A Methodology for the High Level Design
Of Object-Oriented Software

by
Said Abdallah Muhammad

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
In

COMPUTER SCIENCE

January, 1993

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may

be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Beli & Howell Information Company

300 North Zeeb Road. Ann Arbor. M} 48106-1346 USA
313/761-4700 800/521-0600

Order Number 1354056

A methodology for the high level design of object-oriented
software

Muhammad, Said Abdallah, M.S.
King Fahd University of Petroleum and Minerals (Saudi Arabia), 1993

U-M-1

300 N. Zeeb Rd.
Ann Arbor, MI 48106

%

elel el ol oo e el el el el el et bl e e el el el el e

Il ofelobelobelofel el el fe el et alel ol ol obel el el el el el el e el

{3l

1

{obelJe el ofef el el

!
L

——

A METHODOLOGY FOR THE HIGH LEVEL DESIGN
OF
OBJECT-ORIENTEC SOFTWARE

BY

SAID ABDALLAH MUHAMMAD

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
In

COMPUTER SCIENCE

JANUARY 1993

*T*WW%WWWWWWT%WWWE@%@Y‘%“T%WWW’\&

AR

¥

F

Nl

X

S R S T S SR SN S O SN S S S SRR S SE U o

7

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
DHAHRAN, SAUDI ARABIA

COLLEGE OF GRADUATE STUDIES

This thesis, written by SAID ABDALLAH MUHAMMAD under the direction of his
Thesis Advisor and approved by his Thesis Committee, has been presented to and
accepted by the Dean of the College of Graduate Studies, in partial fulfillment of the

requirements for the degree of MASTER OF SCIENCE in COMPUTER
SCIENCE.

Thesis Committee

[ubstecrmmms b SIS

Dr. MUHAMMAD SHAFIQUE

Dr. BASSEL/ARAFEH

M. l\\\-"-"\,ﬂ\icc.\.(‘”(’;“'rf:

Dr. MARWAN AL-AHMADI

Member

A. pha.fa
. ? Dr. SUBBARAO GHANTA
s Member

- »
r. MUHAMMAD AL-MULHEM

Chairman, Information and Computer Science

Department . C
/

§-Dr. ALA H_AL-BABEH

Dean, College of Graduate Studies

Date: 30 -1— /993

Dedicated to Sakina and Abdullatif

ACKNOWLEDGEMENTS

Acknowledgement is due to King Fahd University of Petroleum and Minerals for
supporting this research.

I would like to express my deep gratitude to Dr. Muhammad Shafique, my
thesis advisor, for his quidance. | am also grateful to Dr. Bassel Arafeh, Dr.
Marwan Al-Ahmadi, and Dr. Subbarao Ghanta, the other members of my thesis
committee, for their help and numerous suggestions.

I am indebted to Dr. Muhammad Al-Mulhem, the Chairman of the
Department of Information and Computer Science, King Fahd University of
Petroleum and Minerals, and Dr. Muhammad Al-Tayyeb, former Chairman of the
Department, for their assistance and support.

I would like to thank Mr. Husni Al-Muhtaseb for translating the abstract of this
thesis into Arabic, and Mr. Abdallah Abbas for typing the Arabic abstract.

Thanks go to Mr. Athanase Kanamugire and Mr. Shoaib Qureshi of the Main
Library, King Fahd University of Petroleum and Minerals, for helping me in my
quest for references.

Thanks to all my colleagues at King Fahd University of Petroleum and
Minerals for their encouragement.

Finally, | express my appreciation and gratitude to my wife for her '
encouragement, patience, sacrifice, and understanding while this work was in

progress.

TABLE OF CONTENTS

Page
List of Figures ix
Abstract (English) xi
Abstract (Arabic). Xii
1. INTRODUCTION 1
1.1 Software design: An overview. 1
1.1.1 Definition 1
1.1.2 Classification of design methodologies.. 1
1.1.3 Important Software development life cycle models......................... 2
1.1.4 The requirements analysis and specification phase....................... 3
1.1.5 The design phase. 4
1.1.6 The quality factors of a design methodology. 5
1.2 Motivation for the study 8
1.3 Objectives for the study 9
1.4 Thesis organisation 9
2. LITERATURE SURVEY. 10
2.1 Concepts of Object-orientation...........ccceecersnenrrencsecsnrcnrssnesusaness 10
2.1.1 OOD: A new design paradigm.. ceesssssesenesesanesaesesansaanes 10
2.1.2 Behavior sharing in Object-Oriented Languages...........cccoceeveennnee 11
2.1.3 Composite class 15
2.2 Why OOD ? 15
2.3 Current OOD methodologies.......c.cceceeiecrersisssnerscnssssasosssssssssesssssssssssasassss 18
2.3.1 The SA/OOD controversy. 18
2.3.2 Ada-based OOD methodologies........ccocererreecsserirecccnsssennesssannsssannes 19

