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Abstract

The problem of incompressible axisymmetric flow over spheroidal bodies Is considered. The
analysis covers steady and unsteady flows of inviscid and viscous fluids. The spheroidal bodies may take
the shape of spheres, oblate or prolate spheroids. The study is based on analytical and numerical
solutions of the mass an momentum conservation equations. Euler's equations are solved analytically for
the case of inviscid flow while the full Navier-Stokes equations are solved numerically for the case of
viscous flow. The study focuses on the time variation of the velocity field as well as the hydrodynamic
forces due to free-stream oscillations. The method of solution of the full Navier-Stokes equations
combines analytical and numerical techniques where the steam function and vorticity are approximated
using Legendre functions whereas the resulting differential equations are solved numerically. The
parameters involved in the voscous flow problem are the Reynolds number, strouhal number, and the
spheroidal body geometry. The study covers Reynolds numbers in the range from 0.1 to 200 and Strouhal
numbers in the range from © / 4 to 2n. Results are presented in terms of the drag coefficient, surface
vorticity and surface-pressure distributions, and stream line and equi-vorticity pattersns. Detailed analysis
of the velocity field including the wake length and angle of separation is also presented.
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CHAPTER 1

INTRODUCTION

In the last few years, considerable research has been carried out to investigate the
characteristics of flows over bodies of various shapes. Because of the related engineering
applications, special interest has evolved in bodies of cylindrical, disk-shaped, or spherical
geometry. For example, the analysis of viscous flow over inclined cylinders is motivated by
the need to estimate the hydrodynamic forces on various components of submerged
structures ( columns and supports of off shore platforms, underwater cables and pipes, ....
etc. ). This analysis is also useful in the process of cooling hot wires and electronic
components. Other components of these offshore structures and platforms which are
subject to wave induced oscillatory motion can be of different shapes such as plates and
disks which are sometimes used as damping devices. There is a need to characterize the
hydrodynamic forces acting on these structural components for analysis and design. Flow

over spheres has many applications in natural processes. Water droplets 300 um in

diameter settling in air remain spherical under the influence of surface tension and behave
essentially as a rigid sphere. The corresponding Reynolds number is approximately 20
based on the diameter and terminal falling speed. An air bubble in water will behave as a
sphere due to surface tension and the presence of surfactants with Reynolds number of
about 10 as it rises under buoyancy, Chang and Maxey (1994). Flow over spheres is also
encountered in particle-laden flows, such as pneumatic conveying systems and spray

injection of liquid fuel in combustors and cyclone separators.

In many situations, the velocity field is time-dependent and details of the unsteady
dynamics of the motion are required. Of particular interest is the oscillatory motion over

particles which takes place when the main stream exhibits some velocity fluctuations. The



oscillatory motion of a particle at low Reynolds number is of interest in Brownian motion,
suspension rheometry and the passage of sound waves through particulate systems. More
general unsteady particle motions occur in colloidal suspensions and for particle motion in
filters. Moreover, the rates of heat and mass transfer can be enhanced by the oscillation of
the surrounding fluid. This phenomenon is useful in pulsed combustion, drying, and

absorption of high-intensity sound in particle-laden flows, Drummond and Lyman (1990).

There are many situations where the particles are neither perfect spheres nor flat
circular disks. Under real conditions, offshore structural members may be covered by
marine fouling thus changing the shape. Furthermore, motion of particles suspended in a
gas is common in the industry where there is active aerosols release. Most aerosol particles
are not spherical and therefore it is of considerable interest to examine the effects of
particle shapes. Generally, studying flows over oblate and prolate spheroids is important as
the sphere and the flat circular disk are special cases of these generalized geometries. Thus,
there is a strong need to obtain accurate solutions that can describe the characteristics of

the flow over these geometries.

In the present study, an attempt is made to broaden the solutions available in the
literature to suit the general spheroidal geometries. In this regard, the full steady and
unsteady Navier-Stokes equations for incompressible fluids, written in terms of the stream
function and vorticity, are solved using the spherical and spheroidal coordinates systems.
Furthermore, time dependent free stream conditions are to be incorporated with
concentration on oscillatory motions. While the main interest is to determine the
characteristics of the viscous flow, it is also important to determine the potential flow
solution for such motion. The potential flow solution provides a base for comparison with
the viscous flow in the region adjacent to the solid surface and also provides the boundary
conditions far away from the surface. In the past, simplifying assumptions were always
used to solve the Navier-Stokes equations. These assumptions include neglecting inertia

terms ( Stokes solution ), neglecting viscous terms ( potential flows ), and boundary layer
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approximation. Such simplifications, of course, restrict the range of applicability of the
solutions obtained. The cost of computations using numerical solutions have always been
prohibitive. Reasonably accurate methods of solution have determined the characteristics
of oscillatory flow over spheres up to Reynolds number of 16.7, Chang and Maxey (1994).
Oscillatory flows over oblate and prolate spheroids have only been analyzed through

Stokes linearized equations of motion, Lai and Mockros (1971).

1.1 Present Status of the Problem

The problem under consideration consists of two parts. The first is the flow over
perfect spheres and the second is the flow over spheroids ( oblate and prolate ). The

following summarizes the present knowledge of each problem.

1.1.1 Spheres

Considerable research has been carried out in this case. Steady flow over spheres is
quite known and well established in the literature. The impulsively started flow describing
the time development of'the flow field has been studied by few researchers. Among those
is the excellent study by Dennis and Walker (1972) where the full Navier-Stokes equations
were solved. Studies related to oscillatory flow over spheres are scarce. The problem has
been solved by neglecting the non-linear inertia terms in the equations of motion. The
solution obtained is only valid for small Reynolds numbers due to the considerable effect
that these terms have when Reynolds number increases. A recent attempt to solve the full
Navier-Stokes equations for the oscillating flow over spheres was made by Chang and
Maxey (1994) using spectral methods. The results were obtained up to Reynolds number
of 16.7 and Strouhal number of 10. Fluctuating flow about a non-zero mean past spheres
has only been considered by Mei et al. (1991) where attention was focused on the flow

characteristics for very small fluctuations.



1.1.2 Spheroids

The only known solutions for steady flow over spheroids are those of Payne and
Pell (1960) which were modified by Breach (1961). These solutions for oblate and prolate
spheroids were obtained through solving the linearized Stokes equations. The literature
lacks the solutions of the time-dependent flow problem. The oscillating flow solution over

these geometries was obtained through Stokes equations, Lai and Mockros (1971).

1.2 Objectives

The objectives of the present study are as follows:

1. Obtain the steady and time-dependent potential flow solutions for oblate and prolate

spheroids.

2. Develop a special mathematical method for solving the problem of steady and time-

dependent flow over axisymmetric bodies including the following cases:

A. Oscillating flow over spheres

B. Fluctuating flow about a non-zero mean over spheres.
C. Steady viscous flow over oblate spheroids

D. The impulsively started flow over oblate spheroids.
E. Oscillating flow over oblate spheroids.

F. Oscillating flow over prolate spheroids.

3. Compare the obtained solutions with the previous available resuits.



CHAPTER 2

LITERATURE REVIEW

The literature published on the flow over spheres and sphere-like bodies is
numerous. Perhaps, the best way to review these papers is through grouping them as

presented below.

2.1 Spheres

2.1.1 Steady, Uniform, and Rotating Flows

Previous numerical solutions for the problem of steady flow over a sphere have
been reported by Kawaguti (1950) at Reynolds number Re = 20, Lister (1953) at Re =0,
1, 10, 20 and by Jenson (1959) at Re = S, 10, 20, 40. Jenson (1959) concluded that
separation took place as low asRe =17 which was later criticized by many authors who
found that separation does not take place below Re = 20. The method of solution adopted
in the previous studies was the finite difference technique applied to the governing
equations written in terms of the stream function and vorticity. Using finer grids, the same
problem was solved by Hamielec et al. (1967), and Le Clair et al. (1970). The steady state
solution obtained at large time when solving the impulsively started flow problem was
reported by Rimon and Cheng (1969). Dennis and Walker (1964) used Fourier expansion
for the flow variables to solve the problem for a wide range of Reynolds numbers. Later on
(1971), they calculated the steady flow over a sphere by the series truncation method up to
Re=40. Their method of solution was semi-analytical where the dependent variables were
expanded in terms of Legendre polynomials. A third excellent paper by the same authors

appeared in (1972) where they used the same method to determine the solution of the
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impulsively started sphere for a wide range of Reynolds numbers. Matching techniques
were used by Bentwich and Miloh (1978) to describe the flow past a sphere. Sano (1981)
showed that the matching procedure used by Bentwich and Miloh (1978) was incomplete
and presented a complete procedure for successful matching. The equations of motion for
a small rigid sphere in a non-uniform flow were developed by Maxey and Riley (1983)
from first principles. Oliver and Chung (1987) solved the steady flow problem over a fluid
sphere through the series truncation method coupled with finite elements. The range of
Reynolds numbers was from 0.5 to 50 while the range of viscosity ratio was from 0 (gas
bubble) to 107 (solid sphere). Fornberg (1988) studied the steady flow over a sphere at
high Reynolds numbers up to 5000. The wake was found to resemble a Hill’s spherical
vortex. An elementary treatment of Stokes flow was given by Klamkin (1989). A
multigrid defect correction technique was used by Juncu and Mihail (1990) to solve the
problem of incompressible steady flow past a sphere. The considered Reynolds numbers
were 50, 100, 400, and 1000. A procedure for the calculation of the starting flow around a
sphere in a uniform stream was presented by Lee (1991). In this procedure, the discrete
vortices method was used where the vorticity filed was approximated by a number of
discrete circular line vortices. The flow field over a sphere placed in a uniform flow was
numerically analyzed by Shirayama (1992) on the basis of unsteady three dimensional
structures in a separated flow field. He concluded that a topological transition suddenly
takes place, and a periodical structure appears in the wake region. The instability of steady
flow past a sphere was investigated by Natarajan and Acrivos (1993). The finite element
method was used to compute the base flows, and to examine their linear instability to
three-dimensional modal perturbations. The results showed that the first instability was
through a regular bifurcation, and the critical number ( based on the sphere radius ) was
105. Kholeif and Kamel (1993) studied the deceleration of a sphere in an infinite viscous
fluid. They considered two sources of retardation namely, by the action of a viscous shear
on the sphere surface and by the action of the viscous shear with a plane shear flow at

infinity. An exponential decay was shown in both cases.



7

Raman (1984) solved the problem of boundary-layer flow on a sphere rotating
anticlockwise about its axis in a stagnant fluid using finite differences. He showed that the
transverse velocity was positive in the upper hemisphere, zero in the equatorial plane and
becomes negative in the lower hemisphere. Slow viscous rotating steady flow past a
sphere was investigated by Raghavarao and Valli (1987) and by the same authors in
(1989). A spinning sphere in a slowly rotating fluid at low Reynolds numbers was studied
by Raghavarao and Sekhar (1993). They used an upwinding technique for the nonlinear

inertia terms.

2.1.2 Oscillating and Accelerating Flows

One of the earliest attempts to analyze the motion of a sphere dates back to Basset
(1888) who gave an analytical solution for the motion of a small spherical particle settling
from rest under gravity in still fluid, based on the assumption of low particle Reynolds
number. Odar and Hamilton (1964) proposed an equation for the force exerted by viscous
fluid on a sphere which is accelerating arbitrarily and moving linearly in an otherwise
quiet fluid. Odar (1966) later verified the equation through experiments. Riley (1966)
investigated the flow induced by a sphere oscillating in a viscous fluid when the amplitude
of oscillation is small compared with the radius of the sphere through perturbation
methods. The flow induced by an oscillating sphere in a viscous fluid otherwise at rest
was investigated by Higa and Takahashi (1987). Mass transfer from a sphere in an
oscillating flow with zero mean velocity was studied by Drummond and Lyman (1990)
using a pseudo-spectral method. Their main interest was to determine the best conditions
for enhancing the mass transfer rate. Unsteady flow over a stationary sphere with small
fluctuations in the free stream velocity at finite Reynolds numbers was investigated by
Mei et. al (1991). Mei and Adrian (1992) investigated the same problem at small
Reynolds numbers using a matched asymptotic solution. It was found that the acceleration
dependent force was linearly proportional to the frequency. The Stokes flow solution was

not appropriate at small frequencies. Mei et al. (1991) computed the unsteady drag on a
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sphere at finite Reynolds number with small fluctuations in the free stream velocity. The
finite-difference scheme showed that the force increases linearly with the square root of
frequency. Mei (1994) used a numerical solution, together with a high-frequency
asymptotic solution, to solve the unsteady Navier-Stokes equations for flow over a
stationary sphere at finite Reynolds number with oscillating free stream velocity. The total
unsteady drag compared well with Odar and Hamilton’s (1964) experimental results at
finite Reynolds numbers. Various unsteady drag components were examined. A general
dynamic equation including the quasi-steady drag, history force and added-mass force in
the time domain was proposed for particle motions at finite Reynolds number. An
excellent paper about oscillatory motion was presented by Chang and Maxey (1994) using
spectral methods. They investigated oscillating flow over a sphere for Strouhal numbers
up to 10 and Reynolds numbers up to 16.7. It was found that at very low Reynolds
numbers, separation took place during the deceleration period. This was attributed to the
adverse pressure gradients during deceleration. No separation was found during the
accelerating period. The accelerating and decelerating phases were not direct opposites of
each other but created time-dependent streaming patterns. It was found that for a given
phase angle, the length of the separation region decreases but encompasses more of the
sphere at increasing Strouhal numbers. As the Strouhal number increases, the surface
vorticity becomes more symmetric about the equator and increases in intensity. At very
low Reynolds and Strouhal numbers, the shear stress was found to remain in phase with
the free-stream velocity. Increasing Reynolds number acts to lengthen the recirculation
region but reduces its breadth. Decreasing Reynolds number was found to delay
separation. The pressure and viscous forces were shown to exhibit a phase lead over the
free stream velocity. This was attributed to the acceleration effects which increase with the

increase of the Strouhal number.



2.2 Oblate and Prolate Spheroids

The literature on the flow over oblate and prolate spheroids is scarce. The

following papers are related to the present study.

Payne and Pell (1960) neglected the inertia terms and obtained formulas for the
steady drag on bodies of various shapes including oblate and prolate spheroids. Breach
(1961) modified these formulas by using two classical methods, those of Stokes (1851)
and Oseen (1910) for finding approximations to viscous streaming at low Reynolds
numbers. Upon investigating the Stokes flow generated by an oscillating spheroid,
Kanwal (1955) obtained the general solution of the Stokes stream function. Kanwal,
however, failed to numerically determine the constants of integration. Lai and Mockros
(1971) used the linearized Stokes equations of motion to calculate the flow field generated
by a spheroid executing axial translatory oscillations in an infinite, otherwise still,
incompressible, viscous fluid. The flow field was expressed in terms of the wave function
of order one. They integrated the drag formula over all frequencies to obtain a formula for
the drag on a spheroid executing general axial translatory accelerations. The formula
which is valid at low frequency consisted of three parts similar to those of the Basset
solution (1888) for a sphere. These are the added mass, the steady Stokes drag, and the
history term. Their solution was, however, criticized by Lawrence and Weinbaum (1988)
who revealed significant differences between spheres and nearly spherical bodies. While
investigating the oscillatory motion over oblate spheroids, Lawrence and Weinbaum
(1986) found that the force was not a simple quadratic function in half-integer powers of
the frequency as in the classical solution of Stokes for a sphere, and the force for an
arbitrary velocity contained a new memory integral whose kemel differed from the
classical behavior derived by Basset for a sphere. Barshinger and Geer (1984) studied
Stokes flow past a thin body of revolution for the case of axially incident uniform flow.
The part of the velocity and pressure fields due to the presence of the body was

represented by a distribution of Stokelets and dipoles distributed over a disk which lies
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entirely inside the body. Three-dimensional boundary layer on a spheroid at incidence was
studied for the cases of laminar and turbulent flows by Patel and Baek (1985). The effect
of deviation from sphericity on the deposition rate of aerosols on cold surfaces was found
to be significant by Williams (1986). Rubel (1986) studied the axisymmetric shear flow
over spheres and spheroids. An approximate boundary-layer method was used by Costis
and Telionis (1988) to study the vortical wakes over a prolate spheroid. Turbulence effects
on separated flow over a prolate spheroid were studied by Gee and Cummings (1992).
Linear stability of the three-dimensional boundary layers over axisymmetric bodies at
incidence was investigated by Spall and Malik (1992). Three-dimensional separation was

also studied by Wu and Shen (1992) and by Su et al. (1993).

