A generalized theory for bending of thick isotropic rectangular plates

Ammar Khalil Hafedh Mohammed

Civil Engineering

June 1989

Abstract

Several refined theories of plates have been developed in the recent decade. All such theories have attempted to incorporate the effects of tranverse shear stresses and tranverse normal stress and strain which become important as the ratio of the plate thickness to characteristic length (h / L) increases. The theory developed in this dissertation belongs to this category, except that it differs in that generalized forms of stress are assumed initially, which leads to the formulation of a more accurate theory of bending of hick plates.

Upon comparison of the results from this present work with the exact solution and other previous refined theories, the present theory yields results closest to the exact solution for both deflection w and inplane stresses, up to a ratio of h / L as high as 3.0 for the case of cylindrical bending, and up to a ratio of $\mathrm{h} ? 1$ as high as 1.0 for the case of rectangular plates.

A Generalized Theory for Bending of Thick Isotropic Rectangular Plates

by
Ammar Khalil Hafedh Mohammed
A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES
KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS
DHAHRAN, SAUDI ARABIA
In Partial Fulfillment of the
Requirements for the Degree of
\section*{DOCTOR OF PHILOSOPHY}
In
CIVIL ENGINEERING

June, 1989

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6 " $\times 9$ " black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

UMI

A GENERALIZED THEORY FOR BENDING OF THICK ISOTROPIC RECTANGULAR PLATES

BY

AMMAR KHALIL HAFEDH MOHAMMED

A Thesis Presented to the
faculty of the college of graduate studies KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS DHAHRAN, SAUDI ARABIA

LIBRARY
KIVG FAHD UNIVERSITY OF PETROLEUM \& MINERALS DHAHRAN - 31261. SAUDI ARABIA

In Partial Fulfilment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

> In

CIVIL ENGINEERING

JUNE, 1989

UMI Number: 1381098

UMI Microform 1381098
Copyright 1996, by UMI Company. All rights reserved.
This microform edition is protected against unauthorized copying under Title 17, United States Code.

300 North Zeeb Road
Ann Arbor, MI 48103

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS DHAHRAN 31261, SAUDI ARA IA
 COLIEGE OF GRADUATE STUDIES

This dissertation, written by AMMAR KHALIL HAFEDH MOHAMMAD under the direction of his Dissertation Advisor and approved by the Dissertation Committee, has been presented to and accepted by the Dean of Graduate Studies, in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY.

Dissertation Committee

Dissertation Advisor

Dr. G. J. Al-Sulaimani Department Chairman

Dr. Ala H. Al-Rabeh Dean, College of Graduate Studies.

بسم الله الرحمن الرحيم

أهدي رسالة الدكتوراة هذه إلى :

> زوجتي (أم يإسر الـلعزيزين العزيزة ، ،

وإلى

THIS PH.D DISSERTATION IS DEDICATED TO : MY DEAR PARENTS MY DEAR WIFE (UM YASER) AND

MY BELOVED SONS : YASER AND MOHANNED

ACKNOWLEDGEMENT

First of all, I thank "ALLAH" for all the knowledge and science HE had given to mankind including myself. Thanks are also to our Prophet MOHAMMED, PEACE BE UPON HIM, who encouraged us as Moslems to seek science wherever it can be found.

Acknowledgement is to the KING FAHD UNIVERSITY OF PETROLEUM and MINERALS for supporting this work and for giving me the honour to be the first Ph.D. graduate in the Civil Engineering Department.

I do not find appropriate words to express my deep appreciation, respect and gratefullness to my Main Advisor : Dr. BALUCH,M.H. for all the help, support, encouragement he had given me all the way. Also I thank deeply the Co-Advisor : Dr. AZAD,A.K. for his guidance and valuable suggestions he made to complete this work. Great thanks are also to the other Committee Members : Dr. AL-FARABI,S.M. and Dr. GECIT,M.R. for their valuable suggestions and comments they made to improve this work. Acknowledgement is also due to Dr. AL-LAYLA,R. who during his tenure as chairman of Civil Engineering Department lent considerable help and encouragement.

Acknowledgement is also due to the Chairman of the Civil Engineering Department : Dr. AL-SULAIMANI, G.J. for his help and encouragement during this work.

I wish also to express my deep gratitude to MY PARENTS for all what they had given me including their love, encouragement, and support.

I shouldn't forget to thank MY WIFE and OUR SONS : YASER and MOHANNED, for being extremely patient and I don't forget their suffering all the way until I had accomplished this work.

TABLE OF CONTENTS

Page
List of Tables X
List of Figures xiii
Abstract xxiii
Chapter 1
1.0 INTRODUCTION 1
Chapter 2
2.0 THEORETICAL BACKGROUND 7
Chapter 3
3.0 FORMULATION 14
3.1 Governing Equations for the Rending Prohlem 14
3.2 Governing Equations for the Inplane Problem 24
3.3 Boundary Conditions 26
3.4 Derivation for the Function $r_{1}(z)$ 27

Chapter 4

4.0 SOLUTION OF PROBLEM BY SEMI-INVERSE LEVY TYPE METHOD 34
4.1 Solution of the Bending Problem 34
4.1.1 Derivation of the Governing Equations 34
4.1.2 Solution of Bending Problem by Semi-Inverse Levy Type Method 40
4.1.3 Derivation of the Non-Dimensinnal Form of $f_{1}(z)$ and Related Constants 48
4.1.4 Expressions for Moments and Shear Forces in the Plate 56
4.2 Solution of the Inplane Problem 61
4.2.1 Formulation in Terms of Average Inplane Displace- ments $\overline{\mathrm{u}}$ and $\overline{\mathrm{v}}$ 61
4.2.2 Solution for $\overline{\mathrm{u}}$ and $\overline{\mathrm{v}}$ 67
4.3 Boundary Conditions for the Bending Problem 71
4.4 Boundary Conditions for the Inplane Problem 78
4.5 Expressions for Stresecs in a Non-Dimensional Form 80
Chapter 5
5.0 APPIICATIONS 86
5.1 Cylindrical Bending 86
5.2 Examples for Rectangular Plates. 92
5.2.1 A Square Plate Uniformly Lnaded with All Edges Simply Supported 92
5.2.2 A Square Plate Uniformly Loaded with Clamped Edges at $y= \pm b / 2$ 94
5.2.3 A Square Plate Uniformly Loaded with Free Edges at $y= \pm b / 2$ 9.5
5.2.4 A Square Plate Simply Supported All Around and Loaded with a Line Load at $x=a / 2$ 95
5.2.5 A Square Plate Simply Supported All Around and Loaded with a Strip Lnad 98
5.2.6 A Plot of $w(x, y, z)$ Across the Plate 99
5.2.7 Verifying Equilibrium of the Plate in the Vertical Direction 102
5.2.8 Effect of Inplane Stretching on Inplanc Stresses 103
5.3 Computer Program 104
5.4 Conclusions 107
APPENDICES 218
A-1 Derivation of Equation (4-28) 218
A-2 Derivation of the Function $\mathrm{Y}_{\mathrm{m}}\left(\mathrm{y}^{\prime}\right)$ in F.quation (4-37) 221
A-3 Derivation of the Particular Solution for the Bending Problem 223
A-4 Physical Interpretation for the Average Displacements $\bar{w}, \bar{u}, \bar{v}$, and Average Rntations \oplus_{x} and \oplus_{y} 228
A-5 Program Listing 232
A-5.1 Prngram DISS2 Listing 232
A-5.2 Program DISS4 Listing 267
REFERENCES 278

LIST OF TABLES

Page
Table 5.1 \quad Cocfficient α for the Center Deflection of a Uni-
formly Loaded Simply Supported Square Plate............... 202
Table 5.2 Coefficient β for the Center Resultant Moment M_{x} of a Uniformly Loaded Simply Supported Square Plate 203
Table 5.3 Coefficient γ for the Center Resultant Moment M_{y} of a Uniformly Loaded Simply Supported Square Plate 204
Table $5.4 \quad$ Coefficient α for the Center Deflection of a Uni- formly Loaded Simple/Clamped Square Plate 205
Table $5.5 \quad$ Coefficient β for the Center Resultant Moment M_{x} of a Uniformly Loaded Simple/Clamped Square Plate 206

Table 5.6	Coefficient γ for the Center Resultant Moment
M_{y} of a Uniformly Loaded Simple/Clamped	

Square Plate 207
Table 5.7 Coefficient α for the Center Deflection of a Uni- formly Loaded Simple/Free Square Plate 208Table $5.8 \quad$ Cocfficient β for the Center Resultant MomentM_{x} of a Uniformly Loaded Simple/Free SquarePlate209
Table 5.9 Coefficient γ for the Center Resultant Moment M_{y} of a Uniformly Loaded Simple/Free Square
Plate 210Table $5.10 \quad$ Coefficient α for the Center Deflection of a Sim-ply Supported Square Plate with a Line Load at$x=a / 2$211

Table 5.11 \quad Coefficient β for the Center Resultant Moment	
	$M_{\mathbf{x}}$ of a Simply Supported Square Plate with a
	Line Load at $\mathrm{x}=\mathrm{a} / 2$... 212

Table $5.12 \quad$ Coefficient γ for the Center Resultant Moment M_{y} of a Simply Supported Square Plate with a Line Load at $X=a / 2$ 213
Table $5.13 \quad$ Coefficient α for the Center Deflection of a Sim- ply Supported Square Plate with a Strip Load (width $=0.2 \mathrm{a}$) Centered at $\mathrm{x}=\mathrm{a} / 2$ 214
Table $5.14 \quad$ Cocfficient β for the Center Resultant Moment M_{x} of a Simply Supported Square Plate with a Strip Load (width $=0.2$ a) Centered at $\mathrm{x}=\mathrm{a} / 2$ 215
Table $5.15 \quad$ Coefficient γ for the Center Resultant Moment M_{y} of a Simply Supported Square Plate with a Strip Load (width $=0.2$ a) Centered at $X=a / 2$ 216
Table 5.16 Total Distributed Reaction R Along Edges of a Uniformly Loaded Square Plate 217

LIST OF FIGURES

PageFigure 1.1 State of Art + Present Theory 5
Figure 2.1 Three-Dimensional Element (Note : $+\ldots=$ increment) 12
Figure 2.2 a) Resultant Moments 13
b) Resultant Shear Forces 13
Figure 3.1 . Flowchart For Present Theory 15
Figure $4.1 \quad$ Coordinate Axis For The Plate 41
Figure 5-A \quad Line Load P_{0} At $x=x_{1}$ 97
Figure 5-B Flowchart For The Computer Program DISS2 105
Figure 5.1 Deflection Cocfficient k vs
h / l
($\mathrm{P}=\mathrm{Po}^{*} \sin \left(\mathrm{pi}{ }^{*} \mathrm{x} / \mathrm{L}\right)$) 111
Figure 5.2 Max. Normal Stress Sigma-x vs z / h (h/l =.1, $\left.\mathrm{P}=\mathrm{Po}{ }^{*} \sin \left(\mathrm{PI}{ }^{*} \mathrm{x} / \mathrm{L}\right)\right)$ 112

Figure 5.3
 Max. Normal Stress Sigma-x vs z / h ($\mathrm{h} / \mathrm{l}=.3, \mathrm{P}=\mathrm{Po}^{*} \sin \left(\mathrm{PI}{ }^{*} \mathrm{x} / \mathrm{L}\right)$)

Figure 5.4 Max. Normal Stress Sigma-x vs z / h $\left(\mathrm{h} / \mathrm{l}=.5, \mathrm{P}=\mathrm{Po}^{*} \sin \left(\mathrm{PI}^{*} \mathrm{x} / \mathrm{L}\right)\right)$114

Figure 5.5
Max. Normal Stress Sigma-x vs z / h
($\mathrm{h} / \mathrm{l}=1 ., \mathrm{P}=\mathrm{Po}^{*} \sin \left(\mathrm{PI}{ }^{*} \mathrm{x} / \mathrm{L}\right)$)

Figure 5.6 Max. Normal Stress Sigma-x vs z / h
(h/l $\left.=1.5, \mathrm{P}=\mathrm{Po}^{*} \sin \left(\mathrm{PI}{ }^{*} \mathrm{x} / \mathrm{L}\right)\right)$

Figure 5.7
Max. Normal Stress Sigma-x vs z / h $\left(h / l=2.0, P=P o^{*} \sin (P I * x / L)\right)$

Figure 5.8
Max. Normal Stress Sigma-x vs z / h
($\mathrm{h} / \mathrm{l}=2.5, \mathrm{P}=\mathrm{Po}^{*} \sin \left(\mathrm{PI} \mathrm{I}^{*} / \mathrm{L}\right)$)

Figure 5.9
Max. Normal Stress Sigma-x vs z / h (h/l $\left.=3.0, \mathrm{P}=\mathrm{Po}^{*} \sin \left(\mathrm{PI} \mathrm{I}^{*} \mathrm{x} / \mathrm{L}\right)\right)$

Figure 5.10 Deflection Coefficient k vs $h / l \quad(P=$ Uniform Load)

Figure 5.11 Max. Normal Stress Sigma-x vs z / h ($\mathrm{h} / \mathrm{l}=.1, \mathrm{P}=$ Uniform Load)... 121

Figure 5.12 Max. Normal Stress Sigma-x vs z/h ($\mathrm{h} / \mathrm{l}=.3, \mathrm{P}=$ Uniform Load).. 122

Figure 5.13 Max. Normal Stress Sigma-x vs z / h ($\mathrm{h} / \mathrm{l}=.5, \mathrm{P}=$ Uniform Load)... 123

Figure 5.14 Max. Normal Stress Sigma-x vs z / h ($\mathrm{h} / \mathrm{l}=1 ., \mathrm{P}=$ Uniform Load)

Figure 5.15
Max. Normal Stress Sigma-x vs z / h ($\mathrm{h} / \mathrm{l}=1.5, \mathrm{P}=$ Uniform Load) 125

Figure 5.16
Max. Normal Stress Sigma-x vs z / h ($\mathrm{h} / \mathrm{l}=2.0, \mathrm{P}=$ Uniform Load) 126

Figure 5.17 Max. Normal Stress Sigma-x vs z / h ($\mathrm{h} / \mathrm{l}=2.5, \mathrm{P}=$ Uniform Load) . 127

Figure 5.18

Figure $5.19 \quad$ Max. Normal Stress Sigma-z vs $z / h(h / l=1.0) \ldots129$

Figure 5.20
Max. Normal Stress Sigma-z vs $z / \mathrm{h}(\mathrm{h} / \mathrm{l}=2.0)$ 130

Figure 5.21 Max. Normal Stress Sigma-z vs $z / h(h / l=3.0) \ldots ~ 131$
Figure 5.22 Max. Normal Stress Sigma-x vs $\mathrm{z} / \mathrm{h}(\mathrm{SS} .005-\mathrm{I})132$

Figure $5.23 \quad$ Max. Normal Stress Sigma-x vs z / h (SS.01-I)
133

Figure 5.24 Max. Normal Stress Sigma-x vs z/h (SS.05-I).................. 134
Figure 5.25 Max. Normal Stress Sigma-x vs $z / h(S S .1-I) ~ 135$

Figure 5.26 Max. Normal Stress Sigma-x vs z/h (SS.2-I).................... 136
Figure 5.27 Max. Normal Stress Sigma-x vs z/h (SS.3-I).................... 137
Figure 5.28 Max. Normal Stress Sigma-x vs z/h (SS.5-I).................... 138
Page
Figure 5.29 Max. Normal Stress Sigma-x vs z/h (SS.7-I) 139
Figure 5.30 Max. Normal Stress Sigma-x vs z/h (SS1.-I) 140
Figure 5.31 Max. Normal Stress Sigma-x vs z/h (SS.005-II) 141
Figure 5.32 Max. Normal Stress Sigma-x vs z/h (SS.01-II) 142
Figure 5.33 Max. Normal Stress Sigma-x vs z/h (SS.05-II) 143
Figure 5.34 Max. Normal Stress Sigma-x vs z / h (SS.1-II) 144
Figure 5.35 Max. Normal Stress Sigma-x vs z/h (SS.2-II) 145
Figure 5.36 Max. Normal Stress Sigma-x vs z/h (SS.3-II) 146
Figure 5.37 Max. Normal Stress Sigma-x vs z/h (SS.4-II) 147
Figure 5.38 Max. Normal Stress Sigma-x vs z/h (SS.5-II) 148
Figure 5.39 Max. Normal Stress Sigma-x vs z/h (SS.6-II) 149
Page
Figure 5.40 Max. Normal Stress Sigma-x vs z/h (SS.7-II) 150
Figure 5.41 Max. Normal Stress Sigma-x vs z/h (SS.8-II) 151
Figure 5.42 Max. Normal Stress Sigma-x vs z/h (SS.9-II) 152
Figure 5.43 Max. Normal Stress Sigma-x vs z / h (SSI.-II) 153
Figure 5.44 Sigma-xz at ($0,0, \mathrm{z}$) vs z / h (SS.1-II) 154
Figure 5.45 Sigma-xz at ($0,0, z$) vs z / h (SS.3-II) 155
Figure 5.46 Sigma-xz at ($0,0, z$) vs z / h (SS.5-II) 156
Figure 5.47 Sigma-xz at ($0,0, z$) vs z / h (SSI.-II) 157
Figure 5.48 Max. Normal Stress Sigma-x vs z/h (SC.005-I) 158
Figure 5.49 Max. Normal Stress Sigma-x vs z / h (SC.1-I) 159
Figure 5.50 Max. Normal Stress Sigma-x vs z/h (SC.3-I) 160
Figure 5.51 Max. Normal Stress Sigma-x vs z/h (SC.5-I) 161

Pagc

Figure 5.52 Max. Normal Stress Sigma-x vs z/h (SC.7-I) 162
Figure 5.53 Max. Normal Stress Sigma-x vs z / h (SCl.-I) 163
Figure 5.54 Max. Normal Stress Sigma-x vs z/h (SS.005-II) 164
Figure 5.55 Max. Normal Stress Sigma-x vs z / h (SS.1-II) 165
Figure 5.56 Max. Normal Stress Sigma-x vs z / h (SS.3-II) 166
Figure 5.57 Max. Normal Stress Sigma-x vs z/h (SS.5-II) 167
Figure 5.58 Max. Normal Stress Sigma-x vs z/h (SS.7-II) 168
Figure 5.59 Max. Normal Stress Sigma-x vs z/h (SSI.-II) 169
Figure 5.60 Max. Normal Stress Sigma-x vs z/h (SF.005-I) 170
Figure 5.61 Max. Normal Stress Sigma-x vs z/h (SF.1-I) 171
Figure 5.62 Max. Normal Stress Sigma-x vs z / h (SF.3-I) 172
Figure 5.63 Max. Normal Stress Sigma-x vs z/h (SF.5-I) 173

Figure 5.64 Max. Normal Stress Sigma-x vs z/h (SF.7-I) 174
Figure 5.65 Max. Normal Stress Sigma-x vs z / h (SFI.-I) 175
Figure 5.66 Max. Normal Stress Sigma-x vs z/h (SF.005-II).............. 176

Figure 5.67 Max. Normal Stress Sigma-x vs z/h (SF.l-II).................. 177

Figure 5.68 Max. Normal Stress Sigma-x vs z/h (SF.3-II)................... 178

Figure 5.69 Max. Normal Stress Sigma-x vs z/h (SF.5-II).................. 179

Figure 5.70 Max. Normal Stress Sigma-x vs z/h (SF.7-II)................... 180
Figure 5.71 Max. Normal Stress Sigma-x vs z/h (SF1.-II)................... 181

Figure $5.72 \quad$ Max. Normal Stress Sigma-x vs z / h (SS.1-II,Strip
\qquad

Figure 5.73 Max. Normal Stress Sigma-x vs z/h (SS.3-II,Strip Load, Width $=0.2 \mathrm{a}$) 183

Figure $5.74 \quad$ Max. Normal Stress Sigma-x vs z / h (SS.5-II, Strip
Load,Width = 0.2 a) 184
Figure 5.75 Max. Normal Stress Sigma-x vs z/h (SS.7-II,Strip Load,Width $=0.2 \mathrm{a}$) 185
Figure 5.76 Max. Normal Stress Sigma-x vs z/h (SS1.-II,Strip Load,Width $=0.2 \mathrm{a}$) 186
Figure 5.77 Deflection of Top Surface of Plate At $Y=0.0$ (SS.1-II) 187
Figure 5.78 Deflection of Top Surface of Plate At $Y=0.0$ (SS.5-II) 188
Figure 5.79 Deflection of Top Surface of Plate At $Y=0.0$ (SS1.-II) 189
Figure 5.80 Deflection of Mid Surface of Plate At $Y=0.0$ (SS.1-II) 190
Figure 5.81 Deflection of Mid Surface of Plate At $Y=0.0$ (SS.5-II) 191Figure 5.82 Deflection of Mid Surface of Plate At $Y=0.0$(SS1.-II)192
Figure 5.83 Deflection of BOTTOM Surface of Flate At $\mathrm{Y}=0.0(\mathrm{SS} . \mathrm{I}-\mathrm{II})$ 193
Figure 5.84 Deflection of BOTTOM Surface of Plate At $Y=0.0$ (SS.5-II) 194
Figure 5.85 Deflection of BOTTOM Surface of Plate At $\mathrm{Y}=0.0(\mathrm{SSI} .-1 \mathrm{I})$ 195
Figure 5.86 Deflection of Top. Mid, and Bottom surface of Plate At $Y=0.0(S S .1-I I)$ 196
Figure 5.87 Deflection of Top, Mid, and Bottom surface of Plate At $Y=0.0$ (SS. $5-\mathrm{II})$ 197
Figure 5.88 Deflection of Top, Mid, and Bottom surface of Plate At $Y=0.0(S S I .-I I)$ 198
Figure 5.89 Max. Normal Stress Sigma-y us $z_{i} h(S S .1)$ 199
Figure 5.90 Max. Normal Sirese Sigma-y vs 7 ih (SS.5) 200
Figure 5.91 Max. Normal Strese Sigma-y vs zih (SSI.) 201

Abstract

DISSERTATION ABSTRACT FULL NAME OF STUDENT : AMMAR KHALIL HAFEDH MOHAMMED TITLE OF STUDY: A GENERALIZED THEORY FOR BENDING OF THICK ISOTROPIC RECTANGULAR PLATES

MAJOR FIELD : DATE OF DEGREE :

STRUCTURES

JUNE 14, 1989

Several refined theories of plates have been developed in the recent decade. All such theories have attempted to incorporate the effects of tranverse shear stresses and tranverse normal stress and strain which become important as the ratio of the plate thickness to characteristic length (h / L) increases. The theory developed in this dissertation belongs to this category, except that it differs in that generalized forms of stresses are assumed initially, which lead to the formulation of a more accurate theory of bending of thick plates.

Upon comparison of the results from this present work with the exact solution and other previous refined theories, the present theory yields results closest to the exact solution for both deflection w and inplane stresses, upto to a ratio of h / L as high as 3.0 for the case of cylindrical bending, and upto a ratio of of h / L as high as 1.0 for the case of rectangular plates.

DOCTOR OF PHILOSOPHY DEGREE
KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
Dhahran, Saudi Arabia
June 14, 1989

خلامـــــ الـرسـالـة

اسم الـطـالـــــــب : عمـار خلـيـل حـافـط محمـ

عنـو ان الـدو اســــة : نْتويـة عـامـة لانحنـا" الـصفــع الـمستطيلـة الـمتجـانسة الـسميكة

تـارسِغ الـشمهــــادة :
 الـتُريـات اعتبـاو تـأثيـر الـجهود الـعرضيـة و الـجهود الـععوديـة و الـتمدد الـعمـــودي

 اشتقـوَ نـظريـة كُتحنـا

 تتعرفى لـهL حتى عتدمـا تمل تـسبـة سعك الـمفـيحة الـى طولـهـا الـى " "
 -لــمفـاتع الـمستطيلـة

درجة الـدكتور اة في الـغلـسغـة

جـامعـة الـملـك فـهد بـلبـترول و الـمعـادن

الـطهو ان - الـعملـكة الـعـربـية الـسعودية
TVAA/7/LE
xxiv

Chapter 1

INTRODUCTION

The behavior of a plate is affected greatly by its thickness. For this reason, plates can be divided into three categories [1]:
(1) thin plates with small deflections
(2) thin plates with large deflections
(3) thick plates.

In order to simplify the theory of plates, many assumptions have been made when developing a theory for thin plates with small deflections. These assumptions can be summarized as [1]:
(1) No stretching of the middle plane of the plate. This plane remains neutral during bending.
(2) Points of the plate lying initially on a normal-to-the middle plane of the plate remain on the normal to the middle surface of the plate after bending.
(3) The normal stresses in the direction transverse to the plate can be disregarded.

As a result to the above assumptions, many limitations are imposed on the classical theory of plates. As the thickness of the plate increases, the effect of transverse stresses and strains on the deflection of the plate and on the inplane stresses can not be neglected. Also, the resulting governing equation for deflection of the middle surface is of the fourth order which implies that two boundary conditions on each edge are needed for solution. This contradicts the requirement of satisfying three boundary conditions on each edge as elasticity theory states.

In order to overcome some of the limitations of thin or classical plate theory, researchers have developed a number of refined theories. Reissner [2] was the first to provide a refined theory that takes into account shear deformation. He did not include the effect of transverse normal strain. A special variational theorem was used by Reissner to develop his theory. As a result of his work, only midplane displacement w_{0} and bending moments and shear forces were modified. Stresses σ_{x}, σ_{y}, and ${ }^{\tau} x y$ were not modified in Reissner's theory.

Some other theories $[3,4,5,6]$ were developed to include the effects of transverse shear, transverse normal stress, and transverse normal strain. However as in all previous refined theories only the displacement " w " was corrected and the inplane stresses: σ_{x}, σ_{y}, and $\tau_{x y}$ were left as for the Kirchoff thin plate theory.

Another refined theory was developed by Kromm [7, 8]. Kromm introduced more general stress distributions across the thickness of the plate. But Kromm neglected the effects of the transverse normal stress, σ_{z} and normal strain, ϵ_{z}.

Panc [9] had modified Kromm's work by deriving the governing equation for the function $f_{1}(z)$, used by Kromm, in a different way. Panc called this refined theory a "Generalized Theory".

In the present work, a new refined theory will be developed making use of Panc's generalized theory and a refined theory presented by Baluch et al. [10]. Figure 1.1 summarizes the state of the art and highlights characterestics of present formulation.

The effect of the transverse shear stresses, the transverse normal stress, and the transverse normal strain on the deflection " w " and on inplane stresses: σ_{x}, σ_{y}, and $\tau_{x y}$ will be considered. Also, a general stress distribution across the thickness of the plate will be assumed. Solution of problems of bending for isotropic thick rectangular plates with different boundary conditions (i.e.: simply supported, free or clamped at $y= \pm b / 2$) will be considered. Also the applied load will be of general form (i.e.: concentrated, uniformly distributed or other continuous distribution).

In this present work, the importance of developing a refined theory that takes into account the effects of normal stress σ_{z}, and
shearing stresses $\tau_{x z}, \tau_{y z}$ on inplane stresses and on deflection will be illustrated explicitly. The normal stress σ_{z}, for example, will be shown to have values of the same order as the inplane stresses σ_{x}, σ_{y}, and $\tau_{x y}$ for plates of appreciable thickness.

A Levy type semi-inverse method will be followed to obtain the solution for bending of isotropic rectangular plates. In order to test the present theory, some problems of thick isotropic rectangular plates will be considered and compared to already existing theories and to exact solution, whenever it may exist.

FIG. 1.1 : STATE OF ART + PRESENT THEORY

1. NEGLECTS INFLUENCE OF :
${ }^{\tau}{ }_{x z},{ }^{\tau} y z$
ON DEFLECTION .
2. NEGLECTS INFLUENCE OF :
$\sigma_{z}, \varepsilon_{z}$
ON PLATE RESPONSE .
3. $\sigma_{z}, \varepsilon_{z}$

MISSING .
2. $\sigma_{x}, \sigma_{y},{ }^{\tau}{ }_{x y},{ }^{\tau} \tau_{x z}$,
${ }^{\tau} y z$
REISSNER

FIG. 1.1 (CONTINUED)

1. ILL CONDITIONING .
2. STRESSES NOT FOUND .
(IN-PLANE PROBLEM NOT SOLVED)
3. INCLUDES EFFECTS OF :
${ }^{\tau}{ }_{x z},{ }^{\tau} y z$,
σ_{z}, and ε_{z}
on plate response .
4. IN-PIANE PROBIEM SOLVED .
5. STRESSES FOUND
6. ILL CONDITIONING REMOVEI).

BALUCH, VOYIADJIS, and AZAD

Chapter 2

THEORETICAL BACKGROUND

In this chapter, basic relations in the classical theory of isotropic elastic plates will be shown. Particular simplifications are introduced into the governing equations of the mathematical theory of elasticity. These simplifications give results which do not differ significantly from those obtained from the exact equations for the range of definition of the problem.

The simplifying assumptions used in various plates theories come from using the definition of a plate as a body which has one dimension which is small and also from results of elementary beam theory.

The stress-strain relations for an isotropic body are given by [9]:

$$
\begin{align*}
& \varepsilon_{x}=\frac{1}{E}\left[\sigma_{x}-v\left(\sigma_{y}+\sigma_{z}\right)\right] \tag{2.1}\\
& \varepsilon_{y}=\frac{1}{E}\left[\sigma_{y}-v\left(\sigma_{x}+\sigma_{z}\right)\right] \tag{2.2}\\
& \varepsilon_{z}=\frac{1}{E}\left[\sigma_{z}-v\left(\sigma_{x}+\sigma_{y}\right)\right] \tag{2.3}\\
& \gamma_{x y}=\frac{1}{G} \tau_{x y} \tag{2.4}
\end{align*}
$$

$$
\begin{align*}
& \gamma_{\mathrm{xz}}=\frac{1}{\mathrm{G}} \tau_{\mathrm{xz}} \tag{2.5}\\
& \gamma_{\mathrm{yz}}=\frac{1}{\mathrm{G}} \tau_{\mathrm{yz}} \tag{2.6}
\end{align*}
$$

In the classical theory of plates, the following assumptions are adopted:

$$
\begin{align*}
& \sigma_{z}=0 \tag{2.7.1}\\
& \varepsilon_{z}=0 \tag{2.7.2}\\
& \gamma_{x z}=0 \tag{2.7.3}\\
& \gamma_{y z}=0 \tag{2.7.4}
\end{align*}
$$

For small deflections, compared with the plate thickness h, the strain-displacement relations in rectangular coordinates are:

$$
\begin{align*}
& \varepsilon_{x}=\frac{\partial u}{\partial x} \tag{2.8.1}\\
& \varepsilon_{y}=\frac{\partial v}{\partial y} \tag{2.8.2}\\
& \varepsilon_{z}=\frac{\partial w}{\partial z} \tag{2.8.3}\\
& \gamma_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x} \tag{2.8.4}\\
& \gamma_{x z}=\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x} \tag{2.8.5}
\end{align*}
$$

Because of the assumption in equation (2.7.2) the deflection function depends on the variables x and y, thus:

$$
\begin{equation*}
w=w(x, y) \tag{2.8.6}
\end{equation*}
$$

Introducing equation (2.8.6) and (2.7.3), (2.7.4) into (2.8.4) and (2.8.5) yields for the displacements u and v after performing integration with respect to z :

$$
\begin{align*}
& \mathbf{u}=-\mathbf{z} \frac{\partial w}{\partial x}+u_{0}(x, y) \tag{2.8.7}\\
& \mathbf{v}=-z \frac{\partial w}{\partial y}+v_{0}(x, y) \tag{2.8.8}
\end{align*}
$$

where: u_{0}, v_{0} are functions of integration. These functions define a state of plane strain of the plate (i.e. deformations independent of z). They correspond to forces acting in the middle plane of the plate or to a uniform heating of the plate. These functions can be neglected during bending, if the only load acting on the plate is normal to its surface, and if the edges of the plate are free to move in the plane of the plate.

Introducing the simplifications (or assumptions) in (2.7.1-4), the stress-strain relations become:

$$
\begin{align*}
& \varepsilon_{x}=\frac{1}{E}\left(\sigma_{x}-v \sigma_{y}\right) \tag{2.9.1}\\
& \varepsilon_{y}=\frac{1}{E}\left(\sigma_{y}-v \sigma_{x}\right) \tag{2.9.2}\\
& \gamma_{x y}=\frac{1}{G}{ }^{\tau} x y \tag{2.9.3}\\
& \varepsilon_{z}=\gamma_{x z}=\gamma_{y z}=0 \tag{2.9.4}
\end{align*}
$$

The above set of equations represent the elasticity relations used in the classical theory of isotropic plates.

Consider an element of volume dxdydz (Fig. 2.1). Then the stress components acting on this element must satisfy three conditions of equilibrium which are expressed in the absence of body forces by the equations:

$$
\begin{align*}
& \frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}+\frac{\partial \tau_{x z}}{\partial z}=0 \tag{2.10}\\
& \frac{\partial \sigma_{y}}{\partial y}+\frac{\partial \tau}{\partial x} \partial x \tag{2.11}\\
& \frac{\partial \sigma_{z}}{\partial z}+\frac{\partial \tau_{y z}}{\partial z}=0 \tag{2.12}\\
& \partial x \\
& \partial z \\
& \frac{\partial \tau}{}=\frac{\partial \tau}{\partial z}=0
\end{align*}
$$

The shearing stresses satisfy conditions of symmetry which result from equations of moment equilibrium

$$
\begin{align*}
& \tau_{x y}=\tau_{y x} \\
& { }^{\tau} x z=\tau_{z x} \tag{2.13}\\
& \tau_{y z}=\tau_{z y}
\end{align*}
$$

The equilibrium equations in $2.10,2.11$, and 2.12 are also known as the Cauchy equations. In the solution of plate problems, the stress components are usually replaced by the corresponding resultants per unit length. These resultants are denoted by bending moments, twisting moments, and shearing forces. They are defined by:

$$
\begin{align*}
& M_{x}=\int_{-h / 2}^{+h / 2} \sigma_{x} z d z \tag{2.14.1}\\
& M_{y}=\int_{-h / 2}^{+h / 2} \sigma_{y} z d z \tag{2.14.2}\\
& M_{x y}=\int_{-h / 2}^{+h / 2} \tau x y z d z \tag{2.14.3}\\
& Q_{x}=\int_{-h / 2}^{+h / 2} \tau_{x z} d z \tag{2.14.4}\\
& Q_{y}=\int_{-h / 2}^{+h / 2}{ }^{\tau} y z d z \tag{2.14.5}
\end{align*}
$$

Neglecting body forces, the equilibrium equations in terms of the internal forces as defined by equations (2.14) and the lateral load $p(x, y)$ acting on an element hdxdy of a plate (Fig. 2.2) take the form:

$$
\begin{align*}
& \frac{\partial M_{x}}{\partial x}-\frac{\partial M_{x y}}{\partial y}=Q_{x} \tag{2.15}\\
& \frac{\partial M_{y}}{\partial y}-\frac{\partial M_{x y}}{\partial x}=Q_{y} \tag{2.16}\\
& \frac{\partial Q_{x}}{\partial x}+\frac{\partial Q_{y}}{\partial y}+p=0 \tag{2.17}
\end{align*}
$$

The relations given above represent the basis of the classical theory of elastic isotropic plates.

Figure 2.1 : Three-Dimensional Element (Note : +... = increment)

Figure 2.2 :
a) Resultant Moments.
b) Resultant Shear Forces.

Chapter 3

FORMULATION

3.1 Governing Equations for the Bending Problem

The following generalized assumption has been introduced by Kromm [7,8] to approximate the variation of the transverse normal stress (1)

$$
\begin{equation*}
\sigma_{z}=p(x, y) f_{i}(z) \tag{3.1}
\end{equation*}
$$

If the load $p(x, y)$ acts only at the upper surface $z=-h / 2$ of the plate, the function $f_{1}(z)$ must satisfy the boundary conditions:

$$
\begin{equation*}
f_{1}(-h / 2)=-1, f_{1}(+h / 2)=0 \tag{3.2}
\end{equation*}
$$

The distribution of transverse shears is assumed in the form:

$$
\begin{align*}
& \tau_{x z}=Q_{x}(x, y) \bar{f}_{z}(z) \\
& \tau_{y z}=Q_{y}(x, y) \bar{f}_{z}(z) \tag{3.3}
\end{align*}
$$

(1) See Figure 3.1 for a flowchart presentation of the theory developed.

Figure 3.1 : Flowchart For Present Theory.

where $\overline{\mathbf{F}}_{\mathbf{2}}(\mathrm{z})$ must satisfy the stress boundary conditions at the surface of the plate i.e.

$$
\begin{equation*}
\overline{\mathbf{f}}_{2}(\pm h / 2)=0 \tag{3.4}
\end{equation*}
$$

On substituting equations (3.1) and (3.3) into the stress differential equation of equilibrium

$$
\begin{equation*}
\frac{\partial \tau}{\partial z}+\frac{\partial \tau}{\partial \mathrm{yz}}+\frac{\partial \sigma_{\mathrm{z}}}{\partial \mathrm{y}}=0 \tag{3.5}
\end{equation*}
$$

one obtains

$$
\begin{equation*}
\left[\frac{\partial Q_{x}}{\partial x}+\frac{\partial Q_{y}}{\partial y}\right] \bar{f}_{2}(z)+p(x, y) \frac{d f_{1}(z)}{d z}=0 \tag{3.6}
\end{equation*}
$$

However

$$
\begin{equation*}
\frac{\partial Q_{x}}{\partial x}+\frac{\partial Q_{y}}{\partial y}+p=0 \tag{3.7}
\end{equation*}
$$

Thus for identical satisfaction of equation (3.6) one should have

$$
\begin{equation*}
\bar{f}_{2}(z)=\frac{d f_{1}(z)}{d z}=f_{1}^{\prime}(z) \tag{3.8}
\end{equation*}
$$

Thus $\tau_{x z}, \tau_{y z}$ can be written as:

$$
\begin{equation*}
\tau_{x z}=Q_{x} f_{1}^{\prime}(z) \tag{3.9}
\end{equation*}
$$

$$
\tau_{y z}=Q_{y} f_{1}^{\prime}(z)
$$

and conditions given in equation (3.4) can be written as

$$
\begin{equation*}
f_{1}^{\prime}(\pm h / 2)=0 \tag{3.10}
\end{equation*}
$$

The transverse normal strain ε_{z} is given by:

$$
\begin{equation*}
\varepsilon_{z}=\frac{1}{E}\left[\sigma_{z}-\mu\left(\sigma_{x}+\sigma_{y}\right)\right] \tag{3.11}
\end{equation*}
$$

Using equation (3.1) in (3.11)

$$
\begin{equation*}
\varepsilon_{z}=\frac{\partial w}{\partial z}=\frac{1}{E}\left(P(x, y) f_{1}(z)\right)-\frac{\mu}{E} \frac{(12 M) z}{h^{3}} \tag{3.12}
\end{equation*}
$$

where

$$
\begin{equation*}
M=M_{x}+M_{y} \tag{3.13}
\end{equation*}
$$

and $\sigma_{x}+\sigma_{y}$ has been assumed to be of the form

$$
\begin{equation*}
\sigma_{x}+\sigma_{y}=\frac{12 M}{h^{3}} z \tag{3.14}
\end{equation*}
$$

The above linear distribution for the stresses σ_{x} and σ_{y} was used as an input stress to enable us to get an expression for ε_{z}, which on integration, yields a rational assumed form for the transverse displacement w.

Integrating (3.12) with respect to z yields the rational form for w as:

$$
\begin{equation*}
w(x, y, z)=\frac{1}{E} p(x, y) f_{2}(z)-\frac{6 \mu M}{E M^{3}} z^{2}+w_{o}(x, y) \tag{3.15}
\end{equation*}
$$

where

$$
\begin{align*}
& f_{2}(z)=\int f_{1}(z) d z \tag{3.16}\\
& w_{0}(x, y)=\text { transverse displacement of the surface } z=0 \tag{3.17}
\end{align*}
$$

The displacements $u(x, y, z)$ and $v(x, y, z)$ are obtained by making use of the strain-displacement relations:

$$
\begin{align*}
& \frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}=\gamma_{x z}=\frac{\tau}{G} x z \tag{3.18.1}\\
& \frac{\partial v}{\partial z}+\frac{\partial w}{\partial y}=\gamma_{y z}=\frac{\tau}{G z} \tag{3.18.2}
\end{align*}
$$

Using equations (3.3) and (3.15) in (3.18.1) and integrating with respect to z gives for u

$$
\begin{align*}
u= & -z \frac{\partial w_{o}}{\partial x}+\frac{Q x}{G} f_{1}(z)-\frac{1}{E} \frac{\partial p}{\partial x} f_{3}(z) \\
& +\frac{2 \mu}{E h^{3}} \frac{\partial M}{\partial x} z^{3}+u_{0}(x, y) \tag{3.19}
\end{align*}
$$

where

$$
\begin{align*}
& f_{3}(z)=\int f_{2}(z) d z \tag{3.19.1}\\
& u_{0}(x, y)=u \text {-displacement of the mid surface } \tag{3.19.2}
\end{align*}
$$

Proceeding similarly, one may obtain an expression for the displacement v in the form

$$
\begin{align*}
v= & -z \frac{\partial w_{0}}{\partial y}+\frac{Q}{G} f_{1}(z)-\frac{1}{E} \frac{\partial p}{\partial y} f_{3}(z) \\
& +\frac{2 \mu}{E h^{3}} \frac{\partial M}{\partial y} z^{3}+v_{o}(x, y) \tag{3.20}
\end{align*}
$$

where

$$
\begin{equation*}
v_{0}(x, y)=v \text {-displacement of the mid surface } \tag{3.20.1}
\end{equation*}
$$

In refined theories taking into account influence of transverse shear only, u_{0} and v_{0} are taken to be identically zero.