v

Page

2.3.3 Object-Oriented Analysis methods 23
2.3.4 Metrics for Object-Oriented design 24
2.3.5 Pure Object-Oriented design methodologies 25
3. THE STATIC MODEL: SEMANTICS 28
3.1 Extending the Enhanced Entity Relationship model 28
3.1.1 Relationships between classes 28
3.1.2 Exceptions on cardinalities 30
3.1.3 Cardinality ratios for temary relationships........ccccceecererrcaneee.. .31
3.1.4 Dependent relationships.......ccccoveeecreerececseenarsccnecenescercrsanans 35
3.1.5 OR-association links 35
3.2 The is-a relationship: Notation and semantics.........ccccccceeveermerrrnecncnecnnns 38
3.3 The is-part-of and has-parts relationships 41
3.3.1 Is-part-of semantics 41
3.3.2 Has-part semantics 43
3.3.3 Constraints on composite class topologies..........cceceeueerrersarennnens 45
3.3.4 Make-component rule 46
3.3.5 Semantics of deletion for composite classes.........c..cceeeueereureenacens 46
3.3.6 Recursive composite classes .47
4. THE DESIGN METHODOLOGY 49
4.1 Outline of the design Methodology.........ccccnerirsmssrnsnsnicemsessenssncssnesacesenas 49
4.2 The exploratory stage.. reereenessenesansnesersnssssnes 49
4.2.1 Determination of system behaviours...........cccccervrrecrrevnercnecrennneen. 50
4.2.2 Construction of event-response lists.........ccovevreieisecrnncersenneenerincnnes 51
4.2.3 Determination of the external interfaces to the system................. 52

vi

Page

4.2.4 Determination of an initial list of subsystems 52

4.2.5 Determination of an initial list of classes and class lattices......... 52
4.2.6 Construction of an initial list of CRC cards, subsystem
specification cards, class specification sheets, entity

relationship diagrams, and inheritance diagrams 53

4.2.7 Integration of class and subsystem lists found by different

design teams 60

4.3 The division of the design task into subtasks.........cc.ceervecrivrecrieeencc ol 60
4.4 The extraction of additional subsystems and classes.......c.ccccvvervcurnnc. 61
4.5 The construction of class interfaces 65
4.6 The evaluation and refinement of classes and subsystems................... 66
4.7 The construction of the dynamic model 67
4.7.1 Harel's Statechart Notation 67
4.7.2 Extention to Harel’s Notation 68
4.7.3 Steps in constructing the dynamic model...........ccccocveevenennncnnens 74

4.8 The integration of the design Subtasks.......c.cceeveeeeecercerceccniensnssnsssensenns 78
5. DESIGN CONSISTENCY CHECKING . 79
5.1 Introduction 79
5.2 Taxonomy of Inheritance-graph modifications........c..cccceeveeceereircnceneranes 79
5.3 Invariants of Inheritance-graph modifications.........ccceceeeeererrercensccssncesoenns 80
5.4 Design consistency checking algorthms...........cccveeeeeerrvcennrncnrcrnennssannes 86
5.4.1 Introduction seetssssrnsansenensssnease ..86
5.4.2 Inheritance-graph modifications.........cccecicnieccsinsnsncnnnsnnennsacnnas 90

vii

6. AUTOMATED TELLER MACHINE (ATM): ACASE STUDY.......ccccconuueue. 122
6.1 Problem statement 122
6.2 ATM-system high-level design 127

6.2.1 The exploratory stage. 127
6.2.2 The division of the design task into subtasks. 128
6.2.3 The extraction of additional subsystems and classes............. 129
6.2.4 The construction of class interfaces 149
6.2.5 The construction of the dynamic model.. 158

7. CONCLUSIONS AND FUTURE WORK..........ccconuimeurmcnsnscscrassnsmsnsassenssnonnss 167
7.1 Conclusions 167
7.2 Future work 167

REFERENCES 169

viii

LIST OF FIGURES

Figure Page
3.1 Temary relationship cearmsmseeseacssasasersrasarasens 33
32 Inclusive relations 36
3.3 Exclusive relations 36
3.4 Exclusive relations: An example 36
3.5 An OR-association 37
3.6 Class notation 39
3.7 Exclusiveis-a 39
3.8 Exclusive-inclusive is-a 39
3.9 Part-of relationships 44
3.10 A recursive COMPOSHE CIASS......cccoecrevrrmnserrrnreeresessenssressressesconssnnsnsenanss 48
4.1 ACRCcard 56
4.2 A class specification sheet 57
4.3 An expanded role field 58
4.4 A subsystem specification card..........cocooeeeeceencrvccrcrereneenvenne 59
4.5 A state-transition diagram............cccceeeeeveeccccersnssersnrsnrescrssanessesssneassssesesed 69
4.6 An exclusive-OR state. 69
4.7 An AND-state .70
4.8 AND-state expansion .70
4.9 AND-state partitioning.........cccoeveereccercnsensascnssessersensessaeserenssncssssscsscsnsssecsens 71
4.10.Conduits in AND-State.......ccccieeieeretreeitrtncteessssesssnsnsesssesnesessaesnns 71
4.11 An in-state connection .73

