models the element's stress is

calculated. Details are given ahead.

DATA Read and write input data. Data communication are

discussed forward.

EFYNG Determine the effective linear unloading/reloading

modulus, EQYNG.

* Subroutine given by Owen and Hinton, 1980.



GREDUC*

INCDAT

INCLOD?*

INITAL*

LOADT

MODTT

NGEOMT

NONAL*

REFORT

RESULT

RESOLV*
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Guassian reduction of the structural system of

equations.

Read and write input data for incrementations and the

involved iteration.

Update the elements' loading arrays, ELOAD and
TLOAD.

Initialize some variables and arrays.

Construct the equivalent consistent load vector due to

thermal changes.

Initialize the elements' tangential modulus matrix to

initial modulus.

Update the structure geometry by adding the nodal
displacements to the cartesian coordinates of nodal

points.

Set indicator, KRESL, to identify type of solution

algorithm through NALGO.

Calculate the elements' internal forces. An illustration is

made in Fig. 6.11.

Output the program results. An output file layout is

shown in Data communication.

Resolving Gaussian reduction routine for Medified



369

Rewind tapes 2 and 3 )
Initialize element's internal loads vector, ELOAD

Loop over all elements

Find the element's material I.D. number

Read BMATX

Store element's nodal displacements from XDISP into ELDIS
Loop over stress components

Define variables KUNLE, STRAN, STNCU, DA, DT, KGASH
Calculate element's axial strain

Correct strain for thermal effects

Determine the initial load condition

Update the total strain

Call EFYNG to find the unloading modulus, EQYNG

Check for nonlinear elastic unloading

Check for sign reversal

Calculate element stresses for nonlinear unloading/reloading

Call DAMGE if a specific damage model is used

Calculate stresses for loading in case of multiple-zone stress-strain relationships by
SEARCH-FIND technique

Correct total load matrix TLOAD for temperature effects in form of change in
tangent modulus

Update DMATX on tape 2
Compute element's stress resultant.

Figure 6.11 Nassi-Schnelaermann char. for main calls from
subroutine REFORT
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Newton-Raphson solution techniques.

STIFT Construct the stiffness matrix of element by element,

ESTIF, and store it in Tape 1.

STNFN Evaluate the tangent modulus coefficient DIVFN.
TEMP Calculate the elastic modulus degradation due to thermal
effects.

6.3.9 Damage Models Library

DMGTRUSS damage library includes eight models among which are
the canonical elasto-plastic damage model for both concrete and steel.
Different combination of models can be used for the same material by
using IDMGS = 2. If IDMGS = 1 is used, the same damage model is
assumed to be valid for the material in both tension and compression.
The model number is input in Subroutine DATA and goes directly fto
PROPS (NMATS, NPROPS, NSTRE). In case that NPROS = 3, the input
integer indicates the damage model in tension whereas for NPROS =4,
indicates the model in compression. Depending on the stress status, the
value of LNCOD (NELEM) changes. The model number corresponding to

the current LNCOD (NELEM) is named under the index IDMGE. The

models library are as follows:
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IDMGE Damage model

1 Linear elastic-Perfectly brittle scalar model (Lemaitre, 1985).

2 Hognstad parabola by Krajcinovic and Silva (1982) scalar

statistical damage model for brittle materials

3 Mazars' scalar model (1984) for concrete.

4 Loland's scalar model (1981) for concrete.

5 Isotropic ductile scalar model (Lemaitre, 1985).

6 Krajcinovic and Fanella (1981) directed damage model for

brittle materials.

7 Canonical uniaxial model for concrete in both tension and
compression.
8 Canonical uniaxial model for steel.

The relevant damage parameter for each model is input in the array
PROPD (NMATS, NLDCN, NPROD, NSTRE). The damage parameters for
each model and its storage according to the wvalue of NPROD are
illustrated in Appendix V. Evaluation of the damage parameter in the
threshold-critical range assigned by each model is carried out in

Subroutine DAMGE. The provided library can be easily extended to

include other damage models.
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6.3.10 Load Reversal and Hystresis Loop

Although the cyclic behavior of materials is assumed linear
(canonical model and also in the general nonlinear material), the
hystresis loop is captured on the average when load reversal is allowed.
In order to provide such a characteristic for materials exhibiting
permanent deformations, the origin of the stress-strain curve should be
flexible to change position on load reversal. Fig. 6.12 illustrates, a
typical load reversal (compression to tension of concrete then tension to
compression) for which the hystresis loop is formed. A study of this

phenomenon is carried out through DMGTRUSS in Chapter 6 for

reinforced concrete.

6.3.11 Data Communication

Because of the uniaxial nature of the considered element, the
variables are considerably few and no pre- or post-processing is
considered. Communication is meant by the preparation input and
output data files. All read statements are free formatted to facilitate
data accessjbility. User instructions for Program DMGTRUSS are set

forth in APPENDIX V. In addition, a sample input file for DMGTRUSS

is given as an example.

6.3.12 Thermal Loading and Thermal Degradation

The consistent nodal forces due to thermal loading depend on the

tangential modulus as shown in Appendix I. As the material stiffness is
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Figure 6.12 Typical stress-strain curve exhibiting unloading

with sign reversal in DMGTRUSS
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altered throughout the damage process, the equivalent nodal forces
change as well. Despite neglecting this effect which tends to reduce the
thermal forces, it should be taken into account. This requirves updating
the loading arrays in each iteration for elements exhibiting thermal
changes. The latter task is carried out in Subroutine REFORT. The

mission is carried out by recalculating the additional loads induced by

the difference in stiffness.

Since the thermally induced loads are sensitive to the material
stiffness, abrupt changes in load application conditions (e.g. from
loading to unloading and vise versa) are advised to be incremented
gradually to avoid increased execution time. Application of thermal

loading solely is achieved by LDCSE = 2 while for combined thermal and

applied nodal forces by LDCSE = 3.

Initial strains and shrinkage strains can be treated in a similar way
as for temperature loading. A fictitious thermal change for an assumed

value of the coefficient of thermal expansion has to adopted.

Nonlinear material degradation due to temperature rise is taken into
account in Subroutine TEMP. Calculations are executed at the start of
the load/displacement increment. A damage law is used in the same form

as that given in Fqn. (6.1) but with an understanding that Eo is now

the current value of the elastic modulus stored in YOUNG (NELEM).
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6.3.13 DMGTRUSS Extendability to Other Applications

DMGTRUSS, as elucidated earlier, is constructed in a modular form.

This facilitates the extension of the package to the following further

applications:

1.

Fatigue problems by adopting a subroutine taking into account
the degradation (damage) due to either low or high cycle fatigue.

A jump in cycles can be easily included (Lemaitre, 1992).

Creep and visco-plasticity applications by appending time-step

algorithms with other necessary modifications (Owen and Hinton,

1980).

Creep-fatigue interaction by proper combination of the alluded

two applications (Chaboche, 1977).

. Dynamic problems to find the natural frequency and steady state

analysis of forced/damped vibrations (Mario Baz, 1980).

. An enhancement of instability analysis by expanding the CHKBUK

subroutine.

. Effect of rigid truss joints (Ghali, 1984).

A Geometric second order nonlinearity after the Lagrangian or

Eulerian formulation (Owen and Hinton, 1980).

. Analysis of axisymmetric membrane element for thin disks (Owen

and Hinton, 1980).
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6.4 COMPUTER PROGRAM "DMGPLSTS”

DMGPLSTS is a nonlinear finite element, FORTRAN 77 software
package for analysing two-dimensional plane stress problems. The
canonical damage model is employed to describe the material
nonlinearity. Infinitesimal strain theory is used. Several elements
are allowed to provide flexibility of modelling concrete and steel
components. In the case of concrete continuum elements are used
while for steel boom elements are developed. Interestingly,
thickness of continuum elements may be reduced to the extent
that interface elements or sheath elements may bhe reproduced.
The finite element formulation as well as description of the main

features of DMGPLSTS are summarized hereafter.

6.4.1 Finite element Formutation for Concrete

6.4.1.1 Proportionality of Loading

Inasmuch as the characteristic equations of the canonical model
are expressed, for concrete, in the principal space in both
incremental and total forms, a considerable reduction in the
execution time may be afforded if two separate subroutines are
developed for each ecase correspondingly. The first -case
represents nonproportional loading for which the principal axes
are rotating and the biaxiality ratio is varying during the

progress of loading. The biaxiality ratio is determined based on
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data from previous iteration of the current load increment.
Incremental equations should be employed in such situations. The
other situation takes place for proportional loading for which the
directions of the principal axes are fixed for conditions not
associated with unloading with sign reversal. In this case
adopting secant algorithms utilizing the total form eqautions is

allowed.

In comparison with other nonlinear schemes, the present
algorithm is much more sophisticated since softening and stiffness
degradation are presented and the various stress paths are
accounted for. In elastoplasticity, the unloading and reloading are
regarded the same and their condition are distinguished from
loading using scalar function which represents the yield surface
in associative models. In other certain nonlinear elastic models,
cases of loading and unloading/reloading are judged through the
increase or decrease of the first and/or second stress invariants.
In contrast, nonlinearity is thoroughly investigated through

loading, reloading and unloading in a more realistic approach.

6.4.1.2 Displacement Model

The program gives the flexibility to wuse four-noded
quadrilaterals, 6-nocded elements, 8-noded Serendipity elements
and 9-noded Lagrangian elements. Isoparametric formulation is
employed since both the geometry and displacements are

expressed by the same shape functions.
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{® = IN] (9}, | (6.25)
(o) = {3} (5.26)
N, 0 N, 0 N 0
1 2 n
N —_
[N lo 1 0 Ny 0 Ny
(6.27)
@ =[u Vi Wy vy .U Vg T
(6.28)

where,

[N] the interpolation matrix,

{n) the displacement vector,
{?) the nodal displacement vector,
u the displacement of any point inside the element in the

X-axis direction whose nodal values are u, ,i= 1, n,

v the displacement of any point inside the element in the

Y-axis direction whose nodal values are u, ,i= 1, n,

Ni the interpolation function corresponding to the node

i ,i= 1, n.

The interpolation functions are usually expressed in terms of the

natural coordinates £ and n to facilitate numerical integration and their
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forms for each node of the selected elements are listed in Table 6.1.
For the isoparametric representation, the coordinates of any general

point inside the element can be interpolated using the same shape

functions and consequently,

Xy
Yy
X
Yy
X N, 0 N, 0 N0
[Y} =l0 Ny 0 N 0 Nn
Xn
\Yn/

(6.29)

in which Xi and Yi are the coordinates of the ith node ,(i=1,n).

6.4.1.3 Strain-Displacement Relationship

The infinitesimal strain vector, {r}, for two dimensional elements can

be expressed in the X-Y space as,

r 3
6_u
EX X
. ov
{r}y = 1.y = W (6.30)
Txy fu v
ﬂy ax

\



Table 6.1 Propertics of the clements developed in DMGPLSTS.

z Element { Number | Material | Numerical Element ' Element
i LD. jofnodes| tvpe !integration| illustration in l mapping in
i rnumber per rulc X-Y system natural space
{ clement \
| l
P2 2 stecl np ./ ‘ e
' |
; | ll
Xi 3 3 stecl i np //. | e ey
i I
L ; |
l ! \ ‘ un
. 5 i 4 interface ’ npx1 % i —
o T
| | o
]
o6 L 4 concrete | npNip Q |
: l i |
’ | : |
7 ; 6 iaterface | mpxid & L |
! L |
i i P '
; ! : ‘; i !
Lo | 1 | b
8 L6 concreie | Mpxip \n//«\ !
| | | - E
| | L T
-1t 08 lconcrete ! mpxmp | ; ] i
| | ‘ e S ke
2 09 concreic | mpxmp | 4 ! Pt i
: ! ' | y N ;
l | | \‘\-«-——/\' j |

* 1ip is the number of sampling points for one-dimensional integration rule

JRO
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Substituting Eqn. (6.25) into (6.30), yields

{r} = B} (@ (6.31)

where |B] is the strain displacement matrix which may be easily proved

to be equal to

IBI=1 B |P2] [Ps] [Pn] ] (6-32)
where the submatrices lBi’l are give as
N, 0
X 5Ni
lBi" =10 cy (6.33)
; (?Ni N,
ay 0x

The infinitesimal strain-nodal displacement matrix [B] is constant and

consequently the incremental form can be written as
{de} = [B] {dif} (6.34)
where,
{ds) the incremental strain vector,
{dF) the incremental nodal displacement.

The elements of the |B| matrix are composed of the cartesian
derivatives of the interpolation functions. Using the chain rule, one

gets
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! i 6x i B
—_— = _— + —_
At ax ay a3 (6.35)
and
ﬁ _ i}Ni x N (:Ni ay (6..36)
an ax iy iy dy '
Arranging in a matrix form
|| ok ax .
5 Ni = ox &y 3Nl (6.37)
-W cn a —(7&-‘
= [J] (;; (6.38)
CiN e
1
¢y

by:
x oy
ip=-1% = 6.39
I l T _GZ_ iy- ( o )
én o
n ¢N. n /N
i, iy
" | n aN, n N, (6.40)
i i
—_—X -y
LB = L

The cartesian derivatives are obtained by inverting Egn. 6.37 which
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yield
X 1 g
= 1J .
N, 191 N, (6.41)
1 _1
cy am

where the inverse of the Jacobian matrix can be shown to be

1 (-:x ("X
[J]1 - = a o (6.42)
y iy
A _ Ly
1 a £
- ) 6.
NT  |_x  x (6-49)
am cE

6.4.1.4 Tangential Relations
The stress-strain relation was expressed in an incremental form for

general loading as
d v = o 5] .44
{“p} |Cpt| {%p) (6.44)

where,

{dr'p}3x1 the incremental strain vector expressed in the principal

plane,
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{dcp}3x1 the incremental stress vector expressed in the

principal plane,

ICPI the tangential modulus matrix developed in the
t
Ix3

principal plane having the on-axis orthotropic form:

D D 0.0

11 12
|CPt| -|p, D, 00 (6.44")
: D

0.0 0.0 33

The tangential modulus matrix depends on the stress path, i.e. loading
unloading and reloading paths. It is advantageous to express these
relations in the X-Y system of axes for use in Newton-Raphson
algorithms. The incremental stress-strain relation in the X-Y plane can

be assumed to have the following form
{do} = ‘Ctl {dr} (6.45)
where,

{dr'}:}*{l the incremental strain vector expressed in the X-Y

plane,

{dn}sxl the incremental stress vector expressed in the X-Y

plane.

ICtl the tangential modulus matrix transformed to the X-Y
3x3

plane. having the general off-axis orthotropic form:



Qll QIZ QIS
[C¢] = [z w2 Qs (6.45")
“le 26 QGG

Assuming the angle between the X-axis and the major principal axes to

be 0, it can be shown that the stress transformation law holds as

{do} = ITG_II {dcrp} (6.46)
where,
IT .,1 I the stress transformation matrix from the principal
S I3x3
plane to the X-Y plane and is given by
% (1+cos(20)) % {1-cos(20)) ~sin(20))'
T | = % (1-cos(20)) -;— (1+cos(20)) sin(20))
g 1
% sin(20) -5 sin(20) cos(20))
(6.47)
Similarly, the strain transformation law can be written as
dr. = 7. .
(p) = [To] @ (6.13)
where,
lTr’l the strain transformation matrix from the X-Y plane to
~13x3

the principal plane and is given by



386
1

—:1,‘- (1 +cos(20)) —% (1-cos(20)) Esin(zn))
ITr.I = % (1-cos(20)) % (1+cos(20)) —%sin(z()))
-sin(20) sin(20) cos(20))

(6.49)

Using Eqn. (6.48) in (6.44) and substituting the product in Eqn.