In the above-mentioned work on oblate and prolate spheroids, the linearized
equations of motion were solved because the non-linearity in the Navier-Stokes equations
renders the solutions of these problems extremely difficult. This, of course, imposes an
upper limit on the range of validity of the obtained solutions. To obtain solutions that are
valid at moderate or high Reynolds numbers, we recourse to the full Navier-Stokes

equations.



CHAPTER 3

PROBLEM STATEMENT AND THE GOVERNING EQUATIONS

In this chapter, the Navier-Stokes equations are written in terms of the stream
function and vorticity in any arbitrary coordinate system. These general equations are then
used in subsequent chapters to obtain the appropriate governing relations for each specific

coordinate system used.

3.1 Preliminaries

Consider any axisymmetric body whose geometry can be precisely described by a
certain orthogonal coordinate system and assume that this coordinate system with
coordinates labeled q; ,q2 , and g can be related to the Cartesian system (x,y,z) by the
following relations:
x=x(9,,9,,93) , Y=¥(4,,9:,9;) , and z=2q,,q,,q;) 3.1)

If it is further assumed that the arc length (ds) can be written in the new curvilinear

coordinate system as

3
ds’ = )" (h, dq;)? 3.2)
i=
with h; being some scale factors, it becomes standard mathematics to show that
2 0K, 0y, ,0Z.s
hi =(Z=)" + ()" +()° (33)
aq; aq; aq;

It follows that quantities such as arc length, gradients, laplacian, and the curl can be easily
written in the new orthogonal curvilinear coordinate system once its scale factors are

known. The arc length, then, takes the form

11
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ds® = (h,dq,)* +(h,dq,)? +(h,dq,)? 3.4
The gradient of a scalar function y = y(q,,q,,9q;) is

- 1 _ -
Vy L5 O u, +Liy—u3 (3.9)

=——01{, +—
hI aql l hZ a‘h h] &13

where U,,u,,and u; are the unit vectors in the new orthogonal curvilinear coordinate

system. The divergence of a vector field (F) represented by

F=Fi, +Fi, +F,, (3.6)
takes the following form:
= = | o} 0 0
VeF= —(F,h,h,) + —(F,h,h,) +——(F,h,h 3.7
¢ h,h,h, [6q,( hzh;) aqz( 2y h;) Bq3( 3t 2)] 3.7
The laplacian then follows as
2 1 é ,h,h, oy é ,hh, oy 0 ,hh, oy
Viy = [ ) R e Gy B el G e (3.8)
hlh2h3 aql h] ml &12 h2 an an h3 alB

Finally the curl of a vector field can be written as

hyu, h,u, hyu,

- = 1 0 0 0
VxF= (3.9

hih,h;18q, &g, dq,

Fh, Fh, Fh,

3.2 Navier-Stokes Equations in the Stream Function and Vorticity Form

The Navier-Stokes equations for incompressible fluids in the most general form can

be written in vector notation as
p[%+(\7/-‘7)ﬁ':l= —Vp+F+uVw (3.10)
where, W is the velocity vector, pis the fluid density, F is the body force vector, p is the

pressure in the fluid, t istime, and p is the dynamic viscosity. The assumptions inherent

in these equations are the constant physical properties, the fluid does not develop any local
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moment, and constant body forces. The continuity equation for incompressible fluids is

simply a zero divergence of the velocity vector.

Vew=0 (3.11)
The vorticity (¢ ) is defined in the usual way as the curl of the velocity vector.

c=Vxw (3.12)
If a stream function (y) is defined so that the continuity equation is satisfied, then its

appropriate form is

hyh,w, = 2% hh,w, = -2 (3.13)

k4

aq, aq,
where q,, q, are the space coordinates. It should be noted that we strictly speak of

axisymmetric or two-dimensional problems. The vorticity is then a scalar and a stream

function is an appropriate definition.

The quantity (w. 6)\3/ in equation (3.10) is a pseudo-vector and can be expanded as
(We V)W =TV(W?/2) =W x(V x W) (3.14)

and, V2% = V(V. W) -V x (Vx W) (3.15)

Using the appropriate coordinate scale factors, the equations for any two-dimensional or

three-dimensional axisymmetric flow in terms of the stream function and vorticity can be

written as
0 _ h, 6\;1 6 h, oy _
aq, (hh 6q, aqz h h, 6q )= hlhzg (3.16)
and,
o oy 0 oy 0 d
hh, =+
o ) T e {aq.[hh aq.( )J [hh aqz(h’g)J}

(3.17)
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where v is the coefficient of kinematic viscosity. The boundary conditions associated
with these equations depend on the flow considered, whether uniform, oscillating or

fluctuating and will be left for the specific cases considered.

3.3 The Spheroidal Bodies under Consideration

In this study, the full Navier-Stokes equations are solved for flows over three
axially symmetric bodies, namely, a sphere, an oblate spheroid, and a prolate spheroid. To
describe the geometries of these bodies, the spherical, oblate spheroidal, and prolate

spheroidal coordinates are used.

3.3.1 The Sphere

The coordinate system that best describes the spherical geometry is the spherical

coordinate system (r,0,¢ ). The cartesian coordinate system is related to the spherical

coordinate system by

X=r sin® cos¢
y=r sin6 sin¢ (3.18)
z=rcosB

with corresponding scale factors

h,=1 , hg=r , h,=rsinb (3.19)
Figure 3.1 shows the coordinate variables and the flow problem to be considered. The
sphere has a diameter of 2a. The velocity of the fluid far away from the surface of sphere
U is assumed to take any time dependent function U = U(t). In the case U(t) = constant,
the problem reduces to that of the impulsively started flow. If time variations are ignored,

only the steady version of equation (3.17) is to be solved.
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Figure 3.1 The spherical coordinate system
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3.3.2 The Oblate and Prolate Spheroids

The oblate and prolate spheroids considered here have major and minor axes of 2a
and 2b respectively. Figures 3.2 and 3.3 show the oblate and prolate spheroidal coordinate
systems used. The oblate spheroidal coordinate system (&,7,¢ ) is related to the cartesian
coordinate by

x =c' cosh& sinn cos¢d
y =c¢’ coshg sinn sin¢ (3.20)
z=c' sinh& cos7

with corresponding scale factors:

he = h, = ¢’ sinh? & +cos? hy =c’ cosh sin7 (3.21)
where ¢’ is the focal distance. On the other hand, the prolate spheroidal coordinate system
(&,7m,¢ ) is related to the cartesian coordinate system by

x =c¢’ sinh§ sinmn cos¢
y=c’ sinh§ sinn sing (3.22)
z=c' cosh& cosn

with the corresponding scale factors given by:

h, =h, = ¢’ sinh> & +sin’ 7 h, =c’ sinh& sinn (3.23)

The oblate and prolate spheroidal coordinate systems, while they look like a mere rotation,
are different. An oblate spheroid is generated by rotating an ellipse around its minor axis.
A prolate spheroid, on the other hand, is generated by rotating an ellipse around its major

axis. The limiting case for both coordinates as £, (&, defines the surface of the spheroid
and is related to the axis ratio (b/a) by: £_ =tanh™(b/a) ) tends to infinity is a sphere.
On the other hand, as &_ tends to zero, the oblate spheroid becomes a flat circular disk

while the prolate spheroid becomes an infinitely thin needle. The velocity of the fluid far
away from the surface of spheroids is assumed to take any time dependent function U =

uq).
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Figure 3.2 The oblate spheroidal coordinate system
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Figure 3.3 The prolate spheroidal coordinate system
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CHAPTER 4

POTENTIAL FLOW OVER OBLATE AND PROLATE SPHEROIDS

The hydrodynamic forces acting on oblate and prolate spheroids placed in an
oscillating free stream are obtained for the special case of inviscid flow. Analytical
expressions are obtained for the potential and stream functions as well as the surface
pressure distribution and the hydrodynamic force coefficient. The analysis is based on the
solution of the unsteady equations of motion and continuity in spheroidal coordinate
systems. The parameters involved are the major to minor axes ratio and the Strouhal
number. The solutions for the two limiting cases of oscillating flows over disks and

spheres can be easily obtained from the presented analytical solutions.

4.1 Potential Flow over Oblate Spheroids

The problem considered here is that of an oblate spheroid placed in a frictionless
incompressible fluid of infinite extent. The fluid far a way from the spheroid moves in an
oscillatory fashion along the spheroid axis of symmetry. The flow remains axisymmetric.
In transferring from the cartesian coordinate system to the oblate spheroidal system, we
use the transformation presented in chapter 3. The equations of conservation of

momentum for inviscid incompressible axisymmetric flow can be written as

[ow:  w. ow. w' ow! w' éh. w. &h '

0 ,§ 5 5, n”""¢ _w:][ n n_ "% EJ =__1__1P_ (4.1)

| &' by % h, on heh, 9 hgh, an hg 0E

"aw' L ow! ow!, ' h. w! oh 50’

0 n + \V Wi( Wn n_ 3 5) - __1__92_ (42)
at’ h % h, m  ‘\hh, 8 h.h, on h, &n

The continuity equation can be stated as
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a ’ a 1 -—
%(hnh¢w§)+a(h§h¢wn)— 0 4.3)
and since the vorticity vanishes everywhere, one can write

a 0

—(h w!'}——{h,w; =0 (4.4)
ok ( n 'l) an ( 3 5)
where wg,w; are the velocity components in the § and n directions respectively, t’ is

the time, and p’ is fluid pressure. The velocity of the free stream varies with time
according to

U’ =U, sin(o t') 4.5)
where o is the frequency of oscillations and U, is the amplitude. The primes denote the

dimensional quantities. We introduce the following dimensionless variables:

w' Ut 1 _, a0
,t= 2 P= "[=pU:* ,S: 4.
5 " p=p'/5pU; g (4.6)

o ]

W=

where S is the Strouhal number. Using these dimensionless variables and noting that

h; =h,, the above equations can be written as:

.

Tl et H & Hg am HI\“&& S oam)| o :
(ow_ w, ow ow. W oH oH, )

_2H§ LI g n +wn n L i[wn 4 ~w, £ =@ (4.8)
| ot H, % H; on  H; ok on /| én

3 8

—(H:H,w, | +—(H;H,w_])=0 4.9)

aé( £ §) an( §°7¢ ﬂ)

d 8

g(Héwn)—a(ng):o (4.10)

|

;S—ﬁa, H‘, =C COShE_, sinn, and

. c’
where H, =chmh2§+coszn , c=:=

£, =tanh™ b . Let us now introduce the potential function (¢ ) defined by
a
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3:-%:-%2—22-&%% 4.11)
where, w.H, =—g—§ and w, H, =—%% (4.12)
The continuity equation can be written as

%(H‘b Z—(g) +%(H¢ %p) =0 (4.13)
or, Z;—(f+-§:—(f+tanh§g%+cotn%=0 4.14)

with boundary conditions being mainly the impermeability condition at the surface and the

free stream conditions far a way. These can be expressed as

oo c .

— 5 ——sin(S t) e* cos as £ 4.1
P 5 sin(S 1) y g (4.15)
a(P c . E -

— — —sin(S t) e* sin as £ 4.

5 5 (St) n g (4.16)
op

— =0 at = 4.1
% E=¢, (4.17)

The boundary conditions (4.15) and (4.16) can be combined to give
o —->—-;isin(S tye*cosm as £ (4.18)

The solution to equation (4.14) that satisfies boundary conditions (4.17) and (4.18) can be
obtained by separation of variables where the resulting ordinary differential equations are

the well known Legendre equations. The solution can be written as

¢ =—csin(S t) sinh§, cosn £, (§) (4.19)
The stream function  is related to the potential function ¢ through:
Oy _ 9 oy 9

Equation (4.19) and the boundary condition y =0 at £ =& can be used to obtain the

following expression for  :
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2 2

Y= -24— sin(S t) sinh&  cosh§ cos2n f, () +%sin(S t)sinh&, cosh§ f;(&) +%sin(s t)

(4.21)
where f,(8),f,(£), and f;(E) are defined as follows:
[ = ;;’h‘hé —— ;"f;ff‘(’:u;fzml;i;;z é (4.22)
N )
R TR

Using equations (4.8) and (4.12) , one can express the surface pressure gradient in terms
of the potential function as

zp_) _, 000 2003 12
(&1 : ot on) ", an on Ly on’ (4.25)

Using the expression of the potential function given in equation (4.19), the surface

pressure gradient is

(@) =2 sinn cos(8)—28e) oz (syf Ga)sinncosnoosh’y, o 0
on £ coshg (sinh” &, +cos” n)°
where, f, (&) is defined as
) sinh& cot ™ (sinh&) — 1
f,(§) =sinh& |1 —— é_l - (sinht) 5 (4.27)
sinh&, cot™ (sinh&,)—tanh” &

We now define the dimensionless pressure as

*+ _ DPn,—P:

P = —%=p -p, (4.28)

5P U,

Integrating Equation (4.26) between mand 7 results in the following expression for the

dimensionless pressure:
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f,'(&,)
(sinh® & +cos® 17)

P =-2Scos(S t) (I +cos n):;—s(ﬁg—)- ~sin®(St) sin’ n (4.29)

Since the flow is inviscid , the pressure forces are the only forces that act on the spheroid
surface. The drag can be computed by

s
D=-nc'cosh’§, IsinZn pydn (4.30)
0

The drag coefficient can be defined as

D

) 4,
A (4.31)

Co =

where A = c'? cosh? €, s the projected area of the oblate spheroid. The drag

coefficient can be written as

i3
1
=-3 J'stn p,dn (4.32)
0
which upon performing the integration reduces to
£,(&,)
Cp=— S St X
3 cos(S t) 22~ coshE. (4.33)

Equation (4.33) provides an analytical solution to the time variation of the drag coefficient
in terms of the independent variables &, , S, and t . In the limit as £, — oo, the oblate

spheroid becomes a sphere. One can show that

f4(§o) _ 3 f-%(go) _'___2
sinh&, -goh_r)nw cosh§, 2 (4.34)

which in the case of a sphere gives
P* =-3Scos(S t) (1+cosn) -%sin2 (S t)sin’n (4.35)

and the drag coefficient becomes

Cp=2 S cos(St) (4.36)
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These equations agree with those obtained from the spherical coordinate system for the
case of a sphere placed in an oscillating stream. The stream function obtained from such
analysis takes the form