The remaining stress-strain relations are

$$
\begin{align*}
& \sigma_{x}=\frac{E}{\left(1-\mu^{2}\right)}\left\lceil\varepsilon_{x}+\mu \varepsilon_{y}\right]+\frac{\mu}{(1-\mu)} \sigma_{z} \tag{3.21.1}\\
& \sigma_{y}=\frac{E}{\left(1-\mu^{2}\right)}\left[\varepsilon_{y}+\mu \varepsilon_{x}\right]+\frac{\mu}{(1-\mu)} \sigma_{z} \tag{3.21.2}\\
& \tau_{x y}=G \gamma_{x y} \tag{3.21.3}
\end{align*}
$$

The strain-displacement relations are given by

$$
\begin{equation*}
\varepsilon_{x}=\frac{\partial u}{\partial x}, \varepsilon_{y}=\frac{\partial v}{\partial y}, \gamma_{x y}=\frac{\partial u}{\partial y}+\frac{\hat{\sigma} v}{\partial x} \tag{3.21.4}
\end{equation*}
$$

Substituting equations (3.1), (3.19), (3.20) and (3.21.4) into the set (3.21.1), (3.21.2) and (3.21.3) yields

$$
\begin{align*}
\sigma_{x}= & \frac{E}{\left(1-\mu^{2}\right)}\left[-z \frac{\partial^{2} w_{0}}{\partial x^{2}}+\frac{f_{1}(z)}{G} \frac{\partial Q_{x}}{\partial x}-\frac{f_{3}(z)}{E} \frac{\partial^{2} p}{\partial x^{2}}+\frac{2 \mu}{E h^{3}} \frac{\partial^{2} M}{\partial x^{2}} z^{3}\right. \\
& \left.+\mu\left\{-z \frac{\partial^{2} w_{0}}{\partial y^{2}}+\frac{f_{1}(z)}{G} \frac{\partial Q_{y}}{\partial y}-\frac{f_{3}(z)}{E} \frac{\partial^{2} p}{\partial y^{2}}+\frac{2 \mu}{E h^{3}} \frac{\partial^{2} M^{2} y^{3}}{\partial y^{2}}\right\}\right] \\
& +\frac{E}{\left(1-\mu^{2}\right)}\left[\frac{\partial u_{0}}{\partial x}+\frac{\mu \partial v_{0}}{\partial y}\right]+\frac{\mu p}{(1-\mu)} f_{1}(z) \tag{3.22}
\end{align*}
$$

$$
\begin{align*}
\sigma_{y}= & \frac{E}{\left(1-\mu^{2}\right)}\left[-z \frac{\partial^{2} w_{0}}{\partial y^{2}}+\frac{f_{1}(z)}{G} \frac{\partial Q_{y}}{\partial y}-\frac{f_{3}(z)}{E} \frac{\partial^{2} p}{\partial y^{2}}+\frac{2 \mu}{E h^{3}} \frac{\partial^{2} M}{\partial y^{2}} z^{3}\right. \\
& \left.+\mu\left\{-z \frac{\partial^{2} w_{0}}{\partial y^{2}}+\frac{f_{1}(z)}{G} \frac{\partial Q_{x}}{\partial x}-\frac{f_{3}(z)}{E} \frac{\partial^{2} p}{\partial x^{2}}+\frac{2 \mu}{E h^{3}} \frac{\partial^{2} M}{\partial x^{2}} z^{3}\right\}\right] \\
& +\frac{E}{\left(1-\mu^{2}\right)}\left[\frac{\partial v_{0}}{\partial y}+\frac{\mu \partial u_{0}}{\partial x}\right\}+\frac{\mu p}{(1-\mu)} f_{1}(z) \tag{3.23}
\end{align*}
$$

$$
\begin{aligned}
\tau_{x y}=\frac{E}{2(1+\mu)} & \left\{-2 z \frac{\partial^{2} w_{o}}{\partial x \partial y}+\frac{f_{1}(z)}{G} \frac{\partial Q_{x}}{\partial y}+\frac{f_{1}(z)}{G} \frac{\partial Q_{y}}{\partial x}\right. \\
& \left.-\frac{2 f_{3}(z)}{E} \frac{\partial^{2} p}{\partial x \partial y}+\frac{4 \mu}{E h^{3}} \frac{\partial^{2} M}{\partial x \partial y} z^{3}\right\}
\end{aligned}
$$

$$
\begin{equation*}
\left.+\frac{E}{2(1+\mu)}\left[\frac{\partial u_{o}}{\partial y}+\frac{\partial v_{o}}{\partial x}\right]\right] \tag{3.24}
\end{equation*}
$$

Using the definitions for the moment stress resultants

$$
\begin{align*}
& M_{x}=\int_{-h / 2}^{h / 2} \sigma_{x} z d z ; M_{y}=\int_{-h / 2}^{h / 2} \sigma_{y} z d z \\
& M_{x y}=-\int_{-h / 2}^{h / 2}{ }^{\tau} x y^{z} d z \tag{3.25}
\end{align*}
$$

one obtains

$$
\begin{align*}
M_{x}= & \frac{E}{\left(1-\mu^{2}\right)}\left[\frac{-h^{3}}{12} \frac{\partial^{2} w_{o}}{\partial x^{2}}+\frac{h^{3}}{12 G} F_{1} \frac{\partial Q_{x}}{\partial x}-\frac{h^{3}}{12 E^{2}} F_{3} \frac{\partial^{2} p}{\partial x^{2}}\right. \\
& +\frac{\mu h^{5}}{40 E h^{3}} \frac{\partial^{2} M}{\partial x^{2}}+\mu\left\{-\frac{h^{3}}{12} \frac{\partial^{2} w_{0}}{\partial y^{2}}+\frac{h^{3}}{12 G} F_{1} \frac{\partial Q_{y}}{\partial y}\right. \\
& \left.\left.-\frac{h^{3}}{12 E} F_{3} \frac{\partial^{2} p}{\partial y^{2}}+\frac{\mu h^{5}}{40 E h^{3}} \frac{\partial^{2} M}{\partial y^{2}}\right\}\right] \\
& +\frac{\mu h^{3} p}{12(1-\mu)} F_{1} \tag{3.26.1}
\end{align*}
$$

where :

$$
\begin{align*}
& F_{1}=\frac{12}{h^{3}} \int_{-h / 2}^{h / 2} z f_{1}(z) d z \tag{3.26.2}\\
& F_{3}=\frac{12}{h^{3}} \int_{-h / 2}^{h / 2} z f_{3}(z) d z \tag{3.26.3}
\end{align*}
$$

$$
\begin{align*}
& \mathbf{M}_{\mathbf{x}}=\mathrm{D}\left[\frac{\partial \varphi_{\mathbf{x}}}{\partial \mathbf{x}}+\mu \frac{\partial \varphi_{\mathbf{y}}}{\partial \mathbf{y}}+\frac{\mu(1+\mu)}{E} \mathrm{pF}_{1}\right] \tag{3.27.1}\\
& \mathbf{M}_{\mathbf{y}}=\mathrm{D}\left[\frac{\partial \varphi_{\mathbf{y}}}{\partial \mathbf{y}}+\mu \frac{\partial \varphi_{\mathbf{x}}}{\partial \mathbf{x}}+\frac{\mu(1+\mu)}{\mathrm{E}} \mathrm{pF}_{1}\right] \tag{3.27.2}\\
& \mathbf{M}_{\mathbf{x y}}=-\frac{\mathrm{D}(1-\mu)}{2}\left[\frac{\partial \varphi_{\mathbf{x}}}{\partial \mathbf{y}}+\frac{\partial \varphi_{\mathbf{y}}}{\partial \mathrm{x}}\right] \tag{3.27.3}
\end{align*}
$$

where (1):

$$
\begin{align*}
\varphi_{x} & =-\frac{\partial w_{o}}{\partial x}+\frac{F_{1}}{G} Q_{x}-\frac{F_{3}}{E} \frac{\partial p}{\partial x}+\frac{3 \mu}{10 E h} \frac{\partial M}{\partial x} \\
& =-\frac{\partial w_{0}}{\partial x}+\frac{Q_{x}}{S}-\frac{1}{N} \frac{\partial p}{\partial x}+\frac{1}{R} \frac{\partial M}{\partial x} \tag{3.27.4}\\
\varphi_{y} & =-\frac{\partial w_{o}}{\partial y}+\frac{Q_{y}}{S}-\frac{1}{N} \frac{\partial p}{\partial y}+\frac{1}{R} \frac{\partial M}{\partial y} \tag{3.27.5}
\end{align*}
$$

in which

$$
\begin{align*}
& \mathrm{S}=\frac{\mathrm{G}}{\mathrm{~F}_{1}} \tag{3.27.6}\\
& \mathrm{~N}=\frac{\mathrm{E}}{\mathrm{~F}_{3}} \tag{3.27.7}\\
& \mathrm{R}=\frac{10 E h}{3 \mu} \tag{3.27.8}
\end{align*}
$$

In order to obtain the governing differential equation for w_{0},
(1) See Appendix (A-4) for physical interpretation of φ_{x} and φ_{y}
one first eliminates φ_{X} and φ_{y} by using equations (3.27.4) and (3.27.5) in equation (3.27.1) resulting in

$$
\begin{align*}
M_{x}= & -D\left[\frac{\partial^{2} w_{o}}{\partial x^{2}}+\mu \frac{\partial^{2} w_{o}}{\partial y^{2}}\right]+\frac{h^{3}}{6} F_{1} \frac{\partial Q_{x}}{\partial x}-\frac{\mu h^{3} p}{12(1-\mu)} F_{1} \\
& -\frac{D}{N}\left[\frac{\partial^{2} p}{\partial x^{2}}+\mu \frac{\partial^{2} p}{\partial y^{2}}\right]+\frac{D}{R}\left[\frac{\partial^{2} M}{\partial x^{2}}+\mu \frac{\partial^{2} M}{\partial y^{2}}\right] \tag{3.28}
\end{align*}
$$

Similarly, one obtains for the moments M_{y} and $M_{x y}$ the expressions

$$
\begin{align*}
M_{y}= & -D\left[\frac{\partial^{2} w_{o}}{\partial y^{2}}+\mu \frac{\partial^{2} w_{0}}{\partial x^{2}}\right]+\frac{h^{3}}{6} F_{1} \frac{\partial Q_{y}}{\partial y}-\frac{\mu h^{3} p}{12(1-\mu)} F_{1} \\
& -\frac{D}{N}\left[\frac{\partial^{2} p}{\partial y^{2}}+\mu \frac{\partial^{2} p}{\partial x^{2}}\right]+\frac{D}{R}\left[\frac{\partial^{2} M}{\partial y^{2}}+\mu \frac{\partial^{2} M}{\partial x^{2}}\right] \tag{3.29}\\
M_{x y}= & D(1-\mu) \frac{\partial^{2} w_{0}}{\partial x \partial y}-\frac{h^{3}}{12} F_{1}\left[\frac{\partial Q_{x}}{\partial y}+\frac{\partial Q_{y}}{\partial x}\right] \\
& +\frac{D(1-\mu)}{N} \frac{\partial^{2} p}{\partial x \partial y}-\frac{D(1-\mu)}{R} \frac{\partial^{2} M}{\partial x \partial y} \tag{3.30}
\end{align*}
$$

The remaining two equations of equilibrium are

$$
\begin{align*}
& \frac{\partial M_{x}}{\partial x}-\frac{\partial M_{x y}}{\partial y}=Q_{x} \tag{3.31}\\
& \frac{\partial M_{y}}{\partial y}-\frac{\partial M_{x y}}{\partial x}=Q_{y} \tag{3.32}
\end{align*}
$$

By substituting equations (3.28) and (3.30) in equation (3.31), one
obtains

$$
\begin{align*}
Q_{x}- & \frac{h^{3} F_{1}}{12} \Delta Q_{x}=-D \frac{\partial}{\partial x} \Delta W_{0}-\frac{h^{3} F_{1}}{12(1-\mu)} \frac{\partial p}{\partial x}-\frac{D}{N} \frac{\partial}{\partial x} \Delta p \\
& +\frac{D}{R} \frac{\partial}{\partial x} \Delta M \tag{3.33}
\end{align*}
$$

Similarly, substitution of equations (3.29) and (3.30) into equation (3.32) yields

$$
\begin{align*}
Q_{y}- & \frac{h^{3} F_{1}}{12} \Delta Q_{y}=-D \frac{\partial}{\partial y} \Delta w_{0}-\frac{h^{3} F_{1}}{12(1-\mu)} \frac{\partial p}{\partial y} \\
& -\frac{D}{N} \frac{\partial}{\partial y} \Delta p+\frac{D}{R} \frac{\partial}{\partial y} \Delta M \tag{3.34}
\end{align*}
$$

Finally, on substituting equations (3.33) and (3.34) in equation (3.7) yields the plate differential equation in terms of displacement w_{0}

$$
\begin{align*}
D \Delta^{2} W_{0}= & p-\frac{h^{3} F_{1}}{6(1-\mu)} \Delta p+\frac{\mu h^{3} F_{1}}{12(1-\mu)} \Delta p \\
& -\frac{D}{N} \Delta^{2} p+\frac{D}{R} \Delta^{2} M \tag{3.35}
\end{align*}
$$

3.2 Governing Equations for the Inplane Problem

On substituting for σ_{x}, σ_{y} and $\tau_{x y}$ from equations (3.22), (3.23) and (3.24) into

$$
\begin{equation*}
N_{x}=\int_{-h / 2}^{h / 2} \sigma_{x} d z ; N_{y}=\int_{-h / 2}^{h / 2} \sigma_{y} d z ; N_{x y}=\int_{-h / 2}^{h / 2} \tau_{x y} d z \tag{3.36}
\end{equation*}
$$

and further making use of the inplane equilibrium equation

$$
\begin{equation*}
\frac{\partial N_{x}}{\partial x}+\frac{\partial N_{x y}}{\partial y}=0 \tag{3.37}
\end{equation*}
$$

results in the following differential equation in terms of displacement u_{0} and v_{0}

$$
\begin{align*}
\frac{\partial^{2} u_{o}}{\partial x^{2}} & +\frac{(1-\mu)}{2} \frac{\partial^{2} u_{o}}{\partial y^{2}}+\frac{(1+\mu)}{2} \frac{\partial^{2} v_{0}}{\partial x \hat{c} y}=\frac{(1+\mu)}{E h} F_{2} \frac{\partial p}{\partial x} \\
& +\frac{F_{4}}{E h} \frac{\partial}{\partial x}\left[\frac{\partial^{2} p}{\partial x^{2}}+\frac{\partial^{2} p}{\partial y^{2}}\right]-\frac{\left(1-\mu^{2}\right)}{E h} F_{2}\left[\frac{\partial^{2} Q_{x}}{\partial x^{2}}+\frac{\partial^{2} Q_{x}}{\partial y^{2}}\right] \tag{3.38}
\end{align*}
$$

where:

$$
\begin{equation*}
F_{2}=\int_{-h / 2}^{h / 2} f_{1}(z) d z, F_{4}=\int_{-h / 2}^{h / 2} f_{3}(z) d z \tag{3.38.1}
\end{equation*}
$$

Similarly, operating on the other inplane equilibrium equation

$$
\begin{equation*}
\frac{\partial N_{y}}{\partial y}+\frac{\partial N_{x y}}{\partial x}=0 \tag{3.39}
\end{equation*}
$$

yields

$$
\begin{aligned}
\frac{\partial^{2} v_{0}}{\partial y^{2}} & +\frac{(1-\mu)}{2} \frac{\partial^{2} v_{0}}{\partial x^{2}}+\frac{(1+\mu)}{2} \frac{\partial^{2} u_{0}}{\partial x \partial y} \\
& =\frac{(1+\mu)}{E h} F_{2} \frac{\partial p}{\partial y}+\frac{F_{4}}{E h} \frac{\partial}{\partial y}\left(\frac{\partial^{2} p}{\partial x^{2}}+\frac{\partial^{2} p}{\partial y^{2}}\right)
\end{aligned}
$$

$$
\begin{equation*}
-\frac{\left(1-\mu^{2}\right)}{E h} F_{2}\left(\frac{\partial^{2} Q y}{\partial x^{2}}+\frac{\partial^{2} Q y}{\partial y^{2}}\right) \tag{3.40}
\end{equation*}
$$

3.3 Boundary Conditions

Physical interpretation for the terms $\varphi_{\mathbf{x}}, \varphi_{\mathbf{y}}$ follows the same reasoning previously used in [10]. Thus φ_{X} is the rotation of a vertical element $x=$ constant of the plate and φ_{y} is the rotation of a vertical element $y=$ constant of the plate. Also, average displacement functions \bar{u}, \bar{v} and \bar{w} are used here in all boundary conditions where [11] (1)

$$
\begin{equation*}
\bar{w}=w_{0}+\frac{p}{N}-\frac{M}{R} \tag{3.41}
\end{equation*}
$$

Since the order of equations in bending is six and in inplane problem is four, three boundary conditions are needed to be specified for bending and two boundary conditions for the inplane problem at each end.

Bending Problem

1. Simply Supported Edge $(x=0)$
(1) See Appendix (A-4) for physical interpretation of $\varphi_{x}, \varphi_{y}, \bar{u}, \bar{v}$, and \bar{w}.

$$
\begin{equation*}
\bar{w}(0, y)=0, \varphi_{y}(0, y)=0, M_{x}(0, y)=0 \tag{3.42}
\end{equation*}
$$

2. Clamped Edge ($x=0$)

$$
\begin{equation*}
\overline{\mathrm{w}}(0, \mathrm{y})=0, \varphi_{\mathbf{y}}(0, \mathrm{y})=0, \varphi_{\mathbf{x}}(0, \mathrm{y})=0 \tag{3.43}
\end{equation*}
$$

3. Free Edge ($\mathbf{x}=0$)

$$
\begin{equation*}
M_{x}(0, y)=0, \quad Q_{x}(0, y)=0, M_{x y}(0, y)=0 \tag{3.44}
\end{equation*}
$$

Inplane Problem

1. Edge Clamped Against Stretching $(x=0)$

$$
\begin{equation*}
\bar{u}(0, y)=0, \bar{v}(0, y)=0 \tag{3.45}
\end{equation*}
$$

2. Edge Free to Stretch $(x=0)$

$$
\begin{equation*}
N_{x}(0, y)=0, \bar{v}(0, y)=0 \tag{3.46}
\end{equation*}
$$

3.4 Derivation of the Function $f_{1}(z)$

In order to derive the exact form of $f_{1}(z)$ that satisfies the four boundary conditions given by equations (3.2) and (3.10), one starts with the stress differential equations of equilibrium

$$
\begin{equation*}
\frac{\partial \sigma_{\mathbf{x}}}{\partial \mathrm{x}}+\frac{\partial \tau_{\mathrm{y}}}{\partial \mathrm{y}}+\frac{\partial \tau_{\mathrm{zx}}}{\partial \mathrm{z}}=0 \tag{3.47.1}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial \tau}{x y}+\frac{\partial \sigma_{y}}{\partial y}+\frac{\partial \tau}{\partial y}=0 \tag{3.47.2}\\
& \frac{\partial \tau}{\partial z}=0 \tag{3.47.3}\\
& \partial x
\end{align*} \frac{\partial \tau}{y z}+\frac{\partial \sigma_{z}}{\partial z}=0
$$

Solving for $\frac{\partial \tau}{x z}$ and $\frac{\partial \tau}{\partial z} \frac{y z}{\partial z}$ from equations (3.47.1) and (3.47.2) by using expressions for $\sigma_{x}, \sigma_{y},{ }^{\tau} x y$ from equations (3.22), (3.23) and (3.24) and then substituting the result in the derivative of equation (47.3) with respect to z yields

$$
\begin{align*}
& \frac{E}{\left(1-\mu^{2}\right)}\left[z \Delta^{2} w_{0}+\left(\frac{2-\mu}{2 G}\right) f_{1}(z) \Delta p+\frac{f_{3}(z)}{E} \Delta^{2} p\right. \\
& \\
& \left.-\frac{2 \mu}{E h^{3}} z^{3} \Delta^{2} M-\frac{\partial}{\partial x} \Delta u_{0}-\frac{\partial}{\partial y} \Delta v_{0}\right] \tag{3.48}\\
& \\
& +\operatorname{pf}_{1}^{\prime \prime}(z)=0
\end{align*}
$$

Differentiating equation (3.48) twice with respect to z and using the relation $f_{3}^{\prime \prime}(z)=f_{1}(z)$ yields the following fourth order differential equation in $f_{1}(z)$
$\mathrm{pf}_{i}^{(i v)}(\mathrm{z})+\frac{(2-\mu)}{(1-\mu)} f_{i}^{\prime \prime}(z) \Delta p+\frac{f_{1}(z)}{\left(1-\mu^{2}\right)} \Delta^{2} p=\frac{12 \mu}{E h^{3}} z \Delta^{2} M$

Expand the loading function $p(x, y)$ in double Fourier series

$$
\begin{equation*}
p(x, y)=\sum_{m} \sum_{n} p_{m n} \sin a_{m} x \sin \beta_{n} y \tag{3.50.1}
\end{equation*}
$$

The solution for M can be shown to be :

$$
M=M_{h}+M_{p}
$$

where M_{h} is the homogeneous part of the solution (i.e when $p=0$) and M_{p} the particular solution.

Substituting for M in equation (3.49) above, one obtains for the homogeneous part of the solution corresponding to $p=0$ the relationship that

$$
\begin{equation*}
\Delta^{2} M_{h}=0 \tag{3.50.1a}
\end{equation*}
$$

Relation (3.50.1a) indicates that it is the particular solution of M that plays a role in determination of the function $f_{1}(z)$.

The particular solution for $M(x, y)$ corresponding to the loading $p(x, y)$ given by (3.50.1) may be taken to be of the form

$$
\begin{equation*}
M_{p}(x, y)=\sum_{m} \sum_{n} M_{m n} \sin \alpha_{m} x \sin \beta_{n} y \tag{3.50.2}
\end{equation*}
$$

Substituting the expansions given by equations (3.50.1) and (3.50.2) into equation (3.49) and dividing by $p_{m n}$ yields

$$
\begin{equation*}
f_{i}^{(i v)}(z)-\bar{A} f_{1}^{\prime \prime}(z)+\bar{B} f_{1}(z)=\bar{C} z \tag{3.50.3}
\end{equation*}
$$

where

$$
\begin{align*}
& \bar{A}=\frac{(2-\mu)}{(1-\mu)}\left(a_{m}^{2}+\beta_{n}^{2}\right) \tag{3.50.4}\\
& \bar{B}=\frac{\left(a_{m}^{2}+\beta_{n}^{2}\right)^{2}}{\left(1-\mu^{2}\right)} \tag{3.50.5}\\
& \bar{C}=\frac{12 \mu M_{m n}}{h^{3}\left(1-\mu^{2}\right) p_{m n}}\left(a_{m}^{2}+\beta_{n}^{2}\right) \tag{3.50.6}\\
& \alpha_{m}=\frac{m \pi}{a}, \quad \beta_{n}=\frac{n \pi}{b} \tag{3.50.7}
\end{align*}
$$

Equation (3.50.3) is a fourth order non-homogeneous differential equation in $f_{1}(z)$ whose solution is given by

$$
\begin{align*}
f_{1}(z)= & f_{1 p}(z)+f_{1 h}(z)=A_{0}+A_{1} z+A_{2} \cosh \bar{a} z \\
& +A_{3} \sinh \bar{a} z+A_{4} \cosh \bar{b} z+A_{5} \sinh \bar{b} z \tag{3.51}
\end{align*}
$$

where

$$
\begin{align*}
& \overline{\mathrm{a}}=\sqrt{\overline{(\mathrm{A}}+\sqrt{\left.\overline{\mathrm{A}}^{2}-4 \overline{\mathrm{~B}}\right) / 2}} \tag{3.51.1}\\
& \overline{\mathrm{~b}}=\sqrt{\overline{(\mathrm{A}}-\sqrt{\left.\overline{\mathrm{A}}^{2}-4 \bar{B}\right) / 2}} \tag{3.51.2}
\end{align*}
$$

and $f_{1 p}(z)$ is the particular solution as given by $A_{0}+A_{1} z$, and $f_{1 h}(z)$ being the homogeneous solution. Coefficients in the particular solution are readily found to be

$$
\begin{equation*}
A_{0}=0 \tag{3.52}
\end{equation*}
$$

$$
\begin{equation*}
A_{i}=\frac{12 \mu M_{m n}}{h^{3} p_{m n}} \tag{3.53}
\end{equation*}
$$

and the constants A_{2} through A_{5} involved in the homogeneous solution are found by using the four conditions given by equations (3.2) and (3.10).

Subsequent to obtaining $f_{1}(z)$, all other functions dependent on $f_{1}(z)$ are readily obtained and given by:

$$
\begin{align*}
f_{2}(z)= & \frac{A_{1}}{2} z^{2}+\frac{A_{2}}{\bar{a}} \sinh \bar{a} z+\frac{A_{3}}{\bar{a}} \cosh \bar{a} z \\
& +\frac{A_{4}}{\bar{b}} \sinh \bar{b} z+\frac{A_{5}}{\bar{b}} \cosh \bar{b} z+C_{1} \tag{3.54}\\
f_{3}(z)= & \frac{A_{1}}{6} z^{3}+\frac{A_{2}}{\bar{a}^{2}} \cosh \bar{a} z+\frac{A_{3}}{\bar{a}^{2}} \sinh \bar{a} z \\
& +\frac{A_{4}}{\bar{b}^{2}} \cosh \bar{b} z+\frac{A_{5}}{\bar{b}^{2}} \sinh \bar{b} z+C_{1} z+C_{2} \tag{3.55}\\
F_{1}=A_{1} & +\frac{12}{h^{3}}\left[\frac{h}{\bar{a}} \cosh \frac{\bar{a} h}{2}-\frac{2}{\bar{a}^{2}} \sinh \frac{a h}{2}\right] A_{3} \\
& +\frac{12}{h^{3}}\left[\frac{h}{\bar{b}} \cosh \frac{b h}{2}-\frac{2}{\bar{b}^{2}} \sinh \frac{\bar{b} h}{2}\right] A_{5} \tag{3.56}
\end{align*}
$$

$$
\begin{align*}
& F_{3}=A_{1}+\frac{12}{h^{3}}\left[\frac{h}{\bar{a}} \cosh \frac{\bar{a} h}{2}-\frac{2}{\bar{a}^{2}} \sinh \frac{\bar{a} h}{2}\right] A_{3} \\
& +\frac{12}{h^{3}}\left[\frac{h}{\bar{b}} \cosh \frac{\bar{b} h}{2}-\frac{2}{\bar{b}^{2}} \sinh \frac{\bar{b} h}{2}\right] A_{5} \tag{3.57}\\
& F_{2}=\left[\frac{2}{\bar{a}} \sinh \frac{\bar{a} h}{2}\right) A_{2}+\left(\frac{2}{\bar{b}} \sinh \frac{\bar{b} h}{2}\right) A_{4} \tag{3.58}\\
& F_{4}=C_{2} h+\left(\frac{2}{\bar{a}^{3}} \sinh \frac{\bar{a} h}{2}\right) A_{2}+\left(\frac{2}{\bar{b}^{3}} \sinh \frac{\bar{b} h}{2}\right) A_{4} \tag{3.59}
\end{align*}
$$

The constant C_{1} appearing in $f_{2}(z)$ is found by imposing the condition (with no loss in generality) that

$$
\begin{equation*}
w(x, y, o)=w_{0}(x, y) \tag{3.60}
\end{equation*}
$$

in equation (3.15) resulting in

$$
\begin{equation*}
C_{1}=-\left(\frac{A_{3}}{\bar{a}}+\frac{A_{5}}{\bar{b}}\right) \tag{3.61}
\end{equation*}
$$

Similarly the constant C_{2} appearing in $f_{3}(z)$ is found by imposing the condition that

$$
\begin{equation*}
u(x, y, o)=u_{0}(x, y) \tag{3.62}
\end{equation*}
$$

in equation (19) resulting in

$$
\begin{equation*}
C_{2}=\frac{2(1+\mu)}{\alpha_{m}^{2}}\left(A_{2}+A_{4}\right)-\left(\frac{A_{2}}{\bar{a}^{2}}+\frac{A_{4}}{\bar{b}^{2}}\right) \tag{3.63}
\end{equation*}
$$

As an additional check on the particular solution for plate deflection w_{0}, one may differentiate equation (3.48) with respect to z and then set $z=0$ in the resulting expression which yields

$$
\begin{align*}
w_{00}= & \frac{h^{3}}{12}\left[\frac{p_{m n}}{\left(\alpha_{m}^{2}+\beta_{n}^{2}\right)^{2}}\right]\left[A A_{1}-B C_{1}-A_{3}\left[\bar{a}^{3}-\bar{a} A+\frac{B}{\bar{a}}\right]\right. \\
& \left.-A_{5}\left[\bar{b}^{3}-\bar{b} A+\frac{B}{\bar{b}}\right]\right] \tag{3.64}
\end{align*}
$$

where:

$$
\begin{equation*}
w_{o}=\sum_{m} \sum_{\mathbf{n}} w_{o o} \sin \alpha_{m} x \sin \beta_{n} y \tag{3.65}
\end{equation*}
$$

and $p(x, y)$ is as given by equation (3.50.1).

It should be noticed that equation (3.64) give particular solution for w_{0} which should coincide with the particular solution obtained from the differential equation derived for the plate deflection w_{0} i.e. equation (3.35).

Chapter 4

SOLUTION OF PROBLEM BY SEMI-INVERSE LEVY TYPE METHOD

4.1 Solution of the Bending Problem

4.1.1 Derivation of the Governing Equations

From work in Chap. 3, one has the following:

$$
\begin{align*}
& M_{x}=D\left[\frac{\partial \varphi_{x}}{\partial x}+\mu \frac{\partial \varphi_{y}}{\partial y}+\kappa p\right] \tag{4.1}\\
& M_{y}=D\left[\frac{\partial \varphi_{y}}{\partial y}+\mu \frac{\partial \varphi_{x}}{\partial x}+\kappa p\right] \tag{4.2}\\
& M_{x y}=\frac{-D(1-\mu)}{2}\left[\frac{\partial \varphi_{x}}{\partial y}+\frac{\partial \varphi_{y}}{\hat{c} x}\right] \tag{4.3}
\end{align*}
$$

where:

$$
\begin{equation*}
\varphi_{x}=-\frac{\partial w_{0}}{\partial x}+\frac{Q_{x}}{S}-\frac{1}{N} \frac{\partial p}{\partial x}+\frac{1}{R} \frac{\partial M}{\partial x} \tag{4.4}
\end{equation*}
$$

$$
\begin{align*}
& \varphi_{y}=-\frac{\bar{\partial} w_{0}}{\partial y}+\frac{Q_{x}}{S}-\frac{1}{N} \frac{\partial p}{\partial y}+\frac{1}{R} \frac{\partial M}{\partial y} \tag{4.5}\\
& S=\frac{G}{F_{2}} \tag{4.6}\\
& N=\frac{E}{F_{3}} \tag{4.7}\\
& R=\frac{10 E h}{3 \mu} \tag{4.8}\\
& K=\frac{\mu(1+\mu) F_{1}}{E} \tag{4.9}\\
& F_{1}=\frac{12}{h^{3}} \int_{-h / 2}^{+h / 2} z f_{1}(z) d z \tag{4.10}\\
& F_{3}=\frac{12}{h^{3}} \int_{-h / 2}^{+h / 2} z f_{3}(z) d z \tag{4.11}
\end{align*}
$$

Using equations (4.4) and (4.5) and the following equation:

$$
\begin{equation*}
\frac{\partial Q_{x}}{\partial x}+\frac{\partial Q_{y}}{\partial y}+p=0 \tag{4.12}
\end{equation*}
$$

one obtains alternate forms for M_{x}, M_{y} and $M_{x y}$ as:

$$
M_{x}=-D\left(\frac{\partial^{2} w_{o}}{\partial x^{2}}+\mu \frac{\partial^{2} w_{o}}{\partial y^{2}}\right)+\frac{h^{3}}{6} F_{1} \frac{\partial Q_{x}}{\partial x}-\frac{\mu h^{3} F_{1}}{12(1-\mu)} p
$$

$$
\begin{align*}
& \frac{-D}{N}\left(\frac{\partial^{2} p}{\partial x^{2}}+\mu \frac{\partial^{2} p}{\partial y^{2}}\right)+\frac{D}{R}\left(\frac{\partial^{2} M}{\partial x^{2}}+\mu \frac{\dot{\partial}^{2} M}{\partial y^{2}}\right) \tag{4.13}\\
M_{y}= & -D\left[\frac{\partial^{2} w_{o}}{\partial y^{2}}+\mu \frac{\partial^{2} w_{o}}{\partial x^{2}}\right)+\frac{h^{3}}{6} F_{1} \frac{\partial Q^{y}}{\partial y}-\frac{\mu h^{3} F_{1}}{12(1-\mu)} p \\
& \frac{-D}{N}\left(\frac{\partial^{2} p}{\partial y^{2}}+\mu \frac{\partial^{2} p}{\partial x^{2}}\right]+\frac{D}{R}\left(\frac{\partial^{2} M}{\partial y^{2}}+\mu \frac{\partial^{2} M}{\partial x^{2}}\right) \tag{4.14}\\
M_{x y}= & D(1-\mu) \frac{\partial^{2} w_{o}}{\partial x \partial y}-\frac{h^{3}}{12} F_{1}\left[\frac{\partial Q_{x}}{\partial y}+\frac{\hat{c} Q_{y}}{\tilde{c} x}\right) \\
& +\frac{D(1-\mu)}{N} \frac{\partial^{2} p}{\partial x \partial y}-\frac{D(1-\mu)}{R} \frac{\partial^{2} M}{\partial x \partial y} \tag{4.15}
\end{align*}
$$

where:

$$
M=M_{x}+M_{y}
$$

Defining average transverse displacement \bar{w} and average rotations $\varphi_{\mathrm{x}}, \varphi_{\mathrm{y}}$ as (Appendix A-4)

$$
\begin{align*}
& \vec{w}=w_{0}+\frac{p}{N}-\frac{M}{R} \tag{4.16}\\
& \varphi_{x}=-\frac{\partial \bar{w}}{\partial x}+\frac{Q_{x}}{S} \tag{4.17}\\
& \varphi_{y}=-\frac{\partial \bar{w}}{\partial y}+\frac{Q_{y}}{S} \tag{4.18}
\end{align*}
$$

the set of equations (4.4), (4.5), (4.13), (4.14) and (4.15) are
rewritten in the form

$$
\begin{align*}
& M_{x}=-D\left(\frac{\partial^{2} \bar{w}}{\partial x^{2}}+\mu \frac{\partial^{2} \bar{w}}{\partial y^{2}}\right)+\frac{h^{3}}{6} F_{1} \frac{\partial Q_{x}}{\partial x}-\frac{\mu h^{3} F_{1}}{12(1-\mu)} p \tag{4.19}\\
& M_{y}=-D\left(\frac{\partial^{2} \bar{w}}{\partial y^{2}}+\mu \frac{\partial^{2} \bar{w}}{\partial x^{2}}\right)+\frac{h^{3}}{6} F_{1} \frac{\partial Q_{y}}{\partial y}-\frac{\mu h^{3} F_{1}}{12(1-\mu)} p \tag{4.20}\\
& M_{x y}=D(1-\mu) \frac{\partial^{2} \bar{w}}{\partial x \partial y}-\frac{h^{3}}{12} F_{1}\left(\frac{\partial Q_{x}}{\partial y}+\frac{\partial Q_{y}}{\partial x}\right) \tag{4.21}
\end{align*}
$$

Eliminating shears from equations (4.19), (4.20), (4.21) by using equations (4.17) and (4.18), one obtains:

$$
\begin{align*}
& M_{x}=\left(-D+\frac{h^{3} F_{1}}{6} S\right) \frac{\partial^{2} \bar{W}}{\partial x^{2}}-D \mu \frac{\partial^{2} \bar{W}}{\partial y^{2}}+\frac{h^{3} F_{1}}{6} S \frac{\partial\left(\varphi_{x}\right.}{\partial x}-\frac{h^{3} \mu F_{1}}{12(1-\mu)} p \tag{4.22}\\
& M_{y}=\left[-D+\frac{h^{3} F_{1}}{6} S\right] \frac{\partial^{2} \bar{w}}{\partial y^{2}}-D \mu \frac{\partial^{2} \bar{w}}{\partial x^{2}}+\frac{h^{3} F_{1}}{6} S \frac{\partial \varphi_{y}}{\partial y}-\frac{h^{3} \mu F_{1}}{12(1-\mu)} p \tag{4.23}\\
& M_{x y}=\left[D(1-\mu)-\frac{h^{3} F_{1}}{6} S\right] \frac{\partial^{2} \bar{w}}{\partial x \partial y}-\frac{h^{3} F_{1}}{12} S\left(\frac{\partial \varphi_{x}}{\partial y}+\frac{\partial \varphi_{y}}{\partial x}\right) \tag{4.24}
\end{align*}
$$

Using equations (4.17), (4.18) to eliminate shears in the equilibrium equations (3.31), (3.32), one obtains:

$$
\begin{aligned}
& {\left[\left(-D+\frac{h^{3} F_{1} S}{6}\right) \frac{\partial^{3}}{\partial x^{3}}-\left[D-\frac{h^{3} F_{1} S}{6}\right] \frac{\partial^{3}}{\partial x \partial y^{2}}-S \frac{\partial}{\partial x}\right] \bar{w}} \\
& \quad+\left[\frac{h^{3} F_{1}}{6} S \frac{\partial^{2}}{\partial x^{2}}+\frac{h^{3} F_{1}}{12} S \frac{\partial^{2}}{\partial y^{2}}-S\right] \varphi_{x}
\end{aligned}
$$

$$
\begin{gather*}
+\left[\frac{h^{3} F_{1} S}{12} \frac{\partial^{2}}{\partial x \partial y}\right] \varphi_{y}=\frac{\mu h^{3} F_{1}}{12(1-\mu)} \frac{\partial p}{\partial x} \tag{4.25}\\
{\left[\left[-D+\frac{h^{3} F_{1} S}{6}\right] \frac{\partial^{3}}{\partial y^{3}}-\left[D-\frac{h^{3} F_{1} S}{6}\right] \frac{\partial^{3}}{\partial x^{2} \partial y}-S \frac{\partial}{\partial y}\right] \bar{W}} \\
+\left[\frac{h^{3} F_{1} S}{12} \frac{\partial^{2}}{\partial x \partial y}\right] \varphi_{x}+\left[\frac{h^{3} F_{1} S}{6} \frac{\partial^{2}}{\partial y^{2}}+\frac{h^{3} F_{1} S}{12} \frac{\partial^{2}}{\partial x^{2}}-S\right] \varphi_{y} \\
= \tag{4.26}
\end{gather*}
$$

The third equation involving \bar{w}, φ_{x}, and φ_{y} is obtained by substituting equations (4.17) and (4.18) into equation (4.12):

$$
\begin{equation*}
\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right] \bar{w}+\left[\frac{\partial}{\partial x}\right] \varphi_{x}+\left[\frac{\partial}{\partial y}\right] \varphi_{y}=\frac{-p}{S} \tag{4.27}
\end{equation*}
$$

The set of equations (4.25) through (4.27) represents a sixth order bending problem.

By using the set of equations (4.25), (4.26), and (4.27), the governing plate differential equation in terms of the average transverse displacement $\overline{\mathrm{w}}$ can be obtained $\mathrm{as}^{(1)}$:

$$
\begin{equation*}
M^{\prime}\left(\Delta^{3} \bar{w}\right)+N^{\prime}\left(\Delta^{2} \bar{w}\right)=A \Delta^{2} p+B \Delta p+C p \tag{4.28}
\end{equation*}
$$

(1) See Appendix (A-1) for derivation of this equation.
where:

$$
\begin{align*}
& M^{\prime}=\frac{h^{3} F_{1} S D}{12} \\
& N^{t}=-S D \tag{4.29.2}
\end{align*}
$$

$A=-\frac{(2-\mu)}{(1-\mu)}\left(\frac{h^{3} F_{1}}{12}\right)^{2} S$
$B=+\frac{(3-2 \mu)}{12(1-\mu)} h^{3} F_{1} S$
$C=-S$
(4.29.5)
$\Delta=\left(\frac{\partial^{2}}{\partial \mathbf{x}^{2}}+\frac{\partial^{2}}{\partial \mathbf{y}^{2}}\right)$

4.1.2 Solution of Bending Problem by Semi-Inverse Levy type Method

For plates with the pair of edges at $x=0, x=a$ being simply supported, see figure 4.1 , the solution to equation (4.28) may be expressed in the Levy form as:

$$
\begin{equation*}
\bar{w}(x, y)=\bar{w}_{1}(x)+\bar{w}_{2}(x, y) \tag{4.30}
\end{equation*}
$$

in which the governing equations to be satisfied by \bar{w}_{1} and \bar{w}_{2} are given by [with Load $p=p(x)$]:

$$
\begin{equation*}
M^{\prime} \frac{d^{6} \bar{w}_{1}}{d x^{6}}+N^{\prime} \frac{d^{4} \bar{w}_{1}}{d x^{4}}=A \frac{d^{4} p}{d x^{4}}+B \frac{d^{2} p}{d x^{2}}+C p \tag{4.31}
\end{equation*}
$$

and:

$$
\begin{equation*}
M^{\prime} \Delta^{3} \bar{w}_{2}+N^{\prime} \Delta^{2} \bar{w}_{2}=0 \tag{4.32}
\end{equation*}
$$

Expanding the load in a half range sine series

$$
\begin{equation*}
p=\sum_{m=1}^{\infty} p_{m} \sin a_{m} x \tag{4.33}
\end{equation*}
$$

with: $a_{m}=\frac{m \pi}{a}$

Figure 4.1 : Coordinate Axis For The Plate.
and the function \bar{w}_{1} expressed in the form:

$$
\begin{equation*}
\vec{w}_{1}=\sum_{m=1}^{\infty} \beta_{m} \sin \alpha_{m} x \tag{4.34}
\end{equation*}
$$

The Fourier coefficients β_{m} are then determined from equation (4.31) to be:

$$
\begin{equation*}
\beta_{m}=\left\{\frac{A a_{m}^{4}-B a_{m}^{2}+C}{-M^{\prime} a_{m}^{6}+N^{\prime} a_{m}^{4}}\right\} p_{m} \tag{4.35}
\end{equation*}
$$

The solution for \bar{w}_{2} may be taken in the following form:

$$
\begin{equation*}
\bar{w}_{2}=\sum_{m=1}^{\infty} Y_{m}(y) \sin a_{m} x \tag{4.36}
\end{equation*}
$$

in which Y_{m} is obtained by substituting appropriate expressions for \bar{W}_{2} and its derivatives in equation (4.32). The function $Y_{m}(y)$ can be shown to be:

$$
\begin{align*}
Y_{m}(y) & =A_{m} \cosh \alpha_{m} y+B_{m} \alpha_{m} y \sinh \alpha_{m} y+C_{m} \sinh \alpha_{m} y \\
& +D_{m} \alpha_{m} y \cosh \alpha_{m} y+E_{m} \cosh \gamma_{m} y+F_{m} \sinh \gamma_{m} y \tag{4.37}
\end{align*}
$$

where:

$$
\begin{equation*}
\gamma_{m}^{2}=a_{m}^{2}-\frac{N^{\prime}}{M^{\top}} \tag{4.37-1}
\end{equation*}
$$

Restricting the development to plates with loading and boundary conditions that are symmetrical with respect to the x -axis necessitates

$$
C_{m}=D_{m}=F_{m}=0
$$

The complete solution for $\overline{\mathbf{w}}$ becomes:

$$
\begin{align*}
\bar{w}= & \sum_{m=1}^{\infty} \bar{w}_{m}(y) \sin \alpha_{m} x \\
= & \sum_{m=1}^{\infty}\left(A_{m} \cosh a_{m} y+B_{m} a_{m} y \sinh \alpha_{m} y\right. \\
& \left.+E_{m} \cosh \gamma_{m} y+\beta_{m}\right) \sin \alpha_{m} x \tag{4.38}
\end{align*}
$$

where:

$$
\begin{align*}
\bar{w}_{m}(y)= & A_{m} \cosh \alpha_{m} y+B_{m} \alpha_{m} y \sinh \alpha_{m} y \\
& +E_{m} \cosh \gamma_{m} y+\beta_{m} \tag{4.39}
\end{align*}
$$

In a similar way the same set of equations (4.25), (4.26), (4.27) can be used to obtain the governing equations for the average rotations $\varphi_{\mathbf{x}}$ and $\varphi_{\mathbf{y}}$.

For the symmetric problem considered, the solutions are of the form:

$$
\begin{align*}
& \varphi_{x}=\sum_{m=1}^{\infty} \varphi_{x m}(y) \cos \alpha_{m} x \tag{4.40}\\
& \varphi_{y}=\sum_{m=1}^{\infty} \varphi_{y m}(y) \sin \alpha_{m} x \tag{4.41}
\end{align*}
$$

where:

$$
\begin{align*}
\varphi_{x m}(y)= & A_{m}^{\prime} \cosh \alpha_{m} y+B_{m}^{\prime} \alpha_{m} y \sinh \alpha_{m} y \\
& +E_{m}^{\prime} \cosh \gamma_{m} y+\beta_{m}^{\prime} \tag{4.42}\\
\varphi_{y m}(y)= & C_{m}^{\prime \prime} \sinh \alpha_{m} y+D_{m}^{\prime \prime} \alpha_{m} y \cosh \alpha_{m} y \\
& +F_{m}^{\prime \prime} \sinh \gamma_{m} y+\beta_{m}^{\prime \prime} \tag{4.43}
\end{align*}
$$

It should be noticed that due to symmetrical loading and boundary conditions with respect to the x-axis, $\varphi_{x m}$ is even in " y " while $\varphi^{\varphi} y m$ is odd in " y ".