(6.46) and comparing the result with Eqn. (6.45), the tangential moduli

can be shown to reduce to
C,1 =T ) C T 6.50
1% = |, 1] || 17 (6.50)

The elements of the two moduli matrices presented in (6.50) can be
proved after carrying out the tensorial multiplication to have the

following form (Tsai and Hahn; 1980):

Q,| [cf s 20282 1c?s?
Q. s* c’ 2c2s? ac?s? D,,]
Q.|  |es? c¥s? ct+s’ ~4c?s? D22
le - c2s? c?s? _9c2s? (CZ—-SZ)Z D12
Qs c3s -cs®  cs®-c®s  zcsd-cds) D.s
s cs? -c®s  c¢%-cs®  ac’s-csh
(6.50")

where C and S are the sine and cosine functions of the angle 0,

respectively.
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6.4.1.5 Tangential Stiffness

The tangential element stiffness matrix, thl’ is obtained by

numerical integration, i.e.

K| = | BT |C¢| 1B] Qv (6.51)
‘ \Y
n-1 E-t T
= j 5 [B] ICtl [B| [J] t dE dy (6.52)
n -1 & 1 :
n_n
= T .
i-l1j31 : :
(6.53)
where,
np the number of integration points,

(E'i’“j) the position of the integration point in the natural

coordinate system,

Wm the weighting factor of Gauss-Legendre integration rule

at the mth sample point,

t the thickness of the element.
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6.4.1.6 Residual Forces

In DMGPLSTS, a similar logic to that in DMGTRUSS is foliowed for
calculating the internal stresses, their equivalent nodal forces and the
residual forces of each element but in the principal plane. Two
characteristic quantities should be determined for applying the canonical
elastoplastic damage law:

(1) the orientation of the principal plane, and

(2) the biaxiality ratio.

For proportional loading these quantities are fixed through the
whole loading history from the first instance of load application except
for the case of unloading with sign reversal. In such a situation, the
principal axes rotate 90 degrees, i.e. the major and minor directions
.switch. Inspection of the various stress paths -loading, wunloading or
relnading whether with linear or nonlinear behavior is detected only

through the major component since the same status is expected to apply

for the minor.

For nonproportional loading, the orientation of the principal plane is
fixed over a certain iteration and the biaxiality ratio is evaluated based

on the previous iteration.

6.4.1.7 Reduction of the Concrete Element to Interface Element

Consider the six-noded element of constant thickness t shown in
Fig. (6.13). Assume for simplicity without loosing the generality that

the local s-n system with three fictitious nodes 1’,2’, and 3’ going along
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gl

Figure 6.13 Reduction of concrete element to interface element
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the s-axis. The local strain vector in the local system may be written

as

r-t ("t
ov
(8‘.} - T.n = -g (6 . 54)
Ttn L
| an at

Inasmuch as the element is linear in the n-direction, then any
derivative of any arbitrary function, f, with respect to n will be just
the difference of the function on the n-axis at its intercepts with the
sides of the element over the thickness; i.e. for example

a,

_ 1 _

ey (fn-l f‘l .)

=L ¢ 6.55
= & @ -f) (6.55)

Therefore, the derivative of f with respect to n becomes

. &, AL,

1 . . . .
T [N1(fs_r1) + Nz(fs-—f?_) + N3(f4—f3) (6.56)

Assume the interpolation functions are expressed as the product of

two functions NExN“. Therefore, along the side containing the nodes
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1,2 and 3, where n=-1, N“=1/2(1—n) and along the side containing
the nodes 4, 5 and 6, where n=1, N]]:I/Z(l t1). The functions N& at
any of the nodes of either side will be the same as those of the
fictitious nodes.

Consider a numerical integration rule of the order 1xn_ rather than
the conventional rule npxnp. The sampling points in this case will
coincide along the s-axis (n=0), where Nl] =1/2 and
Ni:1/2N£_=1/2Nj" y=1,3. Thus, the derivative with respect s of the

arbitrary function { will reduce to

6 ¢N,
of i
(=) = Y == f
as ile os 1
= 1 ifﬁé £
2 1 s 1
de' t‘1+l‘6 dNZ' f2+f5 st’ f3+f

4
= g () g () b g () (6.5T)

Application of the integration rules given by FEqns (6.56) and (6.57)
leads exactly to the same results obhtained by Ziraba (1993) for the
strain-displacement matrix given by Eqn. (6.54). In his work, the
interface element was developed separately apart from the concrete
element. Moreover, by the suggested reduction technique the matrices
will be automatically obtained in the x-y system and no need to make

any transformation for the stiffness calculations.
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6.4.2 Finite Flement Formulation for Reinforcement

6.4.2.1 Material Nonlinearity

The damage law developed in Chapter 5 is used for the reinforcing
steel in DMGPLSTS. Although the program is developed for biaxial
states of stress only uniaxial idealization of the material behavior is

considered. This is attributable to modelling reinforcement by boom

elements.

6.4.2.2 Displacement Model

The boom element considered herein 1is a two-dimensional
isoparametric element which is composed of multiple nodes (greater than
twe) and internally carries only an axijal stress component. Such an
element is suitable for idealizing cables, prestressed tendons, and steel
reinforcement. The element used in DMGTRUSS represents a special
case of the more sophisticated boom element. Fig. 6.14 shows, as an
example, the picture of a three-noded boom element in the X-Y plane
and its mapping in the % plane. Choosing the S -axis going along the
element, the axial displacement at any point at distance s from the

origin is related to the displacement components in the X-Y plane by

the relation

@ = |T| i, (6.58)

where
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X
L 6
——
(b) 1 2 3
! y .’
£ =-1 E'=0 £ =1
Figure 6.14 Three noded isoparamteric element as an example
for boom element: a) Global space and b) Local

space
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{d}lx1 The displacement vector along the S axis,
{q\)le The displacement vector in the X-Y plane and is
expressed as

(o} = |u vit, (6.59)

and where

I-Tllxz is a transformation matrix from the S system to the X-

Y system of axes and is given by
[T] = |Cx © (6.60)

in which Cx and Cy are the direction cosines at the point considered.

The validity of Eqn. (6.58) can he easily checked using vector algebra

by noting that

u=d Cx’ (6.61)
and

v=dC (6.62)

Substituting from Eqns (6.61) and (6.62) in Eqn. (6.58) get

d = d (c; + c;) (6.63)

Keeping in mind that



_ X _
Cx = cos u (6.64)
and
c. = W - sina (6.65)
y s

Eqn. (6.63) is, thus, reduced to

d = d (cos® « + sin® u) (6.66)

which represents an identity. Accordingly, the nodal displacements can

be described, for the ith node, by

{9} = lATil {4} > (5.67)

Contrary to linear elements, the transformation matrix need not constant

over the element and is expressed,for the ith node, as

[T1| = ch Cyil (6.68)
Using Eqns. (6.64) and (6.65) in Eqn. (6.68), get

iTi| - l(-‘-’giw] (%)J (6.69)

For isoparametric formulation, the cartesian coordinates are

expressed by

= y'N. x,, 6.70
x = ) Ny % (6.70)
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and

(6.71)

in which Nj = Nj(i) are the interpolation functions associated with jth

- 1, n. Therefore, Eqn. (6.69) becomes

node, j =
T.| = TN, x) (L YN, o 6.72)
Tl =] & 2N Ge 2N (6.
, Il il
which may be further reduces to
_ n ("Nj n :’Nj
[.Ti| = ( ]Zl = X ]Zl = Yii (6.73)

Determination of the derivative i( )/is is obtained using the Jacobian as

will be shown in the next section.

Eqn. (6.67) can, now, be written in a more elaborate form as

(@} = |T] (7 (6.74)
where,

@ =4 a, a5...... a it (6.75)

{o} = [“1 Vi My Vy Uy Vg oo u, vy T, (6.76)
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|T1| 10hxa  1001xo 1011xa
1X2 — 0 . e . 0
|T| 1011xa 1011x2
1911x2 2hxe R
10| 10] |5 Pl
1x2 1x2 1x2 o o
[T] = | - - (6.77)
X |T|
1911x2  [0lixa  10l1x9 nlyxa

The displacement at any point can be related to the nondal values by

the interpolation functions as follows

(@ = [N] (@, (6.78)
where,
9 Nj N (6.79)
for the S-system and
(o) = IN| &, (6.80)
where,
[IN| = I N Tlggg NolTlgy Najllgeg —wvene- N 1 Tiyyn | (6.81)

for the XY-system. Combining Eqns (6.78) and (6.74), the axial

displacement is, thus, related to the nndal displacements in the X-Y

plane by

@ = [F| 1T @ (6.82)
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6.4.2.3 Strain-Displacement Relationship

The infinitesimal axial strain, {z}, for the boom element is expressed

as

N ad

0 = {5} (6.83)
_ 4 lﬁ' T =
= =g ! [T {m (6.84)

which can be written in a matrix form as,

{r} = | B} {m} (6.85)
This relation holds incrementally such that

{dc) = [B] (dF) (6.86)

in which [B]| is the strain displacement matrix which may be easily

proved to be equal to
|B|=' lBll [Bz'l ,B3| ...... IBn| | (6.87)

in which the 1x2 submatrix [Bi" i=1, n is given by

|B;| = (= N[ 1Ty

T
ﬁNi (i jil X.). + N (51' iilil X.).
as i1 s n 1 ]-'1 s 11
3m(im’yy+N(ef% v
as {1 as 11 1 ].Lf] as? n
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(6.88)

Consider now an infinitesimal element whose length is

ds = V(dn? + (dy)? (6.89)

Since the coordinates are expressed in a parametric form in terms of £,

the differential coordinates are

_ X
dx = = dx, (6.90)
and
ay = & g, (6.91)

Using Egns (6.90) and (6.91) in the formulae of the differential

coordinates then

n /N,
dx = (V ]*{) a, (6.92)
7E
31
and
n N,
dy = (}: % y) a:, (6.93)

Consequently, the differential length given by Eqn. (6.39) reduces to

0y
(Z Z %) Z £l vy o
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J n W n N, -
=3, P;ij) ), =yt (6.94)
i1°-

as _ Vv n N, 4 n Ny o

= 2= = Y . : . .
J & (]‘e1 7 xl) 4 (]2'1 % yJ) (6.95)

) .. é) os
ax s &

- 380 (6.96)

_ 1 4
-2 4 (6.97)

v
Y
—
~—
|
3
o
g3 )
L~
—
)
n
g

e
X3

1 @0 LA
T ar & E (6.98)
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The natural derivative of the Jacobian can be directly obtained from

Eqn. (6.95) by simple differentiation which leads to

2 2
N,  n 0N, n N, n °N,
A _d’s _ 1| 3N j C_dyy iy —
Moo ds _ 1 xy () —dxa + () Hyy ) —dyy
A S ;Zi & ;Zi A ;zl O a

(6.99)

6.4.2.4 Tangential Modulus

The stress-strain relation in an incremental form can be expressed,

similar to the truss element in DMGTRUSS, as

(do} = [Cy] (dr) (6.100)
where,
{do) the incremental stress vector,
ICtI the tangential modulus matrix.

The tangential modulus matrix depends on the stress path, i.e. loading
unloading and reloading paths. With reference to the proposed steel

uniaxial model, lel can be easily derived as what follows, for :

1. loading : |Ct'| can bhe obtained by simple differentiation and

considering that the initial total modulus is equal to the initial

elastic modulus, hence
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_ {da})
lCtI {7}
(ﬁda
= (1.0 - da) Eo - E0 r o (6.101)

21. linear unloading/reloading : Since no stiffness degradation is

reported, the tangential modulus is constant, therefore

[C¢| = Eo (6.102)

6.4.2.5 Tangential Stiffuess

The tangential element stiffness matrix, th|, is obtained by

nunerical integration, i.e.

- T

IKtJ ‘j,|B| ICt] |B] dV (6.103)

£ T
= ;LIB' |C¢| IBIJ A a (6.104)
n
S A S W [ REN T [Cua ] | BE| I 6.105
where,
np the number of integration points,

E. the paosition of the ith integration point in the natural
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coordinate system,

Wi the weighting factor according to Gauss-Legendre

integration rule at the ith sample point,

A the cross sectional area of the element.

6.4.2.6 Residual Forces

The same methodology utilized in DMGTRUSS is followed herein for
the boom element but with minor changes. That is a particular damage
model is considered and no need for the multiple zone algorithm any
more. To summarize, the following steps are considered:

(1) The incremental displacements are calculated,

(2) The total as well as the incremantal axial strains are evaluated,

(3) Loading, linear wunloading/reloading, wunloading with sign

reversal or reloading to the loading path are investigated.

{(4) The internal stress are calculated according to the damage

rule,
(5) The internal forces for each element are estimated.

(6) The equivalent internal nodal forces are evaluated then the

out-of -balance (residual) forces are calculated.

6.4.3 DMGPLSTS Strucfure

Program DMGPLSTS consists of five main modules as shown in Fig.

.15 :
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Figure 6.15 Main calls in program DMGPLSTS
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1. Dynamic dimensioning, data input and initialization module

calling three subroutines DIMEN, INPUT and ZERO.

2. Stiffness and load formulation module : this module formulate the

structural system of equations by communications with LOADPS,
INCREM, ALGOR, STIFFP. Some of these subroutines call other

modules of a lower level.

3. Solution module : for assembly to the structural level and solving

the system of equations using the frontal technique in subroutine

FRONT.

4. Residual force and convergence module : in this module elements’
stresses are computed by calling RESIDU which gets assistance
from Subroutines CANONN, CANONP and REINFR in which the

residual forces are calculated and convergence is then monitored

through subroutine CONUND.

5. Output module : output the information obtained for all nodes

and members in subroutine OUTPUT.

Depiction of the wmaster program and the appended subroutines
requires familiarity with the variable and arrays used in the program.

A glossary of variables and arrays utilized in DMGPLSTS is provided in

Appendix V.

It is remarkable that the constitutive equations are formulated in
two forms: (1) conventional form and (2) canonical form. In additions

the moduli matrix are shown to be equivalently expressed in two
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spaces: (1) the Eculidean space (X-Y space) and (2) the principal
space. The possible forms and ocurrence of the moduli matrices in

various planes in the program is illustrated in Fig. 6.16.

6.4.4 DMGPLSTS Master Program and Subroutines

DMGPLSTS includes, besides the master program, forty nine

subroutine. The main segment controls the calling of the major

subroutines (11). The function of every subroutine is given
downwards.
SUBROUTINE FUNCTION

ALGOR* Set equation resolution index, KRESL.

BIAXL Evaluates the biaxiality ratio for concrete elements

following the canonical model.
BMATPS* Evaluates the strain-displacement matrix

CANONN Evaluate the internal stresses for concrete elements in

the case nonproportional loading by the canonical

damage model.