_sin(St)i T3 .2
== r[(a) 1Jsin* n (4.37)

The oblate spheroid approaches a circular flat disk as &, — 0. In this case, one can easily

show that

i 52 @39
o— 0 °

Hence, the drag coefficient for the flat circular disk is

8
C, =—Scos(St
D=3 cos(St) (4.39)

4.2 Potential Flow over Prolate Spheroids

The continuity equation associated with the prolate spheroidal coordinate system

can be written as

6‘? + a-? + comé-?—(g-i-cot nﬂ =0 (4.40)
o on° 23 on

with boundary conditions, —aa% =0 at =&, (4.41)
and ,p — —% sin(St)e*cosn as &> (4.42)

Equation (4.40) is separable. It separates into two associated Legendre equations ( In the
case of prolate spheroids , they reduce to Legendre equations), the solution of which is

@ = —c sin(S t) sinh & cosn z, (&) (4.43)
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With the same definition of the stream function y as in the oblate spheroid case but using

the appropriate scale factors, the expression for the stream function is

2 2 2

Y= —94; sin(S t) cosh&, cos2n z,(§) +%sin(S t) cosh§, z,(E) —%sin(S t) (4.44)

where z,(§),z,(€), and z,(&) are defined as

[ cosh§ ln(m) -2
2,(E) = cosh§ cosh§ —1 (4.45)
! Il . g
nh . coshg, +1 2
sinhg, sinh& ln(‘égng—_—l-) —2coth” g,
[ 2 cosh& +1 |
] nh’ & In(~——2"")~2cosh
2,(E) = sinh & sinh”8 (cosh§ —1) coshs (4.46)
i cosh&s  coshE, m(——zzzzg’ j) ~2coth’E,
. sinh?E In(BEFL 5 oshe
2,(E) = cosh” & cosh& —1 4.47)
3 - - »
c0sh8  coshe, In(Roety 5 comE,
i coshg, —1 ]

Using the expression of the potential function given in equation (4.43), the surface

pressure gradient is

[@)g =2 sinn cos(St)ZZ(:(—é")-—Zsmz(St) 2, &) sinncosnsinh’e, o

on sh§_ (sinh® & +sin® n)°

where, z,(&) is defined as

e coshE m(——°°52§ * i)—z

cos cosh& —

2(5) = coshg, cosh§ - cosht ln(coshéo + 1) —2coth?E (4.49)
° “cosh&, -1 °

The dimensionless pressure can be obtained by integrating equation (4.48) between

w and n, the result of which can be written as

£ Z_‘(E_o) =2 .2 z 2(& )
P" =-2Scos(St)(l =200 _sin*(S e
cos(St) (1+cosm) coshE. sin“(S t) sin” n (siah? » i > (4.50)
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The drag can be computed by
T

D =-mc'*sinh’E, [sin2n pidn (4.51)
1}

The projected area used in the definition of the drag coefficient in equation (4.31) is
different in this case. It is equal to mc'? sinh? €,- The following expression for C, is

easily obtained:

z,(8,)

ot (4.52)

Cp = % Scos(St)

In the limit as &, —> <o, the prolate spheroid becomes a sphere. It is easily shown that

i(éilz lim _Z.i&’_).zé.

sinh& cosh§, 2 (4.53)

lim
éo—) o0 §°—-) o)
By applying this limit to equations (4.50) and (4.52), the drag coefficient and the
dimensionless pressure for the sphere can be obtained which are identical to those reduced

from the oblate spheroid case.

4.3 Observations and Comments

The analytical expressions for the stream and potential functions given in
equations (4.19), (4.21), (4.43), and (4.44) can fully describe the time variation of the flow
pattern and the details of the velocity field for the cases of oscillating inviscid flows over
oblate and prolate spheroids. Such a velocity field is essential in the understanding of the
viscous flow problem and may also provide the far field boundary conditions outside the
viscous flow region. The equations also describe the detailed structure of the streamline
pattern and the velocity field in the special case of a sphere when placed in an oscillating
inviscid flow. As a check of the accuracy of these equations , the results for the special
case of a sphere were compared with those obtained from the analysis of oscillating flow

over a sphere using the spherical coordinate system. The comparison shows an excellent
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agreement. The expressions obtained for the fluid pressure in equations (4.29) and (4.50)
provide the details of pressure variation on the spheroid surface at any given time. These
expressions are essential in providing a base for comparison with the viscous flow
solutions and also experimental measurements in such problems. The pressure distribution
for the special case of the sphere was also given in equation (4.35). By equating the
Strouhal number to zero, we obtain the pressure distribution in the case of steady free
stream. The obtained expression is in total agreement with those obtained from solving the
problem using spherical coordinates. A graphical representation of the pressure
distributions calculated for the case of §==/4, and b/a = 0.6 are shown in figure 4.1 for
one half of a complete oscillation. The pressure distribution is sharper in the case of oblate
spheroids than in the case of prolate spheroids. The oblate spheroid drag coefficient for

the case S = /4 over a full cycle is shown in figure 4.2. It is clear from the figure that the
curves converge to that of a sphere as £, — oo and to the flat circular disk as £, — 0. The

prolate spheroid drag coefficient is shown in figure 4.3 for the same case. The drag here
represents the contribution of the fluid inertia only. The steady flow case when the
Strouhal number is zero will result in a zero drag as would be expected from the potential

flow theory.

It should be emphasized that the analytical expressions given are only exact in the
case of inviscid flow. They may be accurate enough for use in engineering problems in
cases of high Reynolds and Strouhal numbers in which vortex shedding is strongly
suppressed. It is difficult to give numerical ranges for the Reynolds and Strouhal numbers
for the applicability of the analytical expressions deduced in this work. However, this can
be established either experimentally or theoretically by investigating the viscous flow
problem over a wide range of Reynolds and Strouhal numbers as presented in chapters 6

and 7.
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Figure 4.1 Inviscid surface pressure distribution for the spheroids when
S=mn/4,b/a=0.6 during one-half of a complete cycle.
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Figure 4.2 The inviscid drag coefficient of the oblate spheroid over
one full cycle for the case S =n/4



Figure 4.3 The inviscid drag coefficient of the prolate spheroid over
one full cycle for the case S =n/4
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CHAPTER 5

VISCOUS FLOW OVER SPHERES

The problem considered in this chapter is that of a sphere placed in an
incompressible fluid of infinite extent. The free stream dimensionless velocity (U)
changes with time according to

U=U
9}

= F(t) (-1

where U’ is the dimensional free stream velocity and t is the dimensionless time which is
related to the dimensional time t’ by
t=U t'/a (5.2)
and U, is some constant that represents the amplitude of the free stream velocity for
oscillating flows or the mean velocity for fluctuating flows. Two forms of the function
F(t) are considered. The first corresponds to the oscillatory motion of the free stream
which can be written as
F(t) =cos(S t) (5.3)
where § is the Strouhal number which is related to the Keulegan-Carpenter number (KC)
by

ao T

U. KC

o

(5.4)

with ® being the frequency of oscillations. The second form describes fluctuations of the
free stream about a non zero mean and can be written as

F(t) =1+y cos(S t) (5.5)
where y represents the relative deviation from the mean value. Since the steady and the

impulsively started flows over spheres are well documented in the literature, no attempt is
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made here to obtain their corresponding solutions. These solutions are, however, indirectly

obtained when solving the fluctuating flow problem.

5.1 Basic Equations and Method of Solution

Using the spherical coordinate system, the governing equations (3.16) and (3.17)

can be written in dimensionless form as

e smec;+a"’ Ty o g (5.6)

& 08 & 2
z=aCe'5[awac o & J LA SR S«
2| = —cot —+cotf—=—-—2—
ot 0 06(6§ % o 69 % e| o’ 66 0.3 ® sin"6
(5.7)
The parameter Re appearing in equation (5.7) is the Reynolds number based on the sphere

e

diameter which is defined as

Re=2aU, /v (5.8)
The variable £ is used in place of r to insure a small step size near the sphere surface as
compared to the step size in the free stream. It is defined through the following
logarithmic transformation:

£ =In(r/a) (5.9)
The dimensionless variables  , and  in equations (5.6) and (5.7) are defined in terms of
the usual dimensional quantities y', and £’ as

y=y'/U,a’ (5.10)
€=C'alU, (5.11)
The boundary conditions to be satisfied are the no-slip and impermeability conditions on
the surface of the sphere and the free stream conditions away from it. These can be

expressed as

W-%_%ﬂ at £=0 (5.12)
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—Z%’- =e*sin’0 F(t) ,and % =¢* 5in0 cosO F(t) as& - o (5.13)

The conditions in equation (5.13) lead to

2

y = 82 sin®@ F(t) as&—ow (5.14)
The flow away from the sphere surface is irrotational leading to
>0 as&—->ow (5.15)

There is no explicit boundary condition for the vorticity on the sphere surface. In
principle, the surface vorticity can be computed from the known stream function by
applying equation (5.6), however, the large velocity gradient at the surface reduces the
accuracy of such computations. This problem is overcome by introducing an integral

condition which is used to predict the surface vorticity.

The method of solution is based on approximating { and  using Legendre

polynomials. Accordingly, the stream function and vorticity are expressed in the form

=3 & [BAD (5.16)
=3 g, P(2) 5.17)

where P,(z) and P, (z)are the Legendre and first associated Legendre polynomials of
order n respectively, and z = cos6 . These functions form a complete orthogonal set in the
range z = -1 to z = |. Substituting from equations (5.16) and (5.17) into equations (5.6)
and (5.7) and integrating over z from -1 to 1 after multiplying by P! (z)(some useful
integrals can be found in the appendix), the following expressions can be obtained by

manipulation of the Legendre functions,

o°f,

2

-(n+1/2)*f =n(n+1)e** g, (5.18)
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o3 og, 2 [azg,, N og.,

& Re| &’ &

r=s —n(n+1)g, ] (5.19)

where,

é[ZZa .(——g,) £33 e, <35—+2f)J (5.20)

i=l j=1 i=l j=1

The coefficients appearing in the series are defined as:

_ G+ n i j) (n i j)
=D Ty (—1 0 1) oo (5-21)

G -1+2) (n i j) (n i j)
c=(2n+1
Pj=(n+ )\/n(n+1)1(1+1) 112000 (5-22)
where, (J' J2 "3) are the 3~j symbols.
m m, m,

The series truncation approach helps to reduce the independent space coordinates
to only one coordinate (£) which results in avoiding the numerical difficulties and
inaccuracy involved when obtaining derivatives with respect to the other coordinate (9).
Now, the solution of the original differential equations can be obtained by solving the
differential equations corresponding to the modes of the truncated series. Equations (5.18)
are treated as ordinary differential equations since they do not contain any time
derivatives. On the other hand, equations (5.19) are partial differential equations to be
solved in order to advance the solution of the g, functions in time. The boundary

conditions associated with these equations are

-

£.(0,t) = fafg (0,t) =0 on the surface of the sphere (5.23)

afn (é’ t) 3 3/"
& 2°

whered,, is the Kronecker delta. Finally, we multiply equation (5.18) by e ™% and

f (&,t) > F) 5,,, “F(t)d,, g,(ED=0 as &—>wo (5.24)

integrate by parts over & between the limits 0 and «. Making use of the boundary
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conditions (5.23), and (5.24), one obtains the following integral condition to be satisfied
by the functions g, :

[e2g, dg =§ F(t)5,, (5.25)
0

5.2 The Numerical Method

The solutions of the functions y and § are advanced in time by solving equation
(5.19) using a Crank-Nicolson finite-difference scheme. At a typical time t, it is required
to obtain the functions g, (&,t) to determine the vorticity distribution, and the functions
f,(&,t) to determine the stream function provided that all these functions are known at

time (t-— At), where At is the time increment. Equation (5.19) can be written as

gang =q.(&:1) (5.26)
moe) 2|08, OB _
where q, =€ {Re[ P + P n(n+l)gn]+8n} 5.27)

The Crank-Nicolson finite-difference approximation of equation (5.26) results in

1
e &0 - 8.6t 4] = 2[4, G0 + 4, & t-a0) (528)
Using central differences for all derivatives in equation (5.27) and rearranging, one
obtains
A(5,1)g,(E - A5,t) +B(E, ) g, (6, ) + C(E, 1) g, (§ + A, t) =D, (§,t —At) + E (&, 1)

(5.29)
where Af is the step size, A,B, and C are easily identifiable functions of & that can be

calculated at each mesh point, D (&,t— At) is a completely known function, and E_(&,t)

is a function that depends on the solution at time t. Since the problem is solved

numerically the conditions at co are applied at & =&, where £_ defines the distance

away from the sphere at which ¢ has negligible value. Equation (5.29), when applied at
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every mesh point in the range from £=0 to §=&_, will result in a set of algebraic
equations that form a tridiagonal matrix problem which is solved for each value of n
between 1 and N iteratively due to the dependence of the right hand side on values at time
t. N designates the number of terms taken in the series defined in equations (5.16) and

(5.17). The values of g_(0,t) which are needed to complete the integration procedure are

obtained by writing the integral condition defined in equation (5.25) as a numerical
quadrature formula which then relates the boundary value to values of the corresponding
function at internal points of the computational domain. This gives the extra condition

needed to determine the boundary values for g, and thus the formulation of the solution

of equation (5.19) is complete.

The solution for equations (5.18) is obtained using a step-by-step integration

5128

scheme. Denoting n(n+1)e” g by r (&), equation (5.18) splits into two first order

equations by introducing the two functions H, and Q, such that

of

H =—2—-(n+1/2)f .

"= (n )i, (5.30)
and, Q, = o, +(n+1/2)f, (5.31)

23

The two functions satisfy
a;l“ +(n+1/2)H, =1, (5.32)
6;2{ -(n+1/2)Q, =r, (5.33)
and consequently, f = % (5.34)

with initial conditions
6H, 0&Q, -0

oE ot

H =Q, = (5.35)
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Equation (5.32) can now be integrated by a stable method in the direction of increasing & .

One can write

E+h

H, (£+h,t)=AH_(E,t)+Ae V% j ™y (x,t)dx (5.36)
4

~(n+1/2)h

where A=¢e and then a very simple step-by-step formula is obtained by assuming

r,(x) to be constant in £ <x<E+h and equal to its value at x = &, for example. This
gives H,E+ht)=2H (&) +(1-A)r (&) /(n+1/2) (5.37)

which is stable since A <1. We can derive a more accurate formula than equation (5.37)
by assuming that r,(§,t) is a linear function of & on the interval £ to &+hand
evaluating the integral in equation (5.36) by parts. An even more accurate formula on the
interval § to & +2h can be found by assuming r,(,t) to be represented by a second

degree polynomial over the three grid points on the interval. This formula is

s 1-A2 3 +1 A
H_(E+2h,t) = A* H_(&,1) +{— - _ (&t
(5 +2h,1) 1) {h'(n+l/2)3 2h(n+1/2)° n+l/2}r(€)
]2 -%) 2V +) E(E+h0)
h*(n+1/2)° h(n+1/2)*| ™" ’
1-A A +3 1
+ - -+ 2h,t
{112(n+1/:z)3 2h(n+1/2) n+1/2}r"(§+ )
(5.38)

We can improve on equation (5.37) for the first interval £ =0 to £=h by using a
parabolic approximation to r,(&,t) and fitting it to the three points at £ = 0,h,2h. Thus

we calculate H_(h,t) from the formula

1-A 1-3A A
H,(h,t)= AH, (0,t) +{— M 2 (Ot
(1.t) =1 H,(0,1) {h-(n+1/2)’ 2h(n+1/2)’ n+”2}r( )
2(1-A) 2M 1
- 3 - P "h’t 339
{h‘(n+l/2)3 h(n+1/2)* n+1/2}r( ) o

{ 1-A I+A

+{— - _tr (2h,t)
h*(n+1/2)° 2h(n+1/2)°
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Hence from a given approximation to g, (&,t) and hence r, (,t) at a given time, we can
generate a solution for H, using first equation (5.39) and then equation (5.38), step by

step.