Relations between the constants in \bar{W}, φ_{x} and φ_{y} :

In view of the order of the plate problem, there exists a linear dependence among the nine constants A_{m} through $F_{m}^{\prime \prime}$. One way of arriving at these relationships, together with the particular solutions $\beta_{\mathrm{m}}^{\prime}$ and $\beta_{\mathrm{m}}^{\prime \prime}$, is by the following procedure:

Substituting equations (4.1), (4.2), and (4.3) into equations (3.31) and (3.32) and using equations (4.17) and (4.18) to eliminate the transverse shears yields

$$
\begin{equation*}
\varphi_{x}+\frac{\partial \bar{w}}{\partial x}=\frac{D}{S}\left[\frac{\partial^{2} \varphi_{x}}{\partial x^{2}}+\frac{(1-\mu)}{2} \frac{\partial^{2} \varphi_{x}}{\partial y^{2}}+\frac{(1+\mu)}{2} \frac{\partial^{2} \varphi_{y}}{\partial x \hat{\partial} y}+\kappa \frac{\partial p}{\partial x}\right] \tag{4.44}
\end{equation*}
$$

$\varphi_{y}+\frac{\partial \bar{w}}{\partial y}=\frac{D}{S}\left[\frac{\partial^{2} \varphi_{y}}{\partial y^{2}}+\frac{(1-\mu)}{2} \frac{\partial^{2} \varphi_{y}}{\partial x^{2}}+\frac{(1+\mu)}{2} \frac{\partial^{2} \varphi_{x}}{\partial x \partial y}+\kappa \frac{\partial p}{\partial y}\right]$

Substituting for $\varphi_{x}, \varphi_{y}, \bar{w}$ and p from equations (4.38), (4.40), (4.41), and (4.33), respectively, into equations (4.44) and (4.45), the following coupled ordinary differential equations in $\varphi_{x m}(y)$ and $\varphi_{\mathrm{ym}}(\mathrm{y})$ are obtained:

$$
\begin{gather*}
{\left[\frac{D}{S} \frac{(1-\mu)}{2} \frac{d^{2}}{d y^{2}}-\alpha_{m}^{2} \frac{D}{S}-1\right] \varphi_{x m}+\left[\frac{D}{S} \frac{(1+\mu)}{2} \alpha_{m} \frac{d}{d y}\right] \varphi_{y m}} \\
=\alpha_{m} \bar{w}_{m}-\kappa \frac{D}{S} \alpha_{m} p_{m} \tag{4.46}
\end{gather*}
$$

and:

$$
\begin{gather*}
-\left[\frac{D}{S} \frac{(1+\mu)}{2} \alpha_{m} \frac{d}{d y}\right] \varphi_{x m}+\left[\frac{D}{S} \frac{d^{2}}{d y^{2}}-\frac{D}{S} \frac{(1-\mu)}{2} a_{m}^{2}-1\right] \varphi_{y m} \\
=\frac{d \bar{w}_{m}}{d y} \tag{4.47}
\end{gather*}
$$

Uncoupling equations (4.46) and (4.47) for $\varphi_{x m}$ and $\varphi_{y m}$ results in:

$$
\begin{aligned}
& \left\{\left[\left(\frac{D}{S}\right)^{2}\left(\frac{1-\mu}{2}\right)\right] \frac{d^{4}}{d y^{4}}+\left[-(1-\mu)\left(\frac{D}{S}\right)^{2} a_{m}^{2}-\frac{(3-\mu)}{2} \frac{D}{S}\right] \frac{d^{2}}{d y^{2}}\right. \\
& \left.\quad+\left[\left(\frac{D}{S}\right)^{2} \alpha_{m}^{4} \frac{(1-\mu)}{2}+\frac{D}{S}\left(\frac{3-\mu}{2}\right) a_{m}^{2}+1\right]\right\}\left\{P_{x m}\right\}
\end{aligned}
$$

$$
\begin{equation*}
=\alpha_{m}\left[\frac{D}{S} \frac{(1-\mu)}{2} \frac{d^{2}}{d y^{2}}-\frac{D}{S} \frac{(1-\mu)}{2} a_{m}^{2}-1\right]\left(\bar{w}_{m}-\kappa \frac{D}{S} p_{m}\right) \tag{4.48}
\end{equation*}
$$

Similarly one obtains for $\varphi_{y m}$:

$$
\begin{align*}
& \left\{\left[\left(\frac{D}{S}\right)^{2}\left(\frac{1-\mu}{2}\right)\right] \frac{d^{4}}{d y^{4}}+\left[-(1-\mu)\left(\frac{D}{S}\right)^{2} a_{m}^{2}-\frac{(3-\mu)}{2} \frac{D}{S}\right] \frac{d^{2}}{d y^{2}}\right. \\
& \left.\quad+\left[\left(\frac{D}{S}\right)^{2} a_{m}^{4} \frac{(1-\mu)}{2}+\frac{D}{S}\left(\frac{3-\mu}{2}\right) a_{m}^{2}+1\right]\right\}\left\{\varphi_{y m}\right\} \\
& \quad=\left[\frac{D}{S} \frac{(1-\mu)}{2} \frac{d^{3}}{d y^{3}}-\frac{D}{S} \frac{(1-\mu)}{2} a_{m}^{2} \frac{d}{d y}-\frac{d}{d y}\right]\left(\bar{w}_{m}-\kappa p_{m} \frac{D}{S}\right) \tag{4.49}
\end{align*}
$$

The required relationships among the constants, together with solutions for $\beta_{\mathrm{m}}^{\prime}$ and $\beta_{\mathrm{m}}^{\prime \prime}$ are established by substituting relations in equations (4.33), (4.39), (4.42), and (4.43) into equations (4.48) and (4.49).

Then these relationships are given by:

$$
\begin{align*}
& A_{m}^{\prime}=-a_{m} A_{m}-\frac{2 D}{S} a_{m}^{3} B_{m} \tag{4.50.1}\\
& B_{m}^{\prime}=-a_{m} B_{m} \tag{4.50.2}\\
& E_{m}^{\prime}=\frac{a_{m}}{\left[\frac{D}{S}\left(\gamma_{m}^{2}-\alpha_{m}^{2}\right)-1\right]} E_{m} \tag{4.50.3}\\
& \beta_{m}^{\prime}=\frac{-\alpha_{m}\left(\beta_{m}-\kappa \frac{D}{S} p_{m}\right)}{\left(\frac{D}{S} a_{m}^{2}+1\right)} \tag{4.50.4}
\end{align*}
$$

$$
\begin{align*}
& C_{m}^{n}=-\alpha_{m} A_{m}-\left(\frac{2 D}{S} \alpha_{m}^{3}+a_{m}\right) B_{m} \tag{4.50.5}\\
& D_{m}^{n}=-a_{m} B_{m} \tag{4.50.6}\\
& F_{m}^{\prime \prime}=\frac{\gamma_{m}}{\left[\frac{D}{S}\left(\gamma_{m}^{2}-\alpha_{m}^{2}\right)-1\right]} E_{m} \tag{4.50.7}\\
& \beta_{m}^{n}=0 \tag{4.50.8}
\end{align*}
$$

4.1.3 Derivation of the Non-Dimensional Form of $f_{1}(z)$ and Related Constants:

Consider the governing differential equation for $f_{1}(z)$ (equation 3-49):

$$
\begin{equation*}
f_{1}^{(i v)}(z)-\bar{A} f_{1}^{\prime \prime}(z)+\bar{B} f_{i}(z)=\bar{C} z \tag{3-49}
\end{equation*}
$$

where:

$$
\begin{align*}
& \bar{A}=\left[\frac{2-\mu}{1-\mu}\right]_{m}^{2} \tag{4-51.1}\\
& \bar{B}=\left[\frac{\alpha_{m}^{4}}{1-\mu^{2}}\right] \tag{4-51.2}\\
& \bar{C}=\frac{12 \mu \alpha_{m}^{4}}{h^{3}\left(1-\mu^{2}\right)} \frac{M_{m}}{p_{m}} \tag{4-51.3}
\end{align*}
$$

It can be shown that:

$$
\begin{equation*}
\bar{C}=\frac{\alpha_{m}^{4}}{\left(1-\mu^{2}\right)} A_{1} \tag{4-51.4}
\end{equation*}
$$

Therefore, from equations (4-51.3), and (4-51.4), we get:

$$
\begin{equation*}
M_{m}=\frac{h^{3} p_{m}}{12 \mu} A_{1} \tag{4-51.5}
\end{equation*}
$$

where:

The particular solution for $M=M_{x}+M_{y}$ can be written as:

$$
\begin{equation*}
M_{p}(x)=\sum_{m=1}^{\infty} M_{m} \sin a_{m} x \tag{4-51.6}
\end{equation*}
$$

It can be shown that M_{m} will be given by: (1)

$$
\begin{equation*}
M_{m}=p_{m}\left[\frac{1+\mu}{\alpha_{m}^{2}}+\frac{\mu h^{3} F_{1}}{12}\right] \tag{4-52}
\end{equation*}
$$

Substituting for F_{1} from equation (3-5b) and for M_{m} from equation (4-51.5) into the above equation results in:

$$
\begin{align*}
& {\left[\left(1-\mu^{2}\right)\right] A_{1}^{\prime}+\frac{12 \mu^{2}}{h^{3}}\left[\frac{2}{\bar{a}^{2}} \sinh \frac{\bar{a} h}{2}-\frac{h}{\bar{a}} \cosh \frac{\bar{a} h}{2}\right] A_{3}} \\
& \quad+\frac{12 \mu^{2}}{h^{3}}\left[\frac{2}{\bar{b}^{2}} \sinh \frac{\bar{b} h}{2}-\frac{h}{\bar{b}} \cosh \frac{\bar{b} h}{2}\right] A_{5}=0 \tag{4-53}
\end{align*}
$$

Equation (4-53) together with equations (3-2) and (3-10) represent the boundary conditions that the function $f_{1}(z)$ must satisfy.

From equation (3-5):

$$
\begin{aligned}
f_{1}(z)= & A_{1}^{\prime} z+A_{2} \cosh \bar{a} z+A_{3} \sinh \bar{a} z+A_{4} \cosh \bar{b} z \\
& +A_{5} \sinh \bar{b} z
\end{aligned}
$$

(1) See Appendix (A-3) for derivation of this equation.
let :

$$
\begin{equation*}
A_{1}^{\prime}=\frac{A_{1}}{h} \tag{4-54}
\end{equation*}
$$

Then $f_{1}(z)$ can be rewritten as:

$$
\begin{align*}
f_{1}(z)= & A_{1}\left(\frac{z}{h}\right)+A_{2} \cosh \bar{a} z+A_{3} \sinh \bar{a} z \\
& +A_{4} \cosh \bar{b} z+A_{5} \sinh \bar{b} z \tag{4-55}
\end{align*}
$$

From the boundary condition on $f_{1}(z): \quad f_{1}(-h / 2)=-1$
one obtains

$$
\begin{align*}
& -\frac{1}{2} A_{1}+\cosh \frac{\bar{a} h}{2} A_{2}-\sinh \frac{\bar{a} h}{2} A_{3} \\
& +\cosh \frac{\bar{b} h}{2} A_{4}-\sinh \frac{\bar{b} h}{2} A_{5}=-1 \tag{4-56}
\end{align*}
$$

and the boundary condition $\quad f_{1}(+h / 2)=0 \quad$ results in

$$
\begin{gather*}
\frac{1}{2} A_{1}+\operatorname{Cosh} \frac{\overline{\mathrm{a} h}}{2} A_{2}+\sinh \frac{\overline{\mathrm{a} h}}{2} A_{3}+\cosh \frac{\overline{\mathrm{b} h}}{2} A_{4} \\
+\sinh \frac{\overline{\mathrm{b}} \mathrm{~h}}{2} A_{5}=0 \tag{4-57}
\end{gather*}
$$

the boundary condition $\quad f_{1}^{\prime}(-h / 2)=0$ yields
$A_{1}-\bar{a} h \sinh \frac{\bar{a} h}{2} A_{2}+\bar{a} h \cosh \frac{\bar{a} h}{2} A_{3}-\bar{b} h \sinh \frac{\bar{b} h}{2} A_{4}$
$+\overline{\mathrm{b}} \mathrm{h} \cosh \frac{\overline{\mathrm{b}}}{2} \mathrm{~A}_{5}=0$

And the boundary condition $\quad f_{1}^{\prime}(+h / 2)=0 \quad$ results in $A_{1}+\bar{a} h \sinh \frac{\bar{a} h}{2} A_{2}+\bar{a} h \cosh \frac{\bar{a} h}{2} A_{3}+\bar{b} h \sinh \frac{\bar{b} h}{2} A_{4}$
$+\bar{b} h \cosh \frac{\bar{b} h}{2} A_{5}=0$

Thus equations $(4-53),(4-56),(4-57),(4-58)$, and (4-59) can be solved for the constants A_{1} through A_{5}.
(Note that A_{1}^{\prime} in equation (4-53) has to be replaced by A_{1} given by equation (4-54)).

Therefore the function of $f_{1}(z)$ given by equation (4-55) is now completely known.

Solution for other functions and constants related to $\mathbf{f}_{1}(z)$:

The expression F_{1} will be rewritten in the following form:

$$
\begin{equation*}
F_{1}=\frac{1}{h} \bar{F}_{1} \tag{4-59.1}
\end{equation*}
$$

where:

$$
\begin{align*}
\overline{\mathrm{F}}_{1}= & A_{1}+12\left[\frac{1}{\overline{\mathrm{a} h}} \cosh \frac{\overline{\mathrm{a}} \mathrm{~h}}{2}-\frac{2}{(\overline{\mathrm{a} h})^{2}} \sinh \frac{\bar{a} h}{2}\right] A_{3} \\
& +12\left[\frac{1}{\bar{b} h} \cosh \frac{\bar{b} h}{2}-\frac{2}{(\bar{b} h)^{2}} \sinh \frac{\bar{b} h}{2}\right] A_{5} \tag{4-59.2}
\end{align*}
$$

Similarly F_{3} is rewritten as:

$$
\begin{equation*}
F_{3}=h \bar{F}_{3} \tag{4-59.3}
\end{equation*}
$$

where:

$$
\begin{align*}
\overline{\mathrm{F}}_{3}= & \frac{1}{40} A_{1}+\frac{12}{(\bar{a} h)^{3}}\left[\cosh \frac{\bar{a} h}{2}-\frac{2}{(\bar{a} h)} \sinh \frac{\bar{a} h}{2}\right] A_{3} \\
& +\frac{12}{(\bar{b} h)^{3}}\left[\cosh \frac{\bar{b} h}{2}-\frac{2}{(\bar{b} h)} \sinh \frac{\bar{b} h}{2}\right] A_{5}+\bar{C}_{1} \tag{4-59.4}
\end{align*}
$$

in which

$$
\begin{equation*}
C_{1}=h \bar{C}_{1} \tag{5-59.5}
\end{equation*}
$$

and:

$$
\bar{C}_{1}=\left[\frac{1}{\bar{a} h} A_{3}+\frac{1}{\bar{b} h} A_{5}\right]
$$

(4-59.6)
F_{2} is rewritten as:

$$
\begin{equation*}
F_{2}=h \bar{F}_{2} \tag{4-59.7}
\end{equation*}
$$

where:

$$
\begin{equation*}
\bar{F}_{2}=\left[\frac{2}{\bar{a} h} \sinh \frac{\bar{a} h}{2}\right] A_{2}+\left[\frac{2}{\bar{b} h} \sinh \frac{\bar{b} h}{2}\right] A_{4} \tag{4-59.8}
\end{equation*}
$$

F_{4} is rewritten as:

$$
\begin{equation*}
F_{4}=h^{3} \bar{F}_{4} \tag{4-59.9}
\end{equation*}
$$

where:

$$
\begin{gather*}
\overline{\mathrm{F}}_{4}=\left[\frac{2}{(\overline{\mathrm{a} h})^{3}} \sinh \frac{\bar{a} h}{2}\right] A_{2}+\left[\frac{2}{(\overline{\mathrm{~b} h})^{3}} \sinh \frac{\overline{\mathrm{~b}}}{2}\right] A_{4} \\
+\bar{C}_{2} \tag{4-59.10}
\end{gather*}
$$

in which

$$
\begin{equation*}
C_{2}=h^{2} \bar{C}_{2} \tag{4-59.11}
\end{equation*}
$$

and:

$$
\begin{align*}
\bar{C}_{2}= & {\left[\frac{2(1+\mu)}{\alpha_{m}^{2} h^{2}}-\frac{1}{(\bar{a} h)^{2}}\right] A_{2} } \\
& +\left[\frac{2(1+\mu)}{a_{m}^{2} h^{2}}-\frac{1}{(\bar{a} h)^{2}}\right] A_{4} \tag{4-59.12}
\end{align*}
$$

The function $f_{2}(z)$ is rewritten as:

$$
\begin{equation*}
f_{2}(z)=h \bar{f}_{2}(z) \tag{4-59.13}
\end{equation*}
$$

where:

$$
\begin{align*}
\overline{\mathrm{f}}_{2}(z) & =\left[\frac{1}{2}\left(\frac{z}{h}\right)^{2}\right] A_{1}+\left[\frac{1}{(\bar{a} h)} \sinh \bar{a} z\right] A_{2} \\
& +\left[\frac{1}{(\bar{a} h)} \cosh \overline{\mathrm{a}} z\right] A_{3}+\left[\frac{1}{(\overline{\mathrm{~b}} h)} \sinh \bar{b} z\right] A_{4} \\
& +\left[\frac{1}{(\overline{\mathrm{~b}} h)} \cosh \overline{\mathrm{b}} \overline{\mathrm{a}}\right] A_{5}+\overline{\mathrm{C}}_{1} \tag{4-59.14}
\end{align*}
$$

And the function $f_{3}(z)$ is rewritten as:

$$
\begin{equation*}
f_{3}(z)=h^{2} \bar{f}_{3}(z) \tag{4-59.15}
\end{equation*}
$$

where:

$$
\bar{f}_{3}(z)=\left[\frac{1}{6}\left(\frac{z}{h}\right)^{3}\right] A_{1}+\left[\frac{1}{(\overline{a h})^{2}} \cosh \bar{a} z\right] A_{2}
$$

$$
\begin{align*}
& +\left[\frac{1}{(\bar{a} h)^{2}} \sinh \overline{\mathrm{az}}\right] \mathrm{A}_{3}+\left[\frac{1}{(\overline{\mathrm{~b} h})^{2}} \cosh \overline{\mathrm{~b} z}\right] \mathrm{A}_{4} \\
& +\left[\frac{1}{(\overline{\mathrm{~b} h})^{2}} \sinh \overline{\mathrm{~b} z}\right] A_{5}+\overline{\mathrm{C}}_{1}\left(\frac{z}{\mathrm{~h}}\right)+\overline{\mathrm{C}}_{2} \tag{4-59.16}
\end{align*}
$$

Having all the functions and constants related to $f_{1}(z)$ written in a non-dimensional form, one proceeds now to write the other expressions in a non-dimensional form as follows:

The constant β_{m} appearing in equation (4-38) is rewritten as follows:

$$
\begin{equation*}
\beta_{m}=k_{1} \frac{p_{0} a^{4}}{E h^{3}} \tag{4-59.17}
\end{equation*}
$$

where:

$$
\begin{align*}
k_{1}=48 & {\left[(2-\mu)(1+\mu) \frac{\overline{\mathrm{F}}_{1}^{2}}{144}(\mathrm{~m} \pi)^{4}(\mathrm{~h} / \mathrm{a})^{4}\right.} \\
& \left.+(3-2 \mu)(1+\mu) \frac{\overline{\mathrm{F}}_{1}}{12}(\mathrm{~m} \pi)^{2}(\mathrm{~h} / \mathrm{a})^{2}+1-\mu^{2}\right] \\
& /\left\{(\mathrm{m} \pi)^{5}\left[\frac{\overline{\mathrm{~F}}_{1}}{12}(\mathrm{~m} \pi)^{2}(\mathrm{~h} / \mathrm{a})^{2}+1\right]\right\} \tag{4-59.18}
\end{align*}
$$

The parameter γ_{m} appearing in equation (4-43.1) is rewritten as:

$$
\begin{align*}
& \gamma_{m}=\frac{1}{h} \sqrt{(m \pi)^{2}(h / a)^{2}+\frac{12}{\overline{\mathrm{~F}}_{1}}} \\
& =\frac{1}{a} \bar{\gamma}_{\mathrm{m}}=\frac{1}{a}\left[\frac{\mathrm{a}}{\mathrm{~h}} \sqrt{(\mathrm{~m} \pi)^{2}(\mathrm{~h} / \mathrm{a})^{2}+\frac{12}{\overline{\mathrm{~F}}_{1}}}\right] \tag{4-59.19}
\end{align*}
$$

and $\gamma_{m} \cdot \frac{b}{2}$ (a term that will be needed later) can be written as:

$$
\frac{\gamma_{m} \cdot b}{2}=\frac{1}{2}\left(\frac{b}{a}\right)\left(\frac{a}{h}\right) \sqrt{(m \pi)^{2}(h / a)^{2}+\frac{12}{\bar{F}_{2}}}
$$

One also has the terms:

$$
\begin{equation*}
\frac{D}{S} \alpha_{m}^{2}+1=\frac{\bar{F}_{1}}{6(1-\mu)}(m \pi)^{2}(h / a)^{2}+1=\frac{1}{k_{11}} \tag{4-59.21}
\end{equation*}
$$

And:

$$
\begin{equation*}
\frac{D}{S}\left(\gamma_{m}^{2}-a_{m}^{2}\right)-1=\frac{(1+\mu)}{(1-\mu)}=\frac{1}{k_{22}} \tag{4-59.22}
\end{equation*}
$$

4.1.4 Expressions For Moments and Shear Forces in the Plate

Making use of the relations in equations (4-50.1) to (4-50.8), one can write:

$$
\varphi_{x m}=A_{m}\left(-\alpha_{m} \cosh \alpha_{m} y\right)
$$

$$
\begin{align*}
& +B_{m}\left(-\frac{2 D}{S} \alpha_{m}^{3} \cosh \alpha_{m} y-\alpha_{m}^{2} y \sinh \alpha_{m} y\right) \\
& +\left(k_{22} \alpha_{m} \cosh \gamma_{m} y\right) E_{m}+\beta_{m}^{\prime} \tag{4-60}
\end{align*}
$$

$$
\begin{align*}
\varphi_{y m}=\left(-\alpha_{m}\right. & \left.\sinh a_{m} y\right) A_{m} \\
& +\left[-\left(\frac{2 D}{S} a_{m}^{3}+\alpha_{m}\right) \sinh a_{m} y-\alpha_{m}^{2} y \cosh a_{m} y\right] B_{m} \\
& +\left(k_{22} \gamma_{m} \sinh \gamma_{m} y E_{m}\right. \tag{4-61}
\end{align*}
$$

Substituting appropriate expressions using equations (4-60), (4-61) and (4-33) into equations (4-1), (4-2) and (4-3), results in expressions for the bending and twisting moments as:

$$
\begin{align*}
M_{x}=\{ & {\left[(1-\mu)(m \pi)^{2} \cosh \alpha_{m} y\right] A_{m} } \\
& +\left[\frac{\left.2 \bar{F}_{1} m \pi\right)^{4}(h / a)^{2}}{6} \cosh \alpha_{m} y-2 \mu(m \pi)^{2} \cosh \alpha_{m} y\right. \\
& \left.+(1-\mu)\left(\alpha_{m} y\right)(m \pi)^{2} \sinh \alpha_{m} y\right] B_{m} \\
& -\left[K_{22}\left\{(m \pi)^{2}-\frac{\mu}{(h / a)^{2}}\left[(m \pi)^{2}(h / a)^{2}+\frac{12}{\bar{F}_{1}}\right)\right] \cosh \gamma_{m} y\right] E_{m} \\
& \left.+\bar{\beta}_{m}^{\prime}+\overline{k p_{m}}\right\}\left[\frac{p_{o} a^{2}}{12\left(1-\mu^{2}\right)}\right] \sin \alpha_{m} x \tag{4-62}
\end{align*}
$$

where:

$$
\begin{equation*}
\bar{\beta}_{m}^{\prime}=\frac{-(m \pi)^{2}\left(k_{1}-k_{2}\right) k_{11}}{12\left(1-\mu^{2}\right)} \tag{4-62.1}
\end{equation*}
$$

where:

$$
\begin{equation*}
k_{m} \frac{D}{S}=k_{2}\left[\frac{p_{o} a^{4}}{E h^{3}}\right] \tag{4-62.2}
\end{equation*}
$$

And:

$$
\begin{equation*}
k_{2}=\frac{2 \mu(1+\mu) \bar{F}_{1}^{2}}{3(1-\mu)(m \pi)}(h / a)^{4} \tag{4-62.3}
\end{equation*}
$$

And:

$$
\begin{align*}
& k p_{m}=\overline{k p_{m}}\left[\frac{p_{o} a^{2}}{12\left(1-\mu^{2}\right)}\right] \tag{4-62.4}\\
& \overline{k p_{m}}=\frac{4 \mu(1+\mu) \bar{F}_{1}}{(\mathrm{~m} \pi)}(\mathrm{h} / \mathrm{a})^{2} \tag{4-62.5}
\end{align*}
$$

Similarly M_{y} can be written as:
$M_{y}=\frac{p_{0} a^{2}}{12(1-\mu)^{2}}\left\{-(1-\mu)(m \pi)^{2} \cosh \alpha_{m} y A_{m}\right.$

$$
\begin{align*}
& +\left[\frac{-2 \bar{F}_{1}(m \pi)^{4}(h / a)^{2}}{6} \cosh \alpha_{m} y\right. \\
& \left.-2(m \pi)^{2} \cosh \alpha_{m} y-\alpha_{m} y(m \pi)^{2}(1-\mu) \sinh \alpha_{m} y\right] B_{m} \\
& \left.+k_{22}\left[\frac{1}{(h / a)^{2}}\left[(m \pi)^{2}(h / a)^{2}+\frac{12}{\bar{F}_{1}}\right]-\mu(m \pi)^{2}\right] E_{m} \cosh \gamma_{m} y\right] \\
& \left.-\mu \bar{\beta}_{m}^{\prime}+\overline{k_{p}}\right\} \sin \alpha_{m} x \tag{4-63}
\end{align*}
$$

Similarly for M_{xy} :

$$
\begin{align*}
M_{x y}= & \frac{p_{0} a^{2}}{24(1+\mu)}\left\{2(m \pi)^{2} \sinh a_{m} y A_{m}\right. \\
& +\left[\frac{4 \bar{F}_{1}(h / a)^{2}(m \pi)^{4}}{6(1-\mu)} \sinh a_{m} y\right. \\
& \left.+2(m \pi)^{2} \sinh a_{m} y+2(m \pi)^{2} a_{m} y \cosh a_{m} y\right] B_{m} \\
& +\left[\left(-2 k_{22}(m \pi) \bar{\gamma}_{m} \sinh \gamma_{m} y\right] E_{m}\right\} \cos a_{m} x \tag{4-64}
\end{align*}
$$

Similarly the shear force Q_{X} can be written as:

$$
Q_{x}=\frac{p_{o}^{a}}{12\left(1-\mu^{2}\right)}\left\{-2(m \pi)^{3} \cosh \alpha_{m} y B_{m}\right.
$$

$$
\begin{align*}
& +\left[\frac{12 k_{22}(m \pi)}{(h / a)^{2} \bar{F}_{1}} \cosh \gamma_{m} y\right] E_{m} \\
& \left.+\frac{6(1-\mu)(m \pi)}{\bar{F}_{1}(h / a)^{2}}\left[\bar{\beta}_{m}+\bar{\beta}_{m}^{\prime}\right]\right\} \cos \alpha_{m} x \tag{4-65}
\end{align*}
$$

where:

$$
\begin{aligned}
\beta_{m} D & =k_{1}\left[\frac{p_{o}^{a^{4}}}{E h^{3}}\right] D \\
& =\bar{\beta}_{m}\left[\frac{p_{o}^{a}}{12\left(1-\mu^{2}\right)}\right]
\end{aligned}
$$

으:

$$
\begin{equation*}
\bar{\beta}_{\mathrm{m}}=\mathbf{k}_{1} \tag{4-65.1}
\end{equation*}
$$

The expression for Q_{y} can be written as:

$$
\begin{align*}
& Q_{y}=\left[\frac{p_{o}^{a}}{12\left(1-\mu^{2}\right)}\right]\left\{\left(-2(m \pi)^{3} \sinh a_{m} y\right) B_{m}\right. \\
& \left.+\left[\frac{12 k_{22}\left(\bar{\gamma}_{m}\right)}{\bar{F}_{1}(h / a)^{2}} \sinh \gamma_{m} y\right] E_{m}\right\} \sin a_{m} x \tag{4-66}
\end{align*}
$$

4.2 Solution of the Inplane Problem

4.2.1 Formulation in Terms of Average Inplane Displacements $\overline{\mathbf{u}}$ and $\overline{\mathbf{v}}$

To start with, expressions for average inplane displacements
\bar{u} and \bar{v} are derived as follows:

Define:

$$
\begin{equation*}
\overline{\mathrm{u}}=\frac{1}{\mathrm{~h}} \int_{-\mathrm{h} / 2}^{\mathrm{h} / 2} \mathrm{udz} \tag{4-67}
\end{equation*}
$$

and:

$$
\begin{equation*}
\bar{v}=\frac{1}{h} \int_{-h / 2}^{+h / 2} v d z \tag{4-68}
\end{equation*}
$$

Substituting for u from equation (3-19) into equation (4-67), one obtains

$$
\begin{equation*}
\bar{u}=u_{0}+\frac{F_{2}}{G h} Q_{x}-\frac{F_{4}}{E h} \frac{\partial p}{\partial x} \tag{4-69}
\end{equation*}
$$

Similarly substituting for v from equation (3-20) into equation (4-68), yields

$$
\begin{equation*}
\bar{v}=v_{0}+\frac{F_{2}}{G h} Q_{x}-\frac{F_{4}}{E h} \frac{\partial p}{\partial y} \tag{4-70}
\end{equation*}
$$

Noting that:

$$
M=M_{x}+M_{y}
$$

Then from equations (4-1), (4-2) and the above equation, one obtains:

$$
\begin{equation*}
\mathrm{M}=\mathrm{D}\left[(1+\mu)\left(\frac{\partial \varphi}{\partial \mathbf{x}}+\frac{\partial \varphi}{\partial \mathbf{y}}\right)+2 \mathrm{Kp}\right] \tag{4-71.1}
\end{equation*}
$$

Thus:

$$
\begin{align*}
& \frac{\partial^{2} M}{\partial x^{2}}=\mathrm{D}\left[(1+\mu)\left[\frac{\partial^{3} \varphi_{x}}{\partial x^{3}}+\frac{\partial^{3} \varphi_{y}}{\partial x^{2} y}\right]+2 K \frac{\partial^{2} p}{\partial x^{2}}\right] \tag{4-71.2}\\
& \frac{\partial^{2} M}{\partial y^{2}}=\mathrm{D}\left[(1+\mu)\left[\frac{\partial^{3} \varphi_{x}}{\partial x \partial y^{2}}+\frac{\partial^{3} \varphi_{y}}{\partial y^{3}}\right]+2 K \frac{\partial^{2} p}{\partial y^{2}}\right] \tag{4-71.3}
\end{align*}
$$

Similarly using equations (4-69), (4-70), one has:

$$
\begin{align*}
\frac{\partial u_{0}}{\partial x}+\mu \frac{\partial v_{0}}{\partial y}= & {\left[\frac{\partial \bar{u}}{\partial x}+\mu \frac{\partial \bar{v}}{\partial y}\right] } \\
& +\frac{F_{4}}{E h}\left(\frac{\partial^{2} p}{\partial x^{2}}+\mu \frac{\partial^{2} p}{\partial y^{2}}\right) \\
& -\frac{F_{2}}{G h}\left(\frac{\partial Q x}{\partial x}+\frac{\partial Q y}{\partial y}\right) \tag{4-71.4}
\end{align*}
$$

Also:

$$
\begin{align*}
\frac{1}{G}\left(\frac{\partial Q_{x}}{\partial x}+\mu \frac{\partial Q y}{\partial y}\right)= & \frac{1}{F_{1}}\left[\left(\frac{\partial \varphi_{x}}{\partial x}+\mu \frac{\partial \varphi}{\partial y}\right)\right. \\
& \left.+\left(\frac{\partial^{2} \bar{w}}{\partial x^{2}}+\mu \frac{\partial^{2} \bar{w}}{\partial y^{2}}\right)\right] \tag{4-71.5}
\end{align*}
$$

Using the previous expressions and equation (3-22), the stress σ_{x} can be written in terms of average displacements $\bar{w}, \bar{u}, \bar{v}$ and average rotations $\varphi_{\mathbf{x}}$ and $\varphi_{\mathbf{y}}$ as follows:

$$
\begin{aligned}
& \sigma_{x}=\frac{E}{\left(1-\mu^{2}\right)}\left[\left(\frac{\partial^{2} \bar{W}}{\partial x^{2}}+\mu \frac{\partial^{2} \bar{W}}{\partial y^{2}}\right)\left[-z+\left(f_{1}(z)-\frac{F_{2}}{h}\right) \frac{1}{F_{1}}\right]\right. \\
& +\left(\frac{\partial^{3} \varphi_{x}}{\partial x^{3}}+\frac{\partial^{3} \varphi_{y}}{\partial x^{2} \partial y}+\mu \frac{\partial^{3} \varphi_{x}}{\partial x \partial y^{2}}+\mu \frac{\partial^{3} \varphi_{y}}{\partial y^{3}}\right) \\
& {\left[D(1+\mu)\left(-\frac{z}{R}+\frac{2 \mu z^{3}}{E h^{3}}\right)\right]} \\
& +\left[\frac{\partial \varphi_{x}}{\partial x}+\mu \frac{\partial \varphi_{y}}{\partial y}\right]\left[\left(f_{1}(z)-\frac{F_{2}}{h}\right) \frac{1}{F_{1}}\right] \\
& +\left(\frac{\partial^{2} p}{\partial x^{2}}+\mu \frac{\partial^{2} p}{\partial y^{2}}\right)\left[\frac{z}{N}-\frac{f_{3}(z)}{E}+\frac{F_{4}}{E h}\right. \\
& \left.+2 K D\left[-\frac{Z}{R}+\frac{2 \mu z^{3}}{E h^{3}}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
& \left.+\left[\frac{\partial \bar{u}}{\partial x}+\mu \frac{\partial \bar{v}}{\partial y}\right]\right] \\
& +\frac{\mu p}{(1-\mu)} f_{1}(z) \tag{4-72}\\
& \sigma_{y}=\frac{E}{\left(1-\mu^{2}\right)}\left[\left(\frac{\partial^{2} \bar{w}}{\partial y^{2}}+\mu \frac{\partial^{2} \bar{w}}{\partial x^{2}}\right)\left[-z+\frac{1}{F_{1}}\left[f_{1}(z)-\frac{F_{2}}{h}\right)\right]\right. \\
& +\left(\frac{\partial^{3} \varphi y}{\partial y^{3}}+\frac{\partial^{3} \varphi_{x}}{\partial x \partial y^{2}}+\mu \frac{\partial^{3} \varphi y}{\partial x^{2} \partial y}+\mu \frac{\partial^{3} \varphi x}{\partial x^{3}}\right) \\
& {\left[D(1+\mu)\left(-\frac{z}{R}+\frac{2 \mu z^{3}}{E h^{3}}\right)\right]} \\
& +\left[\frac{\hat{\partial} \varphi}{\hat{c}} \mathrm{y}+\mu \frac{\hat{c} \Phi_{x}}{\hat{c} x}\right]\left[\frac{1}{F_{1}}\left(f_{1}(z)-\frac{F_{2}}{h}\right)\right] \\
& +\left(\frac{\partial^{2} p}{\partial y^{2}}+\mu \frac{\partial^{2} p}{\partial x^{2}}\right)\left[\frac{z}{N}-\frac{f_{3}(z)}{E}+\frac{F_{4}}{E h}\right. \\
& \left.+2 K D\left[-\frac{z}{R}+\frac{2 \mu z^{3}}{E h^{3}}\right)\right] \\
& \left.+\left[\frac{\partial \bar{v}}{\partial y}+\mu \frac{\partial \bar{u}}{\partial x}\right]\right] \\
& +\frac{\mu p}{(1-\mu)} f_{1}(z) \tag{4-73}
\end{align*}
$$

\author{

}

Noting that:

$$
\begin{align*}
& \frac{\partial u_{0}}{\partial y}+\frac{\partial v o}{\partial x}=\left(\frac{\hat{c} \bar{u}}{\partial y}+\frac{\partial \bar{v}}{\partial x}\right)+\frac{2 F_{4}}{E h} \frac{\partial^{2} p}{\partial x \partial y} \\
&-\frac{F_{2}}{G h}\left[\frac{\partial Q_{x}}{\partial y}+\frac{\partial Q_{y}}{\hat{c} x}\right) \tag{4-73.1}\\
& \frac{\partial Q_{x}}{\partial y}+\frac{\partial Q_{y}}{\partial x}= \frac{G}{F_{1}}\left[\frac{\partial \varphi_{x}}{\partial y}+\frac{\partial \varphi_{y}}{\hat{\partial y} x}+2 \frac{\partial^{2} \bar{w}}{\partial x \partial y}\right) \tag{4-73.2}\\
& \frac{\partial^{2} M}{\partial x \partial y}=D\left[(1+\mu)\left[\frac{\partial^{3} \varphi_{x}}{\partial x^{2} \partial y}+\frac{\partial^{3} \varphi{ }_{y}}{\partial x \hat{\partial}^{2} y^{2}}\right]+2 K \frac{\partial^{2} p}{\partial x \partial y}\right] \tag{4-73.3}
\end{align*}
$$

and

$$
\frac{\partial^{2} w_{0}}{\partial x \hat{\partial} y}=\frac{\partial^{2} \bar{w}}{\partial x \hat{\partial} y}-\frac{1}{N} \frac{\partial^{2} p}{\partial x \bar{\partial} y}+\frac{1}{R} \frac{\partial^{2} M}{\partial x \hat{c} y}
$$

Using the above relations into equation (3-24), we get for ${ }^{\tau}{ }_{x y}$:

$$
\begin{aligned}
{ }^{\tau} x y= & G\left[\frac{\partial^{2} \bar{w}}{\partial x \partial y}\left[-2 z+\frac{2}{F_{1}}\left(f_{1}(z)-\frac{F_{2}}{h}\right)\right]\right. \\
& +\left[\frac{\partial^{3} \varphi_{x}}{\partial x^{2} \partial y}+\frac{\dot{c}^{3} \varphi_{y}}{\dot{c} x \partial y^{2}}\right]\left[(1+\mu) D\left(\frac{-2 z}{R}+\frac{4 \mu z^{3}}{E h^{3}}\right)\right] \\
& +\left[\frac{\partial \varphi_{x}}{\partial y}+\frac{\hat{\partial} \varphi_{y}}{\dot{c} x}\right]\left[\frac{1}{F_{1}}\left(f_{1}(z)-\frac{F_{2}}{h}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
& +\left(\frac{\partial^{2} p}{\partial x \hat{c} y}\right)\left[\frac{2 z}{N}-\frac{2 f_{3}(z)}{E}+2 \frac{F_{4}}{E h}\right. \\
& \left.+2 K D\left[\frac{-2 z}{R}+\frac{4 \mu z^{3}}{E h^{3}}\right)\right] \\
& \left.+\left[\frac{\partial \bar{u}}{\partial y}+\frac{\partial \bar{v}}{\partial x}\right)\right] \tag{4-74}
\end{align*}
$$

Using equations (3-36) yields expressions for inplane stress resultant $\mathrm{N}_{\mathrm{x}}:$
$N_{x}=\frac{E}{\left(1-\mu^{2}\right)}\left[h\left[\frac{\hat{\partial} \bar{u}}{\hat{\partial} x}+\mu \frac{\overline{\hat{v}} \bar{v}}{\hat{c} y}\right]\right]+\frac{\mu p}{(1-\mu)} F_{2}$
Similarly using equation (4-73) into second of equations (3-3b) yields:

$$
\begin{equation*}
N_{y}=\frac{E}{\left(1-\mu^{2}\right)}\left[h\left[\mu \frac{\partial \bar{u}}{\partial x}+\frac{\partial \bar{v}}{\hat{c} y}\right]\right]+\frac{\mu p}{(1-\mu)} F_{2} \tag{4-76}
\end{equation*}
$$

The expression for $N_{x y}$ is given by

$$
\begin{equation*}
N_{x y}=G h\left[\frac{\partial \bar{u}}{\partial y}+\frac{\partial \bar{v}}{\partial x}\right] \tag{4-77}
\end{equation*}
$$

Using equations (4-75), (4-76), and (4-77) into the inplane equilibrium equations (3-37) and (3-39), yields the inplane governing equations in terms of average inplane displacements \bar{u}, \bar{v} :

$$
\begin{gather*}
\frac{\partial^{2} \bar{u}}{\partial x^{2}}+\frac{(1+\mu)}{2} \frac{\partial^{2} \bar{v}}{\partial x \partial y}+\frac{(1-\mu)}{2} \frac{\partial^{2} \bar{u}}{\partial y^{2}} \\
=\frac{-\mu(1+\mu) F_{2}}{E h} \frac{\partial \mathrm{p}}{\hat{e} x} \tag{4-78}
\end{gather*}
$$

And:

$$
\begin{gather*}
\frac{\partial^{2} \bar{v}}{\partial y^{2}}+\frac{(1+\mu)}{2} \frac{\partial^{2} \bar{u}}{\partial x \tilde{\partial} y}+\frac{(1-\mu)}{2} \frac{\partial^{2} \bar{v}}{\partial x^{2}} \\
=\frac{-\mu(1+\mu) F_{2}}{E h} \frac{\partial p}{\partial y} \tag{4-79}
\end{gather*}
$$

4.2.2 Solution for \bar{u} and \bar{v} :

It can be shown that the inplane governing equations (4-78) and (4-79) can be uncoupled for \bar{u} and \bar{v} to give:

$$
\begin{equation*}
\Delta^{2}\{\bar{u}\}=k_{3} \frac{\partial}{\partial x}\{\Delta p\} \tag{4-80}
\end{equation*}
$$

And:

$$
\begin{equation*}
\Delta^{2}\{\bar{v}\}=k_{3} \frac{\partial}{\partial y}\{\Delta p\} \tag{4-81}
\end{equation*}
$$

where:

$$
\begin{equation*}
k_{3}=\frac{-\mu(1+\mu) \mathrm{F}_{2}}{E h} \tag{4-81.1}
\end{equation*}
$$

Since from equation (4-33):

$$
p=\sum p_{m} \sin \alpha_{m} x
$$

thus

$$
\begin{equation*}
\frac{\partial}{\partial x} \Delta p=\sum-\alpha_{m}^{3} p_{m} \cos \alpha_{m} x \tag{4-81-2}
\end{equation*}
$$

Assume that \bar{u} will be of the following form:

$$
\begin{equation*}
\bar{u}=\sum \bar{u}_{m}(y) \cos \alpha_{m} x \tag{4-82}
\end{equation*}
$$

Then: $\Delta^{2} \bar{u}$ from equation (4-82) is:

$$
\begin{align*}
\Delta^{2} \bar{u} & =\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)^{2} \bar{u} \\
& =\sum\left[\alpha_{m}^{4} \bar{u}_{m}-2 \alpha_{m}^{2} \frac{d^{2} \bar{u}_{m}}{d y^{2}}+\frac{d^{4} \bar{u}_{m}}{d y^{4}}+\right] \cos \alpha_{m} x \tag{4-82.1}
\end{align*}
$$

Substituting equations (4-82.1), (4-81.2) into equation (4-80) yields the governing equation for \bar{u} as

$$
\begin{equation*}
\frac{d^{4} \bar{u}_{m}}{d y^{4}}-2 \alpha^{2} m \frac{d^{2} \bar{u}_{m}}{d y^{2}}+\alpha_{m}^{4} \bar{u}_{m}=-a_{m}^{3} p_{m} k_{3} \tag{4-82.2}
\end{equation*}
$$

The solution of the above linear differential equation is given by

$$
\begin{equation*}
\bar{u}_{m}=\bar{u}_{p}+\bar{u}_{h} \tag{4-82.3}
\end{equation*}
$$

From equation (4-82.2) the particular solution for \bar{u} may be shown to be

$$
\begin{equation*}
\bar{u}_{p}=-k_{3} \frac{p_{m}}{a_{m}} \tag{4-82.4}
\end{equation*}
$$

It can be shown that \bar{u}_{h} will be of the following form:

$$
\begin{align*}
\bar{u}_{h}= & C_{1} \cosh a_{m} y+C_{2} a_{m} y \sinh a_{m} y+C_{3} a_{m} y \cosh a_{m} y \\
& +C_{4} \sinh \alpha_{m} y \tag{4-82.5}
\end{align*}
$$

Asuming that \bar{u} will be symmetric with respect to the x-axis, then:

$$
c_{3}=C_{4}=0
$$

and equation (4-82.3) yields for \bar{u}_{m} the expression

$$
\begin{equation*}
\bar{u}_{m}=\left[C_{1} \cosh a_{m} y+C_{2} a_{m} y \sinh a_{m} y+\bar{u}_{p}\right] \tag{4-83}
\end{equation*}
$$

Similarly:

$$
\begin{equation*}
\bar{v}_{\mathrm{m}}=\left[\mathrm{C}_{3}^{\prime} \sinh \sigma_{\mathrm{m}} \mathrm{y}+\mathrm{C}_{4}^{\prime} \alpha_{\mathrm{m}} \mathrm{y} \cosh \alpha_{\mathrm{m}} \mathrm{y}\right] \tag{4-84}
\end{equation*}
$$

Note that $\overline{\mathrm{v}}$ is antisymmetric with respect to the x -axis.