CANONP Evaluate the internal stresses for concrete elements in

* Subroutine given by Owen and Hinton, 1980.
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Evaluate the moduli matrices in
the x-y plane in the
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Update stiffness matrices
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Y
Solve for the unknowns

T

Y
Calculate the incremental
and total strains
v
Transform quantities into
the principal space
Y
Check loading and linear
re-/un-loading status
R

Y
Determine the current
damage parameters

Evaluate updated moduli l
—1 matrices inthe principal plane
in the canonical form —/
Y
Calculate internal stresses
in the principal plane
Y
Transform the internal
stresses to the x-y plane

Y

Y
Evaluates the residual
forces
Evaluate updated moduli
Ly matrices in the principal plane
in the conventional form
Figure 6.16 Possible forms and occurrence of moduli matrices in

various planes
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the case proportional loading by the canonical damage

model.
Check the main control data.

Check nodal coordinates, elements incidences, frontwidth

and data for restraint nodes.

Carry out the necessary transformations for mapping

from the principal space to the XY-plane.

Construct the residual forces array and monitor

convergence of the iteration process.
Determine the principal values of a plane tensor.

Transform a plane tensor by rotation through an angle

0.

Calculate the damage parameters for the caunonical model

for concrete.

Calculate the damage parameters for reinforcing steel.

Multiply the stress-strain matrix by the strain-nodal

displacement matrix.

Evaluate the determinate of square matrices up to 3x3

rank.

Calculate the differential volume for use in numerical

integration.
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409

Preset variables associated with dynamic dimensioning.

Read and write the remaining data cards on any error

detection by either CHECK1 or CHECK2.
Undertake equation solution by the frontal technique.

Set up the Gauss-Legendre integration constants,

iteration.

Carry out the necessary transformations for mapping

from the XY-plane to the principal plane.
Calculate the undegraded canonical moduli.

Increment the applied loading and/or the prescribed

displacements.
Accept most of the input data.

Evaluate the Jacobian matrix and the cartesian shape

functions.

Determine stress flag: 0 for neutral, 1 for tension and 2

for compression.
Evaluate the consistent nodal forces for each element.
Evaluate the inverse of a square matrix.

Evaluate the stress-strain matrix based on linear elastic

behavior.
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Define the number of nodes per each element type,, the
number of stress components, the number of element

variable and the proper numerical integration rule.

Interpolate the mid-side nodes of straight sides of 8-

and 9-noded elements and the central node of the latter.

Output the program results. An output file layout is
shown in Data communication.
Determine the peak functions N and N (i—=1,2) of

i i
any stress quadrant for a given biaxiality ratio.

Determine the stress quadrant for plane stress states.

Evaluate the internal stresses for steel elements by the

proposed uniaxial damage model.

Evaluate the elements' stresses and calculates the

equivalent internal nodal forces.

Switch the first two records of a vector in case of

unloading with sign reversal for proportional stress

history.

Fvaluate the shape functions and their natural

derivatives for concrete and steel elements.

Evaluate the tangential stiffness matrix for each element

in turn.
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SWITCH Carry out the proper modifications in case of unloading

with sign reversal for proportional stress history.

ZERO Initialize various arrays to zero.

6.4.5 Load Reversal and Hystresis Loop

IN DMGPLSTS the unloading path is assumed to be linear and the
residual deformations corresponding to stress free conditions can be
reasonably obtained. Sign reversal of loading conditions is allowed in a
similar manner as developed in DMGTRUSS. These characteristics allows
for extending the program to analyse repaired structures in which the

determination of the degree of damage due to preloading is of prime

jmportance.

6.4.6 Data Communication

Pre-processing is considered herein for data manupilation. Program
MEGEN2D, which was put to use by Mr. A. Shazali but with minor
modifications, is used for preparing the two dimensional node generation
in the cartesian coordinate system. It allows for the description of the
element topology by adopting the proper connectivity and element J. D.
number. User instructions for Program DMGPLSTS are set forth in

APPENDIX VII. A sample input file for DMGPLSTS is given as an

example.
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6.4.7 DMGPLSTS Extendability to Other Applications

DMGPLSTS, as elucidated earlier, is constructed in a modular form.

This facilitates extension of the package to the following further

applications :

1. Model the elastoplastic damage behavior of yielding materials and
those of unilateral damage behavior for which the constitutive

relations are derived in Chapter 4.

2. Include more damage models for concrete aund also for other

materials.

3. Generalize the program to three-dimensions and also to two-

dimensional plane strain and axisymmetrical cases.

4. Include damage models for interface materials to (facilitate
modelling of soil-structure interaction as well as various repair

techniques.



CHAPTER 7
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CHAPTER 7

APPLICATIONS

7.1 GENERAL

Applications of the canonical model to boundary value problems are
undertaken wusing the (finite element programs deseribed earlier.
DMGTRUSS is employed to predict the cyclic behavior of plain concrete
under reversed loading and the range of tension stiffening under
uniaxial loading. Finite element predictions of reinforcing steel modelled
by the proposed damage model and as elastic perfectly plastic are
compared against experimental data. Reinforced concrete idealized as a
bundle system is then investigated for different ratios of reinforcement
under tension and compression. DMGPLSTS is utilized to predict the
response of plain concrete panel subjected to several load combinations.
Fundamental cases of loading applied to reinforced concrete are then
studied. These include uniaxial tension, perfect bond characteristics,
and pure bending. Finally, three point loading of plain concrete as
well as longitudinally reinforced concrete beams are analysed in addition
to the steel/concrete bond problem. The results are compared with
experimental values besides the available solutions by other
investigators. Finally, the predictions of the model are calibrated
against code provisions for the case of reinforced concrete beams with

and without shear reinforcement under three and four point Inading.
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7.2 FEATURES CAPTURED BY DMGTRUSS

In most of the applications two different concrete grades are used;
namely Grade 28 and Grade 40. The different parameters calculated
inside the program along with the corresponding formulae for these two
types of concrete are listed in Table 7.1. The finite element predictions
for the behavior of both plain and reinforced concrete members are
given hereafter. These include the response of plain concrete
components subjected to reversed loading, the range of tension
stiffening of plain concrete under uniaxial loading, the uniaxial tension
of the reinforcing steel then the behavior of reinforced concrete

structural members to uniaxial tensile as well as compressive loading.

7.2.1 Plain Concrete Under Reversed Loading

A one meter long plain concrete member of cross section 250x250 mm
of Grade 28 is subjected to reversed loading. At the first instance a
tensile loading is imposed then fully unloaded. In the sequel a
compressive loading is applied then fully unloaded and finally the
member is again loaded in tension. The displacement of the free end of
the element is incremented in order to simulate strain-controlled
experiments. The global stiffness matrix is updated in every iteration
of every load increment. Fig. 7.1 illustrates the response of the

member to the given loading history. The results indicate that the

program captures the following features:

1. The pre-peak nonlinearity as well as the post-peak softening

regime.
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2. Flow stress degradation as the unloading slope is being reduced
and not poling to the zero-zero point.

3. Translation of the origin of the stress-strain curve along the
strain axis for both the tensile and compressive responses.

4. Reduction of the peak strength in the second tensile loading as
affected by the irreversible damage experienced in the first
tensile loading cycle.

5. Behavior in tension is entirely different from that in
compression.

6. Moduli degradation are independent in tension and compression.

7. Residual deformations can be determined at any stress level.

7.2.2 Tension Stiffening of Plain Concrete Under Uniaxial Loading

Two vertical 150X150X1000 mm plain concrete elements of Grade 28
connected in series are restrained at both sides. An axial load is
applied at the mid-point thus producing tensile stress in the upper
element while compressive stress is developed in the lower element. The
response is shown in Fig. 7.2 where the results are compared with the
same system assuming linear elastic response. The behavior is almost
identical for only a limited range of deformation which is approximately
up to 5% of the peak central deflection. Another comparison is made
considering only the stiffness of the lower element. It is noticed that
both behaviors start to coincide with each other at delormations about
30% of the peak central deflection. This illustrates the range of tension

stiffening in axial loading where the two curves become identical when
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Figure 7.1 Finite element prediction for the response of plain

concrete to reversed loading
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softening of the tensioned member reduces its tensile capacity to almost

zero. The ultimate load Pult predicted by the program is 630 KN. This

load produces a compressive stress Sult in the lower element, whose

cross sectional area is A, equal to

P
_ Pult _ 630,000 _
Suit T A 22,500  CoMPa (7-1

which is the same value as the characteristic strength for the used
concrete. The overall behavior in the post-peak region shows that

softening of the system is picked up by the model.

7.2.3 Uniaxial Tension of Reinforcing Steel

A steel element of Grade SS41 is subjected to a uniaxial tensile
force. The solution is first carried out wusing the proposed damage
model using the material parameter o« equal to unity which means that
the yielding plateau is horizontal. The results are shown in close
agreement with the experimental data by Kato et al. (1990) as depicted
in Fig. 7.3. The response assuming linear elastic-perfectly plastic
idealization is obtained by finite element solution with deflection
controlled incrementation. It is clear that such an idealization is quite a
crude assumption for the response at large strain levels. The same type

of steel will be considered in the following applications to reinforced

concrete by DMGTRUSS.
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7.2.4 Tensile Loading on Reinforced Concrete

A bundle system composed of a concrete element of area Ac and a
steel element of area AS, connected in parallel, is subjected to tensile

loading. Both elements are joined to the same nodal points to allow
convergence at relatively high levels of deformation. The concrete
element is made of Grade 40 and has the dimensions 150x150x1000 mm.

The steel percentage AS/Ac is varied in the range of 0.0 to 3.0%. For

this idealization of a reinforced concrete member under tensile loading,
the load-deflection curve is shown in Fig. 7.4. It is apparent that the
influence of concrete softening on the total response reduces as the
reinforcement ratio increases and a considerable gain in the tension
carrying capacity may be achieved. For the case of plain concrete

(As=0.0) the cracking load Pcr as predicted by the program is about

87.75 KN. This load produces a tensile stress in the concrete member

equal to

P
_ Yer _ 81,750 _
O or A 35505 = O-9MPa (7.2)

which is almost the same value of the tensile strength for the used
concrete. After cracking, for all percentages of steel reinforcement, the

predicted final loading carrying capacity of the system Pf tends to

approach a value which produces stresses in the steel element very

close to the yielding stress of the used steel Oy



270

3.0 .

2

225

180 -

Lood, KN
I
]
1

[f4]
o
1

B
i

HO 20 40 60 .80 1.00
Deflecilon, mm

Figure 7.4 Finite

element prediction for
reinforced concrete to uniaxial tension

the

i 1
1.20 140 160 1.80 2.00

response

422

of



423

7.2.5 Compressive Loading on Reinforced Concrete

A similar bundle system to that considered for tensile response of
reinforced concrete is subjected to uniaxial compression. Assuming
deflection controlled incrementation as before the response is plotted in
Fig. 7.5 where the stress is considered as the total load per unit
concrete area. It is remarkable that the trend of the behavior is
mainly governed, over the whole domain, by the compressive

characteristics of concrete. For the case of plain concrete (_As=0.0),
the ultimate load Pult as predicted by the program is 900 KN. This load

produces a compressive stress Sult in the concrete element, whose cross

sectional area is A o’ equal to

P
_ _ult _ 900,000 _
“ult T R 27,500 _ [OMPa -9

which is the same value as the characteristic strength for the used

concrete.

7.3 FEATURES CAPTURED BY DMGPLSTS

Fundamental modes of loading for two dimensional structural
components are investigated. These include in-plane loading of plain
concrete panels under different stress paths, wuniaxial tension of
reinforced concrete members, perfect bond characteristics of reinforced
concrete and eventually simple bending. The objective is to determine

the most suitable finite element parameters for solving sophisticated
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Figure 7.5 Finite element prediction for the response of
reinforced concrete to uniaxial compression
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problems such as the proper nonlinear solution technique whether initial
stiffness or other modified Newton-Raphson methods, the appropriate
integration rule and the suitable algorithm for calculating the internal
stresses and consequently the residual forces whether the proportional-
secant or nonproportional-tangential algorithm. In addition, this aims at
giving more understanding of the mechanical behavior of some structural

problems which have not been clearly explained in the literature.

7.3.1 In-Plane Loading of Plain Concrete Panels

A unit square plain concrete panel is subjected to in-plane loading
as shown in Fig. 7.6a. The grade of of the concrete used is Grade 28
with Poisson's ratio of 0.18. Due to the symmetry of the problem, only
one quarter of the panel is considered in the analysis as shown in Fig.
7.6b. Nodal displacements perpendicular to the axes of symmetry are
restrained. To simulate strain-controlled experiments, the displacements

of the two edges S and Sv are incremented in the horizontal and
vertical directions, respectively. Correspondingly, uniform stresses h
and Ty in the horizontal and vertical directions, respectively, are thus

indirectly applied. The loading in the two directions is incremented in a
preportional scheme. The algorithm developed for proportional loading
using secant approach is utilized since pre-defined stress paths are
followed. Several Joad combinations as imposed on the panel are
investigated. In all cases the applied stress in a certain direction is

plotted against the displacement in the associated direction, i.e. O~ Sh
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and ov—ﬁv. The study cases considered herein include the following:

(1)

(2)

(3)

(4)

Equeal biaxial tension with stress biaxiality ratio of p,=1. The

panel is found to withstand tensile stresses in both direction as
high as the tensile strength of the concrete used. Nonlinearity

of the response is quite clear with apparent softening behaviors

as shown in Fig. 7.7.

Uniaxial tension with stress biaxiality ratio of p,=0. Although

the response in the vertical direction is slightly different from
the corresponding in the [irst case in the pre-peak region, the
maximum carrying capacity as well as the softening behavior
are almost identical as shown in Fig. 7.8. On the other hand,
the response in the horizontal direction (not plotted) ccincides
with the displacement axis since the applied stress in this
particular direction is null.

Equal tension-compression such that the stress biaxiality ratio

is maintained at a value of Ro=R,=-1. The maximum absolute

load carrying capacity of the panel in this case is slightly less
than the tensile strength as shown in Fig. 7.9. The peak

strength is about 0.92[t' and the absolute displacement

corresponding to the peak is about 0.61 that of the case of
uni-directional tension. Strain softening in the post peak
behavior can be noted in the post peak descending branch.

Tension-compression such that the following condition Iis

satisfied ovlft'= —oh/fc' thus maintaining a stress biaxiality



(5)

(6)

(7)

128

ratio R, = -0.107. It can be noted that the peak tensile capacity
is considerably reduced to almost 0.56ft’, while the peak
compressive capacity is nearly 0.56fc' as shown in Fig. 7.10.

The post-peak branch is turning out to be flatter if compared

with the previous cases.

Uniaxial compression with stress biaxiality ratio of B, =0. This

case represents an ideal uniaxial compression in the horizontal
direction as shown in Fig. 7.11. The vertical response (not
plotted) is coincident with the displacement axis because the
applied pressure in this particular direction is null.

Compression-compression with stress biaxiality ratio of B1=1/3.

Higher load carrying capacity of about 20% in the horizontal
direction is gained above the case of uniaxial compression as
shown in Fig. 7.12. The optimum capacity in the vertical
direction is proportional to that in the horizontal direction as
attained by the stress biaxiality ratio.

Equal biaxial compression with stress biaxiality ratio of B , =L

In the current situation, the peak carrying capacity in both
directions is the same and which is about 1.17 times the

characteristic strength of the concrete used as shown in Fig.