I

Figure Page
4.12 A not-in-state connection 73
4.13 Dependent AND-states 73
4.14 State-transition notation 75
4.15 State-table 77
5.1 Attribute name-conflict 83
5.2 Domain-compatibility. 83
5.3 ls-a semantics compatibility. 85
5.4 Attribute-scope. 87
5.5 Atiribute negative-shield...... 89
5.6 Upward domain-incompatibility. o1
5.7 Downward domain-incompatibility............ 91
5.8 Attribute name-confiict after attribute addition 93
5.9 Changing an attribute’s domain 101
5.10 (a) A cass blocking name-conflicts.......c.cccceeveecvecenrenennene 105
(b) Name-conflict after class deletion 105
5.11 Inheritance-link deletion................cccue..... 110
6.1 ATM-terminal menu hierarchy................... ..125
6.2 ATM-system class-structure 134
6.3 ATM-system subsystem-collaborations...........c.cceccvevivuerseerersennensecrennenne 137
6.4 DialogueManager Statechart.............eeinecerneceeneeeeseeeesanaes 159
6.5 DepositManager Statechart.......... 163
6.6 CashlssueManager Statechart..... 164
6.7 TravellersChequelssueManager Statechart...........cccocoeeceiccerrccccccruccnnenn 165
6.8 WithdrawManager Statechart..........c.ccovevierinnivcnneininensnsenssssessssessnesssecsnne 166

THESIS ABSTRACT

NAME OF STUDENT : SAID ABDALLAH MUHAMMAD

TITLE OF STUDY : AMETHODOLOGY FOR THE HIGH LEVEL DESIGN
OF OBJECT ORIENTED SOFTWARE

MAJOR FIELD : COMPUTER SCIENCE

DATE OF DEGREE : JANUARY,1993

The object-oriented approach to programming and designing software systems
is receiving tremendous attention in the programming languages, knowledge
representation, and database disciplines. The design of a software system
determines its major characteristics and has great influence on later phases of
the software life cycle, particularly the maintenance phase, which accounts for
most of the cost of software system over its entire life cycle.

Object-orientation offers a new design paradigm which can help to manage the
growing complexity and increasing costs of software development and
maintenance. The paradigm also promises greater productivity by facilitating
the building of reliable applications from reusable components. However,
proposed object-oriented design methodologies are still at an initial stage of
investigation. Most of these methodologies do not incorporate the dynamic
model; the model which captures the dynamic behaviour of a software, and
almost all of them do not consider design-consistency checking in greater detail
at the high-level design stage.

We develop an object-oriented, high-level, software design methodology. The
methodology is based on two models: a static model, and a dynamic model.
The static model uses a form of an enhanced entity-relationship model,
inheritance diagrams, and CRC (Class Responsibility Collaboration) cards to
capture the static structure of the classes and class relationships. The dynamic
model uses a modified Harel’'s Statechart notation to capture the interna!
behaviour of each class and the message passing behaviour among
collaborating classes in the system. We also deveiop a number of design-
consistency checking algorithms.

MASTER OF SCIENCE DEGREE
KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
Dhahran, Saudi Arabia
JANUARY,1993

Xi

VL) asde

deres dlllie done 2 el ol

O P P TVER TR RS, UL PUSIET Y A iy | (| Y P
l...-uu-".,‘& 2 gamasll

p VP () JUoasls s lalipl

J2f Jlos (3 LIS Ty b Lo Stazall gal I raasy o Loy plaza¥1 slo5 W Loy

LS‘.LE:JI olio saf . urm:r,..a:n,,.;,sr,!..ua,., . ol Oy OULIT 221435 35,0l

wale AN Bloall oo 2ol JUa o by Tbae L E A 300 S e a8 G50 35
3 Vo LIS o Lo Uil 05 L

Lo DU TSy sl JudB5 e aels aacld Sasir iy b SO plaiaal i
e Oy Ly @Sy Lali¥l Guuas LISl M Ta I 25 LS. Yailoony il kel
o S e el el 5, Sl L« 1n S gy - plisaa¥ aleY A5 Lolic
PN 5 il G J2g Gl aisll g isactt baylzely J5U Y 5 R ade il . i b Sl
« oMl Juraiddly oLl eeanadll 35107 pamed Wajlzely BU Y G0 ade L2 oI LS