To find relations between the constants in \bar{u} and those in \bar{v}, appropriate expressions using equations (4-83) and (4-84) are substituted into equation (4-78). This results in:

$$
\begin{align*}
& C_{3}^{\prime}=C_{1}-k_{4} C_{2} \tag{4-84-1}\\
& C_{4}^{\prime}=C_{2}
\end{align*}
$$

where:

$$
\begin{equation*}
k_{4}=\frac{1+k_{1}}{k_{2}} \tag{4-84-2}
\end{equation*}
$$

and:

$$
\begin{align*}
& k_{1}=\frac{1-\mu}{2} \tag{4-84-3}\\
& k_{2}=\frac{1+\mu}{2} \tag{4-84-4}
\end{align*}
$$

Thus equation (4-84) can be rewritten for \bar{v}_{m} as:

$$
\begin{gather*}
\overline{\mathrm{v}}_{\mathrm{m}}=\left[\mathrm{C}_{1}\left(\sinh \alpha_{\mathrm{m}} \mathrm{y}\right)+\mathrm{C}_{2}\left(\alpha_{\mathrm{m}} \mathrm{y} \cosh \alpha_{\mathrm{m}} \mathrm{y}\right.\right. \\
 \tag{4-85}\\
\left.\left.-\mathrm{k}_{4} \sinh a_{\mathrm{m}} \mathrm{y}\right)\right]
\end{gather*}
$$

4.3 Boundary Conditions for the Bending Problem

The plate will be always simply supported along the edges at \mathbf{x} $=0$ and $x=a$. The edges at $y= \pm b / 2$ can be simply supported, clamped, or free.

Case 1: A Plate Uniformly Loaded and Simply Supported at $y= \pm b / 2$.

For a simply supported edge at $y= \pm b / 2$, the boundary conditions that need to be satisfied are:

$$
\begin{align*}
& \bar{w}(x, \pm b / 2)=0 \tag{4-86.1}\\
& \varphi_{x}(x, \pm b / 2)=0 \tag{4-86.2}\\
& M_{y}(x, \pm b / 2)=0 \tag{4-86.3}
\end{align*}
$$

Using equation (4-38) for \bar{w}, boundary condition in equation (4-86.1) gives:

$$
\begin{align*}
& A_{m}\left(\cosh \frac{\alpha_{m} b}{2}\right)+B_{m}\left(\frac{\alpha_{m} b}{2} \sinh \frac{a_{m} b}{2}\right) \\
& +E_{m}\left(\cosh \frac{\gamma_{m} b}{2}\right)=-\beta_{m} \tag{4-87}
\end{align*}
$$

From equation (4-17), one has:

$$
\varphi_{X}=-\frac{\partial \bar{w}}{\partial x}+\frac{Q_{X}}{S}
$$

but :

$$
\left.\frac{\partial \bar{w}}{\hat{\partial} x}\right|_{y- \pm b / 2}=0 \quad(\text { since } \bar{w}(x, \pm b / 2)=0)
$$

Thus $\Phi_{x}(x, \pm b / 2)=0$ implies that $\frac{Q_{x}}{S}(x, \pm b / 2)=0$ *

From equation (4-65), one has:

$$
\begin{align*}
& {\left[2(m \pi)^{3} \cosh \frac{\alpha_{m} b}{2}\right) B_{m}-\left(\frac{12 k_{22}(m \pi)}{(h / a)^{2} \bar{F}_{1}} \cosh \frac{\gamma_{m} b}{2}\right) E_{m}} \\
& =\frac{6(1-\mu) m \pi}{\bar{F}_{1}(h / a)^{2}}\left(\bar{\beta}_{m}+\bar{\beta}_{m}^{\prime}\right) \tag{4-88}
\end{align*}
$$

For the boundary condition in equation (4-86.3), one gets from equation (4-1):

$$
\begin{equation*}
M_{y \mid y- \pm b / 2}=D\left(\frac{\partial \varphi_{y}}{\partial y}+K p_{m}\right) \tag{4-88.1}
\end{equation*}
$$

The term $\left.\frac{\partial \varphi_{x}}{\partial x}\right|_{y- \pm b / 2}=0$ is missing in equation (4-88.1) since $\rho_{x}(x, \pm b / 2)=0$ which implies that

[^0]$$
\left.\frac{\partial \varphi}{\partial x}\right|_{y- \pm b / 2}=0
$$

Thus expansion of (4-88.1) results in

$$
\begin{align*}
& {\left[-(m \pi)^{2} \cosh \frac{a_{m} b}{2}\right) A_{m}} \\
& -\left(2(m \pi)^{2} \cosh \frac{\alpha_{m} b}{2}+\frac{a_{m} b}{2}(m \pi)^{2} \sinh \frac{\alpha_{m} b}{2}\right) B_{m} \\
& -\left(a^{2} \gamma_{m}^{2} \cosh \frac{\gamma_{m} b}{2}\right] E_{m}+\left(1-\frac{2}{\mu}\right) \overline{K p_{m}}=0 \tag{4-89}
\end{align*}
$$

Case II: Plate Uniformity Loaded and Clamped at $\mathrm{y}= \pm \mathrm{b} / 2$

$$
\begin{align*}
& \bar{w}(x, \pm b / 2)=0 \tag{4-87}\\
& \varphi_{x}(x, \pm b / 2)=0 \tag{4-88}\\
& \varphi_{y}(x, \pm b / 2)=0 \tag{4-89.1}
\end{align*}
$$

from equation (4-61) and boundary condition in equation (4-89.1), one has:

$$
\begin{aligned}
& \left(a_{m} h \sinh \frac{a_{m} b}{2}\right) A_{m}+\left[\left(\frac{2(m \pi)^{3}(h / a)^{3} F_{1}}{6(1-\mu)}\right.\right. \\
& \left.+(m \pi)(h / a)) \sinh \frac{a_{m} b}{2}+\frac{\alpha_{m}^{b}}{2}(m \pi)(h / a) \cosh \frac{a_{m} b}{2}\right] B_{m}
\end{aligned}
$$

$$
\begin{equation*}
-\left(k_{22}\left(\gamma_{m} h\right) \sinh \frac{\gamma_{m}^{b}}{s}\right) E_{m}=0 \tag{4-90}
\end{equation*}
$$

Case III: Plate Uniformity Loaded and Free at y $= \pm \mathrm{b} / 2$

Boundary conditions for this case are:

$$
\begin{align*}
& M_{y}(x, \pm b / 2)=0 \tag{4-91.1}\\
& Q_{y}(x, \pm b / 2)=0 \tag{4-91.2}\\
& M_{x y}(x, \pm b / 2)=0 \tag{4-91.3}
\end{align*}
$$

Once again, ill conditioning of the non-modified system led to numerical problems. The following equivalent set of equations were used instead:

$$
\begin{align*}
& M_{y}(x, \pm b / 2)=0 \tag{4-91.4}\\
& Q_{y}-\frac{\partial M_{x y}}{\partial x}=0 \tag{4-91.5}\\
& Q_{y}=0 \tag{4-91.6}
\end{align*}
$$

Note: If $Q_{y}(x, \pm b / 2)=0$ in equation (4-91.6) then equation (4-91.5) implies that:

$$
\left.\frac{\partial \mathrm{M}_{\mathrm{xy}}}{\overline{\epsilon \mathrm{x}}}\right|_{y- \pm \mathrm{b} / 2}=0 \quad \text { or } \mathrm{M}_{\mathrm{xy}}(\mathrm{x}, \pm \mathrm{b} / 2)=0 \text { (which is equa- }
$$

tion 4-91.3)

Also from equation (4-65) for Q_{x} :

$$
\begin{align*}
\frac{\partial Q_{x}}{\partial y}= & \frac{p_{0} a}{12\left(1-\mu^{2}\right)}\left\{\left[-2(m \pi)^{3} \alpha_{m} \sinh \alpha_{m} y\right] B_{m}\right. \\
& \left.+\left[\frac{12 k_{22}(m \pi) \gamma_{m}}{\bar{F}_{1}(h / a)^{2}} \sinh \gamma_{m} y\right] E_{m}\right\} \cos \alpha_{m} x \\
= & \alpha_{m} Y(y) \cos \alpha_{m} x \tag{4-91.7}
\end{align*}
$$

where

$$
\begin{align*}
Y(y)= & \frac{p_{o}^{a}}{12\left(1-\mu^{2}\right)}\left\{\left[-2(m \pi)^{3} \sinh \alpha_{m} y\right] B_{m}\right. \\
& \left.+\left[\frac{12 k_{22} \bar{\gamma}_{m}}{\bar{F}_{1}(h / a)^{2}} \sinh \gamma_{m} y\right] E_{m}\right\} \tag{4-91.8}
\end{align*}
$$

Also from previous work

$$
\begin{equation*}
Q_{y}=Y(y) \sin a_{m} x \tag{4-66}
\end{equation*}
$$

Thus the boundary condition that $\mathrm{Q}_{\mathrm{y}}(\mathrm{x}, \pm \mathrm{b} / 2)=0$ implies that

$$
Y(\pm b / 2)=0 .(\text { from equation }(4-66))
$$

Thus equation (4-91.7) yields that

$$
\left.\frac{\partial Q x_{x}}{\partial y}\right|_{y- \pm b / 2}=0
$$

From the above (and from equation (4.21) for $M_{x y}$) it is seen that:

$$
\begin{gather*}
\left.\left.\frac{\partial M_{x y}}{\partial x}\right|_{y- \pm b / 2}=D(1-\mu) \frac{\partial^{3} \bar{w}}{\partial x^{2} \partial y} \right\rvert\, y- \pm b / 2 \\
\frac{\partial M_{x y}}{\partial x}= \\
12\left(1-\mu_{0}^{2}\right) \\
-B_{m}\left[(1-\mu) a_{m}^{3} \sinh a_{m} y+(1-\mu) a_{m}^{4} y \cosh a_{m} y\right] \tag{4-91.9}\\
\\
\left.-\left[(1-\mu) a_{m}^{2} \gamma_{m} \sinh \gamma_{m} y\right] E_{m}\right] \sin a_{m} x
\end{gather*}
$$

Substituting for Q_{y} from equation (4-66) and for $\frac{\partial M_{x y}}{\partial x}$ from equation (4-91.9) into boundary condition in equation (4-91.5) yields

$$
\begin{align*}
& {\left[(1-\mu)(m \pi)^{3} \sinh \frac{a_{m} b}{2}\right] A_{m}+B_{m}\left[-(1+\mu)(m \pi)^{3} \sinh \frac{a_{m} b}{2}\right.} \\
& \left.+(1-\mu)_{m} \frac{a_{m} b}{2}(m \pi)^{3} \cosh \frac{a_{m} b}{2}\right) \\
& +E_{m}\left[12 \frac{k_{22}}{\bar{F}_{1}(h / a)^{2}}+(1-\mu)(m \pi)^{2}\right) a \gamma_{m} \sinh \frac{\gamma_{m} b}{2}=0 \quad(4-92 \tag{4-92}
\end{align*}
$$

Consider boundary condition as given by equation (4-91.6):

$$
\begin{equation*}
Q_{y}=\frac{\partial M_{\mathbf{y}}}{\partial \mathbf{y}}-\frac{\partial M_{x y}}{\partial \mathbf{x}}=0 \tag{4-93.1}
\end{equation*}
$$

Since $\left.\frac{\partial^{2} \bar{w}}{\partial x \partial y}\right|_{y- \pm b / 2}=0$, it can be shown that

$$
\begin{equation*}
\frac{\partial M_{y}}{\partial y}=-D\left[\frac{\hat{\partial}^{3} \bar{w}}{\partial y^{3}}\right]+\frac{h^{2} \bar{F}_{1}}{6} \frac{\partial^{2} Q_{y}}{\partial y^{2}} \tag{4-93.2}
\end{equation*}
$$

Also it can be shown that:

$$
\begin{align*}
\frac{\partial^{3} \bar{w}}{\partial y^{3}}= & {\left[\left(2 \alpha_{m}^{3} \sinh \alpha_{m} y\right) B_{m}\right.} \\
& \left.+\left[\frac{12}{\bar{F}_{1}(h / a)^{2}} \gamma_{m} \sinh \gamma_{m} y\right] E_{m}\right] \sin \alpha_{m} x \tag{4-93.3}
\end{align*}
$$

and:

$$
\begin{equation*}
\frac{\partial^{2} Q_{y}}{\partial y^{2}}=\frac{p_{0} a^{4}}{12\left(1-\mu^{2}\right)}\left\{\left[\frac{144 k_{22}}{\bar{F}_{2}^{2}(h / a)^{4}} \gamma_{m} \sinh \gamma_{m} y\right) E_{m}\right\} \sin a_{m} x \tag{4-93.4}
\end{equation*}
$$

Substituting from equations (4-93.3), (4-93.4) into (4-93.2) and then into (4-93.1), we get:

$$
\begin{gathered}
Q_{y}=\left.\right|_{y}- \pm b / 2=0 \\
{\left[(1-\mu)(m \pi)^{3} \sinh \frac{a_{m} b}{2}\right) A_{m}+B_{m}\left[-(1+\mu)(m \pi)^{3} \sinh \frac{a_{m} b}{2}\right.}
\end{gathered}
$$

$\left.+(1-\mu) \frac{a^{b}}{2}(m \pi)^{3} \cosh \frac{a_{m}^{b}}{2}\right)$

$$
\begin{equation*}
+E_{m}\left[\frac{-12\left(1-2 k_{22}\right)}{\bar{F}_{1}(h / a)^{2}}+(1-\mu)(m \pi)^{2}\right] \text { a } \gamma_{m} \sinh \frac{\gamma_{m} b}{2}=0 \tag{4-94}
\end{equation*}
$$

4.4 Boundary Conditions for the Inplane Problem

One notes that due to the form of \bar{v} which is due to the method of obtaining solution by Levy method that:

$$
\begin{equation*}
\bar{v}(0, y)=\bar{v}(a, y)=0 \tag{4-95}
\end{equation*}
$$

So due to the use of the Levy method for solution, the edges at $\mathrm{x}=$ 0 and at $x=a$ are always free to stretch in the x-direction. Thus N_{x} will vanish at the edges at $x=0$ and at $x=a$. For this reason boundary conditions on inplane displacements can be specified on the edges at $\mathrm{y}= \pm \mathrm{b} / 2$. We have two cases:

Case I- Edges at $\mathbf{y}= \pm \mathrm{b} / 2$ clamped against stretching: .

In this case the following boundary conditions apply:

$$
\begin{align*}
& \overline{\mathrm{u}}(\mathrm{x}, \pm \mathrm{b} / 2)=0 \tag{4-96.1}\\
& \overline{\mathrm{v}}(\mathrm{x}, \pm \mathrm{b} / 2)=0 \tag{4-96.2}
\end{align*}
$$

Substituting from equations (4-83) and (4-85) into the above boundary conditions yields
$\left(\cosh \frac{y_{m}^{b}}{2}\right) C_{1}+\left(\frac{a_{m} b}{2} \sinh \frac{\gamma_{m} b}{2}\right) C_{2}=-\bar{u}_{p}$
and
$\left(\sinh \frac{\gamma_{m} b}{2}\right) C_{1}+\left(\frac{\alpha_{m} b}{2} \cosh \frac{\alpha_{m} b}{2}-k_{4} \sinh \frac{\gamma_{m} b}{2}\right) C_{2}=0(4-96.4)$

Case II- Edges at $y= \pm \mathrm{b} / 2$ are free to stretch in the \mathbf{y}-direction only:

In this case the following boundary conditions apply:

$$
\begin{align*}
& N_{y}=(x, \pm b / 2)=0 \tag{4-96.5}\\
& \bar{u}(x, \pm b / 2)=0 \tag{4-96.6}
\end{align*}
$$

From boundary condition as given by equation (4-96.5), and making use of equation (4-76) yields

$$
\begin{align*}
& C_{1}(1-\mu) a_{m} \cosh \alpha_{m} y+C_{2}\left(1-k_{4}\right) a_{m} \cosh \alpha_{m} y \\
& \left.+(1-\mu) a_{m}^{2} y \sinh a_{m} y\right)=-\frac{k_{6}}{k_{5}} p_{m}+\mu \alpha_{m} \bar{u}_{p} \tag{4-96.7}
\end{align*}
$$

where:

$$
\begin{equation*}
k_{5}=\frac{E h}{\left(1-\mu^{2}\right)} \tag{4-96.8}
\end{equation*}
$$

and:

$$
k_{5}=\frac{\mu F_{2}}{(1-\mu)}
$$

4.5 Expressions for Stresses in a Non-dimensional Form

The stress σ_{x} can be written as:

$$
\begin{equation*}
\sigma_{x}=\bar{\sigma}_{x}\left(\frac{p_{0}}{(h / \mathrm{g})^{2}}\right) \tag{4-97.1}
\end{equation*}
$$

Similarly other stresses can be written as:

$$
\begin{align*}
& \sigma_{y}=\bar{\sigma}_{y}\left(\frac{p_{0}}{(h / a)^{2}}\right) \tag{4-97.2}\\
& \tau_{x y}=\bar{\tau}_{x y}\left(\frac{p_{0}}{(h / a)^{2}}\right) \tag{4-97.3}\\
& \tau_{x z}=\bar{\tau}_{x z}\left(\frac{p_{0}}{(h / a)}\right) \tag{4-97.4}\\
& \tau_{y z}=\bar{\tau}_{y z}\left(\frac{p_{0}}{(h / a)}\right) \tag{4-97.5}
\end{align*}
$$

where:

$$
\bar{\sigma}_{x}=\left\{\frac { 1 } { (1 - \mu ^ { 2 }) } \left[\overline{\mathrm{I}}_{1}(y) \overline{\mathrm{g}}_{1}(z)+\frac{\mu}{12(1-\mu)} \overline{\mathrm{I}}_{2}(y) \overline{\mathrm{g}}_{2}(z)\right.\right.
$$

$$
\begin{align*}
& +\bar{I}_{3}(y) \bar{g}_{3}(z)+\bar{I}_{4}(y) \bar{g}_{4}(z)+\bar{I}_{7}(y) \overline{\mathrm{g}}_{2}(z) \\
& \left.\left.+\bar{I}_{5}(y)\right]+\bar{I}_{6} f_{1}(z) \quad\right\} \sin a_{m} x \tag{4-98}\\
& \vec{\sigma}_{y}=\left\{\frac { 1 } { (1 - \mu ^ { 2 }) } \left[\bar{J}_{1}(y) \bar{g}_{1}(z)+\frac{\mu}{12(1-\mu)} \bar{J}_{2}(y) \bar{g}_{2}(z)\right.\right. \\
& +\bar{J}_{3}(y) \bar{g}_{3}(z)+\bar{J}_{4}(y) \bar{g}_{4}(z)+\bar{J}_{7}(y) \bar{g}_{2}(z) \\
& \left.\left.+\bar{J}_{5}(y)\right]+\bar{J}_{6} f_{1}(z)\right\} \sin \alpha_{m} x \tag{4-99}\\
& \bar{\tau}_{x y}=\frac{1}{(1+\mu)}\left[\bar{L}_{1}(y) \bar{g}_{1}(z)+I_{2}(y) \bar{g}_{2}(z) \frac{\mu}{12(1-\mu)}\right. \\
& +\frac{1}{2} \bar{L}_{3}(y) \overline{\mathrm{g}}_{3}(z)+\overline{\mathrm{L}}_{4}(\mathrm{y}) \overline{\mathrm{g}}_{4}(\mathrm{z}) \\
& \left.+\bar{L}_{6}(y) \bar{g}_{2}(z)+\bar{L}_{5}(y)\right] \cos \alpha_{m} x \tag{4-100}
\end{align*}
$$

And:

$$
\begin{align*}
& I_{1}(y)=\frac{\partial^{2} \bar{w}}{\partial x^{2}}+\mu \frac{\partial^{2} \bar{W}}{\partial y^{2}} \tag{4-101.01}\\
& I_{2}(y)=\frac{\partial^{3} \varphi x}{\partial x^{3}}+\frac{\partial^{3} \varphi y}{\partial x^{2} \partial y}+\mu \frac{\partial^{3} \varphi x}{\partial x \partial y^{2}}+\frac{\partial^{3} \varphi y}{\partial y^{3}} \tag{4-101.02}\\
& I_{3}(y)=\frac{\partial \varphi}{\partial x}+\mu \frac{\partial \varphi}{\partial y} \tag{4-101.03}
\end{align*}
$$

$$
\begin{align*}
& I_{4}(y)=\frac{\partial^{2} p}{\partial x^{2}}+\mu \frac{\partial^{2} p}{\partial y^{2}} \tag{4-101.04}\\
& I_{5}(y)=\frac{\partial \bar{u}}{\partial x}+\mu \frac{\partial \bar{v}}{\partial y} \tag{4-101.05}\\
& I_{6}(y)=\frac{4 \mu(h / a)^{2}}{(1-\mu)(m \pi)} \tag{4-101.06}\\
& I_{7}(y)=\frac{-4 \mu^{2}(m \pi) \bar{F}_{1}}{6(1-\mu)}(h / a)^{4} \tag{4-101.07}\\
& \bar{I}_{1}(y)=a^{2} I_{1}(y) \tag{4-101.08}\\
& \bar{I}_{2}(y)=a^{2} h^{2} I_{2}(y) \tag{4-101.09}\\
& \bar{I}_{3}(y)=a^{2} I_{3}(y) \tag{4-101.10}\\
& \bar{I}_{4}(y)=h^{2} I_{4}(y) \tag{4-101.11}\\
& \bar{I}_{5}(y)=A\left(\frac{h^{2}}{a^{2}}\right) I_{5}(y) \tag{4-101.12}
\end{align*}
$$

And:

$$
\begin{align*}
& \bar{J}_{1}(y)=a^{2} J_{1}(y) \tag{4-101.13}\\
& \bar{J}_{2}(y)=a^{2} h^{2} J_{2}(y) \tag{4-101.14}
\end{align*}
$$

$$
\begin{align*}
& \vec{J}_{3}(y)=a^{2} J_{3}(y) \tag{4-101.15}\\
& \bar{J}_{4}(y)=h^{2} J_{4}(y) \tag{4-101.16}\\
& \bar{J}_{5}(y)=h\left(\frac{h^{2}}{a^{2}}\right) J_{5}(y) \tag{4-101.17}\\
& \bar{J}_{6}(y)=\bar{I}_{6}(y) \tag{4-101.18}\\
& \bar{J}_{7}(y)=\bar{I}_{7}(y) \tag{4-101.19}
\end{align*}
$$

where:

$$
\begin{align*}
& J_{1}(y)=\frac{\partial^{2} \bar{w}}{\partial y^{2}}+\mu \frac{\partial^{2} \bar{w}}{\partial x^{2}} \tag{4-101.20}\\
& J_{2}(y)=\frac{\partial^{3} \varphi_{y}}{\partial y^{3}}+\frac{\partial^{3} \varphi_{x}}{\partial x \partial y^{2}}+\mu \frac{\partial^{3} \varphi}{\partial x^{2} \partial y}+\frac{\partial^{3} \varphi x}{\partial x^{3}} \tag{4-101.21}\\
& J_{3}(y)=\frac{\partial \varphi_{y}}{\partial y}+\mu \frac{\partial \varphi x}{\partial x} \tag{4-101.22}\\
& J_{4}(y)=\frac{\partial^{2} p}{\partial y^{2}}+\mu \frac{\partial^{2} p}{\partial x^{2}} \tag{4-101.23}\\
& J_{5}(y)=\frac{\partial \bar{v}}{\partial y}+\mu \frac{\partial \bar{u}}{\partial x}
\end{align*}
$$

(4-101.24)

Also:

$$
\begin{align*}
& L_{1}(y)=\frac{\partial^{2} \bar{w}}{\partial x \partial y} \\
& L_{2}(y)=\frac{\partial^{3} \varphi_{x}}{\partial x^{2} \partial y}+\frac{\partial^{3} \varphi_{y}}{\partial x \partial y^{2}} \\
& L_{3}(y)=\frac{\partial \varphi_{x}}{\partial y}+\frac{\partial \varphi_{y}}{\partial x} \\
& L_{4}(y)=\frac{\partial^{2} p}{\partial x \partial y} \\
& L_{5}(y)=\frac{1}{2}\left[\frac{\partial \bar{u}}{\partial y}+\frac{\partial \bar{v}}{\partial x}\right] \tag{4-102.05}\\
& L_{6}(y)=L_{4}(y) \tag{4-102.06}
\end{align*}
$$

And:

$$
\begin{align*}
& \bar{L}_{1}(y)=a^{2} L_{1}(y) \tag{4-102.07}\\
& \bar{L}_{2}(y)=a^{2} h^{2} L_{2}(y) \tag{4-102.08}\\
& \bar{L}_{3}(y)=a^{2} L_{3}(y) \\
& \bar{L}_{4}(y)=0 \quad\left(\text { since } L_{4}(y)=0\right) \tag{4-102.09}\\
& \bar{L}_{5}(y)=a\left(\frac{h^{2}}{a^{2}}\right) L_{5}(y) \tag{4-102.10}
\end{align*}
$$

$$
\begin{equation*}
\bar{L}_{5}(y)=\bar{L}_{4}(y)=0 \tag{4-102.11}
\end{equation*}
$$

Also;

$$
\begin{align*}
& g_{1}(z)=h_{g_{1}}(z) \tag{4-103.1}\\
& \bar{g}_{1}(z)=\left[\frac{1}{\bar{F}_{1}}\left(f_{1}(z)-\bar{F}_{2}\right)-(z / h)\right] \tag{4-103.2}\\
& \bar{g}_{2}(z)=\frac{\mu}{E}\left[2\left(\frac{z}{h}\right)^{3}-\frac{3}{10}\left(\frac{z}{h}\right)\right] \tag{4-103.3}\\
& g_{3}(z)=\frac{1}{F_{1}}\left[f_{1}(z)-\frac{F_{2}}{h}\right] \tag{4-103.4}\\
& \bar{g}_{3}(z)=\frac{1}{\bar{F}_{1}}\left[f_{1}(z)-\bar{F}_{2}\right] \tag{4-103.5}\\
& \mathbf{g}_{4}(z)=\frac{h^{2}}{E} \bar{g}_{4}(z) \tag{4-103.6}\\
& \bar{g}_{4}(z)=\left[-\bar{f}_{3}(z)+\bar{F}_{3}\left(\frac{z}{h}\right)+\bar{F}_{4}\right]
\end{align*}
$$

(4-103.7)

Chapter 5

APPLICATIONS

5.1 Cylindrical Bending

Two problems are considered to test the validity of the present formulation.

Example 5.1.1

An infinite plate strip of thickness " h " subjected to the stress field:

$$
\begin{equation*}
\sigma_{z}(x, y,-h / 2)=-q_{0} \sin \frac{\pi x}{L} \tag{5.1}
\end{equation*}
$$

is considered first.

An exact elasticity solution exists for this problem [15]. Also this case was used in [10] to evaluate a higher order plate theory.

The dependent variables may be assumed to be in the form:

$$
\begin{aligned}
& w_{0}=w_{00} \sin \frac{\pi x}{L} \\
& u_{0}=u_{00} \cos \frac{\pi x}{L}
\end{aligned}
$$

$$
\begin{aligned}
& v_{0}=v_{o o} \sin \frac{\pi x}{L} \\
& Q_{x}=Q_{o x} \cos \frac{\pi x}{L} \\
& Q_{y}=Q_{o y} \cos \frac{\pi x}{L} \\
& \varphi_{x}=\varphi_{o x} \cos \frac{\pi x}{L} \\
& \varphi_{y}=\varphi_{o y} \cos \frac{\pi x}{L} \\
& M_{x}=M_{o x} \sin \frac{\pi x}{L} \\
& M_{y}=M_{o y} \sin \frac{\pi x}{L} \\
& M_{x y}=M_{o x y} \sin \frac{\pi x}{L}
\end{aligned}
$$

The boundary conditions are as given by equations (3.42) and (3.46).

Substituting equations (3.66) and (3.67) into equations (3.7), (3.31), (3.32), (3.27.4), (3.27.5), (3.28), (3.29) and (3.30), one may solve for the unknown coefficients in the set of equations (3.67).

The solution for the transverse deflection w_{0} is given by:

$$
w_{0}=\frac{p_{m}}{\alpha_{m}^{4} D}\left[1+\frac{(2-\mu) h^{3}}{12(1-\mu)} \alpha_{m}^{2} F_{1}-\alpha_{m}^{4} D / N\right.
$$

$$
\begin{align*}
& +\frac{\mu h^{2} a_{m}^{2}}{40(1-\mu)}-\frac{\mu^{2} h^{5} \alpha_{m}^{4} F_{1}}{480(1-\mu)^{2}} \\
& \left.+\frac{\mu^{2} h^{5} \alpha_{m}^{4}}{240(1-\mu)^{2}(1+\mu)} F_{1}\right] \sin \alpha_{m} x \tag{5.3}
\end{align*}
$$

where

$$
\begin{equation*}
a_{m}=a_{1}=\frac{\pi}{L}, p_{m}=p_{1}=q_{0}(\text { for } m=1) \tag{5.3.1}
\end{equation*}
$$

Solving for the stress α_{x}, we get:

$$
\begin{align*}
\sigma_{x}= & \left\{E a_{m}^{2} w_{\infty} \frac{z}{\left(1-\mu^{2}\right)}-\frac{(2-\mu)}{(1-\mu)} p_{m}^{f} f_{1}(z)+\frac{p_{m} \alpha_{m}^{2}}{\left(1-\mu^{2}\right)} f_{3}(z)\right. \\
& \left.-\frac{2 \mu \alpha_{m}^{2} M_{o}}{h^{3}\left(1-\mu^{2}\right)} z^{3}-\frac{p_{m}}{h\left(1-\mu^{2}\right)}\left[\left(\mu^{2}-\mu-2\right) F_{2}+\alpha_{m}^{2} F_{4}\right]\right\} \sin \alpha_{m} x \tag{5.4}
\end{align*}
$$

where

$$
\begin{equation*}
M_{o}=M_{o x}+M_{o y} \tag{5.4.1}
\end{equation*}
$$

If one solves the same problem using the shear deformation generalized theory of Panc [9], the expression for σ_{x} may be shown to be given by

$$
\begin{equation*}
\sigma_{x}=\frac{E \alpha_{m}^{2}}{\left(1-\mu^{2}\right)} w_{m o}-\frac{2 p_{m}}{(1-\mu)}\left[f_{1 m}(z)+\frac{1}{2}\right] \tag{5.5}
\end{equation*}
$$

where

$$
\begin{align*}
& w_{m 0}=\frac{p_{m}}{k_{m} \alpha_{m}^{4}} \\
& k_{m}=\frac{2 E}{\left(1-\mu^{2}\right) \lambda_{m}^{3}}\left[\frac{\lambda_{m} h}{2}-\tanh \frac{\lambda_{m} h}{2}\right] \tag{5.6}\\
& \lambda_{m}^{2}=\frac{2}{(1-\mu)} \alpha_{m}^{2} \\
& f_{1 m}(z)=-\frac{1}{2}\left[1-\frac{\lambda_{m} z \operatorname{ch}\left(\lambda_{m} h / 2\right)-\operatorname{sh}\left(\lambda_{m} z\right)}{\left(\lambda_{m} h / 2\right) \operatorname{ch}\left(\lambda_{m}^{h / 2)}-\operatorname{sh}\left(\lambda_{m} h / 2\right)\right.}\right]
\end{align*}
$$

Figure 5.1 shows results for w_{0} and Figures 5.2 to 5.9 show results for σ_{x}, as given by the exact solution [15], Panc [9], Baluch [10], and the present work.

The effect of normal strain on w_{o} becomes very clear for $h / L>$ 1.0 as shown in Figure 5.1 . As h / L increases, the present work gives results which are closest to the exact solution.

The present work, as shown in Figures 5.2 to 5.9 , gives the best results for stress σ_{x} as compared to the exact solution. For h/L > 1.0, previous work by Baluch [10] and Panc [9] failed to give good results for stresses. The present work yields almost exact results even up to $h / L=3.0$, which is representative of an extremely thick plate. Figs. 5.4 through 5.9 show that σ_{x} from the present theory is almost superposed on the exact solution for h / L upto 3.0 ,
whereas the other refined theories yield diverging solutions and which are thus not plotted.

Example 5.1.2

An infinite plate strip of thickness " h " subjected to a uniformly distributed load " p " at $z=-h / 2$. For this case, the previous expressions derived for w_{0} and σ_{x} in example (5.1.1) are still valid except that for this case:

$$
\begin{equation*}
a_{m}=\frac{m \pi}{L}, p_{m}=\frac{4 p}{m \pi} \quad m=1,3,5,7, \ldots, \tag{5.7}
\end{equation*}
$$

Figure 5.10 shows results for w_{0} and Figures 5.11 to 5.18 show results for σ_{x}, as given by the exact solution [15], Panc [9], and the present work.

The effect of normal strain on w_{0} is again apparent for $h / L>$ 1.0 as shown in Figure 5.10. The present work yields w_{o} which is close to the exact solution as h / L is increased.

The σ_{x} stresses from the present theory yield results initially indistinguishable from the exact theory for h / L upto as high as 3.0 (Figs.: 5.11 to 5.18).

Figures 5.19 to 5.21 depict the variation of the transverse normal stress σ_{z} with the ratio h / L. As with the case of σ_{x} stresses,
the present formulation yields results for σ_{z} almost identical to the exact solution. It is also of interest to note that as the plate becomes thicker, the maximum magnitude of the bending stress σ_{x} becomes of the same order as that of the transverse normal stress σ_{z}.

5.2 Examples for Rectangular Plates

A rectangular plate of sides a (along x-axis) and b (along y-axis) loaded uniformly and with the edges at $x=0, x=a$ being simply supported was considered. The following cases were chosen to give examples for such isotropic rectangular plates (in all cases considered, Poisson's ratio μ was taken to be 0.3).

NOTE :
In the figures that follow the notation
BC.h/a-I(OR II)
is used to indicate :
BC : Indicates the type of boundary condition
SS : indicates a simply supported edge.
SC : indicates a clamped edge.
SF : indicates a Free edge.
h / a : is the value of (thickness to span) ratio.
I OR II : indicates whether the edges at

$$
y= \pm b / 2
$$

are not allowed to stretch in the y-direction
(I)

OR are allowed to do so (II).
5.2.1 A Square Plate Uniformly Loaded with All Edges Simply Supported (SS) :

The boundary conditions that need to be satisfied for the bending problem for this case are given by equations (4.87), (4.88),
and (4.89).

The boundary conditions that need to be satisfied for the inplane problem are given by equations (4.96.3), (4.96.4) for edges at $\mathrm{y}=$ $\pm b / 2$ not allowed to stretch in the y-direction (Case I) and by equations (4.96-3) and (4.96.7) for edges at $y= \pm b / 2$ allowed to stretch in the y -direction only (Case II). Table 5.1 shows the results for deflection \bar{w} obtained by present work RTP and compared with results given by Classical plate theory (CPT) [1], Reissner's plate theory (RTR) [12], refined theory in reference [11] RTB, and FEM in reference [13].

The moments resultants are obtained and results are compared with results given by other theories (Table 5.2 for M_{x} and Table 5.3 for M_{y}).

Also the stress σ_{x} is obtained and results are compared with results from other theories for Case I in Figures 5.22 to 5.30 and results are shown in Figures 5.31 to 5.43 for Case II.

The variation of the transverse shear stress ${ }^{\top} x z$ is shown in Figures 5.44 to 5.47 . The results are in qualitative agreement with the elasticity solution for bending of thick curved bar by force at end [14].

The results shown demonstrate clearly the effect of including the influence of tranverse stresses and strains and normal stress and
strain on the deflection and on the resultant moments. This effect becomes very clear as h / a for the plate increases up to as high as $\mathrm{h} / \mathrm{a}=1.0$.

The graphs for the stresses show the non-linearity in the stresses as h / a ratio increases. Also it is shown clearly in the graphs that the neutral plane is shifted and it does not coincide any more with the mid-plane as CPT and RTR predicts. The magnitude of the inplane stresses $\sigma_{x}, \sigma_{y}, \sigma_{x y}$ decreases, as the ratio h / a of the plate increases, to an order of magnitude similar to that of the normal stress σ_{z} and thus σ_{z} cannot be neglected for thick plates.

5.2.2 A Square Plate Uniformly Loaded with Clamped Edges at $y=$ $\pm b / 2$ (SC) :

Table 5.4 shows the results for deflection \bar{w} obtained by present work RTP and compared with results given by Classical plate theory (CPT) [1], Reissner's plate theory (RTR), refined theory in reference [11] RTB , and FEM in reference [13].

The moments resultants are obtained and results are compared with results given by other theories (Table 5.5 for M_{x} and Table 5.6 for M_{y}).

Also the stress σ_{x} is obtained and results are compared with results from other theories for Case I in Figures 5.48 to 5.53 and results are shown in Figures 5.54 to 5.59 for Case II.

Observations similar to those made for the case of simply supported plate for deflection, resultant moments, and stresses can be made based on the above results for this case (i.e : simple/clamped plate).
5.2.3 A Square Plate Uniformly Loaded with Free Edges at $y=$
$\pm b / 2$ (SF) :

Table 5.7 shows the results for deflection \bar{w} obtained by present work RTP and compared with results given by Classical plate theory (CPT) [1], Reissner's plate theory (RTR) [12], refined theory in reference [11] RTB , and FEM in reference [13].

The moments resultants are obtained and results are compared with results given by other theories (Table 5.8 for M_{x} and Table 5.9 for M_{y}).

Also the stress σ_{x} is obtained and results are compared with results from other theories for Case I in Figures 5.60 to 5.66 and results are shown in Figures 5.67 to 5.72 for Case II.

Observations similar to those made for the case of simply supported plate for deflection, resultant moments, and stresses can be made based on the above results for this case (i.e : simple/free plate).

5.2.4 A Square Plate Simply Supported All Around and Loaded With

 A Line Load At $\mathrm{x}=\mathrm{a} / 2$ (See Figure 5-A) :Assuming that the plate (simply supported all around) is subjected to a line load at : $x=x_{1}$, in this case p_{m} can be shown to
be given by :

$$
\begin{equation*}
p_{m}=\frac{2 p_{o}}{a} \sin \frac{m \pi x}{a} \tag{5.2.4-1}
\end{equation*}
$$

Table 5.10 shows the results of deflection at center of the plate for this case of loading.

Table 5.11 shows the results of the resultant moment M_{x} at the center of the plate.

Table 5.12 shows the results of the resultant moment M_{y} at the center of the plate. The results were compared with results from CPT. Results from both RTR and RTB were not available. The importance of using a refined theory such as the one presented here is clear from the results shown in these tables. For a ratio of h / a as high as 1.0 , the deflection obtaned from this theory is almost 7 times the one obtained by CPT.

Stresses are not shown for this case since the load does not converge when expanded in single Fourier series but rather it's integral converges.

Figure 5-A : Line Load P_{o} At $\mathrm{x}=\mathrm{x}_{1}$

5.2.5 A Square Plate Simply Supported All Around and Loaded With A Strip Load :

Assuming that the plate (simply supported all around) is subjected to a strip load of width $=u$ and centered at $x=\xi$, in this case p_{m} can be shown to be given by :

$$
\begin{equation*}
p_{m}=\frac{4 p_{0}}{m \pi} \sin \frac{m \pi \xi}{a} \sin \frac{m \pi u}{a} \tag{5.2.5-1}
\end{equation*}
$$

Table 5.13 shows the results of deflection at center of the plate for this case of loading.

Table 5.14 shows the results of the resultant moment M_{x} at the center of the plate.

Table 5.15 shows the results of the resultant moment M_{y} at the center of the plate. The results were compared with results from CPT. Results from both RTR and RTB were not available. The importance of using a refined theory such as the one presented here is clear from the results shown in these tables. For a ratio of h / a as high as 1.0 , the deflection obtaned from this theory is almost 7 times the one obtained by CPT.

Also the stress σ_{x} is obtained and results are compared with results from other theories for Case II in Figures 5.73 to 5.77 .

Observations similar to those made for the case of simply supported plate for deflection, resultant moments, and stresses can be made
based on the above results for this case.
Also it may be noted that this case of loading represents a general case of strip loading since the width and center of the strip load can be varied to obtain any case of strip loading including the case of uniformly loaded plate.

For the case of distributed loading on both the top and bottom surfaces of the plate, the problem can be solved by superposition. The problem will be divided into two problems. The first will be a plate loaded at top; and this will be solved as shown in the previous sections on the type of loading (i.e. : a line load, a strip load, or a uniform load). The second problem will be for a plate loaded at the bottom only; and this can be solved by reversing the z-axis (i.e. positive z-axis will be upward). Thus this second problem will be equivalent to the first problem with the z-axis being reversed. The solution for the whole problem will be obtained by superposing solutions from the first and second problems.

5.2.6 A Plot Of $w(x, y, z)$ Across The Plate :

Substituting for $w_{o}(x, y)$ from equation (3-41) in equation (3-15), the expression for $w(x, y, z)$ can be rewritten as follows:

$$
\begin{align*}
& w(x, y, z)=\frac{p(x)}{E} f_{z}(z)-\frac{6 \mu M(x, y) z^{2}}{E h^{3}} \\
&+\bar{w}(x, y)-\frac{p(x)}{N}+\frac{M(x, y)}{R} \tag{5.2.6-1}
\end{align*}
$$

Substiuting for N and R from equations (4.7) and (4.8), respectively, in equation (5.2.5-1) and rearranging results in
$w(x, y, z)=\frac{p(x)}{E}\left\{f_{2}(z)-F_{3}\right\}+\frac{M(x, y)}{E}\left\{\frac{3 \mu}{10 h}-\frac{6 \mu z^{2}}{h^{3}}\right\}+\bar{w}(x, y)$

Noting that

$$
\begin{equation*}
F_{3}=h \bar{F}_{3} \tag{4-59.3}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{z}(z)=h \bar{f}_{2}(z) \tag{4-59.13}
\end{equation*}
$$

the expression for $w(x, y, z)$ can be rewritten as follows:

$$
\begin{aligned}
& w(x, y, z)=\frac{1}{E}\left\{\left.p(x)\left[h \bar{f}_{2}(z)-h \bar{F}_{3}\right]+\frac{3 \mu M(x, y)}{h} \right\rvert\, \frac{1}{10}-2\left(\frac{z}{h}\right)^{2} l\right\} \\
&+\bar{w}(x, y)
\end{aligned}
$$

Making use of equation (4.33) for $p(x)$ and noting that

$$
\begin{align*}
& \bar{w}(x, y)=\sum_{m=1}^{\infty} \bar{w}_{m}(y) \sin a_{m} x \tag{4.38}\\
& M_{m}(y)=M_{x m}(y)+M_{y m}(y) \tag{3.13}
\end{align*}
$$

and

$$
\begin{equation*}
M_{x}(x, y)=\sum_{m=1}^{\infty} M_{x m}(y) \sin a_{m} x \tag{4-62}
\end{equation*}
$$

$$
\begin{equation*}
M_{y}(x, y)=\sum_{m=1}^{\infty} M_{y m}(y) \sin a_{m} y \tag{4-63}
\end{equation*}
$$

the expression for deflection $w(x, y, z)$ can be rewritten in the following form :

$$
\begin{align*}
w(x, y, z) & =\sum_{m=1}^{\infty} \frac{p_{0} a^{4}}{E h^{3}}\left\{p_{m}\left(\frac{h}{a}\right)^{4}\left[\bar{f}_{2}(z)-\bar{F}_{3}\right]\right. \\
& +3 \mu\left(\frac{h}{a}\right)^{2} M_{m}(y)\left[\frac{1}{10}-2\left(\frac{z}{h}\right)^{2}\right] \\
& \left.+\bar{W}_{m}(y)\right\} \sin a_{m} x \tag{5.2.6-2}
\end{align*}
$$

where

$$
\begin{equation*}
\bar{W}_{m}(y)=\frac{E h^{3}}{p_{o} a^{4}} \bar{w}_{m}(y) \tag{5.2.6-3}
\end{equation*}
$$

Figures $5.78,79,80$ show deflection of TOP surface of the plate given by $R T R$ and $R T P$ for $h / a=0.1,0.5$ and 1.0 , respectively .