7.13.
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7.3.2 Uniaxial Tension on Reinforced Concrete

Existence of reinforcement inside tensioned concrete members
disturbs, in general, uniformity of the internal stresses at the inner
material points even though the external stress field is uniform. This
constitutes the basic difference from the one-dimensional idealization of
the problem where the internal stresses or the strains are assumed to
be uniform at all points in the cross section as in the customary
practice for the design procedure of codes' provisions. In order to
have more insight about this phenomenon, a concrete member of
proportions L/h=L/b=2 is centrally reinforced with steel SS41 of an
area of 4% of that of the concrete. For simplicity, the total length of
the member is taken as unity. Four meshes, shown in Fig. 7.14a over
one quarter of the member, are used in this investigation:

(1) mesh #1 : with total of nine nodes, four 4-noded concrete

elements and two 2-noded steel elements.

(2) mesh #2 : with total of 21 node, four 8-noded concrete

elements and two 3-noded steel elements.

(3) mesh #3 : with total of 39 node, eight 8-noded concrete

elements and four 3-noded steel elements.

(4) mesh #4 : with total of 37 node, eight 8-noded concrete

elements and two 3-noded steel elements.

Having imposed an external uniform tensile loading of magnitude of
3.2 MPa, it 1s found that convergence is impossible at load factor very
close to one as shown in Fig. 7.15. This is due to the fact that when

the concrete cracks there is no mean to direct the stress trajectories to
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the reinforcement in order to carry the load and thus the whole member
fails. Numerically speaking, the residual forces in the concrete elements
are no longer resisted since strain softening is taking place at the
highly strained sampling points. Mesh #1 shows a slight difference
from the other meshes utilizing 8-noded elements which give almost the

same stiffness characteristics as shown in Fig. 7.15.

A closer scrutiny on the behavior of the member discretized with
8-noded elements shows uniformity of internal stresses in concrete close
to the centerline of the member as shown in Fig. 7.16a. The stress
distribution tends to be nonuniform close to the loaded edge as shown
in Fig. 7.16b. This is believed to be attributed to the nonuniformity of
the displacement distribution which is illustrated for the loaded edge in
Fig. 7.16¢c. To investigate the stress distribution in the longitudinal
direction, rather than along certain cross section, four different
elevations inside the concrete from the top surface towards the
centerline are considered as shown in Fig. 7.16d. It can be noticed that
the internal stress in concrete is equal to the imposed tension at the

loaded edges then decreases as the centerline is approached.

The internal stresses in the reinforcement increase with increasing
the load increment. Mesh #1 with 4-noded elements gives almost constant
stress level, if slightly departed from the loaded edge. Similar trend
can be noticed for other meshes with 8-noded elements but with a drop

in the stress level towards the loaded edge. This is shown for four load

increments in Fig. 7.16e.
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According to the existing stress status, material points close to the
corners of the member approaches the tensile strength prior to other
points. Consequently the damage level is higher and the cracking
initiates from the upper and lower surfaces near the loaded edges then
propagates towards the centerline. The overall behavior thus resembles

in many aspects testing specimens with flexible plattens under stress-

controlled experimentation.

In practice, as the concrete softens, most of the load tends to be
carried by the reinforcement. To achieve higher loading level the
member is equipped with stiff caps on the loaded edges. This is being
simulated by using concrete elements of higher stiffness. Mesh #2 was
used in the analysis. Two cases of loading are considered as shown in
Fig. 7.14b: (1) concentrated load applied at the reinforcement level and
(2) uniform external tension. In both cases, the internal stress inside
the concrete along all cross sections is developed in a uniform manner
and a considerably higher load carrying capacity is achieved than the
case of uncapped member as shown in Fig. 7.15. This can be thought
of in terms of providing sound means (cap) for translating the load to
the reinforcement as the damage level in the concrete increases through
uniform displacement field. This is supported by the close predictions
of the two loading cases for the load-deflection diagram (Fig. 7.15).
Therefore, in this manner testing with stiff plattens under strain-

controlled experimentation is being simulated.

At low load levels the concrete is noticed to carry more load relative

to the reinforcement. However, the concrete contribution slightly
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decreases due to concrete nonlinearity in the pre-peak tensile behavior
up to load increments close to unity as shown in Fig. 7.17. Due to the
softening characteristics of concrete in the post-peak tensile behavior,
gradual reduction of the load carrying capacity of concrete can be
noticed for the capped member. As a result, the contribution of
reinforcement to the overall carrying capacity builds up until all the

load is completely taken by the steel at load increment of about 3.

7.3.3 Perfect Bond Characteristics of Reinforced Concrete

A specimen similar to that used for the analysis of uniaxial tension
of uncapped reinforced concrete member is considered to study the
characteristics of perfect bond as shown in Fig. 7.18a. A concentrated
load is directly applied to the steel rebar along its axis. The twe-
dimensional idealization of the problem is shown in Fig. 7.18b. Only
one quarter of the problem is considered in the numerical analysis due
to symmetry consideration. The finite element mesh is shown in Fig.
7.18c. Twenty one 8-noded concrete elements along with six 3-noded
steel elements thus constituting sixty seven nodal point are generated.
The overall response is compared with the load carrying capacity of the
steel rebar alone, as shown in Fig. 7.19, thus indicating the effect of
tension stiffening. The load-displacement curve can be described to
consist mainly of two parts. The first part represents the pre-cracking

response whereas the other reflects the post-cracking behavior.

Prior to the onset of cracking the results obtained by the two

algorithms appear to be identical (Fig. 7.19). The predicted cracking
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load is much less than the corresponding value predicted for the same
member but with stiff cap as discussed before through the analysis of
uniaxial tension of reinforced concrete. This is due to the uniformity of
the stress distribution inside the concrete introduced by the existence

of the stiff cap and therefore the behavior of the capped and uncapped

samples are entirely different.

With the virtue of the concrete/steel bond the internal stress in the
reinforcement drops abruptly as one moves towards the interior of the
specimen away from the vicinity of the loaded edges and then decreases
gradually till reaches its least value at the centerline of the member as
shown in Fig. 7.18f. At the axis of symmetry the internal stress in the
reinforcement is found to be almost one quarter that of the unbonded
bar (free end). The contour lines for the principal tensile stresses in

concrete o, are drawn in Fig. 7.18e. This, of course, reflects the level

of damage just before cracking. High stress concentration exists in the
vicinity of the free end. At all cross sections the stress has its highest
value next to the reinforcement and decreases through the concrete
cover. It is interesting to point out that most of the sampling points
are noted to be stressed almost uniaxially in the principal plane where
the orientation of the major direction at the sampling points is depicted
in Fig. 7.18d. There exists in the vicinity of the loaded edges
considerable distortion which allows for development of shear stresses,
in the X-Y coordinate system, in concrete (also evidenced by the high
gradient of reinforcement stress). This in turn leads to inclined

principal directions, implying manifestation of inclined cracks in
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concrete adjacent to reinforcement that are known to occur in specimens
tested in created zones of high flexural bond. Due to the relatively
sharp gradient in the internal stress in concrete near the edges, the
cracking load is expected to be influenced by the location of the
sampling points, in this region, relative to the point of steel insert and
thus affected by the mesh discretization. This is in contrast to the case

of capped member where the response is independent of the mesh

configuration.

As soon as the tensile level in the concrete reaches it peak strength
value, a softer response of the system is noted to occur as shown in
Fig. 17.19. With further loading the =zone of highest stress
concentration invades the concrete towards the centerline of the member
leaving softened concrete at the rare. The cracking thus starts in the
concrete in the region adjacent to the rebar and propagates radially in
its vicinity. This zone of high concrete shear or high gradient of
reinforcement stress is noted to shift towards the interior as concrete
begins the process of cracking from the loaded edge inwards. This
leads to the formation of a damaged concrete zone of reduced stiffness
in the surrounding of the reinforcement. This behavior, therefore,
analogizes an interface layer in the bond-slip theory. Such a conclusion
supports the hypothesis of pseudo-slip presented by Mazars (1984).
After full cracking of concrete the entire load is eventually carried
solely by the steel rebar and the tension stiffening effect is no longer

influencing the response as shown in Fig. 7.19.
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7.3.4 Simple Bending

A simply supported plain concrete square panel is subjected to
linearly varying stress field across the depth as shown in Fig. 7.20a.
The top and bottom stresses are set equal but with negative sign to
simulate the case of pure bending. Another study is conducted by
providing steel reinforcement to the extremely tensioned top fiber as
shown in Fig. 7.20b. Concrete grade 28 and structural steel SM50 are

used as the constituent materials involved in the problem.

In the beginning a simplified single layered discretization for
concrete is prepared using 4-noded element as shown in Fig. 7.20c.
Various nonlinear solution techniques are tested wusing 2X2 and 3X3
Gauss-legendre integration rules. For 2X2 integration rule, all methods
are found to yield almost the same peak external stress required to

bring the internal stress at the upper sampling points to the tensile

strength.

Updating stiffness in each iteration is noted to exhibit the most
rapid convergence then updating the stiffness in the first and second
iterations of each load increment. However, negative stiffness is
sometimes encountered especially for the 3X3 rule when the stiffness is
updated. Therefore, the initial stiffness technique for nonlinear solution
is recommended for the more sophisticated problems. It is also noted
that the 4-noded element develops unrealistic shear stresses at the
sampling points although the support reactions are null and an ideal
situation of pure bending exists. This necessitates the use of higher

order elements for similar problems with nonuniform internal stress
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field.

Serendipity and Lagrangian elements are then used for the concrete
layer as shown in Fig. 7.20d. Similar to the problem of uniaxial
tension of uncapped member, the carrying capacity is controlled by
concrete failure where the solution for the unreinforced and reinforced
members does not converge after reaching the tensile strength at the
outer sampling points. Both elements are noted to provide nearly the

same results without any unexpected shear stress.

The integration rule is found to affect the predictions of the
nonlinear solution. Employment of 2X2 integration rule is noted to allow
for imposing higher external pressure. This is due to the fact that the
solution is controlled by the stress status at the sampling points. These
points are located closer to the extreme fibers in the case of the 3X3
integration rule. Thus the external load required to produce the same
stress level at the sampling points for the two rules is different. This
is schematically shown in Fig. 7.21 for linearly imposed load which is
required to bhring the stress at the sampling points to the tensile
strength. This leads to the recommendation that, especially for
unreinforced beams where the failure is governed by this criterion,
finer mesh should be used near the extreme fibers. On the other hand,
for reinforced beams where the steel carries, in general, most of the
internal tensile stress resultant subsequent to concrete cracking the

concrete cover often governs the mesh discretization.
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7.4 COMPARISON WITH PREVIOUS WORK

This part represents the verification phase of the program
DMGPLSTS as applied to practical structural problems. The predictions
obtained from the current study is compared with the finite element
solution undertaken by other investigators and in some of these
problems the results are further compared against the available
experimental data reported in the literature. In the following, three- as
well as four-point loading of plain and reinforced concrete beams with
and without shear reinforcement are analysed and the steel/concrete

bond problem is finally solved.

7.4.1 Plain Concrefe Beams

A simply supported plain concrete beam, similar to that tested by
Mazars (1984), of cross sectional dimensions of 220mm and 150 mm for
the height and breadth, respectively, 1is considered in this
investigation. The beam has a span of 1400 mm with two overhanging
cantilevers of 20 mm length as schematically shown in Fig. 7.22a. The
grade of the concrete used is 28 MPa and a Poisson's ratio of 0.18 is
considered. Three point loading is studied where a concentrated load is
imposed along the centerline of the beam. Because of the symmetry,
only one half of the beam is analysed. The displacement perpendicular
to the axis of symmetry is restrained. Numerical integration by 2X2 rule
is employed and the initial stiffness method is used for the nonlinear
solution. The problem is solved at first using linear elasticity. Similar

finite element mesh to that was pointed out by Ziraba (1993) to yield
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satisfactory results is used. The mesh consists of 93 nodal points and
24 8-noded concrete elements. Through the elastic solution of the
problem the following three remarkable points have been noticed:

(1) the support condition whether hinged or roller affects the
results tremendously. When only half of the beam is solved
taking symmetry into account, a hinged support develops high
horizontal reaction which does not exist in reality.

(2) the elevation of the point of action of the concentrated load
influences the symmetry of the stress distribution along any
vertical plane.

(3) the central deflection and hence the stiffness nf the system is
sensitive to the elastic modulus.

With these in mind, the problem is solved considering a roller support
and the load to be applied at the top fiber of centerline with similar
initial modulus as that used by Mazars (1984). Nonlinear solution by
the proportional-secant algorithm is carried out. The response is shown
in Fig. 7.23 which appears to be in good agreement with the numerical
solution as well as the experimental results of Mazars (1984). Sudden
failure is predicted after relatively long linear behavior. This happens
when the maximum tensile stress at the sampling points closer to the

hottom fiber approaches the tensile strength of the concrete.
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7.4.2 Reinforced Concrete Beams without Shear Reinforcement

The same beam described in the analysis of three point loading of
plain concrete beams is considered herein but with structural steel SS41
reinforcement of 2912 located 15 mm above the bottom fiber of the beam
as shown in Fig. 7.22b. The a factor for yielding parameters of the
steel is taken as 1.15. The nonproportional-tangential algorithm along
with the initial stiffness technique using 2X2 numerical integration rule
is employed for the analysis. Only one half of the beam is considered
due to the symmetry about the centerline of the beam. Nodal
displacements normal to the axis of symmetry are restrained. The
generated mesh consists of 93 nodal points and 30 8-noded concrete
elements and 6 3-noded steel elements. The concentrated load is
applied on the top fiber along the axis of symmetry and the deflection

is monitored at the bottom fiber along the same section.

The central stiffness in the vertical direction as presented by the
plot of the load-deflection is shown in Fig. 7.24. The hehaviour can be
described as initially quasi-linear up to load level of about 14 KN and
then nonlinear. The predictions obtained from the current study are
compared with the finite element calculations as well the experimental
data reported by Mazars (1984). The range of experimentation
ifllustrated in Fig. 7.24 represents a series of three mechanical testings.

It is clear that the central deflection estimated by DMGPLSTS is in a

very close agreement with Mazars' work (1984).
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7.4.3 Reinforced Concrete Beams with Shear Reinforcement

Four-point loading of simply supported beam with shear
reinforcement over the shear span is considered. Two amounts of
tension reinforcement are investigated one at a time. The first is an
under-reinforced beam designated as URB1 with longitudinal main steel
of 2¢10mm whereas the other is an over-reinforced beam designated as
ORB1 with main steel of 4¢p16mm. The free span is 2250 mm out of 2400
mm total length of the beam. The shear span is one third the free
span; i.e. 750 mm. The cross sectional dimensions are 100 mm X 150 mm
with concrete cover of 20 mm and 31 mm for URB1 and ORBI,
respectively. Compression steel serving as stirrups hanger of 2¢8mm
and shear reinforcement of 8mm@70mm c.c. are used as sketched in
Fig. 7.25a. These beams were experimentally tested to failure by Jones
et al. (1982) in previous study. High strength concrete of cube
strength 63.4 MPa (which is equivalent to approximately 53.89 MPa
cylinder strength) is considered. Steel of diameter 10 mm has a 0.2%
proof (considered herein as the yielding) stress of 530 MPa with
ultimate stress of 597 MPa. On the other hand, steel of diameter 16 mm
has a 0.2% proof stress of 487.5 MPa with an ultimate stress of 721
MPa. Both steel types have an elastic modulus of 200 GPa. The finite
element mesh which consists of 247 nodal peoint with 68 8-noded concrete

elements and 59 3-noded steel elements is shown in Fig. 7.25b.