Equation (5.33) is integrated in a similar fashion but in the backward direction from
€ = to & =0. The far field condition on Q, which is needed for the integration can be
written as

Q, (0,t) =3e"*F(1)§,, (5.40)

The whole iterative numerical scheme can be summarized as follows:

1. At time t, the known solution at time (t—At) is used as a starting solution. The
tridiagonal system resulting from equation (5.29) is solved using the most recently
available information of E, to obtain the functions g, (&,t).

2. Apply the integral condition (5.25) to obtain a better approximation for g_(0,t).

3. Solve equation (5.18) using the stable step-by-step numerical procedure mentioned
above to obtain f_ (&,t).

4. Repeat steps 1,2 and 3 until convergence is reached. The condition set for convergence

is g™'(E,t)~g" (E,,t)l <107° where m denotes the iteration number.
5. Increment time and return to step 1.

The computational algorithm is schematically shown in figure 5.1 .

Following the start of fluid motion, very small time steps were used since the time
variation of vorticity is quite fast. As time increases, the time step was gradually
increased. Smaller time steps were used for higher Strouhal numbers. For example, the
time steps used for S =n/4 were 0.001, 0.005, 0.01, and 0.02 whereas for S = x, the

time steps 0.0005, 0.001, and 0.005 were used. The number of points in the & direction

used is 201 with a space step of 0.025. This makes &_ =5 which sets the outer boundary
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Figure 5.1 The Computational Algorithm
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at a physical distance of approximately 148 times the radius of the sphere. This is
necessary to ensure that the conditions at infinity are appropriately incorporated in the
numerical solution. The number of terms taken in the series starts with only 3 terms. One
more term is added when the last term in the series exceeds 107°. The total number of
terms is dependent on Reynolds and Strouhal numbers, and the amplitude of oscillations
in the case of fluctuating flow. For higher Reynolds and lower Strouhal numbers, more
terms are needed than at lower Reynolds and higher Strouhal numbers. The number of
terms needed in the case of oscillating flow for Re = 5 and S = = is 6 while for Re = 200
and S = n/4 is 28. In the case of fluctuating flow, the number of terms needed for the
case Re=100,S=n/4,y =05 is 29, and only 23 terms were needed for the case

Re=100,S=n/4,y =01.

The drag coefficient C, defined in equation (4.31) is composed of two parts, one
due to friction and the other due to pressure. We may then write
Cp =C+Cpp (541)
The projected area of the sphere is (na’). By integrating these forces over the surface of

the sphere, one can show that

4 7 2
Cpoe = —— |£(0,8)sin” 6d6 .
DF Re JC( ) (5.42)
17 .
Cpp =——= |p'(0,0)sin 26 dO (5.43)
on 0
By applying Navier-Stokes equations on the surface of the sphere, one can show that
op 419
("')g:o =— =+ (5.44)
® Rej 0§ t=0

Using equation (5.44) together with equation (5.17), the drag components can be

expressed as

16
Cpor =—g,(0,t .
DF 3Regl( ) (5.45)
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Cop = —-3%[& 0.t) + %%(O,t)] (5.46)

The dimensionless pressure distribution around the sphere can be obtained by integrating

equation (5.44) which results in

* 4 ° [ 4
=p, —-p. =— |(=+€)do
P =Po =Pz = !( P 9] (5.47)
and by using equation (5.17), one can prove that
. 4 < " 98
p (6,t)= gg[l’n (cosB) - (~1) ][E(O’t) + g,.(o,t)] (5.48)
5.3 Oscillating Flow

The accuracy of the method of solution for oscillatory flow will first be verified by
comparing with the results of Chang and Maxey (1994), hereinafter referred to as the CM
study, and the drag formula by Basset (1888) for Reynolds number 16.7 and Strouhal
number 0.625. Figure 5.2 presents the drag coefficient over one full oscillation. The
portion of the graph shown corresponds to a full cycle of the CM study where a negative
sine curve for the free stream velocity was used instead of the cosine function used in the
present study. It can be seen that an excellent agreement exists between the drag
coefficient obtained in the present work and that obtained in the CM study who used a
direct numerical simulation based on spectral methods for Reynolds numbers up to 16.7
and Strouhal numbers up to 10. The Basset solution which is shown is based on the

assumption that the non-linear inertia terms are neglected, the form of which is

C, = —2Ssin(St) +%cos(8t) -12, /ESEE cos(St -345) (5.49)

The first term on the right hand side is equal to the potential flow drag. As Re tends to
infinity, equation (5.49) converges to the potential flow drag as the two terms on the right

hand side which are functions of Re tend to zero.
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Figure 5.2 Drag Over an Oscillation Cycle, Re = 16.7, $=0.625
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In this study, results are obtained for Reynolds numbers ranging from 5 to 200 and
Strouhal numbers from n/4 to 2. The time variation of the drag coefficients for Re =10,
20, 50, 100, and 200 when S = 7/ 4 are shown in figure 5.3. The corresponding potential
flow solution is also plotted. It can be observed that the drag coefficient exhibits a phase
lead over the free stream velocity profile. This is attributed to the separation of the flow
during the decelerating period of the flow oscillation. This is significant because it
indicates that under the right conditions, instead of retarding the flow, the presence of the
sphere can act to maintain it, CM (1994). This phase lead increases at higher Reynolds
numbers. The pressure and friction components of the drag for the same cases are plotted
in figures 5.4 and 5.5. They also exhibit phase lead over the free-stream velocity. The

figures show that the effect of Re on C; amplitude is considerable while its effect on
Cpp 1s much less. This is quite expected since the pressure distribution follows closely the

potential flow solution except for the separated flow region. On the other hand, the
frictional drag is influenced by the boundary-layer thickness as well as the fluid viscosity.
Both elements have direct relation with Reynolds number. Table 5.1 presents the phase

angles ® (P =St) at which the drag components change sign. The free stream changes

sign at ®=n/2and 3n/2. The phase lead of the drag components increases as
Reynolds and Strouhal numbers increase. Theoretically, the frictional component of drag
will be in phase with the free-stream velocity as Strouhal number decreases, and will lead
the free-stream velocity by n/4 as Reynolds and Strouhal numbers increase. The pressure
component of drag will lead the free-stream velocity by ®/2 as Strouhal number
increases. The results presented in table 5.1 for higher Reynolds numbers than those
treated by the CM study are confined within these limits. Badr et al. (1995) observed that
the pressure component of drag approaches that of the potential flow as Strouhal number
increases in the case of cylinders in an oscillating free-stream. Figure 5.6 shows the same
trend for a sphere in an oscillating flow. The figure presents the drag components for the

case of Re = 50 and S = n/4, n/2, n, and 2n. Obviously, the pressure dominates the

drag and C, tends to the potential flow value as S increases.
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Figure 5.3 The time variation of the drag coefficient for the case
S= % at different Reynolds numbers.

44



Re =10

50

Potential

\
\—————Free-stream

\ velocity

10 20 30

Figure 5.4 The time variation of the pressure component of drag

for the case S =% at different Reynolds numbers.
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Figure 5.5 The time varlatlon of the friction component of drag
for the case, S = Z at different Reynolds numbers.
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Table 5.1 Phase angles at which drag

components change sign

Re S o} 0] o
10 T 770 1.078 A7
10 T 596 1.001 313
10 T 451 942 211
50 T 479 978 247
50 T .333 913 152
50 7T 242 .870 .108
50 2 193 .845 .096
100 | « 376 935 191
100 T 258 886 120
100 T 197 .851 .098
200 | 1t 295 893 154
200 210 864 .108
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Figure 5.6 The time variation of the total, pressure, and friction drag

for the case Re = 50, (a) S= % ,(b)S=2,(c)S=7,
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Figure 5.7 shows the time variation of the surface pressure distribution for the case of
S =n/4 at Reynolds numbers 50 and 200 for one-quarter of a complete oscillation. It is

important to note that the curve of ® =0 corresponds to U=U__ at which the inertia

X

effect is zero and that for ® =n/2 corresponds to U =0 at which the inertia effect is
maximum. On the same figure, the corresponding inviscid flow pressure distributions are

plotted. The later takes the form
p (8,t) =3 S sin(St)(1 + cos) —-?Icosz (St) sin’ @ (5.50)

As can be seen in figure 5.7, the viscous and inviscid flow pressure distributions are in
good agreement at @ =n/4 except for the region close to the rear stagnation point
(8 = 0) where the flow is characterized by vortical motion. It can also be observed that the
curves for higher Reynolds numbers are closer to the inviscid flow pressure distribution

curves than for lower Reynolds numbers.

The time variation of the surface vorticity distributions during one-half of an
oscillation cycle for the case S = n/4 and Reynolds numbers of 50 and 200 are shown in
figures 5.8 and 5.9 respectively. The figures show that higher Reynolds number flows
have higher surface vorticity. An interesting feature of figure 5.9 is that the curve for
® =0 crosses the x-axis which indicates that separation has already started during the
acceleration part of the motion. This is not observed in figure 5.8 which is for the case Re
= 50. In the CM study, separation was only observed during the decelerating part of the
motion due to the low Reynolds numbers considered in their study. In this study, for the
range of Reynolds and Strouhal numbers considered, separation during the accelerating
part was observed for the two cases of Re =100, and Re =200 and S=7/4 which
indicates that for higher Reynolds and lower Strouhal numbers separation can occur

during the accelerating as well as the decelerating parts of motion.

Figure 5.10 shows the time development of the streamline patterns over one-half

of a complete oscillation for the case Re = 200 and S=n/4. At low frequencies, the
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Figure 5.7 The time variation of the pressure coefficient during one
quarter of a complete oscillation for the case S=n/4 .
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Figure 5.8 The time variation of the surface vorticity distribution

during one-half of a complete oscillation for the case
Re=50, S=n/4.

54



55

l l T T S B | ]
30 60 90 120 150 180

Figure 5.9 The time variation of the surface vorticity distribution

during one-half of a complete oscillation for the case
Re =200, S = n/4.
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convective acceleration term is the dominant inertia effect while the temporal
accelerations dominate any convective inertial effects at high frequencies. Furthermore,
the flow is highly diffusive in nature at low frequencies and the vorticity extends
throughout much of the flow field. It can be observed that in figure 5.10a (t = 24.0) which
corresponds to @ = 0, separation has already occurred. The separated flow region started
to form during the accelerating part of motion. As time progresses, the separation bubble
grows until it eventually surrounds the sphere even before the free-stream velocity
reverses direction. When the free-stream velocity is zero, the streamline pattern will be as
shown in figure 5.10d where two vortices are counter rotating near the sphere. The
streamlines will then follow the new direction of motion and the counter rotating vortices
die out as the flow accelerates in the other direction. The streamlines will then become
similar to potential flow until a separation bubble is formed on the other end of the sphere
causing a mirror-image behavior in the second half of the oscillation. The corresponding
vorticity patterns are shown in figure 5.11. There are two regions of opposite vorticity
close to the sphere. As the flow decelerates, the outer region detaches and the inner one
grows. The detachment of the outer region takes place even before the free-stream velocity
reverses direction. As the flow reverses direction and starts to accelerate, the detached
region subsides and the inner one grows until the velocity peaks again causing another

inner vorticity region to be created on the surface and the process is repeated.

When the free-stream velocity decelerates, the point of separation travels upstream
until the recirculation region encompasses the whole sphere. Figure 5.12 compares the

time development of the separation angle (64) for different Reynolds numbers. It is

evident from the figure that for higher Re, separation occurs earlier and the bubble takes
longer time to encompass the whole sphere. There is no definable angle of separation for
Stokes flow. The effect of nonlinear convective acceleration by the flow is to introduce
phase variations in the reversal of surface vorticity at different locations on the sphere.
Figure 5.13 compares the separation angle for the same Reynolds number at different

Strouhal numbers. At small phase angles, the separation angle is higher for lower Strouhal
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Figure 5.10 g-h

Figure 5.10 Instantaneous streamlines for the case Re =200, S=x/4 .

(a) t=24.00 (Ay=0.10), (b) =25.00 (ay=0.10),
(c) t=25.98 (Ay = 0.01), (d) =26.00 (Ay=0.01),
() 26.02 (ay = 0.01), (f) =26.04 (Ay=10.01),
(g) =27.00 (Ay=0.30), (h) t=28.00 (Ay=0.1).
Dotted lines indicate zero streamlines.
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Figure 5.11 g-h

Figure 5.11 Instantaneous vorticity distribution for the case Re = 200,
S=ns4.(a) =24.0, (b) =25.0, (c) t=25.98, (d) t=26.0,
(e) t26.02, (f) t=26.04, (g) =27.0, (h) t=28.0 .
Dotted lines indicate zero vorticity. Ac=1.0 for all curves
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Figure 5.12 The time variation of the separation angle
(a) S=7 , (b) S=7/2, (c) S=n/4
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Figure 5.13 The time variation of the separation angle
(a) Re =50, (b) Re = 100, (c) Re =200
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numbers. As time progresses, higher Strouhal number-flows exhibit larger separation
angles. The figure shows that at ® =n/4 the separation angle for a fixed Reynolds

number is not a function of the Strouhal number.

The length of the separation bubble (L) measured from the sphere surface at 6 = 0
for different cases are plotted in figure 5.14. The wake length can be obtained by locating
where the velocity along the line of symmetry is zero. This condition can be

mathematically written as
2AED=0 (5.51)
n=l

It is clear from the curves that lower Strouhal numbers will result in longer separated
regions. The behavior at the same Strouhal number but different Reynolds numbers is not
as simple as described by the CM study which evaluated the length of the separated region
at @ =3n/10. Figure 5.15 shows the length of the separated region for Re of 50, 100, and
200 at the same S=m/4. At early phase angles, higher Re will produce longer
recirculation regions. The trend is reversed at later times. The reversal of the trend takes
place before the bubble surrounds the sphere (indicated by the stars on the curves). The

same trend was observed for other Strouhal numbers.