T2l 2 Bl dazasy - S Lo dexes (I LW aasl) T b ol o ok
WK il gigatdl Jaszs o il £5saill g UMy ol z35udl 2 J ¥ 2 Gpaid e
o WLl SLo¥l L yius JI DL &byl Slaganys « LIV TNe 23,8 JIKE o)b
- . MH&%}J&&NQ&|ES’:"J‘.‘J

f223 ko S S) Jutd o L) 59 il g5 gadl 3 Ladinzad 455
- Ul 5 Aleliatl Sl o Jil M1

. r,-a:."—és'jhaas Q[.;aj)'}aﬁ a..\n_,._,h:'..?l.f

polall B ppenle
oolally Jyzll ag il Zasls
Losaudl el ISLLS - ol gl
p YWY (L) S0 Gels

CHAPTER 1
INTRODUCTION

1.1 Software design: An overview

1.1.1 Definition

Software design is a creative, non-algorithmic problem solving process
involving tradeoffs. It is a process of conceptualising and generating modules
of a software product with their design alternatives, evaluating these design
alternatives to eliminate unacceptable ones, and then iteratively refining and
integrating the surviving alternatives into more detailed design until the resuits

satisfy user requirements within the allowed constraints.

1.1.2 Classification of design methodologies

Most of the design methodologies developed can be classified as either top-
down functional design, data-driven design, or object-oriented design. In top-
down functional design, the system is viewed in terms of its functions. Starting
at a high-level view, each level is refined into successively more detailed levels
of functions. In data driven design, the structure of the data processed by the
system is used to derive the structure of the software. Object-oriented design is
based on the use of data and procedural abstraction. Each data and
procedural abstraction constitutes an object, and the system is composed of a

collection of objects.

1.1.3 Important Software development lifecycle models

The iterative waterfall model

The iterative waterfall model consists of five phases : (1) requirements analysis
and specification, (2) design, (3) implementation, (4) testing, and (5) operation
and maintenance. There is much iteration and feedback among the steps and
phases of the lifecycle. The requirements analysis and specification phase
includes user-needs analysis and feasibility study. The design phase covers
user-interface design, preliminary design, and detailed design. The
implementation phase involves translation of detailed design specifications into
a source code. This code is then compiled and executed . If any errors are
discovered, debugging and re-coding takes place. Testing occurs at three
levels : unit testing, system testing, and acceptance testing. Following
acceptance by the user the software system is released for operation and it
enters the maintenance phase. There are four types of maintenance activities :
corrective maintenance, adaptive maintenance, perfective maintenance, and

preventive maintenance.

The prototyping model

In the prototyping model, the requirements specifications are identified,
perhaps in a preliminary way if they are unclear or fuzzy. They are then
implemented in the form of a prototype as a part of a prototyping process, and
then they are fed back to the user for validation. The sequence of events is then
to: (1) design a prototype, (2) implement the prototype, (3) submit the results of

this implementation to the user for feedback asto the validity of the design

(4) refine the requirements specifications and the prototype on the basis of the
feedback, and (5) repeat the process until there is satisfaction with respect to

the results obtained.

The spiral model

The spiral model [Boe86] requires the use of prototyping. It proceeds through
an iterative sequencing of the several phases of the model for each time a
different prototype is developed. The model includes an evaluation of risk
before proceeding to each subsequent elaboration of phases in the
development of a software product. The opportunity to assess the various risk
factors such as cost, hardware requirements, and performance, permits the
developer to determine whether to continue with the development, seek an

altemative path, or abort the process [SaP90].

The knowledge-based lifecycle model

The knowledge-based software lifecycle model is based on the use of a
particular lifecycle model with the application of expert systems. Knowledge-
based models have been developed primarily to assist the software designer

realise a specific design through the application of rule based systems [SaP90].

1.1.4 The Requirements analysis and specification phase

Requirements analysis involves the identification and development of user
requirements. Software specifications are the translation of these user
requirements to technical specifications for the software system that will be

developed. The goal of specification is to completely specify technical

requirements for the system, including the precise definition of what the
functions of the software are, the constraints under which it will perform its
functions, default and error conditions and the acceptable responses to these

conditions.

There are two categories of system and software requirements specifications :
functional and non-functional. Functional requirements are those that relate
directly to the functioning of the system. They describe how the system should
behave given ceriain input. Non-functional requirements are requirements or
restrictions posed by the user or the problem that do not relate to the functions
or operations to be performed by the system [Myn90]. The major non-functional
requirements are associated with quality factors, user interfaces, performance
characteristics, operating constraints, economic constraints, and political
constraints. The commonly used quality factors are : efficiency, flexibility,
integrity, inter-operability, maintainability, portability, reliability, responsiveness,
reusability, testability, understandability, and usability. Since certain of these
quality factors conflict in specific development situations, priorities must be

assigned to the particular quality factor characteristics required.