Figures $5.81,82,83$ show deflection of middle surface of the plate given by RTR and RTP for $h / a=0.1,0.5$ and 1.0 , respectively .

Figures $5.84,82,83$ show deflection of bottom surface of the plate given by $R T R$ and $R T P$ for $h / a=0.1,0.5$ and 1.0 , respectively . Figures $5.87,88,89$ show deflection of top, middle, and bottom surfaces of the plate given by RTR and RTP for $h / a=0.1,0.5$ and 1.0 , respectively .

From the graphs the effect of including the normal strain on deflection is very clear. Also, the present work can give the deflec-
tion as a function of z whereas $R T R$ is giving " average deflection " across the depth of the plate. The present theory is predicting deflection at top to be much more than deflection at bottom of the plate as the ratio h / a of the plate increases. This result is expected; since as the plate thickness increases the load will be taken mostly by the top layers and the bottom layers will hardly feel the load.

5.2.7 Verifying Equilibrium Of The Plate In The Vertical Direction :

Edge reactions at edges of the plate should balance the applied load:

$$
\left.\left.\begin{array}{rl}
I= & \int_{0}^{a}\left[Q_{y}(x,+b / 2)\right.
\end{array}\right)-Q_{y}(x,-b / 2)\right] d x \quad \begin{aligned}
& \frac{b}{2} \\
&+\int_{\frac{-b}{2}}\left[Q_{x}(a, y)-Q_{x}(0, y) \mid d y\right. \tag{5.2.7-1}
\end{aligned}
$$

After performing the integrations in the above equation, it can be shown that :

$$
\begin{align*}
I= & \frac{p_{a}^{a b}}{12\left(1-\mu^{2}\right)}\left\{\frac { 2 4 k _ { 2 2 } (\operatorname { c o s } (m \pi) - 1) } { F _ { 1 } } (\frac { h } { a }) ^ { 2 } \left\{\frac{m \pi}{\gamma_{m} b}\right.\right. \\
& \left.-\frac{\gamma_{m}}{a_{m} b}\right\} \sinh \left(\frac{\gamma_{m} b}{2}\right) E_{m} \\
& \left.+\frac{6(1-\mu)(m \pi)}{F_{1}\left(\frac{h}{a}\right)^{2}}\left[\beta_{m}+\bar{\beta}_{m} I I \cos (m \pi)-1\right]\right\} \tag{5.2.7-2}
\end{align*}
$$

Table 5.16 shows that total reaction of the edges of the plate is equal to the uniformly applied loads for different types of support at $y= \pm b / 2$. The results are satisfactory compared with classical theory since the latter gives unbalanced concentrated reaction of about 26% wheras there is no evidence of such unbalanced reaction in this work.

5.2.8 Effect of inplane stretching on inplane stresses :

To study the effect of inplane stretching on inplane stresses, σ_{y} was evaluated at the center of a simply supported plate for the two cases :
when edges at $y= \pm b / 2$ are allowed to stretch in the y-direction (case-I)
and when edges at $y= \pm b / 2$ are not allowed to stretch in the y-direction (case-II).

The results are shown in Figures 5.90 to 5.92 .
From the results it is noticed that the in-plane compressive stresses increase by $10-15$ \% for case-I over those for case-II. Also it is noticed that the in-plane tensile stresses decrease by $10-15 \%$ for case-I over those for case-II. For thin plates the in-plane stresses were the same for both cases since the effect of the in-plane forces for thin plates is extremely small.

5.3 Computer Program

A computer program (DISS2) is cleveloped to get the solution for any rectangular plate that is simply supported at $x=0, a$ and can have any boundary condition on edges at $y= \pm b / 2$. A flowehart is given in Fig. 5-B to show the structure of this program. A program listing is included in the Appondix A-5-1.

It should be noted that this program can handle solutions according to RTB or RTP by the use of the parameter IBALCH. (See program listing for more details).

A similar program DISS4 is developed for the case of plate strips (i.e for the case of Cylindrical Bending). The plate strip can have any boundary condition at $x=0, x=1$ (i.e at edges of the plate strip). A program listing for DISS4 is included in the Appendix A-5-2.

FIG. 5-B : Flowchart For The Computer Program DISS2

Figure 5-B (Continued) : Flowchart For The Computer Program DISS2

5.4 Conclusions

1. It may be concluded that the use of generalized distribution of transverse normal and shear stresses (as originally presented by Kromm [7,8] in the development of a new refined thick plate theory (along the lines of earlier presentation [10,11] yields a formulation that captures all essential characteristics of the exact three dimensional elasticity problem. This is reflected in that results for stresses obtained from the present formulation are almost identical to the exact solution up to ratios of $h / a=3.0$ (for the case of cylindrical bending). This ratio characterizes a significantly thick plate, and all previously known refined theories breakdown at this level of plate thickness.

For the case of rectangular plates , the results are satisfactory $u p$ to $\mathrm{h} / \mathrm{a}=1.0$
2. Based on comparison of resultant moments and forces : $M_{x}, M_{y}, M_{x y}, Q_{x}, Q_{y}$ from classical thin plate theory and refined theories, a plate is considered to be thick for a ratio of $h / a \geq 0.1$. Thus for plates for which $h / a \geq 0.1$ a refined theory - such as the one presented in this work should be used to analyze the behavior of such plates completely.
3. It is shown in the results that as h / a increases (from 0.1 and above), inplane bending and twisting shear stresses decrease to a level where they are of equivalent order as σ_{z} and therefore σ_{z} cannot be neglected.
4. This theory allows for in-plane movement of the plate, yielding new type of boundary conditions in the form of loosely or rigidly supported simple or clamped edges. The case of rigidly supported edges yields in-plane compression forces not present in any of the previous refined theories .

The effect of these forces is accentuated as h / a increases. In-plane compressive normal stress σ_{y} increases by 10-15 \% if the edges at $y= \pm b / 2$ are not allowed to stretch.
5. $f_{1}(z)$ is the function that is responsible for yielding $3-\mathrm{Di}-$ mensional type behavior (in terms of stresses) from an essentially 2 -Dimensional analysis for stress resultants and displacements .
6. Present theory (RTP) corrects stresses as h / a becomes large whereas Reissner's theory (RTR) predicts always linear distribution for the stresses : $\sigma_{x}, \sigma_{y}, \sigma_{x y}$, and parabolic distribution for the stresses : ${ }^{\tau}{ }^{x z},{ }^{\tau} y z$, and assumes that : $\sigma_{z}=0$.

Present theory gives non-linear distribution similar to exact solution from theory of elasticity for deep beam type members. (For all stresses: $\sigma_{x}, \sigma_{y}, \sigma_{z}, \sigma_{x y}$, $\tau_{x z}$, and $\tau_{y z}$)
7. Present theory captures ' transition from " beam bending problem" to " column type problem " as plate gets thicker ' better than Reissner's theory.
8. Present work solves the numerical problem of ill-conditioning which occurs in the previous companion refined theory [10, 11]. The ill-conditioning in the previous formulation was a serious shortcoming as some of the results presented in References $[10,11]$ are in discrepancy with those presented by the most well known of refined theories i.e. Reissner theory [12].
9. The variation of the transverse shear stress ${ }^{\tau}{ }_{x z}$ agrees qualitatively with the elasticity solution for bending of thick curved bar by force at end.
10. The results for vertical equilibrium of the plate are satisfactory compared with the classical theory of plates since the latter gives unbalanced concentrated reaction of about 26% wheras there is no evidence of such unbalanced reaction in this work.
11. The tranverse normal stress σ_{z} of previous theory [11] (RTB) is not a function of thickness of the plate, whereas present one is a function of thickness. This reflects clearly the role of $f_{1}(z)$ on plate behavior.

FIG.5.2 : MAX. NORMAL STRESS SIGMA-X VS $Z / H(H / L=.1, P=P O * S I N(P I * X / L))$

\rightarrow OTHERS
\rightarrow RTB
\rightarrow PANC
\rightarrow EXACT
\rightarrow RTP

(100-10
FIG.5.3: MAX. Norkal stress sigua-X vs $2 / H(H / L=3, P=P 0 \cdot \sin (P 1 \times x / L))$

FIG.5.4 : MAX. NORMAL STRESS SIGMA-X VS $Z / H(H / L=.5, P=P O * S I N(P I * X / L))$

FIG.5.5 : MAX. NORMAL STRESS SIGMA-X VS $Z / H(H / L=1.0, P=P O \cdot \operatorname{SIN}(P I * X / L))$

FIG.5.6 : MAX. NORMAL STRESS SIGMA-X VS $Z / H(H / L=1.5, P=P O * S I N(P \mid * X / L))$

FIG.5.7 : MAX. NORMAL STRESS SIGMA-X VS $Z / H(H / L=2.0, P=P O * S I N(P I * X / L))$

FIG.5.8: MAX. Norhal Stress sigha-x vs $2 / H(H / L=2.5, P=P 0 \sin (P 1 \times x / L))$ $\underset{-1.20}{1-2 / H}$
FIG.5.9 : MAX. NORMAL STRESS SIGMA-X VS $Z / H(H / L=3.0, P=P O * S I N(P \mid * X / L))$

FIG.5.11: MAX. NORWAL STRESS SIGHA-X VS $2 / H$ (H/L=.1, UNIFORM LOAD)

FIG.5.13: MAX. NORWAL STRESS SIGMA-X VS Z/H (H/L=.5,UNIFORM LOAD)

FIG. 5.14 : MAX. NORMAL STRESS SIGMA-X VS Z / H (H/L=1.0, UNIFORM LOAD)

FIG. 5.15 : MAX. NORMAL STRESS SIGUA-X VS Z / H (H/L=1.5, UNIFORW LOAD)

FIG. 5.16 : MAX. NORMAL STRESS SIGHA-X VS $2 / H$ (H/L=2.0, UNIFORU LOAD)

FIG. 5.17: MAX. NORMAL STRESS SIGMA-X VS Z / H (H/L=2.5, UNIFORH LOAD)

FIG. 5.19 : Max. Normal Stress Sigmoz Vs Z / H (H/L=1.0,Uniform Lood)

FIG. 5.20 : Max. Normol Stress Sigmaz Vs Z/H (H/L=2.O,Uniform Lood)

F1G. 5. 21 : Max. Normal Stress Sigmaz Vs Z / H ($H / L=3.0$, Uniform Lood)

FIG. 5. 22 : MAX. NORMAL STRESS SIGMA-X VS Z/H (SS.OO5-I)

$$
Z / H
$$

-	

FIG. 5.23 : MAX. NORMAL STRESS SIGMA-X VS $Z / H(S S .01-1)$
FIG. 5. 24 : MAX. NORMAL STRESS SIGMA-XVS Z/H (SS.05-I)
(20-.

FIG. 5.28 : MAX. NORMAL STRESSSIGMA-X VS Z / H (SS.5-I)

$$
\begin{aligned}
& -.50 \\
& -.40-
\end{aligned} \quad \mathrm{Z} / \mathrm{H}
$$

- RTP
- RTR

FIG. 5.31 : MAX. NORMAL STRESS SIGMA-X VS Z / H (SS.005-II)
FIG. 5.32 : MAX. NORMAL STRESS SIGMA-X VS Z/H (SS.01-1I)

FIG. 5.33: MAX. NORMAL STRESS SIGMA-XVS Z/H (SS.O5-II)

Fig. 5.36: wax. norull stress sigha-X vs Z / H (SS. 3-11)
FIG. 5.37 : MAX. NORMAL STRESS SIGMA-X VS Z/H (SS.4-11) SIGMA-X/PO
FIG. 5.38 : MAX. NORMAL STRESS SIGMA-X VS $2 / H(S S .5-11)$
fig. 5.39 : MAX. NORMAL STRESS SIGMA-X VS Z/H (SS.6-1I)

FIG. 5.41 : MAX. NORMAL STRESS SIGMA-X VS $2 / H$ (SS.8-1I)

FIG. 5.42 : MAX. NORMAL STRESS SIGMA-X VS $Z / H(S S .9-11)$.
FIG. 5.43 : MAX. NORMAL STRESS SIGMA-X VS $\mathrm{Z} / \mathrm{H}(S S 1 .-11)$
FIG. 5.44 : SIGMA-XZ AT $(0,0,2)$ VS $Z / H(S S .1-11)$

FIG. 5.45 : SIGMA-XZ AT $(0,0,2)$ VS $Z / H(S S .3-11)$

FIG. 5.46 : SIGMA-XZ AT $(0,0, Z)$ VS $Z / H(S S .5-11)$

$.50^{2 / H}$

SIGMA-XZ / PO

FIG. 5.51 : MAX. NORMAL STRESS SIGMA-X VS $Z / H(S C .5-1)$

FIG. 5.56 : MAX. NORMAL STRESS SIGMA-X VS Z / H (SC.3-II)
FIG. 5.57 : MAX. NORMAL STRESS SIGMA-X VS $\mathrm{Z} / \mathrm{H}(S C .5-11)$
FIG. 5.58 : MAX. NORMAL STRESS SIGMA-X VS Z/H (SC.7-II)
(
FIG. 5.59 : MAX. NORMAL STRESS SIGMA-X VS $\mathrm{Z} / \mathrm{H}(S C 1 .-11)$

FIG. 5.63 : MAX. NORMAL STRESS SIGMA-X VS Z/H (SF.5-I)

FIG. 5.66 : MAX. NORMAL STRESS SIGMA-X VS Z/H (SF.005-II)

FIG. 5.69
(200
FIG. 5.70 : MAX. NORMAL STRESS SIGMA-X VS Z/H (SF.7-11)

$\rightarrow R T P$
$\rightarrow R T R$

FIG. 5.71 : MAX. NORMAL STRESS SIGMA-X VS Z/H (SF1.-II)

FIG. 72 : Max. Normal Stress Sigma-X VS $2 / H(S S .1-11$, Strip Lood, Width $=0.2 a)$

FIG. 73: Hox. Normal Stress Sigmo-X vS 2/H (SS. 3 -II, Strip Lood, Width $=0.2$ a)
FIG. 74 : Hox. Normal Stress sigmo-X vs $2 / \mathrm{H}$ (ss. 5 F II, Strip Lood, Width $=0.2$ o)
FIG. 75 : Max. Normal Stress Sigma-X VS Z/H (SS.7-11, Strip Load, Width = 0.2a)
FIG. 76 : Max. Normal Stress Sigma-X VS Z/H (SS1.-II, Strip Lood, Width = 0.2a)

fig. 5.80 : deflection of mid surface of plate at $Y=0.0$ (SS.1-1I)

FIG. 5.83 : DEFLECTION OF BOTTOM SURFACE OF PLATE AT Y=0.0 (SS.1-1I)

FIG. 86 : Deflection Of TOP, MID., \& BOTTOM SURFACES At $Y=0.0(S S .1-11)$

FIG. 88 : DEFLECTION OF TOP, MID, \& BOT SURFACES OF PLATE AT Y=0.0 (SS1.-11)

FIG. 5.89 : MAX. NORMAL STRESS SIGMA-Y VS Z / H (SS.1)

FIG. 5.91 : MAX. NORMAL STRESS SIGMA-Y VS Z/H (SS1.0)
(1):NY=-.0852

Table 5.1 Coefficient a for the Center Deflection of a Uniformly Loaded Simply Supported Square Plate

h/a	α_{1}	α_{2}	\sim_{3}	a_{4}
0.005	0.044009	0.044366	0.04433	0.044366
0.01	0.044149	0.044380	0.04434	0.044380
0.05	0.044789	0.044849	0.04481	0.044849
0.1	0.046294	0.046315	0.04625	0.046314
0.2	0.052171	0.052176	0.05194	0.052157
0.3	0.061946	0.061946	-	0.061867
0.4	0.075619	0.075623	0.07474	0.075312
0.5	0.093229	0.093207	-	0.092448
0.6	0.11463	0.11470	0.10853	0.11314
0.7	0.14008	0.14010	-	0.13717
0.8	0.16941	0.16941	0.15682	0.16426
0.9	0.20220	0.20262	-	0.19428
1.0	0.24024	0.23975	0.21982	0.22679
$\begin{aligned} & \text { NOTE }: \alpha=0.04433 \\ & \text { By CPT }: \text { Classical Plate Theory (For All h/a Ratios) } \\ & \alpha_{1}=\text { FEM : Goma'a and Baluch } \\ & \alpha_{2}=\text { RTR : Refined Theory (Reissner) } \\ & \alpha_{3}=\text { RTB : Refined Theory (Voyiadjis and Baluch) } \\ & \alpha_{4}=\text { RTP : Refined Theory (Present) } \\ & w=a\left(\mathrm{pa}^{4} / \mathrm{Eh}^{3}\right), \mu=0.3 \end{aligned}$				

Table 5.2 Coefficient β for the Center Resultant Moment M_{x} of a Uniformly Loaded Simply Supported Square Plate

h/a	β_{1}	β_{2}	β_{3}	β_{4}
0.005	0.047477	0.047890	0.0479	0.047890
0.01	0.047659	0.047892	0.0479	0.047892
0.05	0.0480 i2	0.047928	0.0492	0.047927
0.1	0.048285	0.048040	0.0512	0.048042
0.2	0.048776	0.048490	0.0534	0.048509
0.3	0.049549	0.049240	-	0.049339
0.4	0.050623	0.050290	0.0559	0.050284
0.5	0.052003	0.051640	-	0.051500
0.6	0.053689	0.053290	0.0640	0.052949
0.7	0.055682	0.055240	-	0.054611
0.8	0.057980	0.057490	0.0776	0.056460
0.9	0.063496	0.060040	-	0.058593
1.0	0.063496	0.062890	0.0964	0.060833
$\begin{aligned} & \text { NOTE } \\ & \beta_{1}= \\ & \beta_{2}= \\ & \beta_{3}= \\ & \beta_{4}= \\ & M_{x}= \end{aligned}$	$\beta=0.04$ By CPT : M : Goma TR : Refi TB : Refi TP : Refi $\mathrm{a}^{2}, \mu=$	al Plate Baluch ory (Rei ory (Voy ory (Pre	For All d Balu	

Table 5.3 Coefficient y for the Center Resultant Moment M_{y}
of a Uniformly Loaded Simply Supported Square Plate

h/a	γ_{1}	γ_{2}	γ_{3}	γ_{4}
0.005	0.047477	0.047888	0.0479	0.047888
0.01	0.047659	0.047889	0.0479	0.047889
0.05	0.048072	0.047927	0.0492	0.047927
0.1	0.048285	0.048045	0.0512	0.048043
0.2	0.048776	0.048517	0.0534	0.048498
0.3	0.049549	0.049303	-	0.049203
0.4	0.050623	0.050405	0.0559	0.050179
0.5	0.052003	0.051821	-	0.051418
0.6	0.053689	0.053552	0.0640	0.052952
0.7	0.055682	0.055597	\rightarrow	0.054787
0.8	0.057980	0.057957	0.0776	0.056923
0.9	0.063496	0.060632	-	0.059369
1.0	0.063496	0.063621	0.0964	0.062159
$\begin{aligned} & \text { NOTE }: \gamma=0.0479 \\ & \text { By CPT }: \text { Classical Plate Theory (For All } \mathrm{h} / \mathrm{a} \text { Ratios) } \\ & \gamma_{1}= \text { FEM : Goma'a and Baluch } \\ & \gamma_{2}= \text { RTR : Refined Theory (Reissner) } \\ & \gamma_{3}= \text { RTB : Refined Theory (Voyiadjis and Baluch) } \\ & \gamma_{4}= R T P: \text { Refined Theory (Present) } \\ & M_{y}=\gamma \mathrm{ra}^{2}, \mu=0.3 \end{aligned}$				

Table 5.4 Coefficient a for the Center Deflection of a Uniformly Loaded Simple/Clamped Square Plate

h/a	α_{1}	a_{2}	α_{3}	α_{4}
0.005	0.0018120	0.0019179	0.00190	0.0019179
0.01	0.0018369	0.0019201	0.00188	0.0019201
0.05	0.0019672	0.0019901	0.00176	0.0019908
0.1	0.002194	0.002201	0.00166	0.002206
0.2	0.002980	0.002982	0.00158	0.003005
0.3	0.004163	0.004165	-	0.004197
0.4	0.005696	0.005697	0.00166	0.005703
0.5	0.007562	0.007565	-	0.007499
0.6	0.009763	0.009772	0.00182	0.009583
0.7	0.012314	0.012323	-	0.011966
0.8	0.015206	0.015227	0.00203	0.014653
0.9	0.018517	0.018490	-	0.017647
1.0	0.022100	0.022116	0.00231	0.020946
$\begin{aligned} \text { NOTE }: \alpha=0.0192 \\ \text { By CPT : Classical Plate Theory (For All h/a Ratios) } \\ \alpha_{1}=\text { FEM : Goma'a and Baluch } \\ \alpha_{2}=\text { RTR : Refined Theory (Reissner) } \\ a_{3}=\text { RTB : Refined Theory (Voyiadjis and Baluch) } \\ a_{4}=R T P: \text { Refined Theory (Present) } \\ w=\pi \mathrm{Ra}^{4} / D, \mu=0.3 \end{aligned}$				

Table 5.5 Coefficient β for the Center Resultant Moment M_{x} of a Uniformly Loaded Simple/Clamped Square Plate

h / a	β_{1}	β_{2}	β_{3}	β_{4}
0.005	0.023429	0.024396	0.0242	0.024396
0.01	0.023643	0.024410	0.0241	0.024410
0.05	0.024784	0.024864	0.0261	0.024871
0.1	0.034170	0.026196	0.0243	0.026250
0.2	0.035011	0.030675	0.0216	0.030959
0.3	0.036073	0.036367		0.036721
0.4	0.037652	0.042456	0.0210	0.042240
0.5	0.040033	0.048551		0.046993
0.6	0.043359	0.054290	0.0279	0.050899
0.7	0.047662	0.059191		0.054050
0.8	0.052928	0.062634	0.0411	0.056579
0.9	0.059129	0.063861		0.058617
1.0	0.066235	0.061985	0.0596	0.060273

NOTE : $\beta=0.0244$
By CPT : Classical Plate Theory (For All h/a Ratios)
$\beta_{1}=$ FEM : Goma'a and Baluch
$\beta_{2}=$ RTR : Refined Theory (Reissner)
$\beta_{3}=$ RTB : Refined Theory (Voyiadjis and Baluch)
$\beta_{4}=$ RTP : Refined Theory (Present)
$M_{x}=\beta p a^{2}, \mu=0.3$

Table 5.6 Coefficient y for the Center Resultant Moment M_{y} of a Uniformly Loaded Simple/Clamped Square Plate

h / a	γ_{1}	γ_{2}	γ_{3}	γ_{4}
0.005	0.031950	0.033247	0.0331	0.033247
0.01	0.032372	0.033250	0.0330	0.033250
0.05	0.033628	0.033345	0.0334	0.033350
0.1	0.02631	0.033045	0.0321	0.033639
0.2	0.03089	0.034373	0.0295	0.034647
0.3	0.03652	0.035469		0.036160
0.4	0.04206	0.037119	0.0269	0.038228
0.5	0.04699	0.039583		0.040927
0.6	0.05121	0.042990	0.0322	0.044288
0.7	0.05484	0.047370		0.048312
0.8	0.05803	0.052712	0.0444	0.052987
0.9	0.06090	0.058996		0.058297
1.0	0.06357	0.066206	0.0623	0.064220

NOTE : $\gamma=0.0332$
By CPT : Classical Plate Theory (For All h/a Ratios)
$\gamma_{1}=$ FEM : Goma'a and Baluch
$\gamma_{2}=$ RTR : Refined Theory (Reissner)
$\gamma_{3}=$ RTB : Refined Theory (Voyiadjis and Baluch)
$\gamma_{4}=$ RTP : Refined Theory (Present)
$M_{y}=\gamma p a^{2}, \mu=0.3$

Table 5.7 Coefficient α for the Center Deflection of a Simple/Free Square Plate

h / a	α_{1}	α_{2}	a_{3}	a_{4}
0.005	0.013127	0.013095	0.01309	0.013094
0.010	0.013294	0.013098	0.01309	0.013097
0.050	0.013956	0.013174	0.01310	0.013169
0.1	0.013495	0.013407	0.01312	0.013397
0.2	0.014469	0.014328	0.01326	0.014299
0.3	0.016016	0.015859		0.015786
0.4	0.018163	0.017999	0.01352	0.017830
0.5	0.020913	0.020748		0.020406
0.6	0.024278	0.024105	0.01395	0.023487
0.7	0.028229	0.028072		0.027053
0.8	0.032819	0.032648	0.01457	0.031090
0.9	0.037981	0.037834		0.035588
1.0	0.043800	0.043629	0.01527	0.040542

NOTE : $a=0.01377$
By CPT : Classical Plate Theory (For All h/a Ratios)
$\alpha_{1}=$ FEM : Goma'a and Baluch
$\sigma_{2}=$ RTR : Refined Theory (Reissner)
$a_{3}=$ RTB : Refined Theory (Voyiadjis and Baluch)
$a_{4}=$ RTP : Refined Theory (Fresent)
$\mathrm{w}=\operatorname{upa}^{4} / \mathrm{D}, \mu=0.3$

Table 5:8 Coefficient β for the Center Resultant Moment M_{x}

 of a Uniformly Loaded Simple/Free Squere Plate| h/a | β_{1} | β_{2} | β_{3} | β_{4} |
| :---: | :---: | :---: | :---: | :---: |
| 0.005 | 0.12002 | 0.12274 | 0.1225 | 0.12255 |
| 0.01 | 0.12027 | 0.12294 | 0.1225 | 0.12255 |
| 0.05 | 0.12320 | 0.12465 | 0.1228 | 0.12260 |
| 0.1 | 0.12442 | 0.12246 | 0.1240 | 0.12275 |
| 0.2 | 0.12547 | 0.12287 | 0.1252 | 0.12332 |
| 0.3 | 0.12645 | 0.12411 | - | 0.12414 |
| 0.4 | 0.12765 | 0.12683 | 0.1270 | 0.12506 |
| 0.5 | 0.12901 | 0.13180 | - | 0.12601 |
| 0.6 | 0.13048 | 0.13980 | 0.1313 | 0.12704 |
| 0.7 | 0.13202 | 0.15165 | - | 0.12823 |
| 0.8 | 0.13364 | 0.16826 | 0.1386 | 0.12964 |
| 0.9 | 0.13534 | 0.19066 | - | 0.13134 |
| 1.0 | 0.13713 | 0.21999 | 0.1489 | 0.13338 |
| $\begin{aligned} & \text { NOTE }: ~ \beta=0.1235 \\ & B y \text { CPT : Classical Plate Theory (For All h/a Ratios) } \\ & \beta_{1}= \text { FEM : Goma'a and Baluch } \\ & \beta_{2}= \text { RTR : Refined Theory (Reissner) } \\ & \beta_{3}= \text { RTB : Refined Theory (Voyindjis and Baluch) } \\ & \beta_{4}= \text { RTP : Refined Theory (Present) } \\ & M_{x}=\beta p a^{2}, \mu=0.3 \end{aligned}$ | | | | |

- Table 5.9 Coefficient γ for the Center Resultant Moment M_{y} of a Uniformly Loaded Simple/Free Square Plate

h/a	γ_{2}	γ_{2}	γ_{3}	γ_{4}
0.005	0.026176	0.027227	0.0271	0.027080
0.01	0.026190	0.027376	0.0272	0.027081
0.05	0.026586	0.028660	0.0275	0.027115
0.1	0.026193	0.025831	0.0283	0.027222
0.2	0.024942	0.024414	0.0299	0.027644
0.3	0.023540	0.022757	-	0.028323
0.4	0.022057	0.021013	0.0324	0.029241
0.5	0.020622	0.019373	-	0.030409
0.6	0.019316	0.017927	0.0358	0.031861
0.7	0.018163	0.016687	-	0.033635
0.8	0.017150	0.015628	0.0399	0.035764
0.9	0.016253	0.014707	-	0.038268
1.0	0.015445	0.013882	0.0478	0.041153
$\begin{aligned} & \text { NOTE }: \gamma=0.0102 \\ & \text { By CPT }: \text { Classical Plate Theory (For All h/a Ratios) } \\ & \gamma_{1}= \text { FEM }: \text { Goma'a and Baluch } \\ & \gamma_{2}= \text { RTR }: \text { Refined Theory (Reissner) } \\ & \gamma_{3}=\text { RTB : Refined Theory (Voyiadjis and Baluch) } \\ & \gamma_{4}=\text { RTP : Refined Theory (Present) } \\ & M_{y}=\mathrm{ypa}^{2}, \mu=0.3 \end{aligned}$				

Table 5.10 Coefficient α for the Center Deflection of a Simply Supported Square Plate with a Line Load at $x=a / 2$

h/a	a_{1}	a_{2}
0.005	0.073601	0.073620
0.01	0.073601	0.073653
0.05	0.073601	0.074700
0.1	0.073601	0.077939
0.2	0.073601	0.090682
0.3	0.073601	0.11144
0.4	0.073601	0.14031
0.5	0.073601	0.17695
0.6	0.073601	0.22124
0.7	0.073601	0.13717
0.8	0.073601	0.33156
0.9	0.073601	0.39619
1.0	0.073601	0.46787
$\begin{aligned} & \alpha_{1}=\text { CPT : Classical Plate Theory } \\ & \alpha_{2}=\text { RTP : Refined Theory (Present) } \\ & w=\alpha\left(\mathrm{pa}^{3} / \mathrm{Eh}^{3}\right), \mu=0.3 \end{aligned}$		

Table 5.11 Coefficient $\bar{\beta}$ for the Center Resultant Moment $\mathrm{M}_{\mathbf{x}}$ of a Simply Supported Square Plate with a Line Load at $\mathrm{x}=\mathrm{a} / 2$

h/a	$\beta 1$	β_{2}
0.005	0.127	0.12405
0.01	0.127	0.12405
0.05	0.127	0.12386
0.1	0.127	0.12378
0.2	0.127	0.12505
0.3	0.127	0.12758
0.4	0.127	0.13200
0.5	0.127	0.13737
0.6	0.127	0.14366
0.7	0.127	0.15071
0.8	0.127	0.15843
0.9	0.127	0.16630
1.0	0.127	0.17515
$\begin{aligned} & \beta_{1}=\text { CPT }: \text { Classical Plate Theory } \\ & \beta_{2}=\text { RTP }: \text { Refined Theory (Present) } \\ & M_{x}=\beta \text { pa, } \mu=0.3 \end{aligned}$		

Table 5.12 Coefficient γ for the center Resultant Moment M_{y} of a Simply Supported Square Plate With A Line Load at $\mathbf{x}=a / 2$

h/a	γ_{1}	γ_{2}
0.005	0.092	0.091064
0.01	0.092	0.091129
0.05	0.092	0.093099
0.1	0.092	0.098766
0.2	0.092	0.11682
0.3	0.092	0.14017
0.4	0.092	0.16671
0.5	0.092	0.19565
0.6	0.092	0.22639
0.7	0.092	0.25854
0.8	0.092	0.29179
0.9	0.092	0.32599
1.0	0.092	0.36103
$\begin{aligned} & \gamma_{1}=\text { CPT : Classical Plate Theory } \\ & \gamma_{2}=\text { RTP : Refined Theory (Present) } \\ & M_{y}=\gamma \mathrm{pa}, \mu=0.3 \end{aligned}$		

Table 5.13 Coefficient a for the Center Deflection of a Simply Supported Square Plate with a Strip Load (Width $=0.2$ a) Centered at $x=a / 2$

h/a	C_{1}	α_{2}
0.005	0.014368	0.014368
0.01	0.014368	0.014373
0.05	0.014368	0.014558
0.1	0.014368	0.015132
0.2	0.014368	0.017402
0.3	0.014368	0.021106
0.4	0.014368	0.026252
0.5	0.014368	0.032779
0.6	0.014368	0.040661
0.7	0.014368	0.049839
0.8	0.014368	0.060240
0.9	0.014368	0.071676
1.0	0.014368	0.084327
$\begin{aligned} & \alpha_{1}=C P T: \text { Classical Plate Theory } \\ & \alpha_{2}=\text { RTP : Refined Theory (Present) } \\ & w=\alpha\left(P_{o} a^{4} / E h^{3}\right), \mu=0.3 \end{aligned}$		

Table 5.14 Coefficient β for the center Resultant Moment M_{x} of a Simply Supported Square Plate With A Strip Load (Width $=0.2 a$) Centered At $x=a / 2$

h / a	β_{1}	β_{2}
0.005	0.020914	0.020914
0.01	0.020914	0.020915
0.05	0.020914	0.020925
0.1	0.020914	0.020940
0.2	0.020914	0.020969
0.3	0.020914	0.020999
0.4	0.020914	0.021387
0.5	0.020914	0.021848
0.6	0.020914	0.022456
0.7	0.020914	0.023192
0.8	0.020914	0.024043
0.9	0.020914	0.024925
1.0	0.020914	0.025983

$\beta_{1}=C P T:$ Classical Plate Theory
$\beta_{2}=R T P:$ Refined Theory (Present)
$M_{x}=\beta P_{0} a^{2}, \mu=0.3$

Table 5.15 Coefficient β for the center Resultant Moment M_{y} of a Simply Supported Square Plate With A Strip Load (Width $=0.2 \mathrm{a}$) Centered At $\mathrm{x}=\mathrm{a} / 2$

h / a	β_{1}	β_{2}
0.005	0.016841	0.016841
0.01	0.016841	0.016843
0.05	0.016841	0.016904
0.1	0.016841	0.017087
0.2	0.016841	0.017807
0.3	0.016841	0.019017
0.4	0.016841	0.020633
0.5	0.016841	0.022608
0.6	0.016841	0.024875
0.7	0.016841	0.027378
0.8	0.016841	0.030075
0.9	0.016841	0.032941
1.0	0.016841	0.035958
$\beta_{1}=$	$C P T:$ Classical Plate Theory	
$\beta_{2}=$	$R T P:$ Refined Theory (Present)	
$M_{x}=\beta P_{0}{ }^{2}, \mu=0.3$		

Table 5.16 Total Distributed Reaction R Along Edges Of A Uniformly Loaded Square Plate

h / a	α_{1}	α_{2}	a_{3}
0.005	-1.02	-1.02	-1.02
0.01	-1.02	-1.02	-1.02
0.05	-1.02	-1.02	-1.02
0.1	-1.02	-1.03	-1.03
0.2	-1.03	-1.03	-1.04
0.3	-1.07	-1.04	-1.05
0.4	-1.07	-1.05	-1.07
0.5	-1.08	-1.05	-1.08
0.6	-1.09	-1.05	-1.08
0.7	-1.09	-1.05	-1.08
0.8	-1.09	-1.05	-1.09
0.9	-1.11	-1.05	-1.09
1.0	-1.09	-1.06	-1.09
$\alpha_{1}=$SIMPLY SUPPORTED SQUARE PLATE. $\alpha_{2}=$ $\alpha_{3}=$ $R=$	SIMPLY SUPPORTED / CLAMPED SQUARE PLATE.		

APPENDIX

A-1 DERIVATION OF EQUATION (4-28) :

Equations (4-25) to (4-27), can be expressed in the form :
$a_{11} \bar{w}+a_{12} \varphi_{x}+a_{13} \varphi_{y}=c_{1} p$
$a_{21} \bar{w}+a_{22}{ }^{\rho_{x}}+a_{23}{ }^{\varphi_{y}}=c_{2} p$
$a_{31} \bar{w}+a_{32} \varphi_{x}+a_{33} \varphi_{y}=c_{3} p$

Where :

$$
\begin{align*}
& a_{11}=a \frac{\partial}{\partial x} \Delta-S \frac{\partial}{\partial x} \tag{A-4.1}\\
& a_{12}=b\left(2 \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)-S \tag{A-4.2}
\end{align*}
$$

$a_{13}=b \frac{\partial^{2}}{\partial x \partial y}$
$a_{21}=a \frac{\partial}{\partial y} \Delta-S \frac{\partial}{\partial y}$
$a_{22}=b \frac{\partial^{2}}{\partial x \partial y}$

$$
\begin{equation*}
a_{23}=b\left(2 \frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial x^{2}}\right)-S \tag{A-4.6}
\end{equation*}
$$

$$
\begin{align*}
& a_{31}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} \\
& a_{32}=\frac{\partial}{\partial x} \\
& a_{33}=\frac{\partial}{\partial y} \\
& c_{1}=c \frac{\partial}{\partial x} \\
& c_{2}=c \frac{\partial}{\partial y} \\
& c_{3}=\frac{-1}{S} \\
& a=-\frac{D}{\partial}+\frac{h^{3} F_{1} S}{6} \\
& c=\mu \frac{h^{3} F_{1}}{12(1-\mu)} \tag{A-4.13}
\end{align*}
$$

To obtain the governing differential equation for $\overline{\mathbf{w}}$, we write :
$\bar{w}=\frac{\left|\begin{array}{lll}c_{1} p & a_{11} & a_{13} \\ c_{2} p & a_{22} & a_{23} \\ c_{3} p & a_{32} & a_{33}\end{array}\right|}{\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|}$
or :
$\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|\{\bar{w}\}=\left|\begin{array}{lll}c_{1} p & a_{11} & a_{13} \\ c_{2} p & a_{22} & a_{23} \\ c_{3} p & a_{32} & a_{33}\end{array}\right|\{p\}$
By expanding the operators determinants in equation (A-5), we get for this equation:
$\left\{\left(2 b^{2}-a b\right) \Delta^{3}+(a S-2 b S) \Delta^{2}\right\}\{\bar{w}\}=$

$$
\left\{A \Delta^{2}+B \Delta+C\right\}\{p\}
$$

or :
$M^{\prime} \Delta^{3} \bar{W}+N^{\prime} \Delta^{2} \bar{W}=A \Delta^{2} p+B \Delta p+C p$

Thus equation (4-28) is proved .

A-2 DERIVATION OF THE FUNCTION $Y_{m}(y)$ IN EQN. 4-37 :

Substituting equation (4-36) in equation (4-32), we get :

$$
\begin{align*}
M^{\prime}\left(\frac{\partial^{4}}{\partial x^{4}}+\right. & \left.2 \frac{\partial^{4}}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4}}{\partial y^{4}}\right) \\
& \left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\left\{\bar{w}_{2}\right\}+ \\
& N^{\prime}\left(\frac{\partial^{4}}{\partial x^{4}}+2 \frac{\partial^{4}}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4}}{\partial y^{4}}\right)\left\{\bar{w}_{2}\right\}=0 \tag{A-7}
\end{align*}
$$

OR :

$$
\begin{array}{r}
\mathrm{M}^{\prime}\left(\frac{\partial^{6}}{\partial \mathrm{x}^{6}}+3 \frac{\hat{\partial}^{6}}{\partial \mathrm{x}^{4} \partial y^{2}}+3 \frac{\dot{\partial}^{6}}{\partial \mathrm{x}^{2} \partial y^{4}}+\frac{\hat{\partial}^{6}}{\dot{\partial} \mathrm{y}^{6}}\right)\left\{\overline{\mathrm{w}}_{2}\right\}+ \\
\mathrm{N}^{\prime}\left[\frac{\partial^{4}}{\partial \mathrm{x}^{4}}+2 \frac{\partial^{4}}{\partial \mathrm{x}^{2} \hat{\partial} y^{2}}+\frac{\dot{\partial}^{4}}{\partial y^{4}}\right)\left\{\bar{w}_{2}\right\}=0
\end{array}
$$

OR :

$$
\begin{gathered}
M^{\prime}\left(-a_{m}^{6} Y_{m}+3 a_{m}^{4} Y_{m}(y)-3 a_{m}^{2} Y_{m}^{(i v)}(y)+Y_{m}^{(v i)}(y)\right)+ \\
N^{\prime}\left(a_{m}^{4} Y_{m}-2 a_{m}^{2} Y_{m}(y)+Y_{m}^{(i v)}(y)\right)=0
\end{gathered}
$$

Rearranging the above equation, we get :

$$
\begin{align*}
& Y_{m}^{(v i)}-\left(3 a_{m}^{2}-\frac{N^{\prime}}{M^{1}}\right) Y_{m}^{(i v)}+a_{m}^{2}\left(3 a_{m}^{2}-2 \frac{N^{1}}{M^{1}}\right) Y_{m} \\
& -a_{m}^{4}\left(a_{m}^{2}-\frac{N^{\prime}}{M^{\prime}}\right) Y_{m}=0 \tag{A-8}
\end{align*}
$$

The characteristic equation for the above differential equation is :

$$
\begin{gather*}
\mathbf{r}^{6}-\left(3 a_{m}^{2}-\frac{N^{\prime}}{M^{\prime}}\right) r^{4}+\alpha_{m}^{2}\left(3 \alpha_{m}^{2}-2 \frac{N^{\prime}}{M^{\prime}}\right) r^{2} \\
-\alpha_{m}^{4}\left(\alpha_{m}^{2}-\frac{N^{\prime}}{M^{\prime}}\right)=0 \tag{A-9}
\end{gather*}
$$

A root for the above equation is: $\quad \pm a_{m}$
Thus equation ($A-9$) can be rewritten as:
$\left(r^{2}-a_{m}^{2}\right)\left\{\left(r^{2}-a_{m}^{2}\right)\left(r^{2}-\left(a^{2}-\frac{N^{1}}{M^{\prime}}\right)\right)\right\}=0 \quad$ From the above equation, the roots for equation ($\mathrm{A}-9$) are :

$$
\pm \alpha_{m}, \pm \alpha_{m}, \pm \sqrt{a_{m}^{2}-\frac{N^{\top}}{M^{1}}}
$$

OR :

$$
\pm \alpha_{m}, \pm a_{m}, \pm \gamma_{m}
$$

where :

$$
\begin{equation*}
\gamma_{m}^{2}=\alpha_{m}^{2}-\frac{N^{\prime}}{M^{1}} \tag{A-10}
\end{equation*}
$$

Therefore we get for $Y_{m}(y)$:

$$
\begin{align*}
Y_{m}(y) & =c_{1} e^{-m^{y}}+c_{2} y e^{-c^{y}}+c_{3} e^{o} m^{y} \\
& +c_{4} y e^{a} m^{y}+c_{5} e^{-\gamma m^{y}}+c_{6} e^{y} m^{y} \tag{A-11}
\end{align*}
$$

Since :

$\sinh (y)=\frac{e^{y}-e^{-y}}{2}$
$\cosh (y)=\frac{e^{y}+e^{-y}}{2}$ And :
$e^{y}=\sinh (y)+\cosh (y)$
$e^{-y}=\cosh (y)-\sinh (y)$

Then equation (A-11) can be rewritten as :

$$
\begin{align*}
Y_{m}(y)= & A_{m} \cosh \alpha_{m} y+B_{m} \alpha_{m} y \sinh a_{m} y+C_{m} \sinh \alpha_{m} y \\
& +D_{m} \alpha_{m} y \cosh a_{m} y+E_{m} \cosh \gamma_{m} y \\
& +F_{m} \sinh \gamma_{m} y \tag{A-13}
\end{align*}
$$

Thus equation 4-37 is proved.