The finite element solution of the under-reinforced beam URB1 is
noted to be in a very close agreement with the finite element solution of

Yasin Ziraba (1993) as plotted in Fig. 7.26. Both solutions show
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slightly stiffer response relative to the experimental findings. However,
the predicted maximum loads as characterized by steel yielding are
found to be very close: 27.0 KN, 29.0 KN and 28.1 KN by the current
F.E. solution, Ziraba's F.E. solution (1993) and experimentally by
Jones et al. (1982), respectively. On the other hand, The ultimate
load capacity calculated by the strength theory according the ACI code
is estimated to be 26.83 KN (Ziraba, 1993). It is remarkable that
Ziraba (1993) employed the same finite element mesh but using 9-noded
lagrangian concrete elements with an additional 34 six-noded main
steel/concrete interface elements, thus comprising 385 nodal points.
Nonlinear fracture mechanics along with isotropic hardening plasticity
was used for modelling concrete behavior in both tension and
compression, respectively. Apart from the steel properties, his program

required to input 7 properties for concrete and another 5 properties for

the interface.

The finite element solution for the over-reinforced beam ORB1! is
found to be in a very close agreement with the experimental data as
illustrated in Fig. 7.26. The peak capacity of the beam is characterized
by concrete crushing in the free of stirrups central region of the beam
where the finite element solution failed to converge. The predicted
maximum load is found to be 66.0 KN. On the other hand, the maximum
experimental load was reported to be 67.5 KN. The response of the
over-reinforced beam is noted to be stiffer than the wunder-reinforced
beam. Although ORB1 sustained almost 2.5 the maximum load of URBI,
over-reinforced beams are, in general, not recommended for practical

use because of their sudden failure.
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7.4.4 Steel/Concrete Bond Prohlem

The structural component shown in Fig. 7.27a is considered for the
analysis of the problem of steel/concrete bond. The dimensions of the
concrete block are 390 mm, 250mm and 150mm for the length, height and
breadth, respectively. The member is reinforced by a steel layer in the
middel whose area is equivalent to 2412 mm rebars. The concrete grade
is 28 while the reinforcement type is structural steel SS41. The more
general algorithm for nonproportional loading with tangential relations is
utilized for the numerical solution. The finite element mesh for one
quarter of the mesh is shown in Fig. 7.27b. It is a fine mesh that
consists of 501 nodes and 150 8-noded concrete elements and 15 3-noded
steel elements. The nonlinear solution is found to be very expensive
since it necessitates long execution time especially small loading
incremental intervals are needed for the convergence process. On the
other hand, it is worth mentioning that Mazars' mesh (1984) consisted
of 891 node with 1664 3-noded constant strain triangular elements for

concrete and 26 steel elements.

The load-extension diagram is drawn for the two finite element
solutions as shown in Fig. 7.28. The predictions obtained by the
canonical model, although with fewer elements, is noted to be in a very
close agreement with those reported by Mazars (1984) using an
extremely fine mesh. Nonlinearity of the behavior is found to commence
at relatively low load levels. The trend of the curve predicted in the

current study eventually gets flatter due to the steel yielding.
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With respect to the cracking characteristics, a highly damaged
concrete zone is formed in the surroundings to the reinforcement. The
damage evolution is shown in Fig. 7.29a. It can be noted that as the
load level increases the damage zone spreads towards the axis of
symmetry. At high stages of loading, prior to failure, the damage zone
tends to penetrate the concrete cover further at discrete locations. The
corresponding damage pattern predicted by the finite element solution
by Mazars (1984) is shown Fig. 7.29b. It should be kept in mind that
the prediction of the crack propagation is, in general, sensitive to the
mesh discretization since the internal forces are estimated at the
sampling points in the finite element solution. In addition, for the
comparison with Mazars' work (1984), the difference in the nature of
quadratic elements employed in the current investigation and that of the
linear elements used in his study should be taken into account even for
elastic solutions. Moreover, for the comparison of the crack evolution
predicted by two nonlinear solutions typical load increments should be
considered because of the accumulation of the residual forces. However,

both patterns are similar to great extent to that observed

experimentally (cf. Mazars, 1984).

The evolution of the internal stresses in the reinforcement along the
length of the member is plotted in Fig. 7.30 at six loading levels for
the two solutions. The predictions obtained from the current study is
shown in Fig. 7.30a while the corresponding by Mazars (1984) is
illustrated in Fig. 7.30b. The trends of the two finite clement solutions
are almost the same. It can be noted that the points of the highest

gradient in the internal stresses in the reinforcement shift away from
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the loaded edge till reduce to a kink (drop in the internal stresses over
a short distance) near the centerline of the member. The translation of

these points implicitly reflects the evolution of the damage zone.

7.5 CALIBRATION AGAINST CODE PROVISIONS

This aim of this calibration is to check the rationality of the
predictions of the model as applied to analyse reinforced concrete beams
with and without shear reinforcement. This, of course, elaborates the
ability to predict the load carrying capacity governed by various failure
mechanisms. The simply supported beam considered in Mazars' work
(1984) is further considered herein but with several reinforcement
patterns. The main mesh established in the previous section is used but
with minor modifications to provide compression steel and shear
reinforcement whenever required. Concrete grade 28 and steel SS41 are
considered as the constituent materials. The ACI design code (ACI

318-89 revised 1995) is selected for calibration purposes.

7.5.1 Reinforced Concrete Beams without Shear Reinforcement

The geometry and the finite element mesh are shown in Fig. 7.31a.
Three-point loading as well as four point loading schemes are applied.
In the course of the current study,the following items are evalnated:

(1) Concrete softening.

(2) Nonlinearity of the response.

(3) Damage pattern.
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(4) Cracking load.

(5) Ultimate capacity.
As in similar situations, the amount of longitudinal reinforcement and
the shear span to depth ratio are the main design parameters
influencing the behavior. In addition to the case of plain concrete which

is frequently used, two other reinforcement ratios are used:
(1) lightly under-reinforced concrete beam with ASA“-ZZI.‘\.me2 which

is equivalent to 2¢12mm rebars (as used before); and

(2) heavily under-reinforced concrete beam with the maximum
permissible limit of ACI-318 AS=1038.0mm2 which is equivalent

to 3¢2lmm rebars. This corresponds to reinforcement ratio

Pmax = 0. 75pb ('pb =0.046).

The shear span, a, to depth ratio, d, to be considered are
governed by the mesh discretization. Consequently, the shear span, a,
takes the values of 150, 300, 400, 500, 600, 700 mm corresponding to
a/d ratio of 0.73, 1.46, 1.95, 2.44, 2.93 and 3.41, respectively. The

latter value indicates the case of three-point loading.

7.5.1.1 Concrete softening

Concrete softening reflects the possible effects of the testing type.
Three point loading on plain concrete heams with: (1) Inad-controlled
incrementation and (2) displacement-controlled incrementation are

considered. Fig. 7.32 illustrates the slight difference in the ultimate
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load carrying capacity as predicted by the two testing schemes. In
contrast to load-controlled incrementation which failed teo converge after
the ultimate load, displacement-controlled incrementation has the ability
to describe the behavior in post peak regime. The softening branch
falls very steeply in the beginning and then goes asymptotically to the
deflection axis. Although such global softening response lacks the
importance for design purposes, strain softening in local sense has a
considerable effect on the total behavior. Therefore, in the following

analysis load-controlled incrementation is employed.

7.5.1.2 Nonlinearity of the response

As the canonical model accounts for the damage evolution from the
first instance of loading, early nonlinearity of the rasponse is expected
to take place. In the case of reinforced concrete heams, deviation from
the global quasi linear behavior becomes, however, more pronounced
after the onset of cracking. The amount of longitudinal reinforcement
has a great influence on such nonlinearity. Figure 7.33 shows, for
three-point leading, the nonlinear trend of the load-central deflection
for plain concrete as well as for the other cases of reinforcement.
Whereas plain concrete indicates almost linear behavior, the other
situations show higher stiffness associated with delayed onset of

nonlinearity which is attributed to the cracking process.

The shear span to depth ratio, a/d, has, in general, a great
influence on the nonlinearity of the structural response of the

reinforced concrete beams. Figures 7.34 and 7.35 illustrate this effect
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for AS=226.2mm2 and AS=1038.0mm2, respectively. Nonlinearity of the

response is an evident for all the studied cases. The higher the shear
span to depth ratio, the softer the response. This can be justified by
the fact that, for the same load value, as the load gets closer to the
centerline of the beam (which means higher a/d value) the maximum

bending moment increases and consequently the central deflection

increases as well.

7.5.1.3 Damage pattern

The mode of failure predicted by the program is noted to be
governed by:
(1) reinforcement damage due to steel yielding; and/or
(2) concrete damage due to shear.
Three levels of damage for concrete in both tension and compression are
defined, listed in Table 7.2, as follows:
(1) Null: for strain levels ranging from the threshold damage strain
to the peak strain.
(2) Moderate: for strain levels ranging from the peak strain up to
almost the end of the steeply rising damage trend.

(3) Severe: for strain levels ranging further to the critical damage

strain.

Figures 7.36 and 7.37 illustrate the damage levels, for various shear

span to depth ratio, at the cracking state and at the ultimate condition

for the two cases of reinforcement; i.e. AS=226.2mm2 and



Table 7.2 Ranges of total damage variable for different damage

levels

| l
| Damage ; Damage type ;

| a

Level f Tensile Compressive

: Nuil | < 0.167 < 0.380 l
| Modcrate L 0.167 - 0.600 0.380 - 0.768
|
5 |
% Severe ; > 0.600 > 0.768

j
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AS=1038.0mm2, respectively. From the analysis of the results obtained

by the computer runs, the following observations are noted:

(1) Except for the case of a/d = 0.73 in which cracking starts next

(2)

(3)

(4)

to support, cracking tends to initiate between the applied load
and the centerline of the beam for the case of As=226.2mm2,
while it takes place under the applied load in the support side
for the case of As=1038.0mm2. In all situations cracking

commences in the bottom fiber of the beam.
The elevation, through the depth of the beam, of the upper

bound of the zone of severe damage is higher in the case of

the lightly under-reinforced beam (AS=226.2mm2) as compared

with the heavily under-reinforced beam (As=1038.0mm2).

The mode of failure differs according to the amount of
reinforcement and to the shear span to depth ratio as sketched
in Figures 7.36 and 7.37. The prominent causes of failure are
summarized in Table 7.3.

Modes of failure enhanced by shear are characterized by severe
damage level close to the top fiber in the proximity of the load
in the support side and above the reinforcement within a
horizontal distance almost equal to the depth from the support.
The final cracking pattern is expected to join these two

locations in almost a hyperbolic fashion.



Table 7.3 Failure modes of reinforced concrete beams without
shear reinforcement
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Shear span to

depth ratio

Arvca of tensile

reinforcement As

226.2 mm®

1038.0 mm”

Shicar failure

Shear failure

Shear failure

Simultancous flexural
and shear failuie

Stmultancous ficxural
and shear fatiure

Flexural failure
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Shear failurc

Shear failure

Shear frtlure

Shear failure

Shear fatluic

Shear fatlure
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7.5.1.4 Cracking load

The finite element analysis indicates that the cracking load |is
infiluenced by both the amount of reinforcement as well as the shear
span to depth ratio. For comparison purposes, code provisions are
limited to flexural cracking and calculation of the transformed section
properties are required. The calculations of concern are listed in Table
7.4 for plain concrete and other reinforcement ratios. The modulus of

rupture fr is taken as 1.25ft’ as implicitly specified by the ACI code.

For the case of three point loading, Fig. 7.38 illustrates a comparison
between the finite element predictions and the ACI cracking load as
induced by flexure. It indicates that the model yields very close
predictions to the ACI values although no single input about the
modulus of rupture is given to the program. This is believed to be
attributed to the nonlinear pre-peak behavior of concrete in tension as
idealized by the canonical model where more energy can be absorbed by

the beam if compared with the similar case with linear elasticity.

The ACI flexural calculations indicates that the closer is the location
of the applied load to the support the higher is the cracking load.
However, several influences contribute to the onset of cracking other
than flexure. This is shown by the finite element predictions to be more
pronounced for shear span to depth ratios less than 2.5 for the two
reinforcement ratios ccnsidered as shown in Figs. 7.39 and 7.40. In
such situations the cracking process is motivated by the tensile stresses
in the bottom fiber close to the concentrated loads. In all cases, the

higher is the amount of reinforcement, the higher is the cracking load.
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This is due te the higher stiffness achieved by increasing the amount

of main tensile reinforcement.

7.5.1.5 Ultimate capacity

In strength design methods, the calculations are usually based on
the ultimate condition then serviceability conditions are checked later.
This means that the ultimate load carrying capacity of the structural
component, as controlled by various collapse mechanisms, is the goal.
Therefore, accurate estimation of this load is of prime importance from
all practical aspects. The ACI code gives priority to failure mechanisms
that are inspired by flexure and shear. For flexural calculations, the
study cases represent under-reinforced beams and Whitney's rectangular
stress block for concrete in compression is considered while contribution
of concrete in tension is neglected. The maximum top fiber strain of
concrete is taken as 0.003 whereas steel reinforcement is assumed to
experience yielding. On the other hand shear calculations based on the
experimental formulae of the ACI code are used (refer to the more

detailed procedure of ACI-11.3.2.1).

As illustrated before, the three main failure mechanisms as depicted

by the finite element results are by either:
(1) flexure by reinforcement yielding,
(2) shear enhanced by diagonal tension in most cases, and

(3) simultaneous flexure and shear for two cases of a/d ratios of

1.95 and 2.44 with reinforcement of AS=226.me2. This is, of
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course, different from the flexural shear cracking which is
considered as shear [ailure.

The values of the peak load predicted by the program DMGPLSTS are
found to in a very close agreement with the lower bounds provided by

the ACI code as shown in Figs. 7.41 and 7.42 for the cases of

A =226. 2mm® and A= 1038.0mm?, respectively.

7.58.2 Reinforced Concrete Beams with Shear Reinforcement

In most of the previous cases, the beam capacity is noted to be
limited by the shear capacity of the section and full utilization of the
reinforcement has not been achieved yet. Because in concrete practice
over-reinforced beams are always recommended be avoided because of
its abrupt failure by concrete crushing, the following investigation is
devoted to under-reinforced beams with shear reinforcement.

Reinforcement area evaluated by the maximum permissible amount is
considered; i.e. heavily under-reinforced beam with AS=1038.0mm2. In
addition to the shear reinforcement, of area Av’ compression steel, of
area As', functioning as stirrup hanger is used with the same diameter.

The amount of shear reinforcement and the spacing between stirrups
are varied through out the course of this investigation to study the

possible effects on the shear capacity of heams.
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7.5.2.1 Effect of amount of shear reinforcement

Five patterns of shear and compression steel of reinforced concrete

beams subjected to three-point loading are selected as study cases:

(1)

(2)

(3)

(4)

(5)

Av=AS’=0.O. This case was previously studied but is
considered herein as a reference for comparison purposes.
AV=AS'=56.5mm2. This is equivalent to 6mm two-legged

stirrup and 2¢6mm compression steel.

Av = AS' =100. 5mm2 . This is equivalent to 8mm two-legged
stirrup and 2¢8mm compression steel.
Av= AS'-—- 157.1mm2. This is equivalent to ¢lOmm two-legged

stirrup and 2¢10mm compression steel.