1.1.5 The Design phase
The design phase consists of three sub-phases : user-interface design,
preliminary design, and detailed design. The user-interface design can often

be carried out in parallel with the preliminary design.

The inputs to the preliminary design phase are the detailed software
specifications that were formulated in the requirements analysis and
specifications phase. The goal of preliminary design is to specify a software
architecture that satisfies the requirements, the user-interface design
specifications, and the implementation constraints. The system architecture is
specified in terms of a hierarchically structured collection of modules, each of
which plays some well defined part of the systems capabilities. In addition to the
delineation of the modules, their interfaces and interactions are defined in order
to specify the coordination needed to assure the achievement of the expected

functional capabilities.

The architectural structure defined in the preliminary design phase is refined
into implementation details during detailed design. Data structures are defined,
algorithmic details are specified, decisions are made concerning how to
implement each of the components specified in the preliminary design, and the

test plan is prepared.

1.1.6 The quality factors of a design methodology
The following quality factors can be used to judge the quality of a design
methodology: (a) relevance, (b) usability, (c) reliability, (d) efficiency, (e)
maintainability, and (f) robustness.
(a) Relevance

Relevance is a measure of the degree to which a design methodology meets

the need of designers in designing a particular class of software products.

(b) Usability
The usability of a design methodology is a measure of the effort and
prerequisite knowledge required in order to learn, understand and use the
methodology

(c) Reliability
The reliability of a design methodology is the probability that the
methodology is as effective as it is claimed to be. The reliability of a
methodology depends on its supporting tools and its underlying design
principles. A methodology cannot be reliable without a comprehensive set of
design tools, nor can it be reliable if it is not based on the following design
principles :

(i) The principle of abstraction (i.e. concentrating on a problem at
some level of generalisation without regard to low-level details). This
embraces :

(a) The principle of evolution : Design consists of a large
number of relatively simple steps; at each step more details are
incorporated into the solution.

(b) The principle of separation of concerns : No more than
one aspect of design is attempted at a time.

(c) The principle of implementation-independent design :
Decisions on details of implementation are delayed as long as
practical.

(i) The principle of modularity : The software is organised into

modules, each of which encapsulates a specific set of abstract

capabilities.

(iii) The principle of perceivability : Every work-product of the
design is sufficiently simple.

(iv) The principle of completeness and unambiguity : Every work-
product of the design process is complete and unambiguous.

(v) The principle of user-centered design : Every design decision

gives priority to the needs of the users.

(d) Efficiency

The efficiency of a design methodology is a measure of its capability to

improve productivity of the design process and to ensure that design

products are of specified quality. The key methods for productivity

improvements are fault avoidance and fault removal methods. These

methods are especially cost-effective when applied to the early stages of the

software development process [Law88]. The effectiveness of a methodology

in fault avoidance can be assessed by examining ways in which the

methodology :

keeps design task complexity under control,

controls complexity of work-products,

ensures that design tasks and the resulting work-products are completely
and unambiguously defined,

ensures that all documentation is complete and unambiguous,

Leads to the identification of “ off the shelf “ parts,

supports the use of automated aids for software design.

The effectiveness of a methodology in fault removal may be assessed by

examining :

procedures for inspection of work-products,

- procedures for initiating, performing and documenting modifications .
(e) Maintainability
Maintainability is a measure of the effort required to keep the methodology
itself up to date to suit changing requirements.
(f) Robustness
Robustness can be regarded as a measure of the resistance of the
methodology for misuse. Features which help make a methodology robust
are :
- clear specification of intermediate work-products and deliverables,
- clear sequencing of design tasks,

- specified checkpoints and reviews.

1.2 Motivation for the study

e Current Object-Oriented design methodologies do not consider design
consistency in detail at the high-level design stage.

e Most Object-Oriented design methodologies incorporate static models
without dynamic models. The static mode! captures the structural and
semantics relationship among the classes comprising a software. The
dynamic model captures the dynamic behaviour of these classes. Design
methodologies without dynamic models include those proposed by Coad
and Yourdon [CoY91], Meyer [Mey88], WirfsBrock et al. [WWW8S0], and
Shlaer and Mellor [ShM88].

e The dynamic and static modeis are not well integrated in Object-Oriented

design methodologies with dynamic models. Design methodologies with

dynamic models include those proposed by Alabiso [Ala88], Booch [Boo91],
and Rumbaugh et al. [RBP+91].

1.3 Objectives for the study

e Develop an Object-Oriented Design methodology for the high-level design
stage incorporating design-consistency checking.

e Develop a dynamic-model for the design methodology which will easily
integrate with the static-model.

e Study aspects of high-level object-oriented design which can be fully or

partially automated.