A-3 DERIVATION OF THE PARTICULAR SOLUTIONS FOR THE BENDING PROBLEM :

To get the particular solutions for this case, the dependent variables may be assumed to be of the form :

$$
w_{0}=\sum w_{\infty} \sin \alpha_{m} x
$$

$$
u_{0}=\sum u_{o o} \cos a_{m} x
$$

$$
v_{0}=\sum v_{00} \sin \alpha_{m} x
$$

$$
Q_{x}=\sum Q_{o x} \cos a_{m} x
$$

$$
Q_{y}=\sum Q_{o y} \sin \alpha_{m} x
$$

$$
\varphi_{\mathbf{x}}=\sum \varphi_{\mathrm{ox}} \cos \alpha_{\mathrm{m}} \mathbf{x}
$$

$$
\varphi_{y}=\sum \varphi_{o y} \sin \alpha_{\mathrm{m}} \mathrm{x}
$$

$$
M_{x}=\sum M_{o x} \cos \alpha_{m} x
$$

$$
M_{y}=\sum M_{o y} \sin \alpha_{m} x
$$

$$
M_{x y}=\sum M_{o x y} \cos a_{m} x
$$

$$
\begin{equation*}
p=\sum M_{o x y} \cos \alpha_{m} x \tag{A-14}
\end{equation*}
$$

Substituting equations (A-14) into equation (3-7), we get :
$\frac{d Q_{x}}{d x}=-p$
or :
$Q_{o x}=\frac{p_{m}}{\alpha_{m}}$

Let :
$M_{m}=M_{o x}+M_{o y}$
Then , from equations (3-27.1), (3-27.2), and (A-14), we get :
$M_{m}=p_{m}\left(\frac{1+\mu}{a_{m}^{2}}+\frac{\mu h^{3} F_{1}}{12}\right)$
From the governing equation for w_{o} (equation (3-35)) we get :

$$
\begin{align*}
w_{o o}= & \frac{p_{m}}{a_{m}^{4} D}\left[1+\frac{(2-\mu) h^{3} \alpha_{m}^{2} F_{1}}{12(1-\mu)}-\frac{\alpha_{m}^{4} D}{N}\right. \\
& \left.+\frac{\mu h^{2} \alpha_{m}^{2}}{40(1-\mu)}+\frac{\mu^{2} h^{5} \alpha_{m}^{4} F_{1}}{480\left(1-\mu^{2}\right)}\right] \tag{A-17}
\end{align*}
$$

From equation (3-27.4), we get for $\varphi_{o x}$

$$
\begin{array}{r}
\varphi_{o x}=\left\{-w_{m} a_{m}+\frac{1}{S} \frac{p_{m}}{a_{m}}-\frac{1}{N} a_{m} p_{m}\right. \\
\left.-\frac{1}{N} a_{m} p_{m}+\frac{1}{R} a_{m} M_{m}\right\} \tag{A-18}
\end{array}
$$

From equation (3-27.5), we get for $\varphi_{o y}$
$\varphi_{o y}=0$

From the equilibrium equation:
$\frac{\partial M_{x}}{\partial x}-\frac{\partial M_{x y}}{\partial y}=Q_{x}$
we get :
$\frac{\mathrm{dM}_{\mathbf{x}}}{\mathrm{dx}}=\mathbf{Q}_{\mathbf{x}}$

From which and with equation (A-15) for $Q_{o x}$, we get for $M_{o x}$:
$M_{o x}=\frac{p_{m}}{\alpha_{m}^{2}}$

From equations (3-27.1), (A-18), and (A-20), we get for $\Gamma_{o x}$:
$\varphi_{o x}=p_{m}\left(\frac{\mu(1+\mu)}{E \alpha_{m}}-\frac{1}{\alpha_{m}^{3} D}\right)$

Similarly by using equation (3-34), we get for $Q_{o y}$:

$$
\begin{equation*}
Q_{\text {oy }}=0 \tag{A-22}
\end{equation*}
$$

And from the equilibrium equation:

$$
\frac{\partial M_{y}}{\partial y}-\frac{\partial M_{x y}}{\partial x}=Q_{y}
$$

we get :
$M_{o x y}=0$

A-4 PHYSICAL INTERPRETATION FOR THE AVERAGE DISPLACEMENTS $\bar{w}, \bar{u}, \bar{v}$, AND AVERAGE ROTATIONS φ_{x} and $\varphi_{\mathbf{y}}$:

For convenience in formulation and analysis,average displacements $\bar{w}, \overline{\mathbf{u}}, \overline{\mathbf{v}}$, and average rotations $\varphi_{\mathbf{x}}$ and $\varphi_{\mathbf{y}}$ are introduced . This is similar to introducing moment stress resultants which are actually average stresses :

$$
\begin{aligned}
& \left\{\text { Exact Stresses : } \sigma_{x}, \sigma_{y}, \ldots\right. \\
& \left\{\text { Average Stresses : } M_{x}, M_{y}, \ldots\right.
\end{aligned}
$$

Similarly :

$$
\begin{aligned}
& \text { \{Exact Displacements : } u, v, w \\
& \text { (Average Displacements : } \bar{u}, \bar{v} \text {, and } \bar{w}
\end{aligned}
$$

The average displacement \bar{u} is defined as follows :
$\overline{\mathbf{u}}=\frac{1}{h} \int_{\frac{-h}{2}}^{\frac{+h}{2}} u \mathrm{dz}$
And similarly :
$\bar{v}=\frac{1}{h} \int_{\frac{-h}{2}}^{\frac{+h}{2}} v d z$

Equating work of the transverse shear stress $\tau_{x z}$ due to displacement w to the work of the transverse shear resultant Q_{x} due to average displacement \bar{w}, one has:
$\int_{\frac{-h}{2}}^{\frac{+h}{2}}{ }^{\tau} x z^{w d z}=Q_{x} \bar{w}$

On substituting for $\tau_{x z}$ and w from equations (3.3) and (3.15), respectively yields for the $\overline{\mathrm{w}}$ the expression :
$\bar{w}=w_{0}+\frac{p}{N}-\frac{M}{R}$

The same result would be obtained if one were to use the work of ${ }^{\tau} \mathrm{yz}$ stresses.

Defining the average rotations of sections $x=$ constant, $y=$ constant by ψ_{x} and ψ_{y}, respectively, one may equate the work of the resultant couple on the average rotation to the work of the corresponding stresses σ_{x}, σ_{y}, on the displacements u and v and expressed as :
$\int_{\frac{-h}{2}}^{\frac{+h}{2}} \sigma_{x} u d z=M_{x} w_{x}$

The stress expressions to be used for σ_{x}, σ_{y} are the initial linear variations $\left(\sigma_{x}=\frac{12 M_{x}}{h^{3}} z, \sigma_{y}=\frac{12 M_{y}}{h^{3}} z\right)$

On substituting the linear form of σ_{x}, and u into equation (A-28) and integrating the results , an expression for ψ_{X} is obtained as :
${ }_{w_{x}}=-\frac{\partial w_{o}}{\partial x}+\frac{Q_{x}}{S}-\frac{1}{N} \frac{\partial p}{\partial x}+\frac{1}{R} \frac{\partial M}{\partial x}$

Similarly an expression for ψ_{y} is obtained as :
$\psi_{y}=-\frac{\partial w_{o}}{\partial y}+\frac{Q_{y}}{S}-\frac{1}{N} \frac{\partial p}{\partial y}+\frac{1}{R} \frac{\partial M}{\partial y}$

On comparison of equations ($\mathrm{A}-30$) and ($\mathrm{A}-3.27 .4$), one notes that
$\psi_{X}=\varphi_{X}$,
i.e. :
φ_{x} is the rotation of a vertical element $x=$ constant of the plate.

Also on comparison of equations (A-31) and (3.27.5), one notes that
$\psi_{\mathrm{y}}=\varphi_{\mathrm{y}}$,
i.e. :
Φ_{y} is the rotation of a vertical element $y=$ constant of the plate.

A-S PROGRAM LISTING

R-5.1 PROGRAM DISS2 LISTING:

	CONTINUEGO TO (400,401,501) ILOAD	Dis00440
		DIS00450
		DIS00460
400	WRITE(6,402)	DIS00470
	GO TO 404	DIS00480
402	FORMAT(' LOAD : UNIFORM LOAD)	DIS00490
401	WRITE $(6,403) \mathrm{ZI}$	DIS00500
	GO TO 404	DIS00510
403	FORMAT(LOAD : LINE LOAD APPI.IED AT $\mathrm{ZI}={ }^{\prime}, \mathrm{FP} 8.2$)	Discos20
501	WRITE(6,503) UU,ZI	DIS00530
503	FORMAT(LOAD : STRIP LOAD ,WIDTH $=$ ',F8.3,;CENTERED AT ZI $=$ ';F8.3)	Dis00540
404	WRITE $(6,188)$ NU	DIS00550
188	FORMAT($\mathrm{NU}=$ '; F6.3)	Dis00560
	WRITE $(6,101)$ BAR	DIS00570
	W'RITE $(6,122)$ MTERM	Dis00580
122	FORMAT($M=1,3,5, \ldots ;$;2)	DIS00590
101	FORMAT('B/A $=$ 'F10.2)	DIS00600
C	$\mathrm{PI}=22.077 .0$	Dis00610
	$\mathrm{PI}=-1.00$	Dis00620
	$\mathrm{PI}=$ DARCOS (PI)	DIS00630
	GO TO (490,491,491) IDEF	DIS00640
490	CONTINUE	Dis00650
	WRTTE $(6,141)$	DIS00660
	WRITE $(6,492) \mathrm{X,Y}$	DIS00670
	WRITE $(6,141)$	DIS00680
492	FORMAT('DEFLECTIONS,X-M,Y-MOM : ARE EVALUATED AT X $=$ ',F8.2,2X,	DIS00690
	. $\mathrm{Y}=$ ', P 8.2)	Dis00700
C		Dis00710
	GO TO 435	DIS00720
491	CONTINUE	DIS00730
	GO TO (370,371,373,373,435) ISTRES	DIS00740
370	CONTINUE	DIS00750
	WRITE(6,141)	DIS00760
	WRITE(6,183) X,Y	DIS00770
183	FORMAT('NOTE: SIGMAX,SIGMAY,\& SIGMAZ ARE EVALUATED AT (',F4.1,A,	DIS00780
	\therefore ¢ $\left.4.1,{ }^{\prime} \mathrm{B}, \mathrm{Z}\right)^{\prime}$)	DIS00790
	WRITE(6,141)	D1500800
C	WRITE(6,331)	DIS00810
331	FORMAT(SIGMAX ; $6 \mathrm{X}, \mathbf{S I G M A Y} ; \mathbf{4 X , S I G M A Z}$ ')	DIS00820
	GO TO 435	DIS00330
371	WRITE 6,141$)$	DIS00840
	WRITE $(6,180)$	DIS00s50
	WRITE $(6,181)$	Disons60
	WRITE $(6,182)$	DIS00870
180	FORMAT('NOTE : SIGMAXY IS EVI.UATED AT ($0, B / 2, Z$) $)$	Dismosso
181	FORM^T('NOTE: SIGMAXZ IS EVLUATED 1 T ($0,0,7)$ ')	DIS00s90
182	FORMAT('NOTE : SIGMAYZ LS EVLLUATED AT ($(1 / 2, B / 2,7)$)	DIS00900
	WRITE(6,141)	DIS00910
	WRITE 6,372$)$	Dis00920
372	FORMAT(SIGMAXY ; 6X,SIGMAXZ ',4X,SIGMAYZ)	DIS00930

```
    GO TO 435 DIS00940
373 CONTINUE
    WRITE(6,141)
    WRITE(6,437) X,Y
C WRITE(6,497)
C WRITE (6,466) X,Y
C WRITE(6,479)
    WRITE (5,141)
497 FORMAT[TX,Z;8X,SIGZ-B'SX,SIGZ,P)
C497 FORMAT(7X,Z',8X,'SIGXZR',5X,SIGXZB',7X,SIGXZP')
C497 FORMAT(7X,'H/A';8X,'XSHERR'SX,'XSHERB';X'XSUERP')
    479 FORMAT(7X,'HAR',5X,'XYMOMR',7X,'XYMOMP'
C479 FORMAT(5X,HjA;6X,TOTALINPLANE FORCE NY )
C WRITE(6,440)
C437 FORMAT('NOTE :SIGMA-X IS EVALUATED BY DIFFERENT REFINED THEORIES')
C437 FORMAT(NOTE:SIGY ,SIGXY,SIGYZ:ARE EVLUNTED AT FREE END:
    437 FORMAT('NOTE : STRESSES ARE EVALUATED AT X = ',F8.2,2X,'Y = ',F8.2)
    466 FORMAT('NOTE : A CHECK FOR TOTAL LOAD ON PLATE')
C437 FORMAT('NOTE : NU IS EVLUATED ^T X=0.5*A.Y = 0.0')
CA4O FORMAT('Z;IOX,'NU REISSNER',6X,NU PRESENT')
C4.37 FORMAT('NOTE : W(X,Y,Z) IS EVLUATED AT X = 0.5*A,Y = 0.0')
C440 FORMAT(5X,'X '10X,'W REISSNER',6X,'W PRESE\T'; AT Z/H = 0.0)
C440 FORMAT('Z',10X,W REISSNER',6X,'W PRESENT')
    435 CONTINUE
C*****************************************************
        DO 300 IPLATE = NPLATE,MPLATE
C*****************************************************
    IF(IPLATEGT.4) GO TO 134
    GO TO (130,131,132,133) IPLATE
    130 HINR=0.005
        GO TO }13
    131 HARR=0.010
        GO TO 136
    132 HAR=0.050
        GO TO 136
    133 HAR=0.100
        GO TO 136
Cl34 HAR=0.200*(IPLATE-4)
    134 HAR=0.100*(IPLATE-3)
        IF(IPLATEGT.13) GO TO 184
        GO TO 136
    184 IIAR = IPLATE-12.0
    136 CONTINUE
        WRITE(6,14i)
        WRITE(6,367) HAR
    367 FORMAT(II/A = 'F6.3)
        WRITE(6,477)
C477 FORMAT(7X,H/H';8X,YSHERR'SX,'YSHERB'7X,YSIIERP') DIS01410
C477 FORMAT(7X,'Z;8X,SIGXYR',5X,'SIGXYB',TX,SIGNYP')
    477 FORMAT(7X,Z;,9X,'SIGXR',6X,'SIGXB;7X,'SIGXP)
```

DIS00950
DIS00960
DIS00970
DIS00980
DIS00990
DISOIONO
DISOIOIO
DISOIO20
DIS01030
DISO1040
Disoloso
DIS01060
DISO1070
DISO1080
DISOIn90
DISOI 100
Disolilo
DISO1120
DISO1130
DISOIIA0
Disoliso
DISOIIGO
DISO1170
DISO:180
DISO1190
DISO1200
DISO1210
DISO1220
DISO1230
DISO1240
DISO1250
DISO1260
DISO1270
DISOI 280
DISO1290
DISOI300
Disol310
DISO1320
DISO1330
DISO1340
DISO1350
DISOI360
DISO1370
DISNI 380
DISO1390
DISO1400
DISO1410
DISO1420
DISO1430

```
C477 FORMAT(7X,Z;'SX,'SIGMIA-X(B);SX,SIGMA-X(P))
    Disol44n
    141 FORMAT(*************************************)
        WVRITE(6,141)
        Z = -0.600000
C*****************************************T************
        DO 250 IZ=1,IZMAX
C*****************************************************
        z= Z + 0.100000
C************************************************
        DO 200 [BALCH= 1,2
C*****************************************************
        W'BAR = 0.0
        WBARE = 0.0
        WBARR = 0.0
        WBARRE = 0.0
        XMOM = 0.0
        YMOM =0.0
        XYMOM = 0.0
        XSHER = 0.0
        YSHER =0.0
        WR=0.0
        WP=0.0
        EPSXP=0.0
        EPSYP=0.0
        EPSZP=0.0
        EPSXR=0.0
        EPSYR =0.0
        EPSZR=0.0
        APLOAD =0.0
C
    XMOMR = 0.0
        YMOMR = 0.0
        XYMOMR = 0.0
        VXR = 0.0
        VYR=0.0
        W0}=0.
        XMPYM =0.0
C-GO TO (340,3+1) IBALCH
    340 XSTB=0.0
        YSTB =0.0
        7STB =0.0
        XYSTB =0.0
        X7STB = 0.0
        Y7STB =0.0
        GO TO 342
C
    341 XSTP=0.0
        YSTP =0.0
```

nisolann
DISO1450
DISO1460
DISO1470
DIS01480
DISO1490
DISO1500
Disolsio
DISO1520
DIS01530
DISOIS40
DISO1550
DISOI560
DISO1570
DISO1580
DISO1590
DISO1600
DIS01610
DIS01620
DISO1630
DISOI640
DIS01650
Dis0ifen
DISO1670
DIS01680
DIS01690
DIS01700
DIS01710
DISO1720
DISO1730
DIS01740
DIS01750
DIS01760
DIS01770
DISO1780
DIS01790
DIS01800
Disoisio
DISO1820
DISO1830
DISOIR40
Dis01850
DIS01860
DISOI870
DISOIS8n
DISO1s90
DISOI900
DISO1910
DISOI920
Disolaco

```
    7STP=0.0 DISniO.n
    XYSTP = 0.0
    X7STP = 0.0
    Y7STP =0.0
    YNYP =0.0
C
    342 XSTR=0.0
        YSTR =0.0
        ZSTR =0.0
        XYSTR = 0.0
        X7STR=0.0
        YZSTR = 0.0
        XLOADR=0.0
        XLOADP = 0.0
C****************************************************
    DO 100 M = 1,MTERM,2
C*****************************************************
    IF(HARLT.0.10)GO TO 222
    ITHICK=2
    GO TO 223
222 [THICK=1
223 CONTINUE
    GO TO (112,113,113) IPRINT
112 WRITE (6,18)
    WRITE(6,17)M
17 FORMAT(' M = '.12)
113 CONTINUE
    GO TO (150,151) IBALCH
150 F1 =6./5.
    F2 =-i.p.
    F4 =-1./48.
    F3 = 39./1120.
    GOTO 152
ISI CONTINUE
    CALL DISS(M,NU,HAR,ALPHA,A1,A2,^3,A4,A5,F1,F2,F3,F4,
        Z,F1Z,F1ZP,F2Z,F3Z)
    152 CONTINUE
    CALL POWERS(M,HAR,BAR,PI,ALPHIA,AP,AP2,^P3,AP4,APS,^P6,HAR2,
    HARR3,HAR4,HAR5,HAR6,BAR2,BAR3,BAR4,BAR5,GAMA2,
    X,Y,APX,APY,GAMY,FI,PM,ILOAD,ZI,UU)
    CALL BENDNG(IBOUND,ITHICK,M,NU,HAR,AP,APR,GAMB,KPD,UU,
        BAR,BETA,BETAP,A,B,RE,IPRINT,FI,X,Y,7I,ILOAD)
    CALL FORCES(IBOUND,ITIIICK,M,HIAR,BAR,NU,AP,APB,GAMB,KPD,FI,
        BETA,BETAP,A,B,EE,WPAR,WPARE,XM,YM,IPRINT,X,Y,
        ZI,UU,ILOAD,XYM,QX,QY)
    CALL REISS(M,IBOUND,ITHICK,NU,IIAR,BAR,AP,APB,GAMB,FI,
        WPARR,XMR,YMR,XYMR,WPARRE,VX,VY,SIGXR,SIGYR,UU,
    . SIGZRSIGXYR,SIGXZR,SIGYZR,X,Y,Z,ZI,ILOAD,FIZR)
    CALL XPIANP{M,IPLANE,IBOUND,NU,HAR,BAR,AP,APB,CI,C2,UP,
                        XK4,X,Y,ZI,UU,ILOAD,F1,F2)
```

disniann
DISOIC5n
DISOIO60
DIS01970
DISO1980
DISO1990
DISO20no
DISO2nio
Disoze20
DIS02030 Disornan DIS02050 Dise2nso DISO2070 DISO2nso DISO2noo DISO2100 DISO2110 DISO2120 DIS02:30 DIS02140 DISO2150 DIS0216n DIS02170 DISO21s0 DIS02i90 DIS022no DIS02210 DIS02220 DIS02230 DIS02240 DIS02250 DIS02260 DIS022:0 DISO2280 DIS02290 DIS02300 DISO2310 DISO2.320 DIS02.3.30 DIS02340 DISN2350 DISO236n DISO2370 DIS023so DISO23s0 DISO24no Diso24in DISn2420 DIS024.30

```
    CAILL STRESSIIBOUND,TTHICK,M,HIAR.BAR,NU,AP,APB,GAMB,KPD,FI,
        F2,F3,F4,F1Z,F2Z,F3Z,BETA,B!:TAP,A,B,FEL,C1,C2,
        UP,XK4,SIGX,SIGY,SIGZSIGXY,SIGXZ,SIGYZZ,IBALCIH,
    . . X,Y,Z,ZI,UU,ILOAD,FIZP,QX,QY,YNY)
    WBAR = WBAR + WPAR
    WBARE = WBARE + WPARE
    WBARR = WBARR + WPARR
    WGARRE = WBARRE+ WPARRE
    XMOM = XMOM + XM
    YMOM = YMOM + YM
    XYMOM = XYMOM + XYM
    XSHER = XSHER +QX
    YSIIER = YSIIER +QY
C
C
        APLOAD = APLOAD + PM*DSIN(APX)
    C WRITE(6,330) HAR,PM,APLOAD
    C
    C
        YNYP = YNYP + YNY
C
    XMOMR = XMOMR + XMR
    YMOMR = YMOMR + YMR
    XYMOMR = XYMOMR + XYMR
    VXR = VXR + VX
    VYR = VYR + VY
    XNU2 = 12.*(1.-NU**2.)
C
        GO TO (35,36,40)IBOUND
    35 ALFAI = WBAR
        ALFAIR = WBARR
        GO TO 37
    36 ALFAI = WBAR/XNU2
        ALFAIR=WBARR/XNU2
        GO TO 37
    40 ALFAl = WBAR/XNU2
        AIFAIE = WBARE/XNU2
C40 NITFAI = WBAR
C ALFAIE=WBARE
        ALFAIR = WBARR/XNU2
        ALFARE = WBARRE/XNU2
    37 BETAI = XMOM
        GMMA1 = YMOM
        BETAIR = XMOMR
        GAMAIR = YMOMR
    C
        GO TO (114,115,115) IPRINT
    114 WRITE(6,125) ALFAI,BETAI,GAMAI
    125 FORMAT('ALFAI =',E12.5,3X,'BETAI =',E12.5,3X,'GAMAI =',E12.5)
C
```

DISO244n
DIS02450
DIS02460
DIS02470
DISN248n
DIS02490
DIS02500
DIS02510
DIS02520
DIS02530
DIS02540
DIS02550
DIS02560
DIS02570
DIS02580
Dis02590
DIS02600
DIS02610
DIS02620
DIS02630 DIS02640
DIS02650
DIS02660
DIS02670
DIS02680
DIS02690
Dis02700
DIS02710
Dis02720
DIS02730
DIS02740
DIS02750
DIS02760
Dis02770
DIS02780
DIS02790 DIS02800 DIS02810 DIS02\$20 DIS02830 DIS02840 DISO2850 DIS02860 DIS02870 DIS02880 DIS02890 DIS02900 DIS02910 DISO2920 DIS02930

C NOTE :		DIS02940	
C	PNR $=$ PiN	DIS02950	
	RMR $=M / R$	DIS02960	
C WIIERE:		DIS02970	
C	$\mathbf{M}=\mathbf{M}+\mathrm{M}$	DIS02980	
C	$\mathbf{X} \mathbf{Y}$	DIS02990	
C		DIS03000	
115 X	XMPYM $=\mathbf{X M ~ + ~ Y M ~}$	DIS03010	
	$K 4=4 . * 53^{*} \\| A R^{* * 4 . j A P}$	DIS03020	
		DIS03030	
	GO TO ($30,31,31$)IBOUND	DIS03040	
31 K	$K 4=K 4 ; \mathrm{XNU2}$	DIS03050	
	KS = KS/XNU2	Dis03060	
C	WPAR = WPAR/XNU2	DIS03070	
30 P	$\mathrm{PNR}=\mathrm{K} 4$	DIS03080	
	RMIR $=$ K5	Dis03090	
	W0 $=$ W0 + WPAR/XNU2-PNR + RMR	DIS03100	
	GO TO (116,117,117) IPRINT	Dis03110	
116	CONTINUE	DIS03120	
	WRITE (6,102) W0	DIS03130	
102	FORMAT(${ }^{(1)}=$ ',E12.S)	DIS03140	
117	CONTINUE	Dis03150	
C**		DIS03100	
$\mathrm{c}==$	$=>$ IPLANE : IS AN INDICATOR WIIETIIER THE EDGE AT (X, + - B: 2)	Dis03170	
C	IS OR NOT Allowed to Stretch in tile Y-direction .	Dis03180	
C	IF :	DIS03190	
C	IPLANE $=1===>$ EDGE IS NOT ALLOWRD TO STRETCH IN THE Y-DIRECTION.	DIS03200	
C	IPLANE $=2===>$ EDGE IS ALLOWED TO STRETCII IN THE Y-DIRECTION.	Dis03210	
C		Dis03220	
C= = > NOTE: IPRINT : INDICATOR WHETHER TO PRINT INTERMEDIATE		DIS03230	
C	RESULTS FOR FORCES \& DEFLECTION OR NOT	Dis03240	
C	IPRINT = 1 PRINT INTERMEDIATE RESULTS .	DIS03250	
c	IPRINT $=2$ DO NOT PRINT INTERMEDIATE RESULTS .	Dis03260	
C	IPRINT $=3$ DO NOT PRINT FINAL RESULTS.	DIS03270	
C		DIS03280	
$c==>$ NOTE : IDEF : INDICATOR WHETIIER TO PRINT INTERMEDIATE		DIS03290	
C	RESULTS FOR DEFLECTION OR NOT	DIS03300	
c	IDEF $=1$ PRINT INTERMEDIATE RESULTS .	Dis03310	
c	IDEF $=2$ DO NOT PRINT INTERMEDIATE RESULTS .	DIS03320	
C		DIS03330	
C		Dis03340	
$\mathrm{C}==$	$\stackrel{\sim}{\text { ¢ }}$ (NOTE : ISTRES : INDICATOR WHETIIIR TO PRINT INTERMEDIATE	Dis03350	
C	RESULTS FOR STRESSES OR NOT	Dis03360	
C	ISTRES = 1 PRINT INTERMEDIATE RFSUITS .	Dis03370	
c	ISTRES $=2$ DO NOT PRINT INTERMEDIATE RESUITS .	Dis03380	
C		Dis03390	
	= > NOTE : IPLOT : INDICATOR WHETHER TO PRINT RESULTS	[IS03400	
C	FOR PLOTTING PURPOSES OR NOT	DIS03410	
C	IPIOT = 1 PRINT RESULTS .	DIS03420	
C	IPLOT $=2$ DO NOT PRINT RESULTS .	DIS03430	

```
C*************************************************** DIS03440
    XSTR = XSTR + SIGXR
    YSTR = YSTR + SIGYR
    ZSTR = ZSTR + SIGZR
    XY'STR = XYSTR + SIGXYR
    XZSTR=XZSTR + SIGXZR
    YZSTR=YZSTR+SIGYZR
C
    F2R =-1.4.** 2.*Z - 3.*Z**2 + 2.*Z**4 )
    F3R=39./1120.
    XMPYMR = XMR + YMR
    WR=WR + PM*HAR4*(F2R-F3R)*DSIN(APX)
        + 3.*NU*HAR2*XMPYMR*(1./10.-2.*Z**2) + WPARR
C
    EPSX = SIGXR -NU*(SIGYR + SIGZR )
    EPSY = SIGYR -NU*(SIGXR + SIGZR )
    EPSZ = PM* FIZR*DSIN(APX) - 12.*NU*XMPYMR/HAAR2*Z
    EPSXR=EPSXR + EPSX
    EPSYR = EPSYR + EPSY
    EPSZR = EPSZR + EPSZ
C
    GO TO (332,333) IBALCH
332 XSTB = XSTB + SIGX
    YSTB = YSTB + SIGY
    ZSTB = ZSTB + SIGZ
    XYSTB = XYSTB + SIGXY
    XZSTB = XZSTB + SIGXZ
    YZSTB = YZSTB + SIGYZ
    GO TO 190
    333 XSTP = XSTP + SIGX
    YSTP = YSTP + SIGY
    ZSTP = ZSTP + SIGZ
    XYSTP = XYSTP + SIGXY
    XZSTP = XZSTP + SIGXZ
    YZSTP = YZSTP+ SIGYZ
C
    XMPYMP = XM + YM
    WP = WP + PM*HAR4*(F2Z-F3)*DSIN(APX)
            + 3.*NU*HAR2* XMPYMP*(1./10.-2.*Z**2) + WPAR
C
    EPSX = SIGX -NU*(SIGY + SIGZ )
    ERSY = SIGY -NU*(SIGX + SIGZ )
    EPSZ = PM**IZ*DSIN(APX) - 12.*NU*XMPYMP/IIAR2*Z
    EPSXP = EPSXP + EPSX
    ERSYP = EPSYP + EPSY
    EPSZP = EPSZP + EPSZ
    XK22=(1.-NU)/(1.+NU)
    GO TO (441,442) ITIIICK
4 4 1 ~ E R S I N ~ = ~ 0 . 0 ~
    GO TO 443
```

DIS03440
DIS03450
DIS03460
[IIS03470
DIS03480
DIS03490
DIS03500
DIS03510
DIS03520
DIS03530
DIS03540
DIS03550
DIS03560
DIS03570
DIS03580
DIS0359n
DIS03600
DIS03610
DIS03620
DIS03630
DIS03640
DIS03650
DIS03660
DIS03670
DIS03680
DIS03690
DIS03700
DIS03710
DIS03720
DIS03730
Dis03740
DIS03750
DIS03760
DIS03770
DIS03780
DIS03790
DIS03800
DIS03810
DIS03820
DIS03830
DIS03840
DIS03850
DIS03860
DIS03870 DIS03880

DIS03890
DIS03900
DIS03910
DIS03920
Dis03930

```
442 [:RSIN - EE*DSINH(GAMB)
DIS03940
443 XLOADP = XLOADP + I.;XNU2*( 24.* XK22*(DCOS(AP)-1.)/F1/IINR2
    * ( AP/2./GAMB - DSQRT(GAMA2)|IARR2./GAMB )*EESIN
    - + 6.*(1.-NU)*AP*(DCOS(AP)-i.)/FI/HAR2*(BETA + BETAP))
C
190 CONTINUE
    GO TO (110,111) IBALCH
110 ALFAIB=ALFAI
    BETA1B = BETA1
    G^MMAIB = GAMA!
    WOB = wo
    XYMOMB = XYMOM
    XSHERB= XSIIER
    YSIIERB= YSIIER
    GO TO 100
111 ALFAIP=ALFAI
    BETAIP = BETAI
    GAMAIP = GAMAI
    WOP = WO
    XYMOMP = XYMOM
    XSHERP = XSUER
    YSIIERP = YSIIER
C**************************************
    100 CONTINUE
C**************************************
2nO CONTINUE
C**************************************
        GO TO (185,205,205) IDEF
    185 GO TO (312,312,205) IPRINT
    312 CONTINUE
C WRITE(6,530) X,ALFAIR,WP
        GO TO (504,505,505) ILOAD
S04 WRITE(6,140) ALFAIR,BETAIR,GAMAIR
505 WRITE(6,118) ALFAIB,BETAIB,GAMAIB
        WRITE(6,120) ALFA1P,BETAIP,GAMAIP
118 FORMAT('ALFAIB =',E12.5,3X,'BETAIB =',EI2.5,3X,GAMIAIB =',E12.5)
120 FORMAT('ALFAIP =',EI2.5,3X,'BETAIP =',E12.5.3X,'G^MAIP =',E12.5)
140 FORMAT('ALFAIR =',E12.5,3X,'BETA1R =',E12.53X,'GAMAIR =',EI2.5)
        GO TO (187,187,205,207)IBOUND
207 WRITE (6,165) ALFAIE
        WRITE(6,195) ALFARE
165 FORMAT('NLFAIE =',E12.5)
195 FORMAT('ALPARE =',E12.5)
187 GO TO (123,205,205) IPRINT
123 WRITE(6,119) WOB
        WRITE(6,121) WOP
119 FORMAT('WOB =',E12.5)
121 FORMAT('WOP =',E12.5)
205 CONTINUE
```

DIS03940 DIS03950 DIS03960 DIS03970 DIS03980 DIS03990 DIS04000 DISO4010 DIS04020 Dis04030 DIS04040 DIS04050 DIS04060 DIS04070 DIS04080 DIS04090 DIS04100 Dis04:10 DISO4120 DIS04:30 DIS04140 DISO4150 DIS04160 DIS04170 DIS04180 DISO4190 DIS04200 DISO4210 DIS04220 DISO4230 DIS04240 DIS04250 DISO4260 DIS04270 DIS04280 DISO4290 DIS04300 DIS04310 DIS04320 DIS04330 DIS04340 DISOM350 DIS04360 DIS04.370 DIS04380 DiS04.39n DIS04400 nis04410 [IIS04420 DISO44.30

	GO TO 439	Dis049.40
438	CONTINUE	DIS04950
	WRTTE(6,335)	DIS04960
	IVRTTE $(6,325) \mathrm{Z}$	DIS04970
	WRITE(6,335)	DIS049s0
	WRITE (6,330) HAR, YNYP	DIS04990
C	WRITE(6,330$)$ HAR,XYMOMR,XYMOMP	DIS05000
C	WRITE(6,530) Z,ZSTB,ZSTP	Disosolo
c	WRITE(6,530) Z,XYSTR,XYSTB,XYSTP	Disoseza
C	WRITE(6,530) Z , YSTR, YSTB,YSTP	DIS05030
	WRITE(6,330) Z , XSTR,XSTB,XSTP	DIS0504n
C	WRITE(6.330) Y'STR,XYSTR,YZSTR	Disosnso
c	WRITE(6,330) YSTB,XYSTB,YZSTB	DISO50\%0
c	IWRITE $(6,330)$ YSTP, XYSTP,YZSTP	DIS05070
c	WRITE(6,330) HAR,VXR,XSHERB,XSHERP	DIS050s0
c	WRITE(6,330) IIAR,APLOAD	DIS05n9n
c	WRITE(6,478) HAR,XLOADP	DIS05100
478	FORMAT(H/A $=$ 'F8.4,2X, TOTAL REACTION ALONG EDGES OT PLATE $=$ ',	DIS05110
	.F8.2)	DIS05120
	WRITE(6,330) Z.WBARR,WP	DIS05130
	XNUR = DABS (EPSXR/EPSZR)	Dis05ian
	XNUP = DABS(EPSXP/EPSZP)	DIS05150
	KRTTE(6,530) Z.XNUR,XNUP	Dis05160
439	CONTINUE	Dis05170
C^{+6}	******************************	DIS05180
	CONTINUE	DIS05190
C**	******************************	DISOS200
	CONTINUE	DIS05210
	********************************	Dis05220
	WRTTE16,18)	DIS05230
	STOP	DIS05240
	END	DIS05250
C		DIS05260
C	*********************	DIS05270
C**	END OF MAIN PROGRAM ***	DIS0528n
	**********************	DIS05290
${ }^{+}$	***************************************t*******	DIS05300
C**		Dis05310
$C^{* *}$	**)	Disos320
c		Dis0s330
C**	* surroutine - xplane - to find solution of tile in-plane problem	Dis05340
c	*******	Disos35n
c	I,E: TO DTERMINE THE CONSTANTS CI AND C2 IN TIIE EXPRISSSION	DIS05360
c		DIS05370
c	FOR THE INPLANE DISPLACEMIENTS UBAR \& VBAR.	DISOS380
C		DIS0s390
	SURROUTINE XPLANF,	Disosano
	- XK4,X,Y,ZI,UU,ILOAD,F1, F2)	Dis05410
	IMPLICFT RENL*8(ヘ-H,O-Z)	Disosant
	DOUBLEPRECISION NU	Disosain


```
    XNUMI = NU-1. nisn594n
    XKI =6.*(I.-NU)/F1/IIAR2
    XK22 = (1.-NU)(1.+NU)
C
    APYI = APY
    APXI = APX
    GAMYI = GAMY
    XK7 =-NU*NU*F!/6./XNUMI
    XK8 = NU/12;'XNUM!
    GO TO (333,334) ITHICK
333 EEBARI =0.0
    EESIN =0.0
    EECOS = 0.0
    GO TO 335
334 EEBARI = EE*DSINH(GAMY)
    EESIN = EE*DSINH(GAMY)
    EECOS = EE*DCOSH(GAMY)
c
335 CONTINUE
    GO TO (20,21) IBALCH
20 GI-Z/4.-5.*Z**3/3.
    G2=-3./10.*Z + 2.*Z**3
    G3 = 5./4.*Z - 5./3.*Z**3
    G4 =-1./48. - Z*(-336.*NU**2-195.*NU + 195.);5600./XNUM1
    . + Z**2/4. - Z**3*(8.*NU**2 + 5.*NU-5.)/20.,'XNUM1
    . + Z**5/10.
        FIZ=-1./4.*(2.-6.*Z + 8.* Z Z** 3)
        FIZP = 3.f2.*(1. - (2.*Z)**2)
C WRITE(6,50) G1,G2,G3,G4
        GOTO 22
    21 GI=(FIZ-F2)/F1-Z
        G2=2*Z**3-.30*Z
        G3=(FIZ-F2)/FI
        G4=-F3Z +F3*Z +F4
c
22 CONTINUE
    DWDX2 = - ^* ^P2*DCOSU(APYY) - B*AP2*APY*DSINHI(APY)
        - EECOS*AP2 - AP2* BETA
```



```
                + EECOS*GMMA2/HAR2
    DWDXY = ^* AP2* DSINH(APY) + B*(AP2*APY**DCOSH(APY) + AP2*DSINH(APY))
        + EEBARI*AP*DSQRT(G^MA2)/IIAR
    XII = DWDX2 + NU*DWDY2
    XJ1 = NU*DWDX2 + DWDY2
    XI.t = DWDXY
c
    DFIX3 = - ^**AP4*HAR2* DCOSII(APY) - R* (-2.*F1*AP2* HAR2/6./XNUMI
    - *AP4*IIAR2*DCOSIH(APY) + APY*AF4*IIAR2*DSINII(APY))
    . + EFCOS**KK2\mp@subsup{2}{}{*}\LambdaP\mp@subsup{4}{}{*}IIAR2 + AP4*HAR2*BETAP DISOKA3O
        Dise5950
        DIS0596n
        DISn5970
        DISO5980
        DIS05990
        DIS06000
        DIS06010
        DISO6020
        DIS06030
        DIS06040
        Dis06n50
        DIS05060
        DIS06070
        DIS060.80
        DISOE090
        Dis06!00
        DISO5110
        DIS06120
        DIS06130
        DIS06140
        DIS05150
        DIS05160
        DIS06170
        DISN6180
        DIS06!90
        DIS0620n
        DISO6210
        DIS06220
        DIS06230
        DIS06240
        DIS06250
        DIS06260
        DIS06270
        DIS06280
        DIS06290
        DIS06300
        DIS0E310
        DIS06320
        DIS06330
        DIS06340
        DISn6.350
        DIS06360
        DISn6370
        DISne3so
        DIS06390
DISngino
DISOG410
DISNEM20
```

```
    DIFIXY2 = A*AP4**AR2*DCOSH(APY) + R*(-2.*F1*AP2* FAAR2/G./XNLIM1
. *AP4*IIAR2*DCOSII(APY) + APY*AP4*IIAR2*DSINHIAPY')
. + 2.*AP4*IIAR2*DCOSH(APY))
    - EECOS*XK22*AP2*GAMA2
    DFIY3 =-A*AP4*HAR2*DCOSH(APY) - B*(-2.*FI*AP2*IIAR2!6./XNUM1
        *AP4*HAR2*DCOSII(APY) + APY**AP4*HAR2*DSINH(APY)
. + 4.*AP4*HAR2*DCOSH(APY))
. + EECOS*XK22*GAMA2*GAM A2!IIAR2
    DFIYX2 = A* AP4*HAR2*DCOSH(APY) + B ( - 2.*F1*AP2* HAR2/6.;XNUMII
        *AP4*HAR2*DCOSH(APY) + APY*AP4*HAR2*DSINH(APY)
    . + 2*AP4*HAR2*DCOSH(APY))
        - EECOS**K22*AP2*GAMA2
    XI2 = DFIX3 + DFIYX2 + NL:DFIXY2 + NU*DFIY3
    XI2 = NU*DFIX3 + NU*DFIYX2 - DFIXY2 < DFIY3
C
    DFIX2Y=A*AP4*HAR2*DSINH(APY) + B* (-2.*Fl*AP2*IHAR2/6./XNUMI
    *AP4*HAR2*DSINH(APY) + APY**AP4*IIAR2*DCOSH(APY)
    + AP4*HAR2*DSINH(APY))
    - EEBAR1*XK22*AP3*IIAR*DSQRT(GAMA2)
    DFIY2X =-A*AP4*HAR2**SINH(APY) - B* (-2.*F1*AP2*HAR2/6./XNUM1
        *AP4*HAR2*DSINH(APY) + APY*AP4*HAR2*DCOSH(APY)
        + 3.*AP4*HAR2*DSINH(APY) )
        + EEBARI*XK22*AP/HAR*GAMAA*DSQRT(GAMA2)
    XL2 = DFIX2Y + DFIY2X
C
    DFIXDX = A*AP2*DCOSH(APY) - B* (-2.*FI*AP4*HAR2 6. XNUM1*DCOSH(APY)
        + APY*AP2*DSINH(APY))
    - - EECOS*XK22*AP2 - AP2*BETAP
    DFIYDY = -A*AP2*DCOSH(APY) - B* (-2.*FI*AP4*HIAR2/G..XNUMI*DCOSH(APY)
        + APY*AP2*DSINH(APY) - 2.'AP2*DCOSH(APY))
        + EECOS*XK22*GAMA2/HAR2
    XI3 = DFIXDX + NU*DFIYDY
    XJ3 = NU*DFIXDX + DFIYDY
C
    DFIXDY = - ^* ^P2* DSINH(APY)-B*(-2.*F1*^P4*|AR2/6.iXNUM1*DSINII(APY)
    . + APY*^AP2*DCOSH(APY) - AP2* DSINH(APY))
    . + EEBARI*XK22*AP* DSQRT(GAMA2)/IIAR
    DFIYDX=-A*AP2*DSINH(APY)-B*(-2.*F1*AP4*HAR2!6.:XNUM1*DSINII(APY)
```



```
        + EEBAR1*XK22*AP*DSQRT(GAMA2)/HAR
    XI3 = DFIXDY + DFIYDX
C
    XI4 =-AP2*HAR4*PM
    XJ4 =NU*XI4
    XIA =0.0
C
DUDX = -CI*AP*DCOSH(APY)-C2*APY*AP* DSINH(APY') - AP*UU
    DVDY = Cl*^R* DCOSH(APY)
        +C2*(APY*AP*DSINH(APY) - (I.-XK4)* AP*DCOSH(APY))
    XIS = DUDX + NU*DVDY
```