Av=AS'=226.2mm2. This is equivalent to ¢l2mm two-legged

sticrup and 2¢p12mm compression steel.

The geometry and the finite element mesh are shown in Fig. 7.31b.

The stirrups are arranged in the following sequence: 3 pcs @150mm c.c.

starting directly from the point above the support, then the rest are

spaced @100mm c.c. Incremental loading scheme is applied with almost

identical steps. Emphases are given to the followings:

i.
ii.
iii.

iv.

Nonlinearity of the response.
Damage pattern.
Cracking load.

Ultimate capacity.
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i. Nonlinearity of the response

The results obtained from the (finite element program indicate
nonlinear trend subsequent to the cracking load as shown in Fig. 7.43.
The existence of the compression steel shows slightly higher stiffness.
The addition of shear reinforcement is noted to increase the ductility of
the beam and the ultimate load carrying capacity as well if compared

with the case of the same beam but without shear reinforcement.

ii. Damage pattern

The mode of failure predicted by the program is noted to be
governed by either:
(1) tensile reinforcement damage by yielding and thus allows for
the propagation of flexural cracks, or
(2) shear reinforcement damage by yielding and thus allows for the
propagation of flexural-shear cracks.

The prominent causes of failure are summarized in Table 7.5.

Figures 7.44 illustrates the tensile and compressive damage levels at

ultimate  condition for three particular cases considered of
AS’=AV= 0.0, 100.5 and 226.2mm2' It is evident that the existence of

shear reinforcement makes the cracking penetrates to a higher elevation
and consequently the damage pattern differs from the cases analysed
without shear reinforcement. It is also observed that some zones

showed localized compressive moderate damage.



Table 7.5 Failure modes of reinforced concrete beams with
shear reinforcement

i

Area of
stirrups =

arca of
compression
steel, mm*

modc of

{atlurc

damage

type

0.0

i00.5

Shear fatlure

Shear failure

Shear failure

{texurai failuwre

ficxural faifure

Concrete damage
yiciding of
stirrups

viclding of
stirrups

yiciding of main
reinforcement

viclding of main
remforcement
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iii. Cracking load

The finite element analysis indicates that the cracking load is
insensitive to the amount of compression steel and, of course, the shear
reinforcement since flexural cracking is dominant for the considered
case of three-point loading with a/d=3.41 in which the cracks are
initiated near the bottom fiber closer to the centerline. The results are
shown in comparison with those calculated according to the ACI code in
Fig. 7.45. The cracking load, in general, is affected by the second
moment of area of the transformed section along with the location of the
principal centroidal axis (calculations are summarized in Table 7.6). It
is found through the hand calculations that the contributions to the
total second moment of area from he concrete, tension steel and
compression steel are abeout 65%, 30% and 5%, respectively. This
underscores the minimal effect of the compression steel to the cracking

load which agrees quite well with the numerical results.

iv. Ultimate capacity

In flexural calculations, according to the ACI code, the contribution
of the compression steel is taken into account. Tts vyielding at the
ultimate condition is ensured to take place. However, it is found that
its effect on the ultimate flexural capacity is small. On the other hand,
increasing the diameter of the stirrups from 10 mm to 12 mm is noted to
enhance the overall shear capacity considerably. The finite element

predictions picked up these characteristics as shown in Fig. 7.46 for



An7

Tabie 7.6 Properiies of uncracked transformed section of
reinforced concrete beams with shear reinforcement

Arca of ; Distance of Sccond moment
compression steel . centroidal axis from of arca
As’, nmnr’ | bottom fiber, mm *10% | it
|
5 .
| 0.0 | $9.60 197.00
!
56.5 ‘i 90.91 203.60 |
100.5 ‘ 91.93 208.54
!
157.1 i 93.22 214.76 l
|
|
‘ 226.2 ; 94.74 ! 222.18 |
| |
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AS'-—-AV. As illustrated before, the two main failure mechanisms as

depicted by the numerical results for beams with shear reinforcement

are by either:

(1) flexure by yielding of main tensile (longitudinal) reinforcement
and
(2) shear by yielding of shear reinforcement in highest strained
stirrup (the first after the support)
The values of the peak load predicted by the program DMGPLSTS are
found to in a very close agreement with the lower bounds provided by
the ACI code as shown in Figs. 7.46. The case of the beam without
shear reinforcement but with the same main steel is shown, for
comparison, on the same graph in which the failure is governed by the
shear capacity of concrete. These cases represents the transition of the

failure mechanism from shear failure (two distinct sorts) to flexural

failure.

7.5.2.2 Effect of spacing hetween stirrups

Four-point loading of the heavily under-reinforced beam with
206 mm compression steel is considered. Two-legged ¢6 mm stirrups are
assumed to be equally spaced over the 400 mm shear span. Such a
diameter for stirrups is chosen to ensure that shear failure governed
by yielding of stirrups controls as inferred from the previous article
7.5.2.1. Four different spacings are selected as study cases:
¢6mm@200mm, ¢6mm@133mm, ¢6mm@i00mm, and ¢6mm@80mm. The geometry

of the beam and the cross section are shown in Fig. 7.47. Emphases
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are given to the followings:
i. Nonlinearity of the response.

ii. Ultimate capacity.

i. Response nonlinearity

The results obtained from the finite element program indicate
nonlinear trend subsequent to the cracking load as shown in Fig. 7.48.
The stiffness characteristics of all cases are nearly identical. This is
attributed to the fact that the main contribution to the flexural stiffness
of beam comes from the second moment of area term which Iis
independent of the shear reinforcement as formulated by the Euler-
Bernoulli thin beam theory. However, closer spacing shows higher final

deformation associated with higher loading capacity.

ii. Ultimate capacity

Having established the same criterion as for the ACI code, the
ultimate shear capacity is determined when yielding of stirrup(s) within
a projected distance equal to the depth of the beam takes place. This
is noted to occur after a distance d/2 from the support. This is
numerically observed through yielding of the first (after the support)
stirrup for 200 and 133 mm spacings, first and second stirrups for 100
mm spacing, second and third stirrups for 80 mm spacing. The F.E.
prediction for the ultimate capacity of the beam is shown in comparison

with the ACI peak loads estimated according to the flexure and shear
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strength calculations as illustrated in Fig. 7.49. The model prediction is
seen to be in a very close agreement with the contrclling ACI shear
capacity. The maximum spacing permitted by the ACI is drawn on the
same chart. It is clear that this limitation on spacing is quite

conservative for the particular beam investigated.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

The conclusions drawn from the present study are:

1. The introduction of the proposed generalized concepts underlines the
fundamentals of proper elastoplastic damage modelling. These include:
(a) generalized damage variables, (b) generalized material degradation
paths, (c) generalized decomposition of the strain tensor, (d)
generalized effective stresses concept. The proposed terms are
successfully applied to interpret the experimental behavior of concrete

in compression and copper 99.9% in tension.

2. The utilization of the proposed concepts indicates the following:

(a) the overall behavior cannot be properly characterized by a
single damage variable as has been the adopted practice,

(b) the different response phases, particularized as total-damage,
elastic-damage and plastic-damage, follows constrained
uncoupling. The correct expression of the decomposed Helmholtz
free energy is given based on thermodynamics of irreversible

changes.

(c) unloading along a general degraded path is allowed in contrast
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to the more restrictive cases of either purely brittle or ductile
paths as per existing models.

(d) the incongruity in the assumptions postulated in some of the
well-known models, such as Ju's energy-based damage model
(1989) and Lemaitre's ductile damage model (1985), are revealed

and corrected.

3. The generalized concepts are incorporated with different theories
such as plasticity, micromechanics and unilateral damage. The governing

laws are formulated and the final three-dimensional tensorial equations

are derived.

4. The proposed phenomenological-micromechanical model presents a
systematic procedure to provide the stress-strain relations for rock-like
materials. The proposed model integrates the phenomenological aspects
of damage obtained from a uniaxial cyclic tensile test with concepts of
micromechanics of randomly oriented cracks derived by the self
consistent method. Micromechanics is utilized for the elastic-damage
phase which experiences sub-brittle behavior. Degradation of the bulk
and shear moduli are established wusing suitable damage variables for
loading and wunloading. Contrary to previous models (c.f. Mazars,
1984) Poisson's ratio is assumed to be affected by the damage process
taking place through the course of loading. All the parameters of the
model are calibrated from a single wuniaxial cyclic tensile test.

Applications to concrete have shown some of the salient features of the
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behavior such as strain softening, stiffness degradation, and biaxial

strength envelope to be in good agreement with the experimental data.

5. In the uniaxial form of the proposed canonical model for concrete,
metaphorical generalized damage variables (MGDV) are formulated in
both tension and compression for an efficient unified approach.
Softening is shown to be an incontestable characteristic of the stress-
plastic-damage strain relationship in both tension and compression.
Plastic stiffness degradation sensitivity to concrete quality is noted to
be negligible. The stress-elastic damage strain curves reveal softening
behavior in tension whereas a helmet-shaped knot is seen to exist in
the compressive response. Comparison with existing damage models
reveals the egregious simplification achieved by the proposed MGDV in
predicting cyclic behavior using a single material parameter which is the

compressive strength.

6. The proposed theory of dichotomy replaces the continuum by a
system of orthogonal springs. This facilitates the reduction of the
constitutive relations into a canonical form. The behavior of concrete is
idealized as elastoplastic damage where the damage variables are
identified phenomenologically from the degradation of the material
moduli. The medel is verified against a large number of experiments and
is shown to be in a close agreement with observations. The following

are proved to be some of the salient notions of the model:

a. Unilateral nature since behavior in tension and compression are
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quite different.

Realistic description of the stress strain curve in both of the
pre-peak and post-peak regions in both tension and
compression.

The cyclic behavior reasonably idealizes the stiffness degradation
and the residual deformation can be determined.

The biaxial strength envelope reflects the well-documented
experimental features especially in the compression-compression
quadrant.

The stress free straining can be evaluated for all possible stress
combinations.

The volumetric changes are plausibly predicted where early
compaction followed by dilation takes place for compressive
associated loading.

Reduced number of the required material parameters which can
be determined from uniaxial testing.

The orthotropic nature of concrete behavior is underlined.

The degradation of the shear modulus is implicitly monitored,

thus shear retention is indirectly taken into account.

The derived damage model for reinforcing steel allows for the

nonlinear hardening features. Uniaxial tensile experiments on local steel

shows that ductile behavior is exhibited.

8. Fully coupled strain-damage algorithm together with the proposed
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search-find technique is found to bhe efficient for general wuniaxial
nonlinearity scheme as employed by the program DMGTRUSS. This
facilitates analysing linear elastic, hyperelastic, elastic perfectly-plastic,
elastic hardening, rigid perfectly-plastic and rigid hardening materials

in addition to those follow particular damage bebhavior.

9. General finite element formulations for isoparameiric and sheath

elements are derived in a manner that allows their use in various

related purposes.

10. Fully coupled strain-damage with proportional and nonproportional
plane stress algorithms allows for material modelling on different
structural scales as established in the program DMGPLSTS. Careful
attention should be paid to the selection of the appropriate methodology

since different results may be obtained in the past-cracking regime.

11. Practical applications to plain and reinforced concrete structural
components using DMGTRUSS indicate that the program captures the
pre-peak nonlinearity as well as the post-peak softening behavior of
concrete, stiffness degradation, translation of the origin of the stress-
strain curve along the strain axis, reduction of the peak strength in

alternate cyclic loading, wunilateral charvacteristics, and can determine

the residual deformations at any stress level.
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12. Predictions obtained by DMGPLSTS are shown to be in good

agreement with experiments, some other models and design codes.

13. Study of plain and reinforced concrete beams with and without
shear reinforcement and compression steel indicates reliable results
regarding global softening, nonlinearity of the response, failure modes,
prediction of the cracking locad as well as the ultimate load carrying
capacity as governed by concrete and/or steel damage manifested by

flexural and/or shear mechanisms.

14. Study of the steel/concrete bond characteristics indicates the
acceptance of the hypothesis of pseudo-slip advocsted by Mazars
(1984). Although perfect bond is postulated between concrete and
reinforeing steel, the formation of damage zone in the vicinity of the

rebars implicitly idealizes bond-slip behavior.

The damage framework presented in the current work is
recommended to be generalized to multiaxial states through the proposed

theory of dichotomy.
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APPENDIX 1

FORMULATION OF THE FINITE ELEMENT EQUATIONS

The principal of virtual work states that through incremental virtual
displacements; the incremental virtual work done by internal forces,

S (dU), is equal to the incremental virtual work done by external

loads, & (dW), i.e.
& (dU) = § (dW) (I.1)

The virtual external work due to all sorts of forces, for an element

of volume, V, and surface area, A, is given as (Chen, 1982

.
b

Zienkiewicz; 1978) :

*
W = (3dp )T (aPy + [ NIT aT) as + [ NT (ax) av (1.2)
A v
where
IN} the interpolation matrix
*
{85 ) the incremental virtual nodal displacements
{dP} the incremental concentrated nodal forces vector
{dT) the incremental surface traction vector

{dX) the incremental body forces vector
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The virtual internal work can be expressed as

*
U = [ (3de )T tdoy dV (1.3)
\Y
where
*
{8(dr. )} the incremental virtual strain vector
{a} the incremental stress

The incremental virtual strain can be related to the nodal

displacements through the relation:

() = [B] (37 0T aa*

in which [B| is the strain-displacement matrix and depends on the
element type and the chosen approximation function for the relevant
degrees of freedom. Substituting Eqn. I.4 in Eqn. 1.3, then equate

the product to Eqn. 1.2 as applied to the virtual work principal (Eqn.
1.1), yields

{ BT (doy @V = d@P} + [ INIT (dT) dA ¢+ [ NT qax) av (1.5)
\ A v

*
To arrive at Eqn. 1.5, the virtual displacement vector, (&(d& )}T has

been cancelled since it is arbitrary. The tangential stress-strain can be

expressed in the form:

£- The same relation is applicable to incremental actual parameters
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{o} = ICtI ({de} — {edO)) (1.8)

in which, lCtl is the tangent modulus matrix, {dr} is the incremental

strain vector, {dO) is the incremental temperature vector, and o is the
coefficient of thermal expansion. Substituting Eqn. I.6 in Eqn. I.5, and
making use of Eqn. 1.4 applied to actual, not virtual, strain-
displacement relationship, it can be easily shown after simple

mathematical manupilations that the reduced matrix equation is

Kyl (dF} = {dF} (1.7)
where,
_ T
[Kyl= [ [BI" IC,l [B] AV (1.8)
v
and

(dF)={aP} + | |N|T (dT} dA + IN!T (dX) av - | Bt ic
A \ v

(| (ndO) AV

(1.9)

Equation 1.7 represents the incremental element stiffness matrix

equations in terms of the tangential stiffness matrix, [K the

s
incremental nodal displacement vector, {d7}, and the incremental nodal
forces, (dF}. Assembley of elements' equations is required to obtain the

structural stiffness matrix equations in the global system of axes.
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APPENDIX 11

NONLINEAR SOLUTION TECIHNIQUES

Two general solution techniques were followed successfully (Anand,
1980): (1) Direct solution using either interpolative or iterative
schemes, and (2) Quadratic Programming technique in which the
kinematic minimum principle is used in conjunction with the Lagrangian
multiplier technique. In this study, an incremental iterative finite
element formulation is adopted to trace the whole structure response
and to account for any possible path dependence. There have been
great advances in developing efficient solution algorithms for nonlinear
problems. An extensive review cf most of the proposed methods is given
by Abd-Alrahman (1984). Mewton-Raphson method and its variants

(Modified Newton-Raphson and initial Stiffness methods) are briefly

described.
I1.1. CALCULATION STEPS

Most of the incremental nonlinear solution procedures are combined
with iteration in order to dissipate the out of plane forces {y}. The

first step in any increment, i, is to calculate an initial estimate of the

displacements, {A$11}, then additional corrective  displacements,
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th

corresponding to the r iteration, {:Wi‘} are obtained. The most

important iteration schemes are some form of the Newton-Raphson

iterative method.
1I.2. NEWTON-RAPHSON METHOD

The discretized system of nonlinear equations, for any load

increment i, can generally be written in the form

{w( W'i})} {0} (11.1)

where

gty - o) (I1.2)

N(E )

in which {a'l} is the desired solution, {y} is the gradient of the total

potential energy or the out of balance residual force vector, {rl) is the

vector of internal nodal point forces equivalent to the element stresses

at the end of the load increment i and {fl} is the vector of externally

applied nodal point loads at the considered increment.