The time-averaged stream function and vorticity over the fourth oscillation cycle
are shown in figure 5.16 for the case Re =200 and S = 7 /4. The double boundary layer
structure noted by the CM study is amply confirmed. The symmetry of the counter rotating
eddies is slightly distorted. This is due to the fact that the solution was advanced only to
the fourth cycle and the velocity field is not yet periodic. Figure 5.17 shows the time
development of the time-averaged stream function for the case Re = 50 and S = 1t/ 4 over
the second, fourth, and sixth oscillation cycle. The symmetry gets better as time
progresses. By comparison with figure 5.16, it can be concluded that the symmetry is

achieved faster for higher Reynolds numbers.
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Figure 5.14 The time variation of the wake length for the case S=n/4

(2) Re = 50, (b) Re = 100, (c) Re = 200.
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Figure 5.15 The time variation of the wake length for the case S=n/4
The stars indicate where the bubble surrounds the sphere
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Figure 5.16 Time-averaged patterns over the fourth cycle of oscillation
for the case Re =200, S ==/4 , (a) stream function,
(b) vorticity.
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5.4 Fluctuating Filow

The time variation of C,, for Re =5, 10, 20, 40, and 100 when S=n/4,and y =

0.5 is shown in figure 5.18. The corresponding potential flow solution is also plotted. The
later takes the form:

Cp =-2 y Ssin(St) (5.52)

It is clear that as Re increases, the viscous drag is closer to the potential flow solution. A
negative force is possible for higher Reynolds numbers due to the largg recirculation
region which also contributes to the large deviation of the pressure distribution from its
potential values. Similar to the case of purely oscillating free stream, it can be observed
that the viscous drag exhibits a phase lead over the free stream velocity profile. This phase
lead is higher at higher Reynolds numbers. The potential flow drag leads the free stream
velocity profile by a phase angle ® (® =St) of n/2. This phase lead is exhibited by
both Cp, and C,; shown in figures 5.19 and 5.20. The drag coefficient for S =
n/4,m/2,= when Re =40 and y = 0.5 is presented in figure 5.21. To make it possible to
compare different Strouhal numbers, the phase angle ® has been used for the abscissa. It
can be observed that at higher Strouhal numbers, the drag coefficient phase lead over the
free stream velocity increases. Finally, the effect of y on C, is shown in figure 5.22. The
figure presents results for y = 0.0, 0.1, 0.25, and 0.5 when Re = 100 and S= /4. As y
is reduced, the amplitude of the drag coefficient is reduced until reaching that of the

uniform flow (y = 0.0). As y increases, the phase lead over the free stream velocity

profile also increases.

The time variation of the surface vorticity distribution during one complete cycle (
the forth cycle ) for the case Re =40, S = n/4,and y =0.5 is shown in figure 5.23. The
corresponding pressure distribution is shown in figure 5.24. At peak free stream velocity (t

= 24, 32), the surface vorticity crosses the abscissa which indicates that separation has
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Figure 5.18 The time variation of C, for the case of S =n/4,Y =0.5
(FSV = Free-Stream Velocity)
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Figure 5.19 The time variation of C; for the case of S=n/4,Y =0.5
(FSV = Free-Stream Velocity)
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Figure 5.20 The time variation of C, for the case of S=n/4,Y =0.5
(FSV = Free-Stream Velocity)
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Figure 5.21 The time variation of C,, for the case of Re = 40,Y =0.5
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Figure 5.22 The time variation of C,, for the case of S =n/4, Re = 100



A
,/ " i
’ (4
7 (2
I, ’
'
7
/7
/,
7
7
4 t
’ [
{]
(3
1
]
4
’
1
- '
/
'4
-8 — N ,,'
N 25 ’
- \\\ /’
N3
-10 — =T
t=24, 32
25T L O R B B EE N B R B
0 30 60 Q0 120 150 180

0

Figure 5.23 The time variation of surface vorticity for the case Re = 40,
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already occurred during the acceleration part of the previous cycle. This behavior is only
observed for higher Reynolds numbers and lower Strouhal numbers. As time progresses,
this recirculating region grows due to the deceleration effects and the point of separation
travels upstream until the free stream velocity becomes minimum at which the separated
region starts shrinking. The curves for t = 30, and 31 show no region of separation. The
pressure distribution shown in figure 5.24 indicates that an adverse pressure gradient is
possible (the curves at t = 26, and 27) due to the deceleration effects. Figure 5.25 shows
the surface vorticity distributions for the case of Re = 100, S = n/4, and y = 0.1 while

figure 5.26 shows the surface vorticity for the same case when y = 0.5. An interesting

feature of figure 5.25 is that the recirculating region does not disappear during the whole
cycle. Figure 5.26, on the other hand, indicates that the recirculation region disappears due

to the large amplitude of fluctuations

The time development of the streamline pattemns over one complete cycle for the

case Re =40, S = n/4, and y = 0.5 is shown in figure 5.27. Att=24.0, a separated

region has already occurred during the accelerating period of the previous cycle. As time
progresses, this region grows and travels upstream towards the front stagnation point at
8= = . In cases of lower Reynolds numbers, the bubble completely surrounds the sphere.
This was evident in the case of Re = 5. The wake length keeps increasing until the
velocity of the free stream becomes minimum. In fact, the wake length peaks before the
free stream velocity drops to its minimum value. The recirculating region, then, shrinks as
the free stream starts accelerating. At this point, two cases are possible. The first is as
shown in figure 5.27 where the recirculation region detaches and the vortex is shed away.
The other possible case is when the recirculating region disappears before it can detach
from the sphere surface. The later case was evident in low Reynolds number flows. As the
flow accelerates, the streamlines becomes parallel until another recirculation region is
formed during the same cycle or during the decelerating period of the following cycle.

The corresponding vorticity contours are plotted in figure 5.28. At the start of the cycle at
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Figure 5.25 The time variation of surface vorticity for the case Re = 100,
n/4,7 =0.1
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Figure 5.26 The time variati
< riatio .
S=n/d Y = 0.2 of surface vorticity for the case Re = 100,
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Figure 5.27 (g,h,i)

Figure 5.27 Time development of streamline pattems for the case of
Re=40,5=ns4,7 =0.5.
(@) t=24.0, (b) t =26.0, (c) t=28.0, (d) t =29.0
(e) t=29.5, (f) t=29.54, (g) t =29.58
(h) t=30.0, (i) t=32.0
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Figure 5.28 Time development of equi-vorticity patterns for the case of
Re=40,S= /4,7 =0.5.
(a) t=24.0, (b) t=26.0, (c) t =28.0, (d) t =29.0
(e)t=29.5, (f) t=29.54, (g) t=29.58
(h)t=30.0, () t=32.0
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t = 24.0, a region of negative vorticity that is confined to the surface of the sphere
dominates with a small region of positive vorticity growing next to the back stagnation

point at 6=0. As the free stream decelerates, the negative vorticity diffuses longer into

the bulk fluid and the region of positive vorticity grows. This growth of the positive
vorticity is prohibited by the acceleration of the free stream velocity during the
acceleration part of the cycle. At this point, part of the negative vorticity detaches and
diminishes while the positive region shrinks back. The story is repeated in the following

cycle.

The length of the recirculation region measured from the sphere surface at the back
stagnation point ( L ) for Re = 5, 10, 20, 40, and 100 when Yy =0.5and S = n/4 is shown
in figure 5.29. As the free stream decelerates, the recirculation region expands until it
peaks. The peak takes place before the free stream velocity drops to its minimum value.
This region, then, shrinks and at a certain time it detaches from the surface of the sphere.
This is indicated by the stars on the figures. For low Reynolds numbers, this region does
not detach. Instead, the region disappears completely until the next cycle. It can be
observed that vortex shedding is delayed for higher Reynolds numbers. It is also noticed
that for higher Reynolds numbers, a recirculation region during the acceleration part of the
cycle is possible. Figure 5.30 shows that vortex shedding is expected for higher Strouhal
numbers. The figure which shows the wake length for the case of S =

n/4,n/2,m,2n,and4n when Re =10 and y = 0.5, indicates that the effect of increasing
Strouhal number is to reduce the wake length. The parameter y has a significant effect on
the wake length. Higher amplitude fluctuations have longer wakes. As y is reduced, the
wake length tends to be more uniform. y = 0.0 represents the impulsively started uniform
velocity profile. Vortex shedding is motivated by increasing y. Figure 5.31 shows the
wake length for y = 0.0, 0.1, 0.25, and 0.5 when Re = 100, and S = n/4. Vortex
Shedding takes place at earlier phase angles for y = 0.5 than for y = 0.25. Vortex

shedding is not observed for lower values of y . Table 5.2 lists the flow characteristics for
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Figure 5.29 The time variation of the wake length for the case of
S=n/4,Y =0.5
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Figure 5.30 The time variation of the wake length for the case of
Re=10,Y =0.5
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Table 5.2 Flow characteristics for the range of parameters considered in the present

study
7 =0 y =01 Yy =025 y=05

S=xsa | S=us2 | S=x | S=xss | Sews2 | S=x | Sexss | sens2 | sex

Re =100 S S S S | VS [ Vs [ VS | Vs ]| vs | vs
Re =40 S S S S | VS | VS | VS | VS | VS | VS
Re =20 NS S S S S | VS | VS | VS [ VS | VS
Re =10 NS NS | NS S S S S S [ vs | vs
Re=5 NS NS | NS | NSNS | S S S S | Vs

S = Separation, NS = No Separation, VS = Vortex Shedding
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the range of parameters considered in this study. The table indicates that vortex shedding

is motivated by increasing v, Strouhal number, and Reynolds number. For the case of Y

= 0.0, Separation is only possible for Re>20. Separation, however, takes place well below

this value by increasing y or Strouhal number. It is possible for a flow with Re = 5 to

exhibit vortex shedding when S = =, and y =0.5.

As the free stream velocity decelerates, the recirculation region travels upstream

towards the front stagnation point. The separation angles (6,) measured from the rear
stagnation point for Re = 5, 10, 20, 40, and 100 when y =0.5and S = = /4 are plotted in

figure 5.32. For higher Reynolds numbers, the recirculation region travels longer on the
surface of the sphere. The separation angle peaks before the free stream velocity reaches
its minimum value. Figure 5.33 shows that higher Strouhal numbers have longer

separation angles. The figure which shows the separation angle for the case of Re = 10, y
= 0.5, and S = n/4,n/2,n,2n,and4n indicates that as S increases, the bubble may
encompass the whole sphere. Figure 5.34 presents the separation angles for different y
when Re = 100, and S = n/4. While the curves for y = 0.5, and 0.25 drop to zero when
vortex is shed, that of y = 0.1 exhibits maximum and minimum separation angles which
indicates that the recirculation region does not disappear. As y tends to zero, the

separation region is constant over the whole cycle.
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Figure 5.32 The time variation of the sparation angle for the case of

S=n/4,Y =0.5

99



100

180 —

160 —

120 — 2n

/2

60 — s=m/4

0 T | T T ]
0 t/2 T 3r/2
o

Figure 5.33 The time variation of the separation angle for the case of
Re=10,7Y =0.5
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CHAPTER 6

VISCOUS FLOW OVER OBLATE SPHEROIDS

In this chapter, the series truncation method of solution is extended to the case of

the axisymmetric flow over an oblate spheroid.

6.1 Steady Flow

The steady incompressible flow over an oblate spheroid with major and minor
axes of 2a and 2b is considered. The full Navier-Stokes equations are solved in an attempt
to specify a range of validity for the drag formulas obtained by Payne and Pell (1960) and
by Breach (1961). These formulas are based on the solution of the linearized Stokes
equations of motion. It is expected that as Reynolds number increases, the effect of the

neglected nonlinear inertia terms in the equations of motion becomes pronounced.

6.1.1 Formulation of the Problem and the Method of Solution

The steady dimensionless forms of the governing equations (3.16) and (3.17) upon

using the oblate spheroidal coordinate system are as follows:

cosh& sint (sinh® & + cos® 1'|)§-|—cosh<‘;—(-——ﬂ mnﬁ-(—l—g\—y—) =0 (6.1

0 “cosh oF an sinn an

oyo &  owoe &, 2]8 1 2
a&‘,(coshg sinn) &, an(cosh§ sinq) Re{@&,[coshé 6§( oshg C)J

al 1 o
+6n[smn6n( nC)}

(6.2)
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In the above equations, the dimensionless variables are related to the dimensional ones by

’ PN U 2 ’
y = U\Vca , ¢ = ch , and Re=2—0"C) ok(l c) (6.3)

The parameter Re is the Reynolds number based on the focal length. The focal length is
used here instead of the major axis used in chapter 4 for convenience. The boundary
conditions to be satisfied are the no-slip and impermeability conditions on the surface of

the spheroid and the free stream conditions away from it. These can be expressed as

oy _ oy
=—=——=0 at = 6.4
V= T £=¢, (6.4)
M _ lsinh2§ sin®nn  , and ?—W = lcosh2 E sin2n as& - (6.5)
& 2 o 2

The conditions in equation (6.5) lead to,
Y= -;—cosh2 Esinn as& oo (6.6)

The flow away from the oblate spheroid is irrotational leading to,

(>0 as&—oow (6.7)

Consider the following expansions for y and §:

v=Y5 [P, (r)dy (6.8)
£=3g.(5) P'(2) 6.9)

When these expansions, which are slightly modified here from those used in chapter 5, are
substituted into equations (6.1) and (6.2) and integrating over z from -1 to 1, give the

following expressions,

d~f,“ —tanh§ at,
d&*” d

é - n(n+1) fn =cosh§ n(n+1)l:5i11hz§+ 2n° +2n-3 ]gn

(2n-1}2n+3)

n(n+1)(n+2)n+3) g, +coshE n(n—-1)(n-2)n+1) -
(Rn+3)(2n+95) (2n~1)2n-3) "

(6.10)

cosh§




104

d’g, dg, 1 _Re
ck§—2+tanh§ dE +[cosh2§ n(ﬂ"'l)]gn =3 S, (6.11)
where, Sn = coshglizgau n(_-tanhg g; )+2;ZBU g; dé:l (6.12)

The coefficients appearing in the series are the same as those defined in chapter 5. It is

also understood that g_, , g,= 0. The boundary conditions associated with these

equations are

df
f =— 6.13
a(8,) a (6.13)
2 df, (&)
f (§) >cosh’& §,,, a ——>~—sinh2f §,, g,(§)>0 as £€—>w (6.14)
The solutions of the functions y and { are obtained through the following steps:
1. Denoting the right hand side of equation (6.10) by r, (), it can be rewritten as
df, (6.15)
dg*

If central differences are used to approximate the space derivatives, the functions f, can
be obtained sequentially from n =1 to N (N denotes the maximum number of terms taken
in the series) by solving the resulting tridiagonal systems of equations.

2. The tridiagonal systems corresponding to equations (6.11) are then solved for the
functions g, (&) .

3. The values of the functions g, on the surface of the spheroid required to complete the

integration procedure are obtained from equation (6.10) by approximating the space

-

derivative d;;“ by central differences as
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d*f, 2f (¢, +h)
dg? h?

(6-16)

This approximation was successfully used for the elliptic cylinder case by Patel (1981)
and for the sphere case by Drummond and Lyman (1990). The appearance of the
functions g, , and g, , in equation (6.10) when solving for g on the surface of the
spheroid does not present any problems. The functions with subscript (n-2) are known
from the solution of the previous terms; however, functions with subscript (n+2) are
unknown. These unknown functions were initially assumed and then updated through an
iterative procedure.

4. As each new mode is determined, a solution which can be denoted by g, """ () is

obtained. To obtain the solution with iterate (m+1), we take the weighted average:
g."" (&) =Kg,""(®)+(1-K)g," ¥) (6.17)
where g " (£) are the solutions obtained from the previous iteration, and 0 < K < 1. This

averaging process was found necessary to achieve convergence.