DISOĊA40
DISn6:50
DIS06460
DIS06470
DIS06480
DIS06490
DIS06500
Disagsin
DIS0<520
DIS06530
DIS06540
DIS06550
DIS0esio
DIS06570
DIS065s0
DIS06590
DIS06600
DIS06610
DIS06620
DIS06630
DIS06640
DIS06650
DIS06660
DIS06670
DIS06680
Dis06690
DIS06700
DIS06710
DIS06720
DIS06730
DIS06740
DIS06750
DIS06760
DIS06770
DIS06780
DIS06790
DIS06800
DIS06810
DIS06820
DIS06830
DIS06840
DIS06850
DIS06850
DIS06870
DIS06880
DIS06890
DIS06900
DIS06910
DIS0692n
Dis06930

```
    XJS = NU*DUDX + DYDY Disn604n
    XJSBAR = XJS
    XIS = XIS*ITAR2
    XJS = XIS*IIAR2
C
    DUDY = CI*AP* DSINH(APY)
        +C2*(APY*AP* DCOSH(APY) + AP* DSINH(APY))
    DVDX = CI*AP* DSINH(APY)
        + C2*(APY*AP*DCOSH(APY)- XK4*AP*DSINH(APY))
    XLS = DUDY + DVDX
    XLS = XLS*HAR2R.
C
    XI6 =-NU*PM**F1Z*HAR2/XNUMI
    XJ6 = XI6
    XL6 = XL4
C
    XI7 = PM**NU**2*AP2*F1*HAR4/6./XNUM1
    XJ7 = NU* XI7
C-_
    83 CONTINUE
        GO TO (24,25) IBALCH
    24 XI7=0.0
        X57 = 0.0
    25 CONTINLE
        SIGX=1.:XNU2*(XII*GI + XK8*XI2*G2 + XI3*G3 + XI4*G4
    . +XIT%G2 + XI5) + XI6
C
```



```
    . +XJ7*G2 + XJ5) + XJ6
c
        SIGXY = I./XNUPI* (XLI*G1 + XK8** XL2* G2 + XI_ 3*G3/2.
    . + XLA*G4 + XL6*G2 + XLS)
C
C YNY =C1*(1.-NU)*AP* DCOSH(APY) +C2* ( (1.-XK4)*AP* DCOSH(APY)
C . + (1.NU):APY*AP*DSINH(APY))
C . + (1-NU) AP*UP
        YNY = 1./XNU2* XISBAR - NU/XNUMI*PM*F2
    C
        SIGX=SIGX* DSIN(APX)
        SIGY = SIGY*DSIN(APX)
        SIGZ=HAR2*PM*FIZ*DSIN(APX)
        SIGXY = SIGXY*DCOS(APX)
        SIGXZ =QX*FIZP
        SIGYZ=QY*FIZP
        YNY = YNY* IIAR*DSIN(APX)
        RETURN
        END
C-
C
```



```
    R2 = -HAR3*AP3!5./DSQRT(GAM2):(1.-NU)*DTAN'H(GAMB)
    . + DTANH(APB)*(1.+XK*HAR2*AP2;IO.)
    C6}=\textrm{R}2,\textrm{RI
    CS =-1.iDCOSHI(APB)*(1.+XK*|AR2*AP2/IO. + APB*DSINII(APB)*C6 )
    CASH2 = 4.;AP2* ( 2.*C6* DCOSII(APB)-1.)
    GO TO (6,7) TTHICK
6 CA=0.0
    C4SH1=0.0
    CAS113=0.0
    GO TO 5
7C4=4./S.*HAR2:AP/DCOSH(GAMB)*(2.*C6*DCOSI)(APB)-1.)
    CASH1 = 4.;AP2*HAR/DSQRT(GAM2);DCOSH(GAMIB)* DSINH(GAMY)
        *(2*C6*DCOSIH(APB)-1.)
    CASH3 = 4.jAP* HAR*DSQRT(GAM2)* (2.*C6*DCOSII(APB) - 1. )*DCOSII(APY)
        [DCOSH(APB)
    GO TO 5
C =___
C*** FREE PLATE AT Y = +,-B/2 ***
C =___
    4 R5 = DSQRT(HAR2*AP2 + 10.)
        R4 = 1.THAR AP*R5
        R3 = 2.*HAR2*AR2/5.*(1. - R4*DTANH(APB)/DTANHIGAMB) ) + 3. + NU
            -2.*APB*(1.-NU)/DSINH(2*APB)
        C6=NL'2(GAM/2)/10./R3/DCOSH(APB)
        C5=C6(1.-NU)*(1. + NU -(I.-NL)*APB'DTANH(APB))
C
C
        GO TO (8,9) TTHICK
    8 C4=0.0
C CASHI = 8./AP3*DSINH(APB)*C6
        C4SH1=0.0
        C4SH2 =0.0
C CASH3 =0.0
        CASH3 = 8.*( DSINH(APY)*C6/AP2 )
        GOTO 5
    9 CA = 8./5.* HAR;AP2*RS*DSINH(APB)'DSINHI(GNMB)*C6
        C4SH1= = .;AP3;DSINH(GAMB)*DSINIT(APB)*C6*DSINII(GAMY)
        C4SII2=8, IHAR/AP*DSQRT(GAM2)/AP2/DSINHI(GAMMB)*DSINH(APB)*C6
            *DCOSH(GAMY)
C CASII3 = 8.;AP2 DSINH(GAMB)*DSINHI(APB)*DSINH(GAMY)*C6
        CaSII3=8.*(DSINH(APY)*C6/AP2 )
C
C
    5 APD2=AP!2.
        GO TO (60,61) ITHICK
    60 C4COS =0.0
        GO TO (100,100,101) IBOUND
    101 CACOS = 8./5.'HAR/AP2*R5*DSINH(AFB)/DTANH(GAMB)*C6
100 CASIN = 0.0
        GO TO }6
```

IDIS07940 DIS0795n DIS07960 DIS07970 DIS0798n DIS07990 DIS08non Disoseio DISOgO20 DIS080.30 DIS080.40 DIS08050 Disosngn DIS08070 DISOsoso Disnengn Disosino DIS08110 DIS08120 DIS08:30 DIS08ian DIS08:50 DIS08160 DISOSI70 DIS08180 DIS08I90 DIS08200 DIS08210 DIS08220 DIS08230 Dis08240 DIS08250 DIS08260 DIS08270 Dis08280 DIS08290 DIS08300 DIS08310 DIS08320 DIS08.330 Disos34n DIS0835n DIS08360 DIS08370 DIS08380 DIS08390 DISOSA00 Disnesio DIS08420 DISnRa30

```
61 C4COS =C4*DCOSH(GAMY)
    C4SIN = C4*DSINH(GAMY)
    6 2 ~ C O N T I N U E
C
    WPARR = 48.*(1.-NU**2.**(1.,AP5*(C5*DCOSII(APY)+C6*APY*DSINII(APY) + I.)
        + XK=1IAR2/AP3/IO.)
C
    WPARRE =48.*(1.-NU**2.)* (1./AP5* (C5*DCOSH(APB)+C6*APB*DSINH(APB)
        + 1.) + XK*IIAR2/AC3;10.)
C
        XMR = C6*8./AP3*(HAR2*AP2/5.-NU)*DCOSH(APY)
    . + 4./AP3*(1.-NU)*C6*APY* DSINII(APY)
    . + 4./AP3*(1.-NU)*CS*DCOSH(APY)
    . + CACOS + 4./AP3*(HAR2*AP2*NU/10./(1.-NU) + 1.)
    . - PM*NU*IIAR2/10./(1.-NU)
C
        YMR = C6**./AP3*(HAR2*AP2/5.+1.)*DCOSH(APY)
    . -4./AP3*(1.-NU)*C6*APY*DSINH(APY)
    . -4./AP3*(1.-NU)*C5*DCOSII(APY)
    . + CACOS + 4.*NUiAP3*(HAR2*AP2*XK/10. + 1.)
    . - PM*NU*ITAR2/IO./(1.-NU)
C
    XYMR = C6* 4./AP3*(1.-NU)*APB*DCOSH(APY) - 4./AR3*(1.-NU)* (CS
        +C6)=DSINH(APY) + C4SHI
C
        vX=-4.* (2.*DCOSH(APY)*C6-1.)/^P2 + C4SIH2
C
    VY =-8.*(DSINH(APY1)*C6/AP2 ) + C4SHI3
C
c
    WPARR = WPARR*DSIN(APX)
    WPARRE = WPARRE*DSIN(APX)
    XMR = XMR*DSIN(APX)
    YMR = YMR*DSIN(APX)
    XYMR = XYMR*DCOS(APX)
    vx = vX*DCos(APX)
    VY = VY*DSIN(APX)
C
    F17.R = -1.14.*(2.-3.*(2.*Z) + 8.* Z**3)
C
    SIGXR = 12.*XMR*Z
    SIGYR = 12.*YMR*Z
    SIGZR = IIAR2*FIZR*PM
    SIGZR = SIGZR*DSIN(ARX)
    SIGXYR = 12.*XYMR*Z
    SIGXZR = 3./2.*VX*(1. - 4.*Z** 2)
    SIGYZR = 3./2.*VY*(1. - 4.* Z** 2)
C
    RETURN
    END
```

DIS08440
DIS08450
DIS08460
DIS08470
DISOs.s.so
DIS08490
DIS08500
Dis08510
DISOS520
DIS03530
DIS0R540
Dis08550
Disossón
DIS08570
DIS08580
DIS08590
DISO860n
DIS08610
DISO8620
Dis08630
DIS08640
DTSMR650
Disorá́o
Dis08670
DIS03680
DIS08690
DIS08700
DIS08710
DIS08720
DIS08730
DIS08740
Dis08750
DIS08760
DIS08770
DIS08780 DIS08790 Dis08800 DIS08810 DIS08820 DIS08830 DIS08840 DIS08s50 DIS08860 Dis08870 DISnseso IISN8890 DIS08900 Hisn8910 ils 08920 DIS08930

	DIS08040
	DIS08950
C-_-	DIS08960
C	DIS08970
C	DIS08980
C*** SUBROUTINE BOUND TO EVAlUATE THE COEFFICIENT MATRIX	DIS08990
C ACCORDING TO THESPECIFIED BOUNDARY	DIS09000
C . CONDITIONS	DIS09010
C IBOUND : IS AN INDICATOR TO TELL WIIAT BOUNDARY CONDITION	DIS09020
C ,FOR THE EDGE AT $Y=+$, B/2., IS	DIS09030
C BEING CONSIDERED AS FOLLOW'S :	DIS09040
C IBOUND $=1====>$ INDICATES SIMPLY SUPPORTED EDGE	Dis09050
C IBOUND $=2===->$ INDICATES CIAMPED EDGE	DIS00060
C IBOUND $=3===2$ INDICATES FREE EDGE	Dis09070
C	Dis0enso
SUBROUTINE BOUND(M,IBOUND,ITHICK,NU,HAR,BAR,AP,APB,GAMB,FI,	DIS09090
. PK,BETA,BETAP,AMAT,RII,IFPR,FIX,X,Y)	Dis09100
IMPLICIT REAL*8(A-H,O-Z)	DIS09110
DOUBLE PRFCISION NU	DIS09120
DIMENSION AMAT(3,3),RII(3),IFPR(3),FIX(3)	Dis09130
C**	Dis09140
CALL POWERS(M,HAR,BAR,PI,^LPHA,AP,AF2,^13, 1 P4, APS,^P6,IIAR2,	Dis09150
IIAR3,HAR4,HAR5,HAR6,BAR2,BAR3,BAR4,BAR5,GAMA2,	DIS09160
X,Y,APX,APY,GAMY,FI,PM,ILOAD,ZI,UU)	DIS09170
C***	DIS09180
AHR $=1 . / \mathrm{HAR}$	DIS09190
XKI $=6 .{ }^{*}(\mathrm{l} .-\mathrm{NU}) / \mathrm{F} 1 / \mathrm{HAR} 2$	DIS09200
XNU2 $=12 . *\left(1 .-\mathrm{NU}^{* * 2 .)}\right.$	DIS09210
XK22 $=(1 .-N U) /(1 .+N U)$	DIS09220
GO TO ($2,3,4$) IBOUND	DIS09230
C +-	DIS09240
	Dis09250
C.	DIS09260
C	DIS09270
$C===>\operatorname{WBAR}(\mathrm{X},+-\mathrm{B} / 2)=0.0$	Dis09280
C	DIS09290
2 AMAT(1,1) = DCOSH(APB)	DIS09300
$\operatorname{AMAT}(1,2)=A P B^{*} D S I N H(A P B)$	Dis09310
AMAT(1,3) $=1 . / \mathrm{DTANH}$ (GAMB)	DIS09320
C ${ }^{\text {c }}$	DIS09330
$C==>\mathrm{MY}(\mathrm{X},+\mathrm{B} / 2)=0.0$	DIS09340
C c	Dis09350
AMAT(2,1) $=$ AP2* DCOSH(APB)	DIS09360
AMAT(2,2) $=2 . * A P 2^{*} D C O S H(A P B)$	DIS09370
- $\quad+\Lambda P 2^{*} \wedge P B^{*} D S I N H(A P B)$	Dis093s0
	Dis09390
C	DIS09400
$C=-=>\operatorname{PX}\left(X_{1}+-8 / 2\right)=0.0$	DIS09410
C	ITIS09420
$C====$ NOTE : TIIE ABOVE R.C. COMES FROM TIIS: B.C.:	DIS094.30

```
C PHIX{X,+-B/2)= DW;DX + QXis
C AND SINCE W(X,+-B/2) = 0.0 THEN
C DW:DX = 0.0 = == > QX(X,+-R/2)IS = 0.0
C OR SIMPLY: QX(X,+-B/2) = 0.0
C
    AMAT(3,1)=0.0
    AMAT(3,2)=2*AP3*DCOSH(APB)
    AMAT(3,3)=-2.*XK1*AP/(I. + NU)/DTANII(GAMB)
C
    RIM(1)=-BETA
    RH(2)= PK'(1.-2/NU)
    RII(3)= + XKI*AP*(BETA + BETAP)
    GOTO 11
c
C*** CLAMPED PLATE AT Y = +,-B/2 ***
c
```

\qquad

```
C
C= = = > WBAR(X,+-B/2 ) =0.0
C
    3 AMAT(1,1)=DCOSH(APB)
            AMAT(1,2)=APB*DSINH(APB)
            AMAT(1,3)= 1./DTANH(GAMR)
C
C= = => PHIY(X.+-B/2)=0.0
C
    AMAT(2.1) = AP* DSINH(APB)
    AMAT(2,2) = (FI*AP3*HAR2/3./(1.-NU)+AP)*DSINII(APB)
            +APB*AP*DCOSH(APB)
        \LambdaMAT(2,3)=-(1.-NU)/(1.+NU)/HAR*DSQRT(AP2*IIAR2+12./FI)
C
C= = = > DQY/DY + P = 0.0 ; AT Y = +- B/2.
C
C
C==== NOTE:THE ABOVE B.C. COMES FROM THE EQUILIBRIUM EQN.
C DQXIDX + DQY/DY + P = 0.0
C SINCE FROM THE B.C.:
C P&IIX(X,+-B/2)=DW/DX + QX/S
C AND SINCE W(X,+-B/2) = 0.0 TIIEN
C DW;DX = 0.0 === = QX(X,+-Bi2);S = 0.0
C AND AISO:DQX/DX = 0.0
C
    AMAT(3,1)=0.0
    AMAT(3,2)=2.*AP4*DCOSII(APB)
    AMAT(3,3)=-2*XK1/(1.+NU)/IIAR2*(AP2*IIAR2 + 12./FI)/DTANII(GAMB)
C
    RII(I)=-BETA
    RH(2)=0.0
    RI!(3)= + NNU2*4./^P
    GO TO 11
C
        _=
```

DIS09440
DIS09450 DIS09460 DIS09470 DISO9480 DIIS09490 DIS09500 DIS09510 DIS09520 DIS09530 DIS09540 DIS09550 DIS09560 DIS09570 DIS09580 DIS09590 DIS09600 DIS09610 DIS09620 DIS09630 DIS09640 DIS09650 DIS09660 DIS09670 DIS09680 DIS09690 DIS09;00 DIS09710 DIS09720 DIS09730 DIS09740 DIS09750 DIS09760 DIS09770 DIS09780 DIS09790 DIS09800 DIS098in DIS09820 DIS09830 DIS09840 DIS09850 DIS09860 DIS09870 DIS0988n DIS09890 DIS0990n DIS09910 DISO9920 DIS09930

```
C** FREE PLATE AT Y = +,-B,2 ***
C =-_
C
C= = = > MY(X,+-B/2)=0.0
C
    4 CONTINUE
        AMAT(1,1)= +(1.-NU)*AP2* DCOSH(APB)
        AMAT(1,2)=+(1.-NU)*APB*AP2*DSINII(APB)
            +F1*AP4*HAR2/3.*DCOSH(APB)
            +2*AP2*DCOSH(APB)
        AMAT(1,3)=-XK22*(GAMA2/HAR2-NU*AP2)/DTANHI(GAMB)
C
C= = = = VY(X,+-B; ) =0.0
C THE ABOVE EQN. IS OBTAINED FROM TIIE EQN.:
C VY=QY-DMXY/DX
C SINCE ^T Y = +-B/2.:
C DMXY/DX =0.0 & QY=0.0
C*********************************************)
    AMAT(2.1)=(1.-NU**AP3* DSINH(APB)
        +(1.-NU)*APB*AP3*DCOSH(APB)
        AMAT(2,3)=+((1.-NU)*^P2 + 12.*XK22;F1;HAR2)
        /HAR*USQRT(GAMN2)
C
C
C= == > QY(X,+-B/2)=0.0
C TIIE ABOVE EQN. IS OBTAINED FROM TIIE EQN. :
C DMY/DY - DMXY/DX = QY
C NOTING THAT:
C 1) DMXY/DX = 0.0(SINCE MXY(X,+-B/2.) = 0.0)
C 2) D2W/DXY = 0.0(SINCE DMXY = D2W;'DXY = 0.0)
C*** SEE CHAPTER 4 FOR MORE DETAILS ****
C****************************************************
        AMAT(3,1)=(1.-NU)*AP3*DSINH(APB)
        AMAT(3,2)=-2.*AP3*DSINH(APB)
        - +(1.-NU)*AP3*DSINH(APB)
        +(1.-NU)*APB*AP3*DCOSH(APB)
        AMAT(3,3)=-(1.-2.*XK22)* 12./F1,HAR2/IAR*DSQRT(GAMM2)
        +((1.-NU)=AP2)
    - /HAR*DSQRT(GMMA2)
    C************************************************
    C
    C AMIAT(3,1)=0.0
    C AMAT(3,2)=+2.*AP3* DSINH(APB)
    C AMAT(3,3)=+(1.-2.*XK22)* 12.jF1;HAR2;|IAR*DSQRT(GAM:A2)
    C
    C AM^T(3,1)=0.0
    C АN{AT(3,2)=-2.*AP3* DSINII(APB)
    C AMANT(3,3)=+12.*XK22/F1;HAR2;HAR'DSQRT(GAMAN2)
    C
```

DIS09940
DIS09950
DIS09960
DIS09970
DIS09980
DIS09990
DISIO000
DISI0010 DIS 10020 DIS 10030 DIS10040 DISIOOSO DIS 10060 DIS 10070 DISI0080 DIS10n90 DISIOIOO DIS10110 DIS 10120 DIS10130 DISIOIA0 Disiolsn DIS10160 DIS 10170 DIS10180 DIS 10190 DIS 10200 DIS 10210 DISI0220 DIS 10230 DISIO240 DIS10250 DIS 10260 DIS 10270 DIS 10280 DIS10290 DIS10300 DISIOET0 DIS10320 DIS10330 DIS10340 DIS10350 DIS10360 DIS 10370 DIS10380 DIS10390 DISIO4nO DIS10410 DIIS10420 DISi04.3n

	RII(1) $=-\mathrm{NU}^{*}$ AP2* BETAP + PK	Disiounn
	$R H 1(2)=0.0$	DIS10450
	$\mathrm{RII}(3)=0.0$	DISI0460
	GO TO (11,11) TTHICK	DIS10470
17	CONTINUE	DISI0480
	$\operatorname{IFPR}(3)=1$	DIS10490
	$\mathrm{FIX}(3)=0.0$	DIS10500
11	CONTINUE	DIS10510
	RETURN	DIS10520
	END	DIS10530
C		DIS10540
C		DIS10550
C		DIS 10560
C		DIS10570
C		DIS10580
$C^{* *}$	SUBROUTINE POWERS TO EVALUATE TIIE POWERS OF : ALPIA , b;	DIS 1059
C		DIS10600
	SUBROUTINE POWERS(M,HAR,BAR,PI,ALPHA,AP, AP2,AP3,AP4,APS,AP6,IIAR2,	DIS 10610
	. HAAR3,HAR4,HARS, HAR6, B^R2,BAR3,BAR4,B^R5,G^MA2,	DIS10620
	. X,Y,APX,APY,GAMY,FI,PM,ILOAD,ZI,UL)	DIS10630
	IMPLICIT REAL*8(A-H,O-Z)	DISI0640
	$\mathrm{PI}=-1.00$	DISIC650
	$\mathrm{PI}=\mathrm{DARCOS}(\mathrm{PI})$	DIS10660
	$\Lambda L P H A=M^{*} \mathbf{P I}$	DIS10670
	AP = ALPHA	DIS10680
	$A P 2=A P={ }^{2}$	DIS10690
	$A P 3=A P * * 3$.	DIS10700
	AP4 $=\mathbf{A P * * * .}$	DIS10710
	APS $=$ AP**S.	DIS10720
	AP6 = AP**6.	DIS10730
	HAR2 $=$ HAR $^{* *} 2$.	DIS10740
	$H A R 3=H A R * 3$.	DIS10750
	$H A R 4=H A R * * 4$.	DIS10760
	HARS $=$ HAR ${ }^{*} 5$ S	DIS10770
	BAR2 $=\mathrm{BAR}^{* * 2}$	DIS10780
	$B A R 3=B A R * * 3$.	DIS10790
	BAR4 $=$ BAR** ${ }^{\text {c }}$.	DIS10800
	BARS $=$ BAR ${ }^{\text {P }}$ S .	DIS108i0
	GAMA2 $=$ AP2 ${ }^{*}$ HAR2 $+12 . / \mathrm{F} 1$	DISI0820
	$\boldsymbol{\wedge P X}=\boldsymbol{\Lambda P}{ }^{*} \mathbf{X}$	DIS10830
	$\wedge P Y=A P^{*}$ RA $^{*}{ }^{*} Y$	DISI0840
	GAMY = Y* ${ }^{\text {BAR }}$ * DSQRT(GAMA2)/IIAR	DISIOR50
	GO TO ($50,51,52$ ILOAD	DIS10860
50	$\mathrm{PM}=4 . / \mathrm{AP}$	DIS10870
	$\text { GO TO } 53$	DISt08s0
51	$\wedge P 71=\Lambda P^{*} 71$	DIS10890
	$P M=2 . * D S I N(A P Z I) ~$	DIS10900
	GO TO 53	DIS10910
52	$\wedge P 7 \mathrm{I}=\wedge \mathrm{P}^{*} \mathrm{ZI}$	DIS10920
	APU $=$ AP* LUR	DIS10930


```
C BTTAP =-AP*(BETA-KAP*P*D.S)/U2
DISII4.N
C GAMA = DSQRT(AP**2.-NP/MP)
C******************************
    GO TO (676,677,677) IPRINT
    676 WRITE(6,101) ALPHA
    WRTTE(6,110) GAMB
C WRTTE(6,309) K11,K12
C WRITE(6,311) K13,K14
    W'RITE(6,111) BETA
    WRTTE(6,310) K2
    WRITE(6,112) BETAP
    6 7 7 \text { CONTINUE}
    101 FORMAT('ALPHA=',E15.5)
C309 FORMAT('K11 =',E10.5,2X,'K12 =',E10.5)
C3II FORMAT('K13 =',E10.5.2X.'K14 =',E10.5)
    310 FORMAT('K2 = ',E10.5)
    110 FORMAT('GAMB ='.E15.S)
    III FORMAT('BETA =',E15.5)
    112 FORMAT('BETAP = 'E15.5)
C******************************
    N=3
    NEQNS = N
    DO }64\textrm{I}=1,\textrm{N
    RI(I) =0.0
    |FPR(I)=0
    FIX(I) =0.0
    DO 64 J=1,N
    64 AMAT(I,N)=0.0
C
    CALL BOUND(M,IBOLND,ITHICK,NU,IIAR,BAR,AP,APB,GAMB,FI,
                PK,BETA,BETAP,AMAT,RH,IFPR,FIX,X,Y)
    C********************************
        DO 315 I = 1,N
        DO 315 J=1,N
    315 BMAT(I_)=AMAT(Ir)
C*******************************
C WRITE (6,228)M
C228 FORMAT('M = ',12,3X,'COEFFICIENT MATRIX BEFORE MODIFICATION')
C DO 12!I=1,N
C WRITE(6,122)(AMAT(1,J),J = 1,N)
Cl21 CONTINUE
    122 FORMAT(3(E12.5,2X))
C DO 123 I= 1,N
C WRITE(6,124) RII(I)
Cl23 CONTINUE
```



```
C
            GO TO (672,673,673) IPRINT
    672 WRITE(6,227)M
    227 FOR\IAT('M = ',12,3X,COEFFICIENT MATRIX AFTIER MODIFICATION')
```

DIS11450 DISII460 DISII470 DISlis.s DIS11490 DISII500 Disilsio DIS11520 DIS11530 DISilis40 DIS11550 DIS11560 DISIIS70 DISIIS80 DIS11500 DISIIG00 DIS11610 DIS 11620 DIS:1630 DISIIEAO DIS 11650 DISI1660 DIS11670 DISI1680 DISII690 DIS11700 DIS11710 DIS11720 DIS11730 DIS11740 DIS11750 DIS11760
DIS11770
DISI1780
DIS11790
DIS11800
DIS11810
DISII820
DISII8.30
DISII84n
DIS11850
DIS:1860
DIS11870
DIS11880
DISII890
DISH1900
DISII910
DIS11920
DISI1930

```
    DO 723 I = 1,N
    WRITE(6,122) (AMAT(1, J1), Jl= i,N)
723 CONTINUE
    DO 226 I= 1,N
    WRITE(6,124) RH(I)
226 CONTINUE
6 7 3 \text { CONTINUE}
124 FORMAT(E12.5)
C******************************* 
    CALL BAKSU (NEQNS,NMAT,FIX,RH,IFPR,SOLT)
C CALL GREDUC (NEQNS,AMAT,FIX,RII,IFPR)
C CALL BAKSUB (NEQNS,AMAT,FIX,RIIIFPR,SOLT)
C********************************
C CNILL JORDAN(NEQNS,AMAT,RIISOLT)
C CALLL DLSARG(N,AMAT,N,RH,I,SOLT)
C CALL DLSLRG(N,AMAT,N,RHI,I,SOLT)
C********************************
    GO TO (674,675,675) IPRINT
674 WRITE (6,229) M
    229 FORMAT('M = ',12,3X,'COEFFICIENT MATRIX AFTER SOLUTION')
    DO 224I=1,N
    WRITE(6,l22) (AMAT(I,Jl),JI= I,N)
    2 2 4 ~ C O N T I N U E ~
    DO 525I=1.N
    WRITE(6,124) RH(I)
    525 CONTINUE
    6 7 5 ~ C O N T I N U E ~
C*********************************
    A=SOLT(1)
    B=SOLT(2)
    EE=SOLT(3)
C**********************************
    GO TO (205,206,206) IPRINT
    205 RIII = AMAT(1,1)*A + ^MAT(1,2)*B+\LambdaM^T(1,3)*EE
    RII2 = AMAT(2,1)*A+AMAT(2,2)*B+AM^T(2,3)*EE
    RII3 = AMAT(3,1)*A+AMAT(3,2)*B+AMAT(3,3)*EE
    WRITE(6,316) RHII,RII2,RII3
    316 FORMAT('RII1 =',E12.5,2X,'RII2 = ',E12.5,2X,RII3 =',E12.5)
    206 CONTINUE
C***+****************************
    GO TO (665,203) ITIIICK
    6 6 5 \text { CONTINUE}
        F:E=0.0
        GO TO 204
    203 CONTINUE
        EE= EE/DSINH(GAMB)
    204 CONTINUE
C********************************
C ПГ:ГАP = ВГT^P* AP2
DISti9an
DISI 1950
DIS11960
DISI1970
DISII980
DIS11990
DIS 12000
DISI 2010 DISI2020
DIS 12030
DISI 2040
DIS12050
DIS120ล̃0
DIS: 2070
DIS12080
DIS12090
DIS12100
DIS12110
JIS12120
DIS12130
DIS12140
DIS12150
DIS12160
DIS 12170
DIS12180
DIS12190
DIS12200
DIS12210
DISI 2220
DIS12230
DIS12240
DISI2250
DIS12260
DIS12270
DISI2280
DIS12290
DIS12300
DIS12310
DISI2320
DIS:2330
DIS: 2340
DIS1235n
DIS12360
DIS:2370
DIS12.380
DIS 12390
DIS12400
DIS:2410
I)IS:2420
C ПГ:ГАP \(=\) BET^P* AP2 \(\quad\) DIS 124.30
```

```
        #
        GO TO (6:5,679,679) IPRINT
678 WRITE(6,27) A,B,EE
    WRTTE(6,312) KPD
    WRITE(6.112) BETAP
27 FORMAT(A =',E12.4,2X,'B =',E12.4,2X,EE=',El2.4)
312 FORMAT('KPD =',E10.5)
C
6 7 9 \text { CONTINLE}
        RETURN
        END
C
C-_-_-_-_
C
C
C** SUBROLTINE - FORCES 'TO EVALLIATE:
C *******
C (I) THE DISPLACEMENTS WBAR(M),PIIXX(M),&
C PHIY(M)
C (2)THE FORCES XMOM,YMOM,XYMOM,XSHEAR,&
C YSHEAR
C AT A SPECIFIED POINT(X,Y) IN THE PLATE AND
c ACCORDING TO THE SPECIFIED BOLNDARY CONDITIONS
C
    SUBROLTINE FORCES(IBOUND,ITHICK,M,IIAR,BAR,NU,AP,APB,GAMB,KPD,FI,
                    BETA,BETAP,A,B,EE,WPAR,WPARE,XM,YM,IPRINT,X,Y,
                        ZI,UU,ILOAD,XYM,QX,QY)
    IMPLICIT REAL*8(A-H,O-Z)
    DOUBLE PRECISION NU,KPD
c.0............................................
    CALL POWERS(M,HAR,BAR,PI,ALPHA,AP,AP2,AP3,AP4,AP5,AP6,HIAR2,
                        HAR3,HAR4,HARS,IIAR6,BAR2,BAR3,B^R4,BAR5,GAMA2,
                        X,Y,APX,APY,GAMY,FI,PM,ILOAD,ZI,UU)
C**************************************************
    APD2 = AP;2.0
    XKI = 6.*(1.-NL)/F1/HAR2
    XNU2=12."(1.-NU**2.)
    XK22 = (1.-NU).(1.+NU)
    APYI=Y*AP
    APXI = X'AP
    GAMY1=GAMY
C
    APY2 =0.0
    APX2 =0.0
    G\MY2 = 0.0
C
    GO TO (180,181) ITHICK
    180 EISIN = 0.0
        EECOS}=0.
```

DISi244n
DISI2450
DISI2460
DiS12470
DIS12480
DIS12490
DIS: 2500
DIS 12510
DIS12520
DIS12530
DIS12540
DIS12550
DISI256n
DISI2570
DISI2580
DISI2590
DISI2600
DIS 12610
DIS1262n
DIS12630
DISI264n
DIS12650
DIS:2660
DIS12670
DIS:2680
DISI2ธัの
DIS 12700
DIS 12710
DIS12720
DIS 12730
DIS12740
DIS12750
DIS12760
DIS12770
DIS12780
DIS12790
DIS 12800
DISI2810
DISI2820
DISI2830
DISI2840
DIS12850
DIS12860
DIS 12870
DIS12880
DISI2890
DISI2900
DIS12910
DIS12920
DIS12930

```
    FRRARI=0.0 DISI2O.0
    EFBAR2=0.0 DISI2950
    ERBAR3 =0.0 DISI2960
    GO TO 183
181 EESIN = EE*DSINH(GAMY)
    EECOS = EE*DCOSH(GAMY)
    EERARI = EE DCOSH(GAMY)
    FERBAR2 = EE* DSINH(GAMY)
    183 continue
C
        WPPAR = A*DCOSH(APY) + B*APY*DSINII(APY) + EECOS + BETA
        WPARE=0.0
C
        GO TO (162,162,163)IBOUND
    163 CONTINUE
        GO TO (160,161) ITHICK
    160 WPARE = A* DCOSH(APB) + B*APB*DSINH}(APB) + BETA
        GOTO 162
    161 RPARE = A* DCOSH(APB) + B*APB*DSINH(APB) + FERBAR2 + BETA
        WPARE = WPARE*DSIN(APX)
C
C
    162 CONTINUE
C
        XM= (1.-NU)*AP2*DCOSH(APY)*A + B* (2.*F1*IIAR2*AP4/6.*DCOSH(APY)
        - -2**NU*AP2*DCOSH(APY) + (1.-NU)*APY*AP2*DSINH(APY))
        . - XK22*(AP2 - NU/HAR2*GAMA2)*EECOS
        . - AP2*BETAP + KPD
C
        YM=-(1.-NU)*AP2*DCOSH(APY)*A + B** (-2.*F1*HAR2*AP4/6.*DCOSH(APY)
        . -2.*AP2*DCOSH(APY)-(1.-NU)*APY*AP2*DSINII(APY))
        . + XK22*(-NU*AP2 + 1./HAR2*GAMA2)*EECOS
        . NU*AP2*BETAP + KPD
c
        XYM=2.*AP2*DSINH(APY)*A+B*(4.*FI*IIAR2*AP4'6./(1.-NU)* DSINH(APY)
        . + 2.*AP2*DSINH(APY) + 2*APY*AP2*DCOSH(APY))
        - -2.*XK22*AP/HAR* DSQRT(GAMA2)* ERBAR2
        XYAS = XYM/24./(1.+NU)
C
        QX=1./XNU2*(-2.*AP3*DCOSII(APY)*B + 12.*XK22*AP;HAR2;F1
            *FERAR1 + XKI*AP*(BETA + BET\AP))
C
        GO TO (100,100,101) IBOUND
    100 QY=1./XNU2*(-2.*^P3* DSINH(APY)*B + 12.*XK22/IIAR2!F1
                /HAR*DSQRT(GAMA2)*EERAR2)
        GOTO 102
    101 QY=1./XNU2*((1.-NU)*AP3*DSINH(APB)*}
            + B*(-(1.+NU)*^P3*DSINH(APB)
            - + (1.-NU)*APB*AR3*DCOSII(AFR))
            . + FISSI*(-12./F1//IAR2* (1.-2.* XK22) + (1.-NU)*AP2)
```

disizosn DIS:19950 DISI2960 DISI2970 DISI298n DIS12990 DISizoon DIS13010 DIS:3020 DIS: 3030 DISI304n DIS13050 DIS:3060 DISI3070 DISimaso DIS:3non DISizinn DIS13:10 DIS13120 DIS:3130 DISt3IAn DIS13150 DISI31*0 DISI3170 DISI3ISO DISi3:90 DISI3200 DISI3210 DIS13220 DIS132?0 DISI3240 DIS:3250 DIS13260 DIS:3270 DIS132S0 DIS 53290 DIS13300 DISI3310 DISI332n DIS13330 DISI3: 5 DISI3350 DIS1:36n
DIS13:30 DIS133S0 DIS 13390 DISI3400 DISIS:40 DISI2:30 DISIS:3n

C		DIS13940
	AMAT(1, 1) $=1.0$	DIS13950
	AMAT(1,2$)^{2}=$ DSINI $($ AH2 $)$	DIS 13960
	AMAT(1,3) $=2^{*}$ DSINII(BHI2)	DIS13970
	AMAT(2,1) $=1.0$	DIS13980
	АMAT(2,2) $=$ AH*DCOSH(AH2)	DIS13990
	$\wedge \mathrm{MAT}(2,3)=\mathrm{BH}{ }^{*} \mathrm{DCOSH}(\mathrm{BHI} 2)$	DISI4000
	AMAT(3,1) $=1 .-\mathrm{NU}^{*}{ }^{\text {2 }}$ 2.	DISI4010
		Disi4020
		DISI4030
	DO $10!=1$, NEQNS	DIS14040
	$\mathrm{RH}(\mathrm{I})=0.0$	DIS14050
	$F i X(I)=0.0$	DIS 14060
	$\operatorname{IFPR}(\mathrm{I})=0.0$	DIS14070
10	RH(DIS 14080
	CALL GREDUC (NEQNS,AMAT, FIX,RI,IFPR)	DIS14090
	CALL BAKSUB (NEQNS,AMAT,FIX,RII,IFFR,SOLT)	DIS14100
	$A 1=\operatorname{SOLT}(1)$	DIS14110
	AI = SOLT(DIS14:20
	$\lambda 3=\operatorname{SOLT}(2)$	
	$\Lambda 5=S O L T(3)$	Disi4130
	$\wedge 2=0.50$ AHI/BH* DSINH(AH2)/DTANH(B112) - DCOSII(AH2))	DIS14140
	A4 $=-\mathrm{A}^{*} \mathrm{AlH} / \mathrm{BH}{ }^{*} \mathrm{DSINH}(\mathrm{AH} 2) / \mathrm{DSINII}(1 / 12)$	DIS14150
$C^{* * *}$	**	DIS14160
	$\mathrm{Cl}=-(\mathrm{A} / \mathrm{AH}+\mathrm{A} / \mathrm{BH})$	DIS14170
	$C 2=2 . *(1 .+N U) / A P 2 / H A R * 2 . *(\Lambda 2+\Lambda 4)-\left(A 2 / A H^{* *} 2 .+A 4 ; B H^{* * 2 .}\right)$	DIS14180
C	WRITE(6,52) $\mathrm{Cl}, \mathrm{C} 2$	DIS14190
C52$C$$C$	FORMAT('Cl $\left.={ }^{\prime}, \mathrm{E} 15.6,2 \mathrm{X}, \mathrm{C} 2={ }^{\prime}, \mathrm{ElS.6}\right)$	DIS14200
		DIS14210
		DIS14220
		DIS14230
		DIS14240
		DISI4250
C	$\mathrm{Fl} 1=\mathrm{Al} / 40 .+\mathrm{Cl}$	DIS14260
	F32 $=12 / \mathrm{AH}^{*}{ }^{*} .^{*} \mathrm{~A} 3$	DIS14270
	F33 $=$ DCOSII(AH2)-2.* DSINH(AII2)/AH	DIS14280
	F34 $=12 / \mathrm{BH} 1^{* *} 3 . *$ As	DIS14290
	F3S = DCOSII(BIH2)-2.*DSINII(BII2);BII	DIS14300
	$F 3=F 31+F 32^{*} F 33+F 34^{*} \mathrm{~F} 35$	DIS:4310
C		DIS14320
		DIS14330
		DISI4340
C		DIS14350
	$+4^{*} 2 . /\left(B I^{* *} 3\right) * \operatorname{DSINII}(8112)+\mathrm{C} 2$	DIS14360
		DIS14370
c	WRTTE(6,60) All BH	DIS14.380
C60	FORMAT('AII $=$ ',E12.4,2X,'RII $=$ ',E12.4)	DIS14390
C	WRITE(6,12) $\wedge 1$	DIS14.100
C	WRITE $(6,13) \wedge 2$	DISI4410
C	WRITE(6,14) 13	DIS14420
C	WRITE $(6,15)$ A 4	DIS14430

```
C WRITE(6,16) ^5 [ = F20.6) DIS14%S0
C12 FORMAT('A1',2X,'=',F20.6)
Cl3 FORMAT('A2',2X,'=',F20.6)
C14 FORMAT('N3';2X'=',F20.6)
C15 FORMAT('A4',2X'=',F20.6)
C16 FORMAT('A5',2X.'=',F20.6)
C WRITE (6,42) FI
C WRITE (6,43) F2
C WRITE(6,44) F3
C WRITE(6,45) F4
C42 FORMAT(PRESENT WORK Fl'3X,'=',E15.5)
C43 FORMAT(PRESENT WORK F2',3X;'='E15.5)
C44 FORMAT(PRESENT WORK F3; 3X;';'E15.5)
C45 FORMAT('PRESENT WORK F4'3X,'=',E15.5)
C
    FIZ=AI*Z + A2*DCOSH(AZ) + A ' D'DSINH(AZ)
    - + A4*DCOSH(BZ) + AS*DSINH(BZ)
C
        FIZP = A1 + ^2'* AH*DSINH(AZ) + A3* AII'DCOSH(AZ)
        . +A4*BH*DSINH(BZ) + A5*BH*DCOSI!(BZ)
C
        F2T. = Z**2P2.*AI + A2*DSINH(AZ);AH + A3*DCOSH(AZ) AH
    + A4*DSINI\(BZ)!BH + A5*DCOSH(BZ)!BH + Cl
C
        F3Z=Z**3/6.*A1 + A2*DCOSH(AZ) A1***2
    . + A3*DSINII(AZ)/AH**2
    . + A4*DCOSH(BZ)/BI**2
    . + A5*DSINH(BZ)/BH**2
    . + Cl* Z + C2
        RETURN
        END
C
C*****************************************************
C
C
C
C
        SUBROUTINE GREDUC (NEQNS,ASTIF,FIXED,ASIOD.IFPRE)
        IMPLICIT REAL*8(A-II,O-Z)
        DIMPNSION ASLOD(3),ASTIF(3,3),
            FIXI:(3),IFPRE(3)
C
C===> NOTE: NEQNS : NUMBFR OF EQUNTIONS TO BESOI.VED = N
C ASTIF(N,N): COEFFICIENT MATRIX
C FIXED(N) : VECTOR OF PRFSCRIRED) (OR KNOWN゙)VARIABLFS;
C FIXED(N)
C ASLOD(N) : VECTOR OF R.ITS. OFTLIE EQUNTIONS: ASIOD(N).
C IFPRE(N) : VECTOR INDICATING WIIETIIR A VARIABLE IS
C PRESCRIBEDOR NOT:IF:
C ITPRE(I)=0 = = = > VARIARIE #I IS NOT PRESCRIBED
```

Disitisin DIS14is0 DISI4460 DIS 14470 DIS14480 DIS 14.490 DISI4500 DISI4S10 Disias2n DISI:530 DIS 14540 DIS14550 DISIG56n DIS 14570 DISI4580 DIS14590 DIS 14600 DISI4610 DISI462n DISI4630 DISI4640 DISI4650 DISI4660 DIS 14570 DIS14680 DIS14690 DIS 14700 DIS 14710 DIS14720 DISI4730 DISI4740 DIS14750 DISI4760 DISI4770 DIS14780 DIS 14790 DIS14800 DISI4810 DISI482n DISI4830 DISI4R40 DISI4850 DIS14860 DIS14870 DISIAESO DISI4890 DISI4900 DIS14910 DIS14970 ints1493n

C225	CONTINUE	DIS15440
$\mathrm{Cl} 22$	FORMAT(3(E.12.5,2X))	DIS15450
$\mathrm{Cl}_{2} 2$	FORMAT(E12.5)	DiSI5460
c	FORMAT(E12.)	DIS15470
c		DISIS480
	GO TO 50	DIS15490
C	GOTO	DIS 15500
C	ADJUST RHS(LOADS) FOR	DISIS510
C	PRESCRIBED DISPLACEMENTS	DISIS520
C		DISI5530
30	DO 40 IROWS = IEQNS,NEQNS	DIS15540
	ASLOD(IROWS $=$ ASLOD(IROWS)-ASTIF(IROWS,IEQ VS * * FIXED(IEQNS)	DIS15550
	ASTIF(IROWS, IEQNS $)=0.0$	DISI5560
40	CONTINUE	DIS15570
		DISIS580
c		DIS15590
c		DIS15600
C	WRITE (6,229) IEQNS	DIS15610
C	DO $324 \mathrm{I}=1$, NEQNS	
C		Dist5620
C324	CONTINUE	DIS15630
C	DO $325 \mathrm{I}=1$, NEQNS	DIS15640
C	WRITE(6.124) ASLOD(1)	DIS15650
C325	CONTINUE	DIS15660
C		DIS15670
	GO TO 50	DIS15680
	PRINT 100	DIS15690
100	FORMAT(5X,15HINCORRECT PIVOT)	DIS15700
	STOP	DIS15710
50	CONTINUE	DIS15720
	RETURN	DISI5730
	END	DIS15740
		DISIS750
		DIS15760
	BACK-SUBSTITUTION ROUTINE	DIS15770
		DIS15780
		DIS15790
	SUBROUTINE BAKSUB (NEQNS,ASTIF,FIXED,ASLOD,IFPRE,DISPI.)	DIS15800
C		DIS15810
	IMPLICIT REAI*8(A-H,O-Z)	DIS15820
	DIMENSION ASTIT(NEQNS,NEQNS),ITPRTA(NEQNS),	DIS15830
	FIXED(NEQNS),DISPL(NEQNS),ASI.OD(NEQ.SS)	DISIS840
c		DIS15850
	NF:QNI = NEQNS + 1	DIS15860
	DO 30 IEQNS $=1$, NEQNS	DIS15870
	NBACK = NEQNI-IEQNS	DIS158s0
	PIVOT = ASTIF(NBACK, NBACK)	DIS15890
	RFSID = ASLOD(NBACK)	DISI5900
	IFINBACK.IQ.NEQNS)GO TO 20	DIS15910
	NBAC1 = $\mathrm{NBACK}+1$	DIS:5920
	DO 10 ICOIS = NBACI, NEQNS	DISI5930

RFSID $=$ RESID-ASTIF(NBACK,ICOLS ${ }^{*}$ DISPLICOIS)		Disisoun
10	continue	DISI5950
20	IF(IFPRE(NBACK).LE.0)	DISI5960
	- DISPL (NBACK) = RESID/ASTIF(NBACK,NBACK)	DIS15970
C	- DISPL(NBACK) = RESID;PIVOT	DISIS980
	IF(IFPRE(NBACK).GT.O)DISPL (NBACK) = FIXED(NBACK)	DIS15990
C	IF(IFPRE(NBACK).GT.O)REACT(NBACK) =-RESID	DIS16000
30	CONTINUE	DIS16010
	RITURN	DIS16020
	END	Disionoso
C		DISI6040
C		DIS16050
C*** GAUSS-JORDAN REDUCTION ROUTINE		DISİ́n50
C		DIS16070
C		DISI60s0
	SUBROUTINE JORDAN(NEQNS,ASTIF,ASLOD,SOL)	DISI6190
	IMPLICIT REAL*8(A-H,O-Z)	DISi6ion
	DIMENSION ASLOD(NEQNS),ASTIF(NEQNS,NEQNS)SOL(NEQNS)	Dis16110
	DO 30 IEQNS $=1, \mathrm{NEQ}$ NS	DISI6120
	PIVOT = ASTIF(IEQNS,IEQNS)	DIS16130
	DO 20 IROWS $=1, \mathrm{NEQNS}$	DIS16140
	FACTR = ASTIF(IROWS, IEQNS //PIVOT	DIS16150
	IF(IROWS.I:Q.IEQNS.OR.FACTR.EQ.O.O) GO TO 20	DIS16i60
	DO 10 ICOLS $=1$, NEQNS	DIS16170
	ASTIF(IROWS,ICOLS) = ASTIF(IROWS,ICOLS)-FACTR*ASTIF(IEQNS,ICOLS)	Disi6180
10	CONTINUE	DIS16190
	ASLOD(IROWS $)=$ ASLOD(IROWS - FACTR ${ }^{+}$ASLOD(IEQNS $)$	DIS16200
20	CONTINUE	DIS16210
30	CONTINUE	DIS16220
	DO 40 IEQNS $=1$, NEQNS	DIS16230
	SOL(IEQNS) = ASLOD(IEQNS):ASTIF(IEQNS,IEQNS)	DIS16240
40	CONTINUE	DIS16250
	RETURN	DIS16260
	END	DIS16270
C		DIS16280
C	-------	DIS16290
C		DIS16.300
C	\cdots	DISI6310
C		DIS16320
	SUBROUTINE GREDU (NEQNS, ASTIF, FIXED, ASIOD, IFPRE)	DIS16330
	IMPLICIT REAL*8(ヘ-H, O -Z)	DIS16340
	DIMENSION ASLOD(NEQ XSY,ASTIT(NEQNS,NFQNS),	DIS16350
	. FIXED(NEQNS),IFPRE(NEQNS)	DIS16360
C		DIS16370
C	GAUSSIAN REDUCTION ROLTINE	DIS16380
C		DIS16390
	DO 50 IEQNS $=1$, NEQNS	DIS16400
	IF(IFPRE(IEQNS).EQ.I) GO TO 30	DIS16410
c		DIS16420
	RT:IUCE EQUATIONS	DIS16430

```
C
    PIVOT = ASTIF(IEQNS,IEQNS)
    IF(DABS(PIVOT).LT.1.OE-50) GO TO 60
    IF(IEQNS.EQ.NEQNS) GO TO 50
    IEQNI = IEQNS + 1
    DO 20 IROWS = IEQNI,NEQNS
    F^CTR = ASTIF(IROWS,IEQNS)/PIVOT
    IF(FACTR.EQ.0.0) GO TO 20
    DO 10 ICOLS = IEQNS,NEQNS
        ASTIF(IROWS,ICOLS)=ASTIF(IROWS,ICOLS)-FACTR* ASTIF(IEQNS,ICOLS)
    10 CONTINUE
        ASLOD(IROWS)=ASLOD(IROWS)-FACTR*ASLOD(IEQNS)
    20 CONTINUE
C
C
C WRITE (6,229)IEQNS
C229 FORMAT('IEQNS = '.12,'COEFFICIENT MATRIX AFTER SOLUTION')
C DO 224I=1,NEQNS
C WRITE(6,122) (ASTIF([, \1).J = 1,NEQNS)
C224 CONTINUE
C DO 225I= I,NEQNS
C WRITE(6,124) ^SLOD(l)
C22S CONTINUE
C122 FORMAT(3(E12.5,2X))
Cl24 FORMAT(E12.5)
C
c
    GO TO 50
C
C ADJUST RHS(LOADS) FOR PRESCRIRED DISPLACEMENTS
C 30 DO 40 IROWS = IEQNS,NEQNS
    ASLOD(IROWS)=ASLOD(IROWS)-ASTIF(IROWS,IEQNS)*FIXED(IEQNS)
    ASTIF(IROWS,IEQNS) }=0.
    40 CONTINUE
            GO TO 50
    60 WRITE(6,900) PIVOT,IEQNS
    900 FORMAT(5X,18HINCORRECT PIVOT = ,E20.6,5X,13HIEQUATION NO. ,15)
        STOP
    50 CONTINUE
        RETURN
        END
C
C-_-_-_-_-_-_-_-_-_-_
C
C
C
    SURROUTINE BAKSU (NEQNS, ASTIF, FIXED, ASI.OD, IFPRE,XDISP)
    IMPLICIT RFAL*8(^-H,O-7)
    DIMENSION ASTIF(NEQNS,NEQNS),IFPRE(NEQNS),
```

DISI6440
DIS16450
DIS 16460
DISI6470
DISI6480
DIS16490
DIS16500
DISI6510
DISIES20
DIS 16530
DISI6540
DIS16550
DIS16560
DIS16570
DISI6580
DIS16590
DISI6600
DIS16610
DIS 16620
DIS16630
DIS16640
DIS16650
DIS16660
DIS16670
DIS16680
DIS16690
DIS16700
DIS16710
DIS 16720
DIS 16730
DIS 16740
DIS16750
DIS 16760
Dis16770
DIS16780
DIS16790
DIS 16800
DIS16810
DIS16820
DIS16830
DIS16840
DIS16850
DIS16860
DIS16870
DIS16880
DISI6890
DISI6900
DIS16910
DIS 16920
DIS169.3n

FIXED(NEQNS), XDISP(NEQNS),ASLOD(NEQNS)	DIS160.20
C	DIS16050
C BACK-SUBSTITUTION ROUTINE	DIS16960
C	DIS 16970
NEQVI = NEQNS + 1	DIS16980
DO 30 IEQNS $=1$, NEQ S	DIS16090
NBACK = NEQNI-IEQ ${ }^{\text {S }}$	DIS17000
PIVOT = ASTIF(NBACK, ${ }^{\text {NBACK }}$)	DIS17010
RESID = ASLOD(NBACK)	DIS17020
IF(NBACK.EQ.NEQNS) GO TO 20	DIS17030
NBACl $=\mathrm{NBACK}+1$	DISI7040
DO 10 ICOLS = NBACI,NEQ ${ }^{\text {S }}$	DIS17050
RESID = RESID-ASTIF(NBACK,ICOLS)* XDISP(ICOIS)	DIS17060
10 COTTINUE	Dis17070
20 IF(IFPRE(NBACK).EQ.0) XDISP(NBACK) = RTSID/PIVOT	DISI70sn
IF(IFPRE(NBACK).EQ.1) XDISP(NBACK) = FIXED(NBACK)	DIS17090
30 COITINUE	DISITIno
RETCRN	DISI7110
ECD	DISI7120

A-5.2 PROGRAM DISSA LISTING:

C***	DIS00010
C	DIS00020
C PROGRAM DISS4 : TO FIND SOLUTION (DEFLECTION \& STRESSES)	DIS00030
C	DIS00040
C IN THE CASE OF CYLINDRICAL BENDING	DIS00050
C DONE BY AMMAR KHALEEL HAFEDH MOHAMMED (IN PH.D DISSERTATION)	DIS00060
C	DIS00070
C**************RE******************************	DIS00080
IMPLICIT REAL*8(A-H,O-Z)	DIS00090
DOUBLE PRECISION NU,NUP1,NUSM1,NUM1,LH12,LA,K,N,LAMDA,	DIS00100
INCREM	DIS00110
DATA NU/0.30D0 $/$ E/I.ODO; HAR/ $/ 0.00 ;$ INCREM $/ 0.500 \%$,	DIS00120
- NPLATE/6/,NTERM/15/,MP/15/,	DIS00130
- IPRINT/2/,IDEF/2/,ISTRES;2/,IBAL/2/ISIGZ/1;,IFOUR/2/	DIS00140
C	DIS00150
C	DIS00160
NUPI $=$ NU $+\mathrm{I} . \mathrm{DO}$	Dis00170
NUSMI $=1.0-\mathrm{NU} *{ }^{\text {2 }}$	DIS00180
NUM1 $=1.0 \cdot \mathrm{NU}$	DIS00190
$G=E /\left(2 . D 0^{*}(1 . D 0+N U)\right)$	DIS00200
$\mathrm{PI}=22 . \mathrm{D} 07 . \mathrm{DO}$	Dis00210
C	Dis00220
C NOTE: MP = IS AN INDICATER TO TELL AT What M' VALUE WE WANT RESULTS	DIS00230
C TO BE PRINTED	Dis00240
C NPLATE = IS AN INDICATER TO TELL US FOR HOW MANY PLATE RATIOS W	DIS00250
C WANT THE RESULTS	DIS00260
C	DIS00270
C IDEF = IS AN INDICATER FOR PRINTING DEFLECTION RESULTS	DIS00280
C IF IDEF $=1$: PRINT DEFLECTIONS	DIS00290
C IF IDEF $=2$: DO NOT PRINT DEFLECTIONS	DIS00300
C	DIS00310
C ISTRES $=$ IS AN INDICATER FOR PRINTING STRESS SIGMAX	DIS00320
C IF ISTRES $=1:$ PRINT STRESSES	DIS00330
C IF ISTRES $=2$: DO NOT PRINT STRESSES	DIS00340
C	DIS00350
c	IIS00360
C ISIGZ $=$ IS AN INDICATER FOR PRINTING STRESS SIGMAZ	DIS00370
C IF ISIGZ $=1:$ PRINT STRESSES	DIS00380
C IF ISIGZ $=2$: DO NOT PRINT STRESSES	DIS00390
C	DIS00400
C IPRINT = IS AN INDICATER FOR PRINIING INTERMEDIATE RESULTS	Disonalo
C IF IPRINT $=1:$ PRINT INTERMEDIATE RISULTS	DIS00420
C IF IPRINT $=\mathbf{2}$: DO NOT PRINT INTERMEIDIATE RESULTS	Dis00430
C	DIS00440
WRITE 6,210$)$	DIS00450
210 FORMAT('CYLINDRICAL BENDING')	DIS00460

```
    GO TO (212,213) IFOUR DIS00470
212 WRITE(6,211) DIS00480
211 FORMAT('LOAD PO = SIN(PI*X/L)')
    GO TO 215
213 WRITE{6,214)
214 FORMAT('LOAD PO = UNIFORM LOAD')
215 ABAR=1.DO
    WRITE(6,188) NU
    WRITE(6,18)
188 FORMAT('NU = 'F6.2)
    GO TO (561,562) IDEF
561 WRITE (6,102)
101 FORM\T(*****************************)
102 FORMAT(' DEFLECTIONS )
    WRITE(6,101)
    WRITE(6,556)
    GO TO 564
S62 GO TO (565,564) ISTRES
565 LVRITE (6,103)
    WRITE (6,101)
    WRITE(6,555)
555 FORMAT(7X,'Z/H',8X,'RTP',6X,'EXACT',8X.'PANC',8X,'RTB',8X,'OTHERS'
    .)
S56 FORMAT(5X,' I',6X,'RTP',7X,'EXACT',6X,'RTB',6X,'PANC',6X,'REISS'
    .,6X,'NAGHDI')
564 GO TO (406,407) ISIGZ
406 WRITE (6,408)
        WRITE(6,409)
408 FORMAT(* H * PRESENT * PRESENT * EXACT * EXACT *')
409 FORMAT(* * SIGMAX * SIGMAZ * SIGMAX * SIGMAZ*') DIS00760
4 0 7 \text { CONTINUE}
C*****************************************
    DO 200 I= I,NPLATE
```



```
C*************************
        GO TO 32
31 IIAR=HAR + INCREM
C
C
C NOTE:INCREM IS THE INCREMENT IN TIIE A/H RATIO
C
C
    NHR=1.DO/HINR
        GO TO 33
32 IF(I.EQ.31) AHIR = 0.D0
        IF(I.GE3I) GO TO 34
    AHR=A|R + 2.DO
        GO TO 33
34 AHR=AHR+100.D0
33 II= ABAR/AIIR
DIS00490
DIS00500
DIS00Si0
DIS00520
DIS00530
DIS00540
DIS00550
*
DIS00570
DIS00580
DIS00590
DIS00600
DIS00610
DIS00620
DIS00630
DIS00640
DIS00650
DIS00660
DIS00670
DIS00690
DIS00700
DIS00710
DIS00720
DIS00730
DIS00740
DIS00750
    DIS00770
    DIS00780
    DIS00780
    DIS00790
DIS00800
DIS00810
DIS00820
DIS00830
DIS00840
DIS00850
DIS00860
DIS00870
DIS00880
DIS00890
DIS00900
DIS00910
DIS00920
DIS00930
DIS00940
DIS00950
DIS00960
```

GO TO (800,801) ISTRES		Dis00970
800	WRITE $(6,101)$	DIS00980
	WRITE $(6,25)$ H	DIS00990
	WRITE(6,101)	DIS01000
801	GO TO (404,405) ISIGZ	Dis01010
404	WRITE $(6,101)$	DIS01020
	WRITE (6,25) H	DIS01030
	WRITE(6,101)	DISO1040
405	$\mathrm{D}=\mathrm{E}^{*} \mathrm{H}^{* *} 3 ;\left(12 . \mathrm{D} 0^{*}\left(1 . \mathrm{D} 0-\mathrm{NU}^{* *} 2\right)\right.$)	DISO1050
	WCT $=0 . \mathrm{DO}$	DIS01060
	WMT $=0 . \mathrm{DO}$	Dis01070
	WOPANC $=0$. DO	DIS01080
	WREIS $=0$. DO	DIS01090
	WNAGD $=0$. DO	DISO1100
	WPT $=0 . D 0$	DISO1110
	WBT $=0 . \mathrm{DO}$	DIS01120
	WOCHEK $=0$. DO	DIS01130
	WOEXAK $=0$. DO	DISO1140
C		DIS01150
C		DIS01160
	NPOINT $=11$	DIS01170
C**	***********************************	DISO:180
	DO $100 \mathrm{~J}=1, \mathrm{NPOINT}$	DIS01190
C**************************************		DIS01200
C		DIS01210
	SIGMAP $=0.00$	DIS01220
	SIGMPA $=0 . D 0$	DIS01230
	SIGMAE $=0$. D	DIS01240
	SIGMAB $=0 . D 0$	DIS01250
	SIGMAM $=0 . \mathrm{DO}$	DIS01260
	SIGMAO $=0$. DO	DISO1270
	SIGZP = 0.D0	DISO1280
	SIGZE $=0$. DO	DIS01290
C		DIS01300
	IF(J.EQ.I)GO TO 222	DIS01310
	GO TO 223	DIS01320
222	$\mathrm{Z}=-0.50 * \mathrm{H}$	Dis01330
	$\mathrm{ZH}=7 . \mathrm{H}$	DIS01340
C		DIS01350
C		Dis01360
C**	************************************	Dis01370
	DO $10 \mathrm{M}=1, \mathrm{NTERM}$, 2	DISO1380
C**************************************		DISO1390
C		DIS01400
C		DIS01410
C PRESENT WORK : DEFLECTION		DIS01420
C		DIS01430
C		DIS01440
	ALPIIA $=$ M*PI/ABAR	DIS01450
	AP=ALPIIA	DIS01460

	АPLI2 $=$ ALPHA* $\mathbf{H}_{2} \mathbf{2}$.	Dis01470
	$\wedge P B=\Lambda L P H A^{* * 2}$	DIS01480
	APBS $=$ ALPH ${ }^{* * * 4}$	DIS01490
	$A A=A P B^{*}(2 . D 0-N U) /(1 . D 0-N U)$	DIS01500
	$\mathrm{BB}=\Lambda \mathrm{PBS} /\left(1 . \mathrm{DO}-\mathrm{NU}{ }^{*}{ }^{\text {2 }}\right.$)	DIS01510
	$\mathrm{DD}=\mathrm{DSQRT}\left(\wedge \mathrm{A}^{* * 2-A . D 0 * B B)}\right.$	DISO1520
	A $=\operatorname{DSQRT}\left(.5 D 0^{*}(A A+D D)\right)$	DISO1530
	$B=\operatorname{DSQRT}\left(.5 D 0^{*}(A A-D D)\right)$	DISO1540
	$\mathrm{AH}=\mathrm{A}^{*} \mathrm{H}$	DIS01550
	AH2 $=A^{*} \mathrm{H} / 2$. D 0	DIS01560
	$\mathrm{BH}=\mathrm{B}^{*} \mathrm{H}$	DIS01570
	$\mathrm{BH} 2=\mathrm{B}^{*} \mathrm{H} / 2$. DO	DIS01580
C		DIS01590
C		DIS01600
C		DIS01610
	$\mathrm{All}=\mathrm{H}$	Dis01620
	Al2 $=2^{*}$ DSINH(AH2)	DIS01630
	$\mathrm{A} 13=2 * \operatorname{DSINIT}(\mathrm{BH2} 2)$	DIS01640
	$\mathrm{A} 21=1 . \mathrm{DO}$	DIS01650
	A22 $=A^{*} \mathrm{DCOSH}(\mathrm{AH} 2)$	DIS01660
	$\mathrm{A} 23=\mathrm{B}=\mathrm{DCOSH}(\mathrm{BH} 2)$	DIS01670
	A31 $=1.0 \mathrm{DO}-\mathrm{NU} * 2$	DIS01680
		DIS01690
	A $33=\left(12 . * \mathrm{NU}^{* *} 2 / \mathrm{H}^{* *} 3\right)^{*}\left(2 . * \operatorname{DSINH}(\mathrm{BH} 2) / \mathrm{B}^{* * 2} 2 \mathrm{H}^{*} \operatorname{DCOSH}(\mathrm{BH} 2), \mathrm{B}\right)$	DIS01700
	B11 $=1 . \mathrm{DO}$	Dis01710
	B22 $=0 . \mathrm{DO}$	DIS01720
	B33 $=0$. D0	DIS01730
	D11 $=$ A22* A33-^23*A32	DIS01740
	D 12 A 211^{*} A $33-\mathrm{A} 23^{*} \mathrm{~A} 31$	DIS01750
	D 13 A $21{ }^{*}$ A $32-\mathrm{A} 22^{*} \mathrm{~A} 31$	DIS01760
	$\mathrm{D} 22=\mathrm{B} 22^{*}$ A $33-\mathrm{A} 23^{*} \mathrm{~B} 33$	DIS01770
	$\mathrm{D} 23=\mathrm{B} 22^{*}$ A $32-\mathrm{A} 22^{*} \mathrm{~B} 33$	DIS01780
	$\mathrm{D} 33=\mathrm{A} 21^{*} \mathrm{~B} 33-\mathrm{B} 22^{*} \mathrm{~A} 31$	Dis01790
	$\mathrm{DET}=\mathrm{A} 11^{*} \mathrm{D} 11-\mathrm{Al} 2^{*} \mathrm{D} 12+\mathrm{A} 13^{*} \mathrm{D} 13$	DIS01800
	$\mathrm{DET2}=\mathrm{B} 11^{*} \mathrm{D} 11-\mathrm{A} 12^{*} \mathrm{D} 22+\mathrm{A} 13^{*} \mathrm{D} 23$	DIS01810
	$\mathrm{DET} 3=\mathrm{Al1} 1^{*} \mathrm{D} 22-\mathrm{B} 11^{*} \mathrm{D} 12+\mathrm{Al3}$ D 33	DIS01820
	DET4 $=-\mathrm{Al1}{ }^{*} \mathrm{D} 23-\mathrm{Al2}$ - $33+\mathrm{Bl1*} \mathrm{D} 13$	DIS01830
	AI = DET2;DET1	DIS01840
	$\wedge 3=$ DET3;DET1	Dis01850
	$\Lambda 5=D E T 4 / D E T I$	DIS01860
	DCOT $=1 . \mathrm{DO} / \mathrm{DTANH}(\mathrm{BH} 2)$	DIS01870
C		DIS01880
C		DIS01890
		DIS01900
		DIS01910
C		DIS01920
	GO TO (500,501) IPRINT	DIS01930
500	WRITE (6,18)	DIS01940
	WRITE $(6,24)$ AHR	DIS01950
	WRITE $(6,25)$ If	DIS01960

	WRITE(6,111) ZH	DIS01970
	WRITE $(6,17) \mathrm{M}$	DIS01980
	WRITE(6,18)	DIS01990
	WRITE 6,102)	DIS02000
24	FORMAT(\wedge ' $\left.\mathrm{H}^{\prime}={ }^{\prime}, \mathrm{F8} .2\right)$	Dis02010
25	FORMAT(II $=$ If F10.4)	DIS02020
	WRITE(6,101)	DIS02030
17	FORMAT($\quad \mathrm{M}=$ ', 12)	DIS02040
111	FORMAT($\quad \mathrm{Z} / \mathrm{H}=$ ', F 6.2$)$	Dis02050
c	IVRITE(6,12) A1	DIS02060
C	WRITE(6,13) A2	DIS02070
C	WRITE(6.14) A3	DIS02080
C	WRITE (6,15) A4	DIS02090
c	WRITE (6,16) AS	DIS02100
12	FORMAT('Al = 'E15.6)	DIS02110
13	FORMAT('^2 $=$ ' E15.6)	DIS02120
14	FORMAT('N3 = 'E15.6)	DIS02130
15	FORMAT('A4 $=$ ', E15.6)	Dis02140
16	FORMAT('AS $=$ ',E1S.6)	DIS02150
18	FORMAT (**********************************)	DIS02160
501	$\mathrm{Fl}=\mathrm{Al}-\left(12 . / \mathrm{H}^{* *} 3\right)^{*} \mathrm{~A} 3^{*}\left(2 . / \mathrm{A}^{* *} 2^{*} \mathrm{DSINH}(\mathrm{Ali2}) \mathrm{HI}^{*} \mathrm{DCOSH}(\mathrm{AH} 2) /\right.$	DIS02170
	^) $-\left(12 . / \mathrm{H}^{* *} 3\right)^{*} A 5^{*}\left(2 . / \mathrm{B}^{* *} 2^{*} \mathrm{DSINH}(\mathrm{BH} 22) \cdot \mathrm{I}{ }^{*} \mathrm{DCOSIL}(\mathrm{BH} / 2) / \mathrm{B}\right)$	DIS02180
	$C l=-(A 3 / A+A 5 / B)$	DIS02190
	$C 2=2 . D 0^{*}(1 . D 0+N U) / A P B^{*}(A 2+A 4)-\left(A 2 / A^{* *} 2+A 4 /\right.$	DIS02200
	. $\mathrm{B}^{=\sim} \mathrm{O}^{\text {) }}$	DIS02210
C		DIS02220
C	WRITE(6.552) Cl	DIS02230
C	WRITE(6,553) C2	DIS02240
552	FORMAT(${ }^{\text {Cl }}=$ =, F 20.6)	DIS02250
553	FORMAT(${ }^{\text {C2 }}=$ = 'F20.6)	DIS02260
C		DIS02270
	$\mathrm{F3I}=\left(\mathrm{H}^{* *} 2 / 40 .\right)^{*} \mathrm{Al}+\mathrm{Cl}$	DIS02280
	F32 $=\left(12 . / \mathrm{H}^{* *} 3\right)^{*}\left(\mathrm{~A} 3 / \mathrm{A}^{* *} 2\right)$	DIS02290
		DIS02300
	$F 34=\left(12 . / \mathrm{H}^{* *} 3\right)^{*}\left(A 5 / \mathrm{B}^{* *} 2\right)$	DIS02310
		DIS02320
	$F 3=F 31+F 32^{*} \mathrm{~F} 33+\mathrm{F} 34^{*} \mathrm{~F} 35$	DIS02330
C		DIS02340
C		DIS02350
	F2 $=2.1 \mathrm{~A}^{*} \mathrm{DSINH}(\mathrm{AlI2})^{*} \mathrm{~A} 2+2 . / \mathrm{B}^{*} \mathrm{DSINH}(\mathrm{BHI})^{*} \wedge 4$	DIS02360
	$F 4=2 . / A^{* *} 3^{*} \operatorname{DSINH}(\Lambda H 2) * A 2+2 . / \mathrm{B}^{* *} 3^{*} \operatorname{DSINH}(\mathrm{BH} / 2)^{*} \wedge 4$	DIS02370
	$+\mathrm{C} 2^{*} 1 \mathrm{l}$	DIS02380
c		DIS02390
C		DIS02400
	GO TO (600,601) IPRINT	DIS02410
600	WRTTE $(6,42) \mathrm{FI}$	DIS02420
	WRITE (6,51) FiB	DIS02430
	WRITE $(6,43)$ F3	DIS02440
	WRITE(6,52) F3B	DIS02450
	WRITE (6,53) F2	DIS02460

WRITE(6,54) F4		DIS02470
42	FORMAT(PRESENT WORK FI = 'El 5.6)	DIS02480
43	FORMAT('PRESENT WORK F3 $=$; El5.6)	DIS02490
51	FORMAT('BALUCH WORK FIB $=$ ',E15.6)	DIS02500
52	FORMAT('BALUCH WORK $\mathrm{F} 3 \mathrm{~B}={ }^{\prime}$, E15.6)	DIS02510
53	FORMAT('PRESENT WORK $F 2=;$ E15.6)	DIS02520
54	FORMAT('PRESENT WORK F4 $=$ ',El5.6)	DIS02530
601	$\mathrm{S}=\mathrm{G} / \mathrm{Fl}$	DIS02540
	$N=E j / \cdot 3$	DIS02550
	$\mathrm{R}=10 .{ }^{.} \mathrm{E}^{*} \mathrm{H} /\left(3 .{ }^{\text {\% }} \mathrm{NU}\right.$)	DIS02560
	GO TO (230,231) IFOUR	DIS02570
230	$\mathrm{P}=1.0$	DIS02580
	GO TO 232	DIS02590
231	$\mathrm{P}=4 . \mathrm{DO} /\left(\mathrm{M}^{*} \mathrm{PI}\right)$	DIS02600
232	$\mathrm{AM}=\mathrm{M}^{*} \mathrm{PI} / 2 . \mathrm{DO}$	DIS02610
C	AM $=$ ALPHA ${ }^{*}$ ABARR 2	DIS02620
C	W00 $=\mathrm{P} /\left(\right.$ ($\left.\mathrm{PPRS}^{*} \mathrm{D}\right)$	DIS02630
C	W01 $=1.0+(2 .-N U)^{*} \mathrm{H}^{* *} 3^{*} \mathrm{APB}^{*} \mathrm{FI} /\left(12 .{ }^{*}(1 .-\mathrm{NU})\right.$) $\mathrm{APPBS}^{*} \mathrm{D} / \mathrm{N}$	DIS02640
C	$W^{\prime} 02=\mathrm{NL}^{*} \mathrm{IL} \mathrm{I}^{*} 2^{*}$ APB/ $/ 40 . *\left(1 .-\mathrm{NL}{ }^{\prime}\right)$	DIS02650
C	W03 $=\mathrm{NU}^{* *} 2^{*} \mathrm{H}^{* *} 5^{*} \mathrm{APBS}^{*} \mathrm{~F} 1 /\left(480 .{ }^{*}(1 .-\mathrm{NU})^{* *} 2\right)$	DIS02660
C	W04 $=$ NU** $\mathbf{2}^{*} \mathrm{I}^{* *} 5^{*}$ APBS ${ }^{*} \mathrm{FI} 1 /\left(240 .^{*}(1 .-\mathrm{NU})^{* * 2} \mathbf{2}^{*}(\mathrm{i} .+\mathrm{NU})\right.$)	DIS02670
C		DIS02680
	WOCHEC $=\mathrm{P} /\left(\mathrm{BB}^{*} \mathrm{E}\right)^{*}\left(\mathrm{AA} \mathrm{A}^{*} \mathrm{Al}-\mathrm{BB}^{*} \mathrm{Cl} 1-\mathrm{A}^{*}\left(\mathrm{~A}^{* *} 3\right.\right.$	DIS02690
	- $\left.A^{*} A A+B B / A\right)-A 5^{*}\left(B^{* *} 3-B^{*} A A\right.$	DIS02700
	+BB/B) $)^{*} \operatorname{DSIN}(A M)$	DIS02710
C	$+\mathrm{BB} / \mathrm{B}) \mathrm{r}^{\left.-\mathrm{P}^{*} \mathrm{Cl} / \mathrm{E}\right)^{*} \mathrm{DSIN}(\mathrm{AM})}$	DIS02720
	BMCHEK $=H^{* *} 3^{*} \mathrm{P}^{*} \mathrm{Al} /\left(12 .{ }^{*} \mathrm{NU}\right)$	DIS02730
		DIS02740
	BM $=$ BMCHEK	DIS02750
		DIS02760
	; $\quad+\mathrm{BM} / \mathrm{R})^{\text {- }} \mathrm{DSIN}(\mathrm{AM})$	DIS02770
C	+ BM/R - $\left.{ }^{*} \mathrm{Cl} / \mathrm{E}\right)^{*} \mathrm{DSIN}(\mathrm{AM})$	DIS02780
	WOCHEK = WOCHEC + WOCHEK	DIS02790
	WMT = WMT + W	DIS02800
	$\mathrm{WC}=\mathrm{P}^{*} \mathrm{DSIN}(\mathrm{AM}) /\left(\mathrm{APBS}^{*} \mathrm{D}\right)$	DIS02810
	$W C T=W C T+W C$	DIS02820
	WRP = WMT/WCT	DIS02830
	WRCHEK = WOCHEK/WCT	DIS02840
C		DIS02850
C		DIS02860
	EXACT SOLUTION	DIS02870
C		DIS02880
C		DIS02890
		DIS02900
		DIS02910
		DIS02920
		DIS02930
C		DIS02940
C		DIS02950
C	TR: IN EXACT SOLUTION (E WHLL BER REPLACED BY (E/(1.-NU*2)	Dis02960

```
C
C
        EEXAC= E/NUSM:
        WOEXAC=(R4* AP*DSIN(AM)/EEXAC)*(2.+NUPI*^APII2*DTANH(APH2))
        WOEXAK = WOEXAC + WOEXAK
C WREXAC = WOEXAK/WCT
    WREXAC = DABS(WOEXAK;WCT)
C
C
C PANC'S WORK
C
C
    LAMDA = ALPHA*DSQRT(2.f(1.-NU))
    LA = LAMDA
    LH2 = LAMDA*H/2.
    K=2.*E*(LH2-DTANHI(LH2))/(LAMDA**3*(1.-NU**2))
    WPANC = P*DSIN(AM)(APBS*K)
    WOPANC = WPANC + WOPANC
    WRPANC = WOPANCIWCT
C
C END OF PANC'S WORK
C
C**********************
C
C
C BALUCHS WORK
C
C
C
        CIB=0.DO
        C2B=-NUP1;APB
        F1B = 6.D0/(5.DO* H)
        F3B=39.DO*H/1120.D0
C F3B=39.D0* FI/1120.DO + CIB
        SB=G/F1B
        NB=E/F3B
C W00=P/(APBS*D)
C WOI = 1.0+(2.-NU)*II**3*APB*FI/(12.*(1.-NU))-APBS* D/N
C WO2 =NU*H** 2* APB/(40.*(1.-NU))
C W03 = NU**2* H
C W04 = NU** 2* F1**S*APBS*F1/(240.*(1.NU)**2*(1.+NL'))
C WOB = WOO*(WO1 + W02-WO3 + W04)*DSIN(^MM)
    BMB = D*P* ((1.+NU)/(D*APB)-NU* (1.+NU)** 2* FIB/E+2.*NU*
    ; (1.+NU)*FIB/E)
        WOB = (P* (1./(\LambdaPBS*D) + (2.-NU)* (1.+NU)*FIB;(APR* R)-1./NB)
    ; + BMB/R )* DSIN(AM)
        WBT = WBT + WOB
        WRB = WBT/WCT
    C*******************
C
```

DIS02970
DIS02980
DIS02990
DIS03000
DIS03010
DIS03020
DIS03030
DIS03040
DIS03050
DIS03060
DIS03070
DIS03080
DIS03090
DIS03100
DIS03110
DIS03120
DIS03130
DIS03140
DIS03150
DIS03160
DIS03170
DIS03180
DIS03190
DIS03200
DIS03210
DIS03220
DIS03230
DIS03240
DIS03250
DIS03260
DIS03270
DIS03280
DIS03290
DIS03300
DIS03310
DIS03320
DIS03330
DIS03340
DIS03350
DIS03360
DIS03370
DIS03380
DIS03390
DIS03400
DIS03410
DIS03420
DIS03430
DIS03440
DIS03450
DIS03460

```
C
DIS03470
C REISSNER SHEAR DEFORMATION THEORY
C
C
C**********************
C*********************
    ; DSIN(AM)
        WREIS = WREISS + WREIS
        WRREIS = WREIS/WCT
    C*********************
C
    C
C NAGHDI-ESSENBURG TRANSVERSE NORMIAL STRAIN THEORY
    C
C
C********************
    WNAGDI = (1.DO + (8. - 3.*NU*(1.-NU) )}\mp@subsup{H}{}{*}\mp@subsup{H}{}{***}\mp@subsup{2}{}{*}\mathrm{ APB/(40.*(1.-NU))
    ; -3.*APBS*H**4/1120.**P/(APBS*D)*DSIN(AM)
        WNAGD = WNAGDI + WNAGD
        WRNAGD = WNAGD/WCT
C
C WRITE(6.19) WCT
C WRITE(6,21) WMT
        GO TO (672,503) IPRINT
672 IF(M.GE.MP) GO TO 544
        GO TO 503
S44 WRITE (6,22) WRP
C WRITE(6.64) WRCHEK
        WRITE(6,72) WREXAC
        WRITE(6,56) WRB
    WRITE(6,27) WRPANC
        WRITE(6,29) WRREIS
        WRITE(6,41) WRNAGD
C WRITE(6,67) BM
C WRITE(6,68) BMCHEK
C19 FORMAT(' ''W ,CLASSICAL THEORY, WCT =',F1S.6)
C21 FORMAT('''W ,MODIFIED TIIEORY , WMT =',F15.6) DIS03830
3.3 FORMAT('''BBBBBBBBBBBBBBBBBB C2B =',F15.6) DIS03840
22 FORMAT(':'PRESENT WORK RATIO ; WRP =',F15.6) DIS03850
72 FORMAT('',EXACT SOLUTION RATIO;WREXAC ='F15.6) DIS03860
64 FORMAT(`':PRFSENT WORK RATIO :WRCIIEK =',F15.6) DIS03870
C67 FORMAT(';'BM =',F20.6) DIS03880
C68 FORMAT(' ',BMCHEK =',F20.6)
56 FORMAT(';'BALUCH RATIO ;WRB =';F15.6) DIS03900
27 FORMAT( ' 'OWRPANC ='F15.6)
29 FORMAT(' }\because\mathrm{ WRREIS = ',F15.6)
41 FORMAT('?WRNAGD =',FIS.0)
C
C
    C PRESENT WORK - STRESSES:SIGMAX
DIS03480
DIS03490
C
DIS03500
DIS03510
DIS03520
DIS03530
DIS03540
DIS03550
DIS03560
DIS03570
DIS03580
DIS03590
DIS03600
C DIS03610
DIS03620
DIS03630
DIS03640
DIS03650
DIS03660
DIS03670
        DIS03680
        DIS03690
        DIS03700
        DIS03710
        DIS03720
DIS03730
DIS03740
DIS03750
DIS03760
    DIS03770
DIS03780
DIS03790
DIS03800
DIS038i0
DIS03820
DIS03880
DIS03890
DIS03890
DIS03900
DIS03910
DIS03920
DIS03930
DIS03940
DIS03950
DIS03950
```

```
C
    DIS03970
    DIS03980
    DIS03990
    DIS04000
    DIS04010
    DIS04020
    DIS04030
    DIS04040
    DISO4C50
    DIS04060
    DIS04070
    DIS04080
    DIS04090
    DIS04100
    DIS04110
    DIS04120
    DIS04130
    DIS04140
    DIS04150
    DIS04160
    DIS04170
    DIS04180
    DIS04190
    DISO4200
    DIS04210
    DIS04220
    DIS04230
    DIS04240
    DIS04250
    DIS04260
    DIS04270
    DIS04280
DIS04290
DIS04300
DIS04310
DIS04320
C SIGXE=SIGMAE
c
C EXACT SOLUTION - STRESSES : SIGMAX
            SIGZE = SIG7E - APB*DSIN(AM)*(RI*DSINII(AP7) + R2*DCOSU(AP7)
            + R3*APZ*DSINH(APT) + R4*APZ*DCOSH(APZ))
C
C
C
C PANCS SOLUTION:STRESSES
C
C
    FITP=0.5*(L\mp@subsup{\Lambda}{}{*}\mp@subsup{Z}{}{*}DCOSH(LI2)-DSINH(L.N*Z) )(LII2*
    ; DCOSII(LHI2)-DSINH(LH2))
    W2PA = WPANC/DSIN(AMI)
```



```
                                    DIS04330
C
C EXACT SOLUTION - STRESSES : SIGMAX
C
C
            APZ=-ALPHA*Z
            SIGXE=APB*(RI*DSINHI(APZ) + R2*DCOSII(APZ) + R3**(2.*
                    DCOSH(APZ)+APZ*DSINII(AP7.)) + R4*(2.*DSINH(APZ)
                    + APZ* DCOSH(APZ)) )* DSIN(AM)
            SIGMAR = SIGMAE + SIGXE
                DIS04340
                DIS04350
                DIS04360
                DIS04370
                DIS04380
                                    DIS04390
                                    DIS04400



\section*{REFERENCES}
1. S. Timoshenko and S. Woinowsky-Kreiger , Theory of Plates and Shells (McGraw-Hill,New York,2nd ed.,NY,1959)
2. Reissner, E. "The Effects of Transverse Shear Deformation on the Bending of Elastic Plates", Journal of Applied Mechanics, Vol. 12, No. 2, Transactions ASME, Vol. 67, June 1946, 69-77.
3. Hildelbrand, F.B., Reissner, E. and Thomas, G. B., "Notes on the Foundation of the Theory of Small Displacements of Orthotropic Shells \({ }^{\text {n }}\), NACA Technical Note No. 1833, 1949.
4. Reissner, E., "Stress-Strain Relations in Theory of Thin Elastic Shells", Journal of Math and Physics, Vol. 31, 1952, 109-119.
5. Naghdi, P.M., "On the Theory of Thin Elastic Shells", Quarterly of Applied Mathematics, Vol. 14, 1957, 369-380.
6. Essenburg, F., "On the Significance of the Inclusion of the Effect of Transverse Normal Strain in Problems Involving Beams with Surface Constraints," Journal of Applied Mechanics, Vol. 41, No.2, Transactions ASME, Vol. 97, Series E, March 1975, 127-132.
7. Kromm A., "Verallgemeinerte Theorie der Plattensstatik," IngArch. 21, 1953.
8. Kromm A., "Uber die Randquerkrafte bei gestutzten Platten," Z. angew. Math. Mech. 35, 1955.
9. Panc, V., "Theories of Elastic Plates", Noordhoff International Publishing, Leyden, The Netherlands, 1975.
10. Baluch, M. H., Voyiadjis, G. Z. and Azad, A. K., "A Refined Theory for Isotropic Plates", Transactions of CSME, Vol. 8, No. 1, 1984, 21-27.
11. Voyiadjis, G.Z., Baluch, M.H., and Chi, W.k., "Effects of Shear and Normal Strain on Plate Bending", Journal of Engineering Mechanics, ASCE, Vol. 111, No. 9, September, 1985, pp. 1130-1143.
12. Salerno, V.L., and Goldberg, M.A., "Effect of Shear Deformation on the Bending of Rectangular Plates", Journal of Applied Mechanics, Vol. 27, Mar., 1960, pp. 54-58.
13. Goma'a, Said Taha Khalil, "Finite Element Modelling For The Bending Of Thick Plates", M.Sc. Thesis, King Fahd University Of Petroleum And Minerals, Dhahran, Saudi Arabia, June 1989.
14. S. Timoshenko and J.N. Goodier , Theory of Elasticity,
(McGraw-Hill, New York, 2nd ed., NY, 1951)
15. Little, R.W., Elasticity, Prentice-Hall, Englewood Cliffs, N.J., 1973, 109-112.
16. Baluch, M.H. and Voyiadjis, G.S., "A Refined Theory for the Bending of Plates", 15th International Congress of Theoretical and Applied Mechanics, Toronto, Canada, August 1980.
17. Hencky, H., "Uber die Berucksichtigung der Schubverzerrungen in Ebenen Platten," Ing.-Arch, 16, 1947.
18. Green, A.E., "On Reissner's Theory of Bending of Elastic Plates, "Quarterly of Applied Mathematics, Vol. 7, 1949, 223.
19. Panc, V., "Verscharfte Theorie der Elastichen Platte", Ing.-Arch, 33, 1964.
20. Ambartsunyan, S.A., Theory of Anisotropic Plates, Progress in Materials Science Series, Volume II, Technomic Publication, Conn., 1970.
21. Whitney, J.M. and Pagano, N.J., "Shear Deformation in Heterogeneous Anisotropic Plates", Journal of Applied Mechanics, Vol. 37, Transactions ASME, Vol. 92, Series E, 1970, 1031-1036.
22. Whitney, J.M., "Stress Analysis of Thick Laminated Composite and Sandwich Plates", Journal Composite Materials, Vol. 6, 1972, 426-440.
23. Whitmey, J.M. and Sun C.T., "A Higher Order Theory for Extensional Motion of Laminated Composites", Journal of Sound and Vibration, Vol. 30, 1973, 85-97.
24. Nelson, R.B. and Lords, D.R., "A Refined Theory of Laminated Orthotropic Plates", Journal of Applied Mechanics, Vol. 41, Transactions ASME, Vol. 96, Series E,
25. Reissner, E., "On Transverse Bending of Plates, Including the Effect of Transverse Shear Deformation", International Journal of Solids and Structures, Vol. 11, 1975, 569-573.
26. Lo, K.H., Christensen, R.M. and Wu, E.M., "A High Order Theory of Plate Deformation - Part 1 : Homogeneous Plates", Journal of Applied Mechanics, Vol. 44, Transactions ASME, Vol. 99, Series E, 1977, 663-668.
27. Lo, K.H., Christensen, R.M. and Wu, E.M., "A High Order Theory of Plate Deformation - Part 2 : Laminated Plates", Journal of Applied Mechanics, Vol. 44, Transactions ASME, Vol. 99, Series E, 1977, 669-676.
28. Voyiadjis, G. Z. and Baluch, M.H., "Refinements in the Bending of Plates with One Plane of Elastic Symmetry", Proceedings of the International Symposium on the Mechanical Behavior of Structured Media," Studies in Applied Mechanics, 5, May 1981, Carleton University, Ottawa, Canada.
29. Voyiadjis, G.Z. and Baluch, M.H., "Refined Theory for Flexural Motions of Isotropic Elastic Plates", Journal of Sound and Vibration, Vol. 76(1), 1981, 57-64.```


[^0]:    * Such modifications in boundary conditions are necessary to avoid effects of ill conditioning