1.4 Thesis organisation

In Chapter 2 we present a literature survey which covers concepts of object-
orientation, the benefits of object-oriented design, and current object-oriented
design methodologies. The semantic notations used in the static model of the
developed design methodology are given in Chapter 3. The developed design
methodology is presented in Chapter 4. In Chapter 5 we discuss in detail
design-consistency checking algorithms as applicable at the high-level design
stage. In Chapter 6 we elaborate the design methodology in a case study of an
Automated Teller Machine network. Finally, in Chapter 7, conclusions and.

recommendations for future work are presented.

CHAPTER 2
LITERATURE SURVEY

2.1 Concepts of Object-Orientation

2.1.1 OOD: A new design paradigm

Object-oriented design is an approach to software design where the system is
designed as a set of objects which model problem domain entities and which
interact through message passing. Each object encapsulates its own private
state (instance variables) and methods (procedures and/ functions) which,

alone, can act on that state.

Historically, software development has progressed from a purely procedural
approach to a data driven approach and now to the object-oriented approach.
The progression has resulted from a gradual shift in point of view of the
development process. The procedural design paradigm utilises functional
decomposition to specify the tasks to be completed in order to solve a problem.
The data-driven approach gives more attention to data specifications than the
procedural approach but still utilises functional decomposition to develop the
architecture of the system. These two approaches are based around the notion
of representing the system state in a centralised shared memory which may be
accessed by the functions/ procedures. As these functions/procedures execute,
the system state is updated. An object-oriented approach to design is different
from the procedural and data driven approaches in two principal ways:

1) The basic abstractions are not real-world functions, but real world entities,
2) State information is not represented in a centralised shared memory, but
is distributed amongst the objects modelling the system.

10

11

2.1.2 Behaviour sharing in Object-Oriented Languages

Object-oriented programming languages can be classified as class-based or
object based according to their behaviour sharing mechanisms. C++ [EIS90],
Eifell [Mey88], Smalltalk-80 [GoR83}], and CommonObjects [Sny86] are
examples of class-based languages. Actors [Agh86], ABCL/1 [YBS86], [Yon90],

and Self [UnS87] are examples of object-based languages.

(a) Class-based behaviour sharing
In class-based languages a class denotes a set of similar but unique objects. All
objects belonging to the same class are described by the same instance

variables and the same methods.

inheritance

Inheritance is a structural relationship (often called the “ is-a” relationship)
between classes which allows a class to inherit methods and instance variables
from ancestor classes (superclasses) , and to have its methods inherited by
descendant classes (subclasses). A subclass may add new methods and new
instance variables to that of its superclass. A local definition may mask or

override an inherited definition.

Multiple inheritance occurs when a class inherits from more than one direct
superclass. Problems arise with multiple inheritance when a class tries to inherit
from two or more superclasses that contain methods and/or instance variables

having similar names. Solutions have ranged from regarding name

12

conflicts as errors which must be disambiguated to allowing the programmer full

control over how multiple inherited methods are invoked.

CommonObjects [Sny86] and Sina/st [Akt88] provide selective inheritance, a

notion not supported by most object-oriented languages.

Polymorphism
Polymorphism is the ability of an entity, such as a variable or function argument,
to refer at run-time to instances of various classes. Hence, the actual operation

performed on receipt of a message depends on the class of the instance.

Polymorphism is implemented in different ways according to whether the
language used is dynamically-typed or statically-typed. In dynamically-typed
languages such as Smalltalk-80 [GoR83], Objective-C [Cox86], CLOS [Moo089],
and Flavors [Mo086] entities have no static types, so that they may at run- time
refer to objects of any class; when an operation is requested on an entity, its

dynamic state determines what realisation, if any, is available for the operation.

In statically-typed languages such as C++ [EIS90], Eiffel [Mey88], Hybrid
[Nie87], and Object Pascal [Sch86] polymorphism occurs through the difference
between the declared (static) class of a variable and the actual (dynamic) class
of the value contained in the variable. This difference is maintained within the
framework of the is-a relationship. A variable can hold a value of the same type
as that of the declared class of the variable, or any subclass of the declared

class.

13

A polymorphic method is one that may accept arguments of different types. In
universal polymorphism, there is one implementation of a method that works for
all types (parametric polymorphism) or all subsets of a type (inclusion

polymorphism).

Ad-hoc polymorphism is realised through overloading or through overloading

and coercion of arguments.

Abstract Class
An abstract class is a class that is not intended to produce instances of itself. It
exists so that behaviour common to one or more classes can be factored out into

one common location.

Deferred Class

A deferred class is an abstract class that contains one or more deferred
methods. The class defines the specification (signature) of a deferred method
but not the implementation. Various implementations are defined in the
subclasses of the deferred class. The implementation used depends on the
dynamic type of the deferred class which will always be one of its subclasses.
Languages which support deferred classes include C++ [EIS90] and Eiffel
[Mey88].