5. Repeat all steps until convergence is reached. The condition set for convergence is

g (&) —gn (&) <107,

The number of points in the & direction used is 201 with a space step of 0.025. This sets
the outer boundary at a physical distance that ensures that the conditions at infinity are
appropriately incorporated in the numerical solution. The effect of the step size on the
flow field near the spheroid was examined by comparing the results when using different
values. No significant changes in the values of the drag or the surface vorticity were
detected by reducing the step size further than the given value. As there is no intrinsic way
to determine them, the total number of terms taken in the series was found by numerical

experiments. The total number of terms depends on Reynolds number and &, . For higher
Reynolds numbers and lower §,, more terms are needed. One way to check the

convenience of the number of terms taken in the series is to observe the difference in the
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values of the drag. Figure 6.1 shows the surface vorticity for the case Re = 0.1 and g, =

0.25 at different values of N. In this case, the drag values for the cases N =6, 8, 10, 12,
and 16 are respectively, 102.913, 103.105, 103.155, 103.169, and 103.175 which differ at
the maximum by 0.8%. The parameter K which is used in the averaging process of the
vorticity calculations is higher for higher Reynolds numbers and is not sensitive to the

parameter & . The parameters of calculations K, N, and the number of iterations required

for convergence at a tolerance of 107'? are given in table 6.1.

6.1.2 Results and Discussions

In a typical engineering problem of this nature, the quantities sought are the drag,
surface vorticity, surface pressure distribution, and the stream function and vorticity

patterns. In what follows, we present these for Reynolds numbers of 0.1, 0.5, and 1.0 at

£, of 0.25,0.5,0.75, 1.0, 1.25, and 1.5.

The projected area of the oblate spheroid is mc'? cosh? . By integrating forces

over the surface of the spheroid, one can show that

4 tanh ° p . 3
Cor =——if§(éo,n)sm'ndn (6.18)
Re ;
17 .
Cpe = —— [P'(€,,m)sin2n dn (6.19)
PU, &
By applying Navier-Stokes equations on the surface of the spheroid, one can show that:
4
&, = ——[95 +tanh& g] (6.20)
on Re| & 8=t
Using equation (6.20) together with equation (6.9), the drag components can be expressed
as
16 tanh
Cor =—ig.(éo,t) (6.21)

3Re
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Figure 6.1 Surface vorticity distribution for the case Re = 0.1,
o= 0.25 at different N values.



Table 6.1 Parameters of Calculations

Re £, K N No. Of
Iterations
0.1 0.25 10° 16 10398
0.1 0.50 10° 10 5728
0.1 0.75 107 10 3309
0.1 1.00 10” 8 2511
0.1 1.25 107 8 2169
0.1 1.50 10” 8 1986
0.5 0.25 | 9x10™ 18 7393
0.5 0.50 | 9x10™ | 11 6771
0.5 075 | 9x10* | 11 6660
0.5 1.00 | 9x10* 9 6523
0.5 125 | ox10* 9 6464
0.5 1.50 | 9x10™ 9 6540
1.0 0.25 10* 20 7255
1.0 0.50 10 12 6739
1.0 075 | 10* 12 6762
1.0 .00 | 10* 10 6958
1.0 1.25 10° 10 6810
1.0 1.50 10° 10 8825
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8

Chp =~——
pP 3Re

[tanhéo gl(éo ’t)+_aa%-(§o’t)] (6'22)

As indicated by equations (6.21) and (6.22), the drag depends on the first mode of the

series in equation (6.9) which, in turn, depends on the other modes. The first 8 modes of

the series at the surface of the oblate spheroid are given in table 6.2 for the different cases

considered in this study. The drag formula given by Payne and Pell (1960) takes the form:
4B

Cyy=—m—— 2
°' 3Re coshg (6.23)
and that modified by Breach (1961) is:
4B BRe B?Re® ,
Cn, = 1+ + I /2)+ O - .
®* ~ JRe cosh, [ a8+ 1asg BRe/2)+ORe )} (6.24)
where B= 12 (6.25)

cosh&o[sinh?;o +(1-sinh?E,) cot™ (smh§°)]
The dimensionless pressure distribution around the oblate spheroid can be obtained by
integrating equation (6.20) which results in:

* 4 7
P =p,—P.= R;Kf(%ﬂanhé €)e.e, dn (6.26)

and by using equation (6.9), one can prove that
* 4 & n ag,,
p (ﬂ’t) = g;[Pn(cosn)_(_l) ][?g—(go’t) +tanh§o gn(go’t):l (6'27)

Figure 6.2 shows the drag components for the case £_ =10 when Re = 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. The drag values computed from equations (6.23) and (6.24)

are also plotted. As Re increases, the drag coefficients decrease with both C,, and C,,
underestimating the drag at higher Reynolds numbers. C,, which modifies the Stokes
drag presented by C,, is closer to the present numerical solution. Figure 6.3 shows the

corresponding surface pressure and surface vorticity distributions for the same cases. At
low Reynolds numbers, the difference in the pressure between the front and the back

stagnation points is considerable as compared to the difference at higher Reynolds



Table 6.2 Vorticity modes on the surface of the oblate spheroid
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(-<0.001)

Re &, | 86C0) | 8:50) | 8:60) | 85G0) | 85CE0) | 26(E0) | 8,Ep) | E4(EQ)
0.1 0.25 | 2.305 | -0.013 | -0.793 | 0.005 | 0.374 | -0.003 | -0.192 | 0.001
0.1 0.50 | 1.791 | -0.013 | -0.366 | 0.003 | 0.104 | -0.001 | -0.032 -
0.1 | 0.75 | 1.408 | -0.012 | -0.172 | 0.002 | 0.030 - -0.006 -
0.1 1.00 | 1.110 | -0.012 | -0.082 | 0.001 | 0.008 - -0.001 -
0.1 1.25 | 0.875 | -0.012 | -0.039 | 0.001 | 0.002 - - -
0.1 1.50 } 0.690 | -0.012 | -0.018 - 0.001 - - -
0.5 | 0.25 | 2.414 | -0.062 | -0.831 | 0.026 | 0.392 | -0.013-0.202 | 0.007
0.5 | 0.50 | 1.889 [ -0.060 { -0.386 | 0.015 | 0.110 | -0.005 { -0.034 | 0.001
0.5 | 0.75 | 1.499 | -0.058 | -0.183 | 0.009 | 0.031 | -0.002 | -0.006 -
05 | 1.00 | 1.196 | -0.057 | -0.088 | 0.005 | 0.009 - -0.001 -
05 | 1.25 [ 0.956 | -0.055 | -0.042 | 0.003 | 0.003 - - -
0.5 1.50 | 0.765 | -0.053 | -0.021 | 0.002 | 0.001 - - -
1.0 | 025 | 2.542 | -0.121 | -0.874 | 0.051 | 0.413 | -0.025 | -0.212 | 0.013
1.0 | 0.50 | 1.998 [ -0.115 | -0.408 | 0.029 | 0.116 | -0.009 | -0.036 | 0.003
1.0 | 0.75 | 1.597 | -0.110 | -0.195 | 0.017 | 0.033 | -0.003 | -0.006 | 0.001
1.0 | 1.00 | 1.286 | -0.106 | -0.094 | 0.010 { 0.010 | -0.001 | -0.001 -
1.0 | 1.25 | 1.040 | -0.102 | -0.046 | 0.006 | 0.003 - - -
1.0 1.50 | 0.845 | -0.097 | -0.023 | 0.003 | 0.001 - - -
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Figure 6.2 The drag components for the case E,=1.0 at
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numbers. Figure 6.4 shows the variation of the corresponding surface vorticity. The drag

coefficients for the range of parameters considered in this study along with those from

equations (6.23) and (6.24) are listed in table 6.3. It is useful to investigate the quantities
C

Cos .. . .
1-—2% and 1-—=2% which measure the relative deviation of the drag formulas given by
D D

Payne and Pell (1960), and by Breach (1961) from the present study, respectively. Figures
6.5a and 6.5b show these quantities for the range of parameters considered. At low Re,

there is a good agreement between Cp,, C,,, and C, . As Re increases, the values depart
from each other with C,, being closer to C,, . If an error of 5% can be accepted, a range
of validity for Cp,, and Cp, can be stated. The formula for C,, is valid for Re <0.3
while that of C,,, is valid for higher Reynolds numbers provided that a proper restriction
on &, is imposed. The dotted lines in figures 6.5a and 6.5b indicate the upper bound for
the range of validity.

The effect of &, on the pressure distribution and the surface vorticity can be seen
in figures 6.6 and 6.7. The figures which show the results at Re = 1.0 when §,=0.25,0.5,
0.75, 1.0, 1.25, and 1.5 indicate that when &, decreases, the surface vorticity increases
and a positive pressure gradient may be expected. £ =0 corresponds to the circular disk

case at which a singular behavior of the pressure gradient is expected.

Figure 6.8 shows the stream line and vorticity patterns for the cases Re = 0.1 and
1.0 when &, = 0.25. No separation is expected at these low Re values. The symmetry of
the vorticity at Re = 0.1 is slightly distorted at Re = 1.0.
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Table 6.3 Comparison of Cp with equations (6.23) and (6.24)

Re | &, Cor Cor Co Co Co»
Eq(6.23) | Eq(6.24)

0.1 | 0.25|30.107 | 73.068 103.175 | 100.838 | 102.349
0.1 | 0.50 |44.136 |[53.732 |97.868 |95.659 |97.141
0.1 | 0.75 | 47.706 |40.571 88.277 |[86.142 |87.518
0.1 1.00 | 45.106 |31.101 |76.207 |74.125 |75.336
0.1 1.25 | 39.608 |24.065 |63.673 |61.637 |62.660
0.1 1.50 | 33.304 18.738 | 52.041 |50.05 50.890
0.5 | 0.25 | 6.308 15.318 [21.626 |20.168 |21.511
0.5 | 0.50 |9.31 11.345 [20.655 [19.132 |20.443
0.5 | 0.75 | 10.156 | 8.649 18.805 |17.228 |18.439
0.5 | 1.00 | 9.713 6.711 16.424 | 14.825 | 15.887
0.5 | 1.25 | 8.647 5.27 13.917 | 12327 |13.222
0.5 | 1.50 | 7.388 4.176 11.563 | 10.01 10.743
1.0 | 0.25 |3.321 8.078 11.399 110.084 | 11.427
1.0 { 0.50 |4.925 6.015 10.94 9.566 10.877
1.0 | 0.75 | 5.409 4.622 10.031 |8.614 9.825
1.0 | 1.00 | 5.225 3.628 3.853 7413 8.475
1.0 | 1.25 {4.706 2.888 7.594 6.164 7.059
1.0 | 1.50 | 4.077 2.327 6.404 5.005 5.738
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Figure 6.5a Comparison of the present drag with the formula of
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Figure 6.6 Surface pressure distribution for the case Re = 1.0
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119

-6.0 T T T l T | T 1 I T
0 30 60 90 120 150 180

Figure 6.7 Surface vorticity distribution for the case Re = 1.0
at different &  values



=

]

© WW
SN’

£=025

Figure 6.8 Streamlines (right) and vorticity (left) for the case
(@ Re=0.1, (b)) Re =1.0. Ay =0.05,A%=0.1
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6.2 Unsteady Flow

This part deals with the time development of the flow field in the neighborhood of an
oblate spheroid placed in an infinite body of fluid. The variation of the free stream
velocity with time can be expressed through the function F(t) defined in equation (5.1).
Two forms of the function F(t) are considered. The first is when the free stream starts
impulsively from rest and the resulting flow field is axisymmetric and time dependent. In
this case the function F is time independent and assumes a value of unity. The second
corresponds to the oscillatory motion of the free stream which can be written as

F(t) = sin(S t).

6.2.1 Formulation of the Problem and the Method of Solution

The time dependent version of equation (6.2) assumes the following dimensionless

form:
N - P S - - P S
(sinh” & + cos™ m) ot * on Bﬁ(cosh§ sinn) & 6‘n(cosh§ sinn)

218 1 0 0 1 a8 ,.
e e e Al oo

(6.28)

In the above equation, the dimensionless time is related to the dimensional time by

2 (6.29)

The boundary conditions to be satisfied are

v v -
Ve T T At 8=k (6.30)

gw—éa -;—sinh.’l& sin’ n F(t) ,and % - %cosh2§ sin2n F(t) as& — o (6.31)

The conditions in equation (6.31) lead to,
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Y- —zl—cosh2 Esin’n F(t) as& — (6.32)

The series expansions used in section 6.1 are used here. Along with equations (6.10), the
time dependent equations can be written as

[Sinhz - 2n® +2n -3 ]agn L (0+2)(n+3) B8, (n-1(n-2) &,
2n-D2n+3){ t  (2n+3)2n+5) ét (2n-1)(2n-3) ¢t

2 | d'g og 1
=—| —=+tanhE ="+ — - 1 S
Re[ag' 5 & {cosh'§ nn + )}g,,}!- "
(3.33)
The boundary conditions are
of
£,(8,,t) =—2(,,t) =0 6.34
n(8ort) 3 (ot (6.34)

f (,t) > cosh’& F(t)5,,, —>sinh28 F(t)5,, g,(&t)=0 as £—>

of, (5. 1)
g
(6.35)

The solutions of the functions y and ¢ are advanced in time by solving equation (6.33)

using a Crank-Nicolson finite-difference scheme. The method is similar to that used in

chapter 5 for a sphere and need not be written in detail again. The only difference is the

agn~—2 and ag n+2

appearance of the derivatives . When solving for g_, the functions with

subscript (n-2) are known from the solution of the previous terms, however, functions
with subscript (n+2) are unknown. These unknown functions were taken care of by
approximating their values at time (t+ At) to be initially the same as time t and then
updating these values through an iterative procedure. The method of solution of the other

equations (equations (6.10)) was discussed in section 6.1.
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6.2.2 The Impulsively Started Flow

The flow development near an oblate spheroid placed in an impulsively started infinite
fluid is investigated for Reynolds numbers Re = 5, 10, 20, 40, and 100. The spheroid axis
ratios considered are A, = 0.6 and 0.76. In order to verify the accuracy of the method of
solution and the computational scheme, the problem of steady flow over a sphere was
approximated using the present computational scheme by considering the case of a

spheroid with axis ratio b/a = 0.99 which corresponds to &_= 2.647. The unsteady flow

solution following the sudden velocity increase continued until the final steady solution

was reached. Table 6.4 shows a comparison between the values of C,, obtained from this

study and those reported by Dennis and Walker (1971) and (1972), LeClair et al. (1970),
and Jenson (1959). The variables in these studies are made dimensionless by referring to
the diameter of the sphere whereas the variables in the present study are referred to the
focal length. The Reynolds number based on the focal length used in this study (Re) is
related to the Reynolds number based on the diameter of the sphere (Res) by

Re,
cosh§

Re = - Therefore, the values Re; = 20, and 40 correspond to Re = 2.821, and

5.643, respectively. An excellent agreement between the present study drag coefficient
and the other studies can be observed. Figure 6.9 shows a comparison of the surface

vorticity (¢, ) for the cases Res = 20, and 40 obtained from the present study and that
obtained from the study of Dennis and Walker (1971). The surface vorticity G, defined

Ge

for the sphere is related to g, by ¢_ = nE The difference between the two results is
cos

attributed to two reasons. The first is that the axis ratio in this study can not take the value
of unity due to the obvious numerical reasons. The second is that the work by Dennis and
Walker (1971) is based on solving the steady equations. In the present study, however,
time was advanced to a value of t = 35.444 which corresponds to t; = 5 (t; is the

dimensionless time based on the diameter of the sphere). The value of t; = 5 is chosen



Table 6.4 Comparison of Cp for the sphere
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Jenson | LeClairetal. | Dennis&Walker | Dennis& Walker Present
Res | (1959) (1970) (1971) (1972)
20 1.473 1.356 1.365 1.42 1.415
40 0.930 0.930 0.904 0.94 0.935
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because it corresponds to the time at which the computations of the impulsively started

flow over a sphere by Dennis and Walker (1972) were terminated.