If an approximate solution Wi_‘, to Eqn. (11.2) is reached, an

improved solution using a truneated Taylor series expansion can be

obtained using the expression

eldTp, D) = (w(@D) + l{’—&p}l ! (5. (I1.3)
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where higher order terms have been neglected. In the above equation

{oy i
—1 ; = [K{ |
{7} @;’ tr

(11.4)

represents the tangent stiffness or Jacobean matrix at the rth iteration

in the ith increment.

If the approximation Wiwl} is used instead of Wi} in Eqn. (11.1),

then Eqn. (II.4) can be written as
AT+ KL 1B = (0 (IL.5)
r

from which the iterative displacement {86;} can be found as

oaet = (K} 11 (vl (I1.6)
r

The improved approximation {86;) can be computed as

(g} = @) + (5, (I1.7)

Equations (I1.6) and (I1.7) constitute the Newton-Raphson solution of
Eqn. (I1.1). The procedure using (II.6) and (I1.7) continues and for

each iteration a new system of linearized equations has to be solved for

{Sm;}, until an appropriate termination criterion is satisfied.
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I1.3. MODIFIED NEWTON-RAPHSON METHOD

In the full Newton-Raphson method, the tangential stiffness matrix
has to be updated and a completely new system of equations has to be
solved in each iteration. This process can be highly expensive
particularly if relatively small load increments have to be used. To
overcome this difficulty some modifications of the full Newton-Raphson
algorithm is made by updating the stiffness matrix only occasionally,
e.g. once for each increment, and maintaining the same matrix for
successive iterations until convergence is achieved. two possible
modifications may be followed. The first includes calculation of the
stiffness matrix at the beginning of each increment while the other
considers the updated stiffness in the second iteration. The latter
reflects the nonlinear effects induced by the current incremental load
application. Of course these modifications slow down the convergence

even if accelerating schemes are utilized.
I1.4. INITIAL STIFFNESS METHOD

This method was first advocated by Zienkiewicz and his co-workers
(Adel-Rahman, 1982) for the solution of elasto-plastic problems. The
method can be thounght of as a modification to the Newton-Raphson
algorithm where the initial elastic stiffness is maintained throughout the
entire analysis. Though the use of this method renders a particular
solution to some of the problems associated with full and Modified
Newton-Raphson methods, for example ill-conditioning, the convergence

characteristics of the method are not encouraging particularly when
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highly nonlinear problems are to be dealt with .
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APPENDIX 111

CONVERGENCE CRITERIA

In an incremental-iterative solution strategy, the solution obtained
at the end of each iteration is checked to see whether it has converged
within specified tolerances or whether it is diverging. The convergence
tolerances must be realistic. If the convergence tolerance is too loose,
inaccurate results are obtained and if the tolerance is too high, much

expensive effort is spent to obtain needless accuracy.

The convergence criteria, that are usually used for nonlinear
structural analysis, are based on either displacements, out of balance
forces, or internal energy. In the current study, the force convergence
criterion, the displacement convergence criterion or combination are

found to yield satisfactory results.

III.1 FORCE CRITERION

The residual or out-of-balance forces, which are the differences
between the applied forces and the equivalent internal nodal forces, are

used to check equilibrium and consequently the convergence of the

nonlinear solution.

Equilibrium of forces in a certain direction, j, is deemed to be
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achieved if the following expression is satisfied

j
Iwli)

i
e

ej=

X 100 <(TOLER); (I1I.1)

More practically, an overall (global) check for all degrees of freedom

can be written in the form

%Ilwllr

ep = 49— x 100 <(TOLER) (I11.2)
£ 7 YT, e
j

In the above expressions the following notations are used:

||°||i_ represents the Euclidean norm at iteration r for forces in
direction j,
W represents the out-of-balance forces,

f represents the total nodal forces,

(TOLER)j a percentage value of the allowable convergence tolerance

for the forces in direction, and j.

(TOLER‘)f a percentage value of the allowable global force

convergence tolerance.
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III.2 DISPLACEMENT CRITERION

The incremental displacements obtained through each iteration are
used to judge the overall convergence by expressing a global check

over all degrees of freedon in the following form

Ylisell,
J

e, = -=———— x 100 5(TOLER) (1I1.3)
d ” YTlell, d
]

In the above expressions the following notations are used:
S represents the incremental displacements,
0 represents the total displacements,

(TOLER) a2 percentage value of the allowable global displacement

convergence tolerance.



APPENDIX 1V

DMGTRUSS GLOSSARY

IV.1 DMGTRUSS VARIABLES

VARIABLE

Al, Bl

AE

AP

BUKST

Cl, C2

Ci, C3

CRDMP

DA

DESCRIPTION

Material parameters in Mazars' damage model.

The ratio of the elastic modulus to the total

modulus.

The ratio of the plastic medulus to the total

modulus.

Buckling stress in compression members after

Euler's formula.

Material parameters wused in Krajeinovic and

Fanella's (1981) damage model.

Coefficients derived from the material parameters

used in Loland's damage model.
Critical damage parameter.

Current value of the loading damage variable.



DB

DE

DFACT

DMATO

DMSTR

DIVFN

DO

DP

EQYNG

FACTO
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Material parameter wused in Krajcinovic and

Fanella's damage model, DB-—-BI-BB, B1 and B,

are another material parameters.
Current value of the unloading damage variable.

The ratio of the final strain to the peak strain for

parabolic relations.

Uncorrected tangential modulus for thermal

loading.
Threshold damage strain; =T in damage models

#1, #3, #4; =t in damage models #2; =r.?1 in

damage models #6; =ty in damage models #8; and

=rq in damage models #10.

Tangent slope coefficient at the current stress-

level.

Initial damage parameter used in Loland's damage

model.
Current value of the plastic damage variable.
Current linear unloading/reloading modulus.

Current increment load/displacement factor.



FACTR

FMULT

FT

FUNCN

IDMGE

IEQNS

IINCS

IITER

IDMGE

IGEOM

ILINS
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Gaussian reduction factor.
Corrected tangential modulus for thermal loading.
The tensile strength of concrete ft'.

The nonlinear-damage loading function coefficient

at the current stress-level.

Index of the current element's damage model.
Index of equation number.

Current increment number.

Current iteration number.

Global damage indicator, IDMGE = 0; non of the
built in damage models is used, IDMGF = 1; same
damage model is used in tension and compression,
IDMGE = 2; different damage models are used in

tension and compression.

Global geometric nonlinearity indicator, IGEOM =
0; no geometrical mnonlinearity, IGEOM = 1;

structural geometry is wupdated after every

increment.

Global material nonlinearity indicator, ILINS = 0;

linear elastic materiai, ILINS = 1; material has



ISTEP

ITEMP

IZNCU

LPROP

KRESL

KUNLC

LDCSE

NALGO

NBOUN
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same response in tension and compression, ILINS
= 2; material has different behavior in tension

from compression.

Index for the stress pump of the current stress-

strain zone.

Thermal loading indicator, ITEMP = 0; no

temperature loading, ITEMP = 1; there is thermal

changes.
Index for the current stress-strain zone.
Index for the element's material number.

Solution indicator number, KRESIL = 1; compute
stiffness and solve the full system, KRESL = 2;

use old stiffness matrix and equation resolution

need be done.
Unloading code of the current zone.

Load case indicator, LDCSE = 1; no temperature
loading, LDCSE = 2; only temperature loading,

LDCSE = 3; combined temperature and mnodal

loading.
Solution algorithm selector.

Number of restrained nodes.



NCHEK

NCOLS

NDIME

NDOFN

NELEM

NEVAB

NINCS

NITER

NLDCN

NMATS

NNODE

NOUTP
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Convergence check indicator. NCHEK = 0; solution
has converged, NCHEK = 1; solution is

converging, NCHEK = 999; solution has diverged.

Number of the column in the global structural

stiffness matrix and load vector.

Number of dimensions. NDIME = 1; for one-
dimensional truss, NDIME = 2; for plane truss,

NDIME = 3, for space truss.

Number of nodal degrees of freedom in the global

system; NDOFN = NDIME in DMGTRUSS.

Number of elements.

Number of element variables; NEVAB = NNODE X
NDOFN.

Number of increments.
Number of iterations within an increment.

Number of loading conditions, NLDCN = 2; i.e.

tension and compression.
Number of different materials.
Number of nodes per element; NNODE = 2.

Output type control, NOUTP = 0; print the



NPROD

NPROP

NPROT

NPROZ

NROWS

NSTRE

NSVAB

NZONE
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results on convergence, NOUTP = 1; print after
first iteration and after convergence, NOUTP = 2;

print after every iteration.

Number of properties for damage model used for

each material in either tension or compression;

NPROD = 5.

Number of properties for each material; NPROP =

16.

Number of parameters ample to specify nonlinear

elastic degradation with temperature; NPROT = 5.

Number of parameters ample to specify nonlinear-
damage behavior for loading of each material in

either tension or compression; NPROZ = 8.

Number of the row in the global structural

stiffness matrix and load vector.
Number of stress wvariables.

Number of structural variables; MSVAB = NPOIN
X NDOFN.

Number of zones sufficient to describe the material
stress-strain  relationship in  either loading

condition; maximum value is NZONE = 5.



NZONT

PIVOT

PO

PO1, POK

PVALU

RATIO

RPARM

RPSTR

ST

STEP

STNCU
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Number of zones sufficient to describe the material

degradation with thermal effects; maximum value is

NZONT = 2.

Diagonal term of variable currently being

evaluated in equations reduction.

Poisson's ratio.

Coefficients related to Poisson's ratio.

The value of RATIO in the previous iteration.
The percentage of the residual norm.

The material parameter R in the damage model for

steel.

The rupture strain in the isotrepic ductile damage

model.

Exponent used in the canonical uniaxial model for

concrete.

The ratio of strain to the peak strain for

concrete.

The value of stress pump of the current stress-

strain zone.

The current strain value with respect to the



STNDF

STNEX

STNOL

STRAN

STRESS

STRSO

TFACTO

TOLER

UN

w

WO

stress-strain curve origin.

The current strain value with respect to

initial strain of the current zone.

The maximum strain value with respect to

stress-strain curve origin.

The previous strain value with respect to

stress-strain curve origin.
The incremental strain.
The cumulative stress in SEARCH-FIND scheme.

The ultimate strength 5, in the damage model

steel.
cumulated incremental factors.

Tolerence for convergence.

530

the

the

the

for

Material parameter, Mo in Loland's damage model.

Voids intensity in Krajcinovic and Fanella's (19

damage model.

81)

The initial value of voids intensity in Krajcinovic

and Fanella's (1981) damage model.
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1V.2 DMGTRUSS ARRAYS

ARRAY

ASDIS(NSVAB)

ASOLD(NSVAB)

ASTIF(NEVAB,NEVAB)

BMATX(NSTRE,NEVAB)

COORD(NPOIN)

DESCRIPTION

The global vector of incremental nodal

displacements.

The global vector of applied loads.

The global stiffness matrix.

The strain-nodal displacement matrix for
each element which is updated when IGEOM
= 1. It is stored after its construction in

Tape 3.

Updated coordinates of nodal points.

CUDMP(NELEM,NLDCN,NSTRE)

DL(NELEM)

DMATX(NSTRE,NSTRE)

Updated damage parameter for each element

in either loading condition.

Element's length which is updated if IGEOM
= 1.

Tangential modulus matrix for each element
which is updated if ILINS = 0. It is stored

in Tape 2.



ELCOD(NDIME,NNODE)

ELOAD(NELEM,NEVAB)

ESTIF(NEVAB,NEVAB)

ETEMP(NELEM)

ETPLD(NELEM,NEVAB)

FIXED(NSVAB)

FRESV()

ICODE(NDOFN)

IFFRE(NSVAB)

532
Current coordinates of element's nodal

points.

Applied factored nodal loads in each

element.
The element stiffness matrix.

The current temperature variation within

every element.

The current temperature consistent loading

within every element.

Factored prescribed variables, according to
the load increment factor, in the global

array.
Stored Gaussian reduction factors.

Fixity code for each degree of freedom at a
restrained node, ICODE = 0; free degree of
freedom, ICODE = 1; prescribed degree of

freedom.

Global array of fixity codes for all degrees
of freedom, IFPRE = 0; free degree of
freedom, IFPRE = 1; prescribed degree of

freedom.



IZONE(NELEM,NSTRE)

LNCOD(NELEM)

LNODS(NELEM,NNODE)

MATNO(NELEM)

533
Current zone on the loading path for each

stress component of every element.

Current loading status, LNCOD = 1; tensile

loading, LNCOD = 2; compressive loading.
Element nodal connectivities.

Element's material identification number.

PROPD(NMATS,NLDCN,NPROD,NSTRE)

Properties for each damage model in either
loading condition of each material: DMSTR-
DMSTR, DFACTO- DMSTR, Al, B1- DMSTR,
FT, DO, UN- DMSTR, DB, C1, C2- DMSTR,
STRSO, RPARM- DMSTR, RPSTR, CRDMP
for damage models #1-#2-#3-#4-#6-#8-#10,

respectively.

PROPS(NMATS,NPROP,NSTRE)

Properties for each material set for each
stress component, for the counter IPROP=
1, NPROP take the wvalues: 1) number of
nonlinearity zones in tension, 2) number of
nonlinearity zones in compression, 3) tensile
damage model code, 4) compressive damage
model code, 5) initial tangential modulus, 6)

cross sectional area, 7) second moment of
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arvea, 8) coefficient of thermal expansion, 9)
thermal loading code ITEMP, 10) Poisson's
ratio, 11) threshold elastic damage strain

T 12-14) coefficients for degradation of
d

elastic modulus a ,a 15) mass density

10750

and 16) acceleration of gravity.

PROPT(NMATS,NZONT,NPROT)

Properties for each zone of material
degradation by thermal effects, for the
counter IZONT= 1, NZONT takes the values
of the polynomial coefficients for the

material degradation under thermal effects.