We call a deferred class in which all the methods are deferred as a complete

deferred class; otherwise we call it a partially deferred class.

14

Parameterised Class

A parameterised class is a class which contains generic parameters in its
definition. A parameterised class is instantiated to specific classes when actual
type parameters are supplied. Languages which support both parameterised
classes and inheritance include Eiffel [Mey88] and Trellis/Owl [SCB+86].

Parametrised classes have been proposed as an extension to C++ [EIS90].

Metaclass

Some Object-Oriented programming languages support the view that classes
are objects. The notion of a metaclass as a class of a class is then used. A
metaclass is itself an object, and it is an instance of yet a higher level metaclass.
The arbitrary recursion must be broken by an arbitrary root metaclass. The
concept of metaclasses permits the specialisation of behaviour for the
initialisation of individual classes without leaving the object-oriented framework.
The argument against using this concept is that it complicates the object-
oriented paradigm. Systems supporting explicit metaclassess include
LOOPS [Bob83], ObjVlisp [Coi87], and CLOS [Mo089],[Kee89]. Smalitalk-80
[GoR83], ABCL/1 [Yon90], Objective-C [Cox86] support implicit metaclasses;
when a class is defined, a new metaclass is automatically created by the

system.

(b) Object-based behaviour sharing
Delegation [Lie86], [Lie87] is presented as an approach to sharing behaviour in
object-based languages. In delegation an object knows about one or more

objects called proxies or prototypes. At run-time the object will delegate to

15

its proxies a message that it does not know how to handle. These proxies can in
turn delegate the message to their own proxies. A proxy which can handle the

message will handle it in place of the initial receiver of the message.

There is an ongoing debate on the relative merits of class inheritance as
opposed to those of delegation in object-oriented programming [MiR89], [Lie86],
[Ste87], [TSK90].

2.1.3 Composite Class

A composite class is a class defined as a composition or an aggregation of other
classes called its parts or components. Some knowledge representation
languages such as LOOPS [Bob83], YAFOOL [Duc90] and OBJLOG [Dug91]
provide features for defining such classes. In these languages the creation of a
composite object leads to the creation of an instance of each component

[MNC+91].

2.2 Why OOD ?

OOD is a new design paradigm which has the following advantages over

traditional function-oriented design paradigms:

(a) Understandability
The Object-oriented approach helps to manage the complexity of software
development by modelling the real-world in terms of its objects. Objects
encapsulate both data and state; they may be considered as stand-alone
entities without reference to other parts of the system and thus they are easily

understood. Because of this, errors of omission and errors due to

16

misunderstood abstractions are more obvious and more likely to be detected
by the designer before the design is complete. In a function- oriented design,
the designer must separate state information from functions and in doing so

he may leave out either essential state variables, required functions or both.

(b) Reusability
By removing the need for dealing with shared state and by removing the
interdependency among software components, OOD permits the
development of reusable software components. The major approaches
facilitating code reuse are polymorphism, behaviour sharing, and

parameterised classes.

A polymorphic component can have several types; hence it can be used in '
several different ways. When behaviour is inherited from another class or
when an object can refer the implementation of behaviour to other objects, the
code that provides that behaviour does not have to be rewritten. Some
object-oriented languages support parameterised types. This provides a

different style of code reuse by describing generic components.

Several libraries of reusable software components have become
commercially available : The Smalltalk class hierarchy [GoR89], the McApp
classes for graphical user-interface design [WRS30], the ICpak 201 collection
of Objective-C classes [Kno89], the National Institute of Health C++ collection
[GLP90], the InterViews collection of C++ classes for user-interface design

[LVC89], and the Eiffel Libraries [Mey90].

17

The results of using reusable components to construct software systems are:
faster software development time, decreased maintenance costs, and

increased software reliability.

(c) Modifiability
Understandability, the absence of shared data area, and the loose coupling of
software components makes it easy to modify an object-oriented application.
Changes to one part of the design are less likely to affect other design
components. New types of objects can be added without drastically changing
the existing structure of the application; inheritance coupled with
polymorphism minimises the amount of existing code that must be changed
when extending a system. In a function-oriented approach changes to one -
function often require changing state information .This can have unanticipated

side effects on other parts of the system.

(d) Fault repair
Understandability, the absence of shared data area, and the loose coupling of
software components make it easy to repair a fault in an object-oriented
application. Fault repair in one part of the system is unlikely to introduce new

faults elsewhere in the system.

(e) Fault tolerance
The distribution of state information which is inherent in an object-oriented '
approach helps to make an object-oriented application fault tolerant. in a

situation where all of the system state is accessible by the functions

18

manipulating that state, an error in one of these functions can be readily
propagated through the entire system state. This is likely to cause complete
system failure. However, where only part of the state is visible to an object at
any time, only the state within that object may be damaged in the event of an
error. Damage is not likely to be propagated throughout the system, thus
improving the overall probability that the system can continue to operate in

the presence of an error.