The time variation of the surface vorticity and pressure distributions for the case

A, = 0.6 and Re = 20 are shown in figures 6.10 and 6.11. Figure 6.10 shows that the
maximum surface vorticity, ¢, occurs as expected near =90 while separation starts to
occur at time t>1. At small times, [g,| is higher and decreases with the increase of t
because of the growth of the boundary layer thickness. The same trend was reported
earlier for the case of a cylinder by Patel (1981) and for the case of a sphere by Dennis
and Walker (1972). Figure 6.11 shows the time development of the surface pressure
distribution, p* for the same case. The maximum pressure is at the forward stagnation
point (1 =180) while the minimum occurs near n =70 which precedes the point of
separation as expected. The surface vorticity distributions at large times (steady cases) are
shown in figure 6.12a for A, = 0.6 and in figure 6.12b for A, = 0.76. The corresponding
surface pressure distributions are shown in figure 6.13. Figure 6.12a shows that flow
separation occurs earlier as Re increases leading to a larger size separation bubble. The
trend is very much the same for the case of A = 0.76 (see figure 6.12b) except that lc;ol is
smaller on almost all the spheroid surface. The same figures (6.12a and 6.12b) show that
separation only occurs for values of Re = 20, 40, and 100 but not 'for the low Re cases of 5
and 10. The location of the separation point and its time variation is shown in figure 6.14

for Re = 20, 40, and 100 and for the two geometries (A, = 0.6 and A, =0.76).

The time variation of the frictional and total drag coefficients (C,; and C,) are

plotted in figures 6.15a and 6.15b for all Reynolds numbers and axis ratios considered.
The figures show that Cp; and Cj, reached their steady values with higher total drag for

low axis ratio geometry. The effect of geometry on C; is insignificant.
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Figure 6.10 Time development of surface vorticity distribution
for the case of A = 0.6 and Re = 20.
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Figure 6.11 Time development of surface pressure distribution
for the case of A = 0.6 and Re = 20.
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Figure 6.12a Surface vorticity distributions for the case of A =0.6
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Figure 6.12b Surface vorticity distributions for the case of A =076

at different Reynolds numbers.

130



0 30 60 90 120 150 180

Figure 6.13 Surface pressure distributions for the cases of A = 0.6
(solid lines) and A = 0.76 (dotted lines) at different
Reynolds numbers.
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Figure 6.14 The time variation of the separation angle for the cases of
A, =0.6 (solid lines) and A_=0.76 (dotted lines )
at different Reynolds numbers.
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Figure 6.15a The time variation of the friction drag coefficient for the
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at different Reynolds numbers.
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Figure 6.15b The time variation of the total drag coefficient for the cases
of A =0.6 (solid lines) and A =0.76 (dotted lines )
at different Reynolds numbers.
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The time development of the flow structure near the spheroid surface is shown in
figures 6.162-6.16h for the case of Re = 100, A = 0.6. The lower half of each figure
shows streamlines while the upper half shows equi-vorticity lines. At small times, the
viscous effects are limited to the boundary layer region very close to the surface. As time
increases, the boundary layer region becomes thicker and the separation bubble starts to

appear at approximately t = 1.0 (see figure 6.16c). This separation bubble continued to
grow until computations were terminated but with no appreciable change of G, Or p‘ at
large times. The growth of the separation bubble with time is represented by the increase
of the dimensionless wake length L (L =L’ /a, where L' is the dimensional wake length).
Figure 6.17 shows the variation of L with time for the cases of Re = 20, 40, and 100 and
for the two geometries (A, = 0.6 and A = 0.76). Although the wake length reached a
constant value for the cases of Re = 20 and 40, it continued to grow for the case of Re =

100 until computations were terminated at t = 20.
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Figure 6.16 (a-c)
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Figure 6.16 (d-f)
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Figure 6.16 (g-h)

Figure 6.16 The streamlines and equi-vorticity lines for the case of
Re=100, A =0.6 at times:
(@)t=0.1,(b)t=05,(c)t=1.0, (d)t=2.0,
(e)t=3.0,(f)t=5.0, (g)t=10.0, (h) t=20.0.
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Figure 6.17 The variation of the wake length with time for the cases of
A, = 0.6 (solid lines) and A_=0.76 (dotted lines )
at different Reynolds numbers.
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6.2.3 Oscillating Flow

This section deals with the problem of oscillating viscous flow over an oblate
spheroid that has an axes ratio of 0.6. The effects of the Reynolds and Strouhal numbers
on the flow characteristics are studied and compared with previous available solutions.
Results are presented for the periodic variation of the drag coefficient, surface vorticity
and pressure distributions for Reynolds numbers ranging from 5 to 100 and Strouhal

numbers of ©/4, /2, and &.

The series truncation method is further tested here in the context of oscillating
flow over oblate spheroids by comparing the present results against the analytical
unsteady Stokes flow solution given by Lai and Mockros (1972), hereinafter referred to as
the LM study. The approximate force given by the LM study for an oblate spheroid

moving with an arbitrary velocity u(t) along its axis of symmetry in a viscous fluid takes

the form
4 AL +1 du 8mpbu  32ma’ 2 pdu(t)/dt

Zratppl (LoD du Bmubu  SZmap v, j () e (6.36)
3 I-(A,+Dq, Jdt A x 3 +Dx* =

where A, =sinh&,, q, =1-A,cot™A,, and k=4, (A2 —T)cot™ A_.
Equation (6.36), when written in terms of the notation in the present study and regarding

the flow as oscillating and the spheroid at rest, takes the form

4 16 . 64 S 3n
CDLM =§F,(KO)S COS(St)+-k—eF2(lo)5m(St)—?F3(lo) ﬁe-COS(St"FT) (637)
A 1 1
where F (A = ° , F(A,)=————,and F,(A,)=————
() SR [1-a+at)g, ] Ty =T,

Cpwu is the dimensionless pressure coefficient corresponding to the LM study. The first

term on the right hand side of equation (6.37) is the potential flow drag, the second is the

viscous drag, and the third is the history term. The formula is very similar to that derived
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by Basset (1888) for the sphere case. In fact, in the limit as £ — 0, the two formulas are

identical.

The time variations of C, and C,,,, for Re = 5, and 10 when S =x/4 are shown in
figure 6.18. An excellent agreement between the present results and the LM study can be
observed. The agreement is better for lower Reynolds numbers as expected. Figure 6.19
shows that the difference between the two formulas for Re = § at the three levels of the
Strouhal numbers considered in this study is sinusoidal. Lawrence and Weinbaum (1988)
noted that the LM formula is valid for small frequency. Figure 6.19 confirms this by
showing a larger relative deviation from the LM study for higher Strouhal numbers.
Figure 6.20 shows the time variation of C, for Re = 5, 10, 20, 40, and 100 when S =

n /4 over the first three cycles. The corresponding potential flow solution is also plotted.

The two components of the drag C,; and C, are shown in figures 6.21 and 6.22. It can
be observed that C,, Cp, and Cp, exhibit phase lead over the free stream velocity

profile. This is, similar to the sphere case, attributed to the separation of the flow during
the decelerated period of the flow oscillation. This phase lead increases at higher
Reynolds numbers. The figures also show that the effect of Re on C,. amplitude is

considerable while its effect on Cp,, is much less. Table 6.5 presents the phase angle at

which the drag components change sign. The free stream changes sign at @ = . The
phase lead of the drag components increases as Reynolds and Strouhal numbers increase.
The same conclusions drawn in the case of the sphere can be made here for oblate
spheroids. Figures 6.23 and 6.24 show the drag coefficient for the case Re = 40 at the
three levels of S considered in this study, and the relative deviation from the potential

flow drag, respectively. Obviously, the deviation is less for increasing Strouhal number.

Figure 6.25 shows the time variation of the surface pressure distribution for the case
S=mn/4 and Re = 100 during one-half of a complete oscillation. It is important to note

that the curve ®=n/2 corresponds to U=U_,_at which the inertia effect is zero
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Figure 6.18 The time variation of the drag coefficient for the cases
Re=0.5,and 5.0atS=n/4.
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Figure 6.20 The time variation of the drag coefficient for the case, S =n/4
at different Reynolds numbers ( FSV = Free Stream Velocity )
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Figure 6.21 The time variation of the friction component of drag
for the case, S = n/4 at different Reynolds numbers
( FSV = Free Stream Velocity )
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Figure 6.22 The time variation of the pressure component of drag
for the case, S = n/4 at different Reynolds numbers
( FSV = Free Stream Velocity ).



Table 6.5 Phase angles at which drag
components change sign

Re S o, Dy (0)] P 4] s
5 T 2.102 2.535 1.914 2.231
10 T 1.982 2.494 1.820 2.199
20 s 1.885 2463 1.754 2.152
40 T 1.812 2.440 1.710 2.089
100 T 1.754 2.420 1.684 2.026
5 /2 2.255 2.597 2.056 2.183
10 /2 2.122 2.551 1.934 2.089
20 /2 2.009 2,515 1.845 1.979
40 /2 1.916 2485 1.782 1.885
100 | /2 1.836 2448 1.745 1.773
5 /4 2424 2,673 2240 2.183
10 /4 2295 2.625 2.101 1.916
20 /4 2177 2.585 1.995 1.744
40 /4 2.072 2.545 1.915 1.587
100 | /4 1.951 2478 1.833 1.335
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Figure 6.23 The time variation of the drag coefficient for the case, Re = 40
at different Strouhal numbers ( FSV = Free Stream Velocity )
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Figure 6.24 The relative difference between the drag coefficient for
the case, Re = 40 and the potential flow drag at different
Strouhal numbers
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and those at @ =0, © correspond to U =0 at which the inertia effect is maximum. On the

same figure, the corresponding inviscid flow pressure distributions are plotted. As can be
seen in figure 6.25, the viscous and inviscid flow pressure distributions are in their best
agreement at @ = 3n /4. The corresponding surface vorticity distribution during one-half
of an oscillation cycle is shown in figure 6.26. An interesting feature of figure 6.26 is that
the curve for @ =n/2 crosses the x-axis which indicates that separation has already
started during the acceleration part of the motion. In the CM study, separation was only
observed during the decelerating part of the motion due to the low Reynolds numbers
considered in their study. In this study, for the range of Reynolds and Strouhal numbers
considered, separation during the accelerating part was only observed for the case of Re
=100, and S = n/4 which indicates that for higher Reynolds and lower Strouhal numbers
separation can occur during the accelerating as well as the decelerating parts of motion.
Figure 6.27 compares the surface vorticity for different Reynolds numbers when S = 7 /4
at @ =3n/4. While the separation region for Re = 100 has traveled a long distance
towards the front stagnation point (n = 0), the separated region for Re = 5 has just started.

Figure 6.28 indicates that the effect of the Strouhal number on surface vorticity of the case
Re =20 is limited at & = 31 /4 as compared to its effect at other phase angles. The same

trend was observed at other Reynolds numbers.

Figure 6.29 shows the time development of the streamline patterns over one-half
of a complete oscillation for the case Re = 100 and S = n/4. The half cycle shown starts
at the maximum velocity (@ = n/2 ) and ends at the minimum velocity (® = 3r /2). Itis
chosen such that the deceleration effects are clearly observed. Figure 6.29a (t=18.0) which
corresponds to @ = /2, shows a small separated region near the rear stagnation point. A
small positive vorticity is also observed next to the dominating negative vorticity. This
means that the separated flow region started to form during the accelerating part of
motion. As time progresses, the separation bubble grows until it eventually surrounds the
oblate spheroid even before the free-stream velocity reverses direction. Simultaneously,

the positive vorticity grows and the negative outer region of vorticity detaches from the
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Figure 6.26 The time variation of the surface vorticity during one half
of a complete oscillation for the case Re =100, S = n/4,
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Figure 6.27 Comparison of the surface vorticity at phase

angle = n/4 for the case S = 3n/4.
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Figure 6.29 Streamlines and vorticity development with time for the
case Re =100, S=r/4 . Ay forab,gh=0.1. Others= 0.01.A¢=1.0
(2)t=18,(b)t=19, (c) t=19.98, (d) t=20, () t =20.02, (f) t = 20.04,
(g) t=21, (h) t = 22. Dotted lines indicate zero values.
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spheroid. When the free-stream velocity is zero, the streamline pattern will be as shown in
figure 6.29d where two vortices are counter rotating near the spheroid. The streamlines
will then follow the new direction of motion and the counter rotating vortices die out as
the flow accelerates in the other direction. The streamlines will then become similar to
potential flow until a separation bubble is formed on the other end of the spheroid causing
a mirror-image behavior in the following half of the oscillation. During this process, the
detached vorticity region subsides and the inner one grows until the velocity peaks again
causing another inner vorticity region to be created on the surface and the process is

repeated.

When the free-stream velocity decelerates, the region of recirculation travels
upstream until it encompasses the whole spheroid. Figure 6.30 compares the time
development of the separation angle for different Reynolds numbers. It is evident from the
figure that for higher Re, the separation occurs earlier and the bubble takes longer time to
encompass the whole spheroid. Table 6.5 lists the phase angles at which separation is first
observed (). It is clear that increasing Re or decreasing S will result in a lower ®.
Figure 6.31 compares the separation angle for Re = 40 number at different Strouhal
numbers. At small phase angles, the separation angle is higher for lower Strouhal
numbers. As time progresses, higher Strouhal number-flows exhibit larger separation
angles. The figure shows that close to ®=3n/4, the separation angle for a fixed
Reynolds number is not a function of the Strouhal number. This was also observed at

other Reynolds numbers.

The length of the separation bubble measured from the spheroid surface at 1 =0

for different cases are plotted in figures 6.32 and 6.33. It is clear from the curves that
lower Strouhal numbers will result in longer separated regions. The behavior at the same
Strouhal number but different Reynolds numbers is not uniform through the deceleration
portion of motion. Figure 6.32 shows the length of the separated region for Re of 5, 10,
20, 40, and 100 when S =mn/4. At early phase angles, higher Re will produce longer
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Figure 6.30 Time Development of the separation angle for the case
S= n/4,.
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Figure 6.31 Time Development of the separation angle for the case
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Figure 6.32 Time Development of the wake length for the case
S=mn/4,

------- Free Stream Velocity
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Figure 6.33 Time Development of the wake length for the case
Re =10.

------- Free Stream Velocity
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recirculation regions. The trend is reversed at later times. The reversal of the trend takes
place before the bubble surrounds the sphere. The same trend was observed for other

Strouhal numbers.

The time-averaged stream function and vorticity over the fifth oscillation cycle are
shown in figure 6.34 for the case Re = 5 and S=n/4. The double boundary layer
structure noted by the CM study is amply confirmed. The symmetry of the counter
rotating eddies is slightly distorted. This is due to the fact that the solution was advanced
only to the fifth cycle and the velocity field is not yet periodic.
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Figure 6.34 Time-averaged patterns over the fifth cycle of oscillation
for the case Re =5, S=n/4. __ zerovalues,
.......... negative values, positive values

AC =0.02, Ay =0.01.