PROPZ(NMATS,NLDCN,NZONE,NPROZ ,NSTRE)
Properties for each zone describing material
nonlinear-damage behavior in either loading
conditions. For the ith =zone (counter
IZONE= 1, NZONE) the properties
corresponding to the counter IPROZ= 1,

NPROZ are: 1) the initial strain Pt 2) the
i

moduli multiplier ')"i’ 3-5) the polynomial

coefficients f .8 .0, for the damage
i i i

variable da , 6) unloading code KUNLC, 7)
i



PFIX(NSVAB)

PLAST(NELEM,NSTRE)

RCORD(NPOIN)

REACT(NSVAB)

RLOAD(NSVAB)

RTEMP(NELEM)

RTPLD(NELEM,NEVAB)

STNMN(NELEM,NSTRE)

STNMX(NELEM,NSTRE)

STRES(NELEM,NSTRE)

STRIN(NELEM,NSTRE)
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stress discontinuity code ISTEP, 8) initial
stress discontinuity value for the zone

under consideration.

Global array for prescribed values.

Plastic strain of every stress component of

each element.

Original coordinates of nodal points.

Incremental reactions at prescribed nodes.

Reference applied nodal loads.

The full range of temperature variation

within every element.

The total temperature cousistent loading

within every element.

The strain of the current stress-strain

curve origin of every element.

The maximum ever reached strain of every

element.

The current stress component of every

element.

The current strain component of every



TDISP(NPOIN,NDOFN)

TLOAD(NELEM, NEVAB)

TREAC(NPOIN,NEVAB)

XDISP(NSVAB)

YOUNG(NELEM)

536

element.

Nodal displacements.

Total applied loads at the current

increment.

Total reactions at the prescribed nodes.

Total displacements corresponding to the

structural variables.

The current elastic modulus for each

element.
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APPENDIX V

DMGTRUSS’ INSTRUCTIONS

V.1 INPUT CARDS

The input file is composed of several cards, the description of

which is given hereafter

INPUT CARD DESCRIPTION
CARD I Title card; one line
TITLE
CARD 11 Control parameters; one line:

NPOIN,NELEM,NBOUN,NMATS ,NDOFN,NINCS,

NALGO,IGEOM, ILINS,IDMGS,ITEMF.

CARD III Structural material parameters, NMATS blocks

CARD 1II.1 Control parameters:

JMATS, (PROPS(JMATS,IPROP,ISTRE),IPROP=1,NPROP)

CARD 1I1.2 Material properties for general nonlinearity:



CARD III.2.1

CARD III.2.2

CARD II1.3

CARD II1.3.1

CARD 1II1.3.2

CARD 1I1I.4

538
Material properties for multiple tensile zones,
NTZON lines
(NTZONE=INT(PROPS(JMATS,1,ISTRE))):

(PROPZ(JMATS, 1,ITZON,IZPRO,ISTRE),IZPRO=1,8)

Material properties for multiple compressive zones,

NCZON lines
(NCZON=INT(PROPS(JMATS,2,ISTRE))):

(PROPZ(JMATS,2,ICZON,IZPRO,ISTRE),IZPRO=1,8)

Material properties for specific damage law

(alternative to III.2):

Material properties for tensile damage model
number INT(PROPS(JMATS,3,ISTRE)):

(PROPD(JMATS, 1,IDPRO,ISTRE),IDPRO=1,4)

Material properties for compressive damage model
number INT(PROPS(JMATS,4,ISTRE)):

(PROPD(JMATS,2,IDPRO,ISTRE),IDPRO=1,4)

Thermal material  parameters, NTEMP  lines
(NTEMP=INT(PROPS(JMATS,9,ISTRE))):

(PROPT(JMATS,JTEMP,ITPRO),ITPRO=1,8)
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CARD V Elements properties: number, connectivity,
material I.D. and temperature, NELEM lines:
JELEM, (LNODS(JELEM,INODE),INODE=1,NNODE),
MATNO(JELEM),RTEMP(JELEM)

CARD VI Nodal coordinates, NPOIN lines:

JPOIN, (RCORD(JPOIN, IDIME) , IDIME=1,NDIME)

CARD VII Prescribed nodal displacements, NBOUN lines:

NODFX, (ICODE(IDOFN), VALUE(IDOFN),IDOFN=1,NDOFN)

CARD IIX Applied nodal Joads, terminates when reads
JELEM=NELEM:

JELEM, (RLOAD(JELEM,IEVAB),IEVAB=1,NEVAB)

CARD IX Incremental/iterative control parameters, NINCS
lines:
LDCSE,NITER,NOUTP,FACTO,TOLER

V.2 SAMPLE INPUT FILE

A sample input file is listed in the attached sheet (P.T.O.)



~J

.-....--.-—--....—..-...—-.._....._._._._...._.',.._..._..4_-...._...._.__.-—--—--—-—-—-—-——-—-—'

CARONICAL NMODEL. TOR COHCRETE IN CYCLIC

1 2 i 1 60 2
077 28, t. 1. 1.6-6 0.
1 ? 1 0,

1 0.0

2 1.Q

\ 1 0.0

? 1 006

0.0 .00

99 0 .0050 0.5
99 ¢ L0050 0.5
99 0 L0050 0.5
99 0 .0059 0.5
29 0 L0050 0.5
99 0 L0050 0.5
99 0 . 0050 0.9
99 Q . 0050 0.5
99 4] L0050 0.5
99 0 -.0050 0.5
99 ] -.0N50 0.9
99 U -. 0050 0.5
99 o =. 0050 0.5
99 0 -, 0050 0.5
99 0 -.002% 0.5
99 0 -. 0500 0.5
99 o -, 05G0 0.5
99 Q -.0500 0.5
99 0 -.0500 0.5
99 0 -.05C0 0.5
99 0 -.0500 0.5
99 0 -. 1000 0.5
99 0 -. 1060 0.5
99 4] -. 1000 0.5
99 0 -. 1000 0.5
99 0 ~. 1000 0.5
99 0 -. 1000 0.9
99 n -.1000 0.5
99 0 L1000 0.5
Q9 0 L1000 0.5
99 4] L 106G 0.5
a9 0 L1000 n.5
a9 ¥ L0050 n.n
Q9 0 L0050 .9
99 O R LTh] 0.5
a9 0 . 0050 0.5
a9 0 L0050 0.5
99 1 L0050 0.5
929 ¢ . 0050 0.5
99 0 .50 0.%
99 Q .0N5S0 0.5
a9 0 .0N50 a.5
99 0 L0050 0.5
99 0 L0050 0.5
99 0 . 0050 0.9
99 0 L0050 0.5

BEHAVOR - ONE BAR

ag10.



APPENDIX VI

DMGPLSTS GLOSSARY

V1.1 DMGPLSTS VARIABLES

VARIABLE

Alpha

Beta

DMSTR

DVOLU

EPCO

EPTO

ETASP

EXISP

FC

FT

DESCRIPTION

Modified Guo and Zhang's coefficient (1987); «.
Modified Popovics' coefficient (1973); n.

The biaxiliaty ratio.

The threshold damage (yield) strain for steel, fy
The differential elemental volume, = |J| t Wi Wj.
The uniaxial compressive peak strain.

The uniaxial tensile peak strain.

The n coordinate of the Gauss point.

The £ coordinate of the Gauss point.

The uniaxial compressive strength.

The uniaxial tensile strength.



IQUAD

KGASP

KGAUS

LITER

MTOTG

NGAUI

NGAUJ

NSTRP

542
The biaxial stress quadrant; =1 for biaxial tension

quadrant, =2 for uniaxial tension, =3 for tension-

compression quadrant, =4 for uniaxial
compression, =5 for compression-compression
quadrant.

Local counter of the sampling points over each

element.

Global counter of the sampling points over the

whole structure.

Least number of iterations, in the nonlinear

solution, controlled by force convergence

criterion.

Maximum total number of sampling points over the

whole structure.

Number of sampling points in the direction of the

& —-axis.

Number of sampling points in the direction of the

n —axis.

Number of principal stress components; =2 for
plane stress and =3 for plane  strain,

axisymmetrical and 3-D problems.



POISS

RPARM

STRSO

THETA

THICK

UYLFC

YOUNG

543

Initial undegraded Poisson's ratio, Vor

The material parameter R for damage model of

steel.

The ultimate strength of steel Ty

The angle between the x-axis the major principal

axis, 0.

The thickness or cross-sectional area of concrete

and steel elements, respectively.

The upper yield siress multiplier coefficient o for

the steel damage.

The initial tangential modulus.

V1.2 DMGPLSTS ARRAYS

ARRAY

AOR(NSTRP)

BIAXL(I,MTOTG)

DESCRIPTION

The initial tangent multiplier of the total

behavior in the principal plane.

The biaxial characteristic quantities; I=1 for

IQUAD, I-2 for BETA, and I=3 for THETA.



EOR(NSTRP)

DA(NSTRP)

DDA(NSTRP)

DE(NSTRP)

EPRV(NSTRP)

EQYNG(NSTRP)

LETYP(NELEM)

PROPS(NMATS, NPROP)

544
The initial tangent multiplier of the elastic

behavior in the principal plane.

The total damage variable in the principal

plane,

The differential total damage variable,

ﬁda/(‘,’r., in the principal plane.

The elastic damage variable in the principal

plane.
The peak strain function, n, -

The degraded wunloading moduli in the

principal space.

The element type; =2 for 2-noded boocm
element, =3 for 3-noded boom element, =5
for 4-noded interface quadrilateral element,
=6 for 4-noded quadrilateral element, =7 for

6-noded interface element, =8 for 6-noded

element, =11 for 8-noded Serendipity
element, =12 for 9-noded Lagrangian
element.

The materials' properties array. For the

counter IPROP= 1, NPROP, it takes the



SIGNE(NSTRP)

SPRV(NSTRP)

STNCU(NSTRE)

STNDF(NSTRE)

STNEX(NSTRE)

STNMN(NSTRE)

STNMX(NSTRE)

STNOL{NSTRE)

STRAN(NSTRE)

545
values: i. for concrete: 1)} FC, 2) POISS,
3) THICK and ii. for steel: 1) YOUNG, 2)
DMSTR, 3) THICK, 6) STRSO, 7) RPARM,
8) UYLFC.

The sign of the stress components; =-1 for

compression and =1 for tension.
The peak stress function, N+

The current strain in the current principal

plane.

The current strain increment in the XY

plane.

The maximum ever reached strain in the

current principal space.

The strain ordinate corresponding to the

origin of the active stress-strain curve in

the XY plane.

The maximum ever reached strain ordinate

in the XY plane.

The strain of the previous iteration in the

current principal space.

The strain increment in the current



STRES(NSTRE)

STRIN(NSTRE,MTOTG)

STSDF(NSTRE)

546

principal space.

The stress vector in the current principal

space.

The total strain ordinate in the XY plane at

each sampling point.

The stress increment in the current

principal space.
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APPENDIX VI

DMGPLSTS” INSTRUCTIONS

VLT INPUT CARDS

The input file is composed of several cards, the description of

which is given hereafter

INPUT CARD DESCRIPTION
CARD I Title card; one line:
TITLE
CARD 11 Control parameters; one line:

NPOIN,NELEM,NVFIX,NTYPE,NNOD1,NMATS,
NGAUS,NALGO,NCRIT,NINCS,LSTRE,NDIME,
NDOFN,IPROB

CARD 111 Elements properties: number, material I1.D.,
element type and connectivity, NELEM lines:
NUMEL,MATNO(NUMEL),LETYP(NUMEL),

(LNODS(NUMEL,INOD1),INOD1=1,NNOD1)



CARD 1V

CARD V

CARD VI

CARD VI.1

CARD V1.2

CARD VII

CARD VII.1

CARD VII.2

CARD VIIL.3

Nodal coordinates, NPOIN lines:

JPOIN, (RCORD(JPOIN,IDIME),IDIME=1,NDIME)

Prescribed nodal displacements, NVFIX lines:

NOFIX(IVFIX),IFPRE,

(PRESC(IVFIX,IDOFN),IDOFN=1,NDOFN)

Structural material parameters, NMATS blocks:

Material number, one line:

NUMAT

Material properties, one line:

(PROPS(NUMAT,IPROP),IPROP=1,NPROP)

Loading block and contains the following

subcards:

Loading title, one line:

TITLE

Control data for loading types, one line:

IPLOD,IGRAV,IEDGE,ITEMP,IPORE

Nodal point loads, terminates when

LODPT=NPOINT:
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LODPT, (POINT(IDOFN),IDOFN=1,NDOFN)

CARD VII.4 Gravity loading section, one line:
THETA,GRAVY
CARD VII.5 Distributed edge loading block:

CARD VIIL.5.1 Number of loaded edges, one line:
NEDGE

CARD VII.5.1 Data about the loaded edge:
LDCSE,NEASS,IGTYP,

(NOPRS(IODG1),IODG1=1,NODG1)

CARD VI1.5.2 Data about the loading values:

(PRESS(IODGE, IDOFN),IDOFN=1,NDOFN)
,IODGE=1,NODGE)

CARD IIX Incremental/iterative control parameters, NINCS

lines:

FACTO,TOLER,MITER,LITER,NOUTP(1) ,NOUTP(2)

VIL.2 SAMPLE INPUT FILE

A sample input file is listed in the attached sheet (P.T.O.)



STUDY OF TEHSION CHARACTLRISIICS OF CAPPED REINFORCLD CONCRETC MEMBIRS

29 9 9 1 a8 3 ? 1 1 hp 3 bl 2 2
1 1 11 1 ? 3 9 13 12 ]

2 1 11 3 N 5 10 16 15 1 9

3 A n 9 6 7 N 18 17 16 10

i 1 IR 12 13 20 &5 2h 23 19

5 1 1 oS 16 21 21 26 25 20

6 o n 16 17 8 22 29 28 27 21

) 3 3 2 13 i 0 0 Q 0 0

a 3 3 IR ) 16 Q 0 4] 0 n

9 3 3 16 17 18 0 0 0 (] 0

1 0.0n 0.00

3 0.25 0.00

9 0.50 0,00

7 0.60 0,00

12 0. 0.25

M  0.25 0,25

16 0.50 0.75

18 0.60 0.2%

2 0.00 0.50

25 0.72% 0.50

? 0.50 0.5%0

29 0.60 0.50

1 10 0.0 0.0

8 10 0.0 0.0

12 ] 0.0 0.0

19 10 a.0 0.0

23 10 0.0 0.0

1

28.000 0. 00 1.0 Q.0 00,0  h00.  .0015 (. 0am
2

28.000 0,60 100.0 0.0 o0 Koo, .oms 0. 0001
3

213000, 1.h8G9E-3  0.000 0.0 00,0 575 0. han 1.15

UNT. TFNSION
1 0 0 0 0
18 1.6 Q.

> (18 0,
0.12% 1.0 200 200 0 3
6129 1.0 200 200 0 3
0.0625 1.0 200 200 n 3
0.0625 1.0 200 200 1 ]
0.062%5 1.0 200 200 0 3
0. 0625 1.9 200 2110 §] 3
0.0625 1.0 200 200 4] 3
0.062% 1.0 200 200 N 3
0.0625 1.0 200 200 O 3
0.0625 1.0 200 700 Q 3
0.062% 1.0 200 200 0 3
0.0625 1.0 200 200 0 3
N.0625 1.0 200 200 [§] 3
0.0625 1.0 200 200 0 3
0.0625 1.0 200 200 0 3
0.0625 1.0 200 200 ] 3
0.0625 1.0 200 200 0 3
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