(f) Reliability
Reusability, modifiability, fault repair, and fault tolerance all contribute to
reliability. The more situations in which code has been reused, the greater will

have been the opportunity of discovering errors.

2.3 Current OOD methodologies

23.1 The SA/OOD controversy

Object-oriented design methodologies are still in their early stages; no standard
methodologies have been established. Thus, current methodologies are varied.
Some meld the top-down approach of structured analysis (SA) and object-
oriented design, others use a unified object-oriented paradigm throughout all
design activities. There is an ongoing controversy as to whether structured
analysis is compatible with object-oriented-design. Some methodologists
advocate that they are compatible [Ala88], [WaM89], [Shu91] and others
advocate that they are incompatible [Bai89], [ArY90], [CoY90], [Bro91), [Fir91].

19

2.3.2 Ada-based object-oriented design methodologies

What has come to be known as object-oriented-design in the context of Ada was
first proposed by Abbot [Abb83], and later formalised and extended by Booch
[Boo83], [Boo86). Booch’s original work on object-oriented-design was strongly
influenced by the characteristics of Ada packages and tasks, he has now
extended that work to include more general class relationships as they exist in

object-oriented programming languages [Boo91}].

The Object-oriented design methodology proposed by Booch consists of three
steps : 1) Define the problem, 2) Develop an informal strategy, and 3) Formalise
the strategy. The third step has four sub-steps : 3.1) Identify the objects and their
attributes, 3.2) Identify the operations suffered by and required of each object,
3.3) Establish the interface of each object, 3.4) Implement the operations in each
object. Originally Booch’s methodology derived a design from textual
specification, later on he changed this to a data flow diagram specification.
Booch uses a diagramming notation that shows the dependencies between Ada

packages and tasks which implement the objects.

Jalote [Jal89] proposed an extended object-oriented design methodology which
incorporates a top-down, step-wise refinement process consisting of a functional
and an object refinement phase. Object refinement allows composite entities in
real-life to be modelled in terms of nested objects. The functional refinement
phase iteratively refines the operations that do not seem to belong to any
particular object uncovered so far in the refinement process. The iteration stops

when no operation for further refinement are identified.

20 .

GOOD (General Object- Oriented Software Development) was developed by
Seidewitz and Stark [SeS86], [Sei89]. GOOD addresses the requirements
specification and design phases of an Ada-oriented software development life-
cycle. Structured analysis is used to develop the specification. Abstraction
analysis is then used to make a transition to an object-oriented design by
recursively producing object diagrams. Object-diagrams are used to represent
two orthogonal hierarchies : composition hierarchy and seniority hierarchy. The
first step in abstraction analysis is to find the central object diagram of the
system. This central object diagram is then recursively refined into lower level
diagrams, forming a levelled seniority hierarchy of object-diagrams. This
process is continued until all the processes and data stores are associated with
object diagrams. When all the object diagrams are found, the seniority hierarchy
is recursively collapsed by distributing control among the object diagrams in
each level. In doing this, data flow arrows are removed by object descriptions.
An object description includes a list of all operations provided by an object and a

list of operations provided from other objects.

HOOD (Hierarchical Object- Oriented Design) {[WPM89], [WPM30], [HOH91] is
closely related to Booch’s work. It combines two complementary methods :
Abstract machines and Object-Oriented design. Like Booch’s approach, it starts
by decomposing the problem into objects from the nouns and verbs used in a
textual description. The system is described as a seniority hierarchy of objects '
each of which is either active or passive. A passive object provides facilities,
whereas an active object not only has a hierarchical relationship with its sub-

objects, but also controls the order of their execution. An object can access the

21

visible facilities of another with the use relationship. HOOD supports
concurrency, it also addresses other real-time facilities such as exception
handling and time-outs. An important goal of HOOD is to map its features directly

to Ada concepts through an Ada-like Program Design Language.

MOOD (Muttiple-view Object-Oriented Design Methodology) [WPM89] is a
method for structured object-oriented design. It supports the construction of
programs from an analysis model developed with Ward / Mellor’'s Structured
Analysis with Real-time extensions [WaM85]. The method supports the object-
oriented paradigm, but allows concurrent processes to be expressed as tasks
rather than objects. MOOD addresses different issues, including the
identification of objects and tasks, how objects and tasks influence other objects

and tasks, and sequential execution of routines.

PAMELA (Process Abstraction Method for Embedded Large Applications)
[Sei89], [BuW90] is an Ada-specific design method for real-time and embedded
systems devised by Cherry in 1986. The method uses a powerful graphical
notation. In the PAMELA design process, the designer successively .
decomposes processes into concurrent sub-processes until