CHAPTER 7

VISCOUS FLOW OVER PROLATE SPHEROIDS

In this chapter, we extend the series truncation method of solution to the case of
oscillating axisymmetric flow over a prolate spheroid having an axis ratio of 0.6 for
Reynolds numbers up to 100. The Strouhal number is fixed at a value of n/4. Although
the problem has already been studied by Kanwal (1955) and Lai and Mockros (1972), the
solutions are, however, based on the linearized Stokes equations of motion instead of the
full Navier-Stokes equations and the obtained results are limited to very low Reynolds
numbers. Although the general solution of the Stokes stream function was obtained,
Kanwal was unable to determine the constants of integration. Lai and Mockros were able
to perform the necessary calculations to obtain a formula for the drag on a spheroid

executing general axial translatory accelerations.

7.1 Governing Equations and Method of Solution

Using the prolate spheroidal coordinates system, the governing equations (3.16)

and (3.17) can be written in the following dimensionless form:

bt e ssmime e L L2 0 1 oy _
(sinh” £ + sin n)C+6§(sinnsinh§6§)+8n(sinnsirlh§ar]) 0 7.1

hlEasinimy L MO, &6 o, L
(S & +Sin ") S 7€ CSihE sy 3 on sinhE sinn’

210 1 o . d 1 & .
E{E[m@“‘“C’]*a[ma“m“@ﬁ

The variables in the equations are normalized in the same way used for oblate spheroids.

(7.2)

The oscillations are also sinusoidal. The no-slip and impermeability conditions on the
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spheroid surface and the free stream condition far away lead to the following boundary

conditions:
Oy _ oy

Yy=—=—= at §=§o (7.3
o & )

1 2 . . . .
%—Vg=-2—sinh2§ sin”® 1 sin(St)  , and %=%smh2§ sin2n sin(St)  as& >
(7.4)

Conditions (7.4) can be written as

Y= —;—sinh2 £ sin® 1 sin(St) as £ (7.5)

The flow away from the prolate spheroid is irrotational leading to,

-0 as £ > (7.6)

Upon using the series expansions presented in chapter 6, the following equations can be
obtained similar to those of the oblate spheroid case:

’f of
9 5-—coth§ —~
ag ag

—n(n+1)f, =sinh§ n(n+ 1)[°°Sh2 S @n-Dn+ 3)

n(n+1)(n+2)(n+3) g, +sinht
(2n+3)2n+5)

2n® +2n-3 ]
En

n(n—-1)}n-2)}n+1)
(2n-1)2n-3) En-z
(1.7)

cosh? E — 2n*+2n-3 |8, (n+2)(n+3) dg,, (n—I(n-2) g,
(2n-1)(2n+3)| & (2n+3)2n+5 & (2n-1)(2n-3) &

—sinh§

= -If—e[;—g;+coth§ aagg -{sin}lﬁé +n(n+ l)}gn}-sn
(7.8)

The boundary conditions can now be written with respect to the coefficient functions

(modes) of the series as

afn

g

f.(8,.t) =—=(&,,t)=0 (7.9)

f (&,t) > sinh’ & sin(St)5,, and g, (5,)>0 as &—w (7.10)
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Equations (7.7) and (7.8) are very similar to those of the oblate spheroid case and can be
solved by minor modifications to the method used there. Therefore, no details are given
here for the method of solution. Instead, we concentrate on the results and interpretations

as follows in the next section.

7.2 Results and Discussions

The problem of oscillating flow over a prolate spheroid of axis ratio 0.6 was

solved for Reynolds numbers in the range 5< Re <100 and for a Strouhal number S =
n/4. With the projected area of the prolate spheroid being A (=mc’?sinh? €,)
integrating the elementary friction and pressure forces over the entire surface gives the

following formulas for C; and C,:

_ 16 cothg,

Cor = 3Re 8.(&,,t) (7.11)

0
Cor = —%[cothao g.(ao,t)+3gé<¢o,t>] (1.12)

In order to verify the mathematical model and the computational scheme, we use the
analytical formula for C,, obtained by Lai and Mockros (1972) as a base for comparisons.
The formula was based on the solution of the linearized Stokes equations for the case of a
prolate spheroid oscillating in an infinite still fluid. The formula is valid at low
frequencies and the solution is restricted to the low Re cases. The formula can be

expressed as :

4 16 : 64 S 3n
Cp = TR cos(S) + - F (b, )sin(st) - - Fy(3,), /2—Re cos(St+5)  (1.13)

where,
A 1 A A +1
A)=——>>—— FQR})=——— FQ})=—m7—-, ==2In(=2—) -1,
Fi(hs) 1-(A2 -1Q, 2 (1) k(A2 -1) s(he) K*(A2 -1) Q 2 l"(x,—l) !

K:%(;Go +l)ln(;° +i)-xo, and A, =cosh§,. The first part of equation (7.13) is the
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potential flow drag. The other two are the steady viscous and the history terms

respectively. Figure 7.1 shows the time variation of the drag coefficient (Cp) obtained

from the present study and a comparison with the drag coefficient ( C:,) obtained from the

above equation for the case of Re = 20. The figure shows an excellent agreement. The

relative deviation of C; from C,, is presented in terms of the parameter & defined as:

- CD "C;

= max[C;] (7.14)

€

The time variation of & over one complete cycle is shown in figure 7.2 for the cases Re =
1,5, 10, 20, 40, and 100. The figure shows a very small deviation ( less than 1% ) for the
case Re = 1, however, the deviation increases as Re increases until reaching about 6% in
the case of Re = 100. This behavior is expected since Lai and Mockros solution is based
on the linearized Stokes equations which is only valid for low Re values. Figure 7.3 shows

the time variation of C,, at different Reynolds numbers. The figure shows that the phase
shift between C,, and the free stream velocity U depends on Re. As Re increases the

phase lead increases. This phase shift was attributed by Chang and Maxey to the adverse
pressure gradient created during the deceleration period of motion. The same trend can be
deduced from equation (7.13). Figures 7.4 and 7.5 show the corresponding Cpr and C,
respectively. Although Cp is comparable to C,, in the low Re range, the later becomes
dominant as Re increases. This is quite expected since the pressure distribution follows
closely the potential flow solution except for the separated flow region. On the other hand,
the frictional drag coefficient decreases as Re increases similar to the normal trend for the

case of a sphere.

The dimensionless pressure p*(n,t) can be easily obtained as:

. Ll 0
p (nat) =%;[Pn(cosn)—(—l)n][?gg_(go’t)'*'comgo gn(éo’t):l (7'15)
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Lai & Mockros (1972)

present

16 18 20 22 24

Figure 7.1 Comparison of the drag coefficient with the analytical
drag of Lai and Mockros (1972).
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16 18 20 22 24

Figure 7.2 The difference between the drag of the present study and that
of Lai and Mockros (1972) at different Reynolds numbers.
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Figure 7.3 The time variation of the drag coefficient at different
Reynolds numbers. (FSV = Free Stream Velocity)
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Figure 7.4 The time variation of the friction component of drag at
different Reynolds numbers. (FSV=Free Stream Velocity)
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Figure 7.5 The time variation of the pressure component of drag at
different Reynolds numbers. (FSV
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The dimensionless inviscid pressure distribution, p:('q,t) , is given by equation (4.50).

Figure 7.6 shows the time development of p'(n,t) over one half of an oscillation cycle for

the case Re = 100. The corresponding surface vorticity distributions are shown in figure

7.7. The pressure distribution is found to be in good agreement with the potential flow

pressure distribution at t=19.5 . In fact, the curves of p‘('q,t) for all Re were very close

to each other and to p:(n,t) at this time. At other times, however, p‘(n,t) for higher Re

is closer to p:(n,t) . Figure 7.8 shows p*('q,t) and p:(n,t) at t =20 which corresponds

to a zero free stream velocity.

The time development of the streamline and vorticity patterns for the case Re =
100 over one half of a complete oscillation are shown in figure 7.9. The half cycle chosen
is from t = 18 (maximum U) to t = 22 (minimum U). At peak velocity, no separation is
observed (figure 7.9a). As time progresses, the free stream starts to decelerate and a small
recirculation region starts to develop near the rear stagnation region (figure 7.9b). This
recirculating region grows until the bubble encompasses the whole prolate spheroid
(figure 7.9¢). As the flow reverses direction, two counter rotating vortices can be observed
(figure 7.9d). The two vortices will subside as the streamlines stretch in the other direction
due to the acceleration of the flow in the opposite direction. The left portion of the figures
show the corresponding vorticity pattern. It is observed that the negative vorticity which
dominates at peak velocity detaches and decays during this half cycle. Another region of
positive vorticity is simultaneously created. The behavior is repeated in the following half

cycle.

It is interesting to measure the angle of separation as well as the length of the
recirculation region from the rear stagnation point (1= 0). Figures 7.10 and 7.11 show
the separation angle and the wake length at different Reynolds numbers. The time at

which separation is first observed is quite dependent on Re. The time at which the bubble
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Figure 7.6 The time variation of pressure during one half of
a complete oscillation for the case Re = 100.
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Figure 7.7 The time variation of the surface vorticity during one half
of a complete oscillation for the case Re = 100.
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Figure 7.8 Comparison of the pressure distribution at t = 20
for different Reynolds numbers
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Figure 7.9 (g-h)

Figure 7.9 Instantaneous streamline (right) and vorticity (left)

distributions for the case Re = 100.
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Figure 7.10 Time development of the separation angle
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Figure 7.11 Time development of the wake length
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surrounds the spheroid is less dependent on Re. Although separation takes place earlier at
higher Re, the speed at which the separation point travels towards the front stagnation

point (1 = =) is lower than at smaller Re.

In the study of Chang and Maxey, it was observed that at certain conditions a
double boundary-layer structure was observed upon averaging the stream function and
vorticity over one full oscillation. Figure 7.12 shows the same behavior for the case Re =
5. In fact, the double boundary layer structure was observed for the whole range of

parameters considered in this study.



%

Figure 7.12 Time-averaged streamline (right) and vorticity (left)

patterns over one full cycle for the case Re =5.
___ZEIO, ....... negative, positive values.

Ay =0.005, A7, =0.02
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 CONCLUSIONS

In this study, the problem of incompressible axisymmetric flow over spheroidal
bodies was considered. The analysis covered steady and unsteady flows of inviscid and
viscous fluids. The spheroidal bodies may take the shape of spheres, oblate or prolate
spheroids. To describe the geometries of these bodies, the spherical, oblate spheroidal, and
prolate spheroidal coordinates were used. While the main interest is to determine the
characteristics of the viscous flow, it is also important to determine the potential flow
solution for such motion. In this regard, Euler’s equations which govern the inviscid
oscillating flows over oblate and prolate spheroids were analytically solved. Analytical
expressions were obtained for the potential and stream functions as well as surface
pressure distributions and the hydrodynamic force coefficients. The solutions of the two
limiting cases of oscillating flows over disks and spheres were obtained as special cases
from the presented analytical solutions. The analytical expressions describing the velocity
field are essential in understanding the viscous flow problem and may provide the far-

field boundary conditions outside the viscous flow region.

Viscous flows over spheres, oblate spheroids, and prolate spheroids were treated
by semi-analytical techniques. The method of solution of the full Navier-Stokes equations
adopted is the series truncation where the stream function and vorticity are approximated
using Legendre functions. The resulting differential equations are then solved
numerically. The cases considered were the oscillating flows over spheres, oblate
spheroids, and prolate spheroids, fluctuating flow about a non-zero mean over spheres,

steady viscous flow over oblate spheroids, and the impulsively started flow over oblate
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spheroids. Several conclusions can be drawn from the presented analysis. They are

summarized in the following points:

1. The drag coefficient was found to exhibit a phase lead over the free-stream velocity.
This lead which increases as Reynolds and Strouhal numbers increase, is attributed to
flow separation. This is quite significant because instead of retarding the flow, the

presence of the object in the flow would help it to reverse direction.

2. It was found that the pressure distribution approaches that of the potential flow as

Reynolds and Strouhal numbers increase.

3. Separation is not expected at low Reynolds numbers for uniform velocity profiles. For
example, separation for the flow over a sphere occurs for Re > 20. In oscillating flow,
however, separation can take place well below this value due to the adverse pressure

gradients which are created during the decelerating part of motion.

4. Separation occurs earlier for higher Reynolds numbers but the bubble takes longer time
to encompass the body. Separation also occurs earlier for lower Strouhal-number flows.
At small phase angles, the separation angle is higher for lower Strouhal-number flows. As

time progresses, higher Strouhal-number flows exhibit larger separation angles.

5. The wake length increases with decreasing Strouhal number. At early phase angles, the

wake is longer for higher Reynolds numbers. The trend is, however, reversed at later

times.

6. The double boundary layer structure was observed for the whole range of parameters

considered in this study.
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7. Comparisons with the analytical solutions of Lai and Mockros (1972) showed excellent
agreements at low Reynolds and Strouhal numbers. These formulas which provide the
solutions of the problem of oscillating flows over oblate and prolate spheroids are based

on Stokes equations in which the non-linear inertia terms are neglected.

8. In the case of fluctuating flow over a sphere, it was shown that vortex shedding is
motivated by increasing Reynolds and Strouhal numbers. The impulsively started flow

over a sphere was indirectly obtained by setting the amplitude of oscillations to zero.

9. The steady drag formulas by Payne and Bell (1960) and Breach (1961) were found to
underestimate the actual force on the spheroid with Breach formula being closer to the
present study results. A range of validity for the two formulas was set by accepting a 5%
deviation from the present study. It was found that Payne and Bell relations are valid for
Re < 0.3 while Breach formula is valid for higher Reynolds numbers provided that a

proper restriction on the axis ratio is imposed.

10. As Reynolds number increases for steady flow over oblate spheroids, the magnitude of
the pressure distribution decreases and the magnitude of the surface vorticity increases.
Increasing axis ratio results in decreasing the magnitudes of the pressure and surface

vorticity.

8.2 RECOMMENDATIONS

Although this study has covered a wide range of flows over spheroidal bodies,

further work can be conducted to cover the following problems:

1. The present models for oblate and prolate spheroids take excessive time for high

Reynolds-number flows. Another approach to accelerate convergence is needed.
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2. It is of interest to solve the problem at high Reynolds numbers (Re = 10°, 10%
3. Generalizing the method to deal with three-dimensional oscillating flows is needed.

4. Wider range of axis ratios, especially the limiting case of a flat disk, need to be

considered.

5. The problems of the steady and the impulsively started flows over prolate spheroids

have not been considered and may be considered as an extension of the present study.



APPENDIX

SOME USEFUL INTEGRALS

The series truncation method used in this study requires the knowledge of some
integrals related to Legendre functions. The following are some of these important

integrals.

.II,P’('H (2) PP (2) dz= (2n2+(3 ? rl:i!k)! ) A
_IIIEPT_SL I'f Fa(t) dt dz= (2n2+ 1) Sum (A2)
:jp,. © o= P \/i f.fl')’(z) .
_]:[P.f”(z) + J%_;Pﬁz’ (2)-2 p,f”(z)Jp,gp(z) dz= _3%)1)_ N (A%)

2m(mi) @+ @mey)
@m+1) 2m+3) 2m+5)
, 2m(m+) @m+2m-3)
[22 PP@) PP (@) dz=| 2m-1) Cm+1) @m+3) 00 (AS)
4 2 m (m-2) (m—1) (m+1)
(2m—-3) 2m-1) 2m+1)

0 otherwise

if n=m-2

! - n i j\(n i j
PO(2) P(2) PP (2) dz= A n (n+1) j G+ 1) ( J ( ) (A6)
_.[ -1 0 JU\O 0 O

_J:P'En(z) PO (2) PJ-‘”(Z) dz= J4 n(n+)i(i+1)j(+2) (G- (—nl —11 ;) [g (l) é)

(A7)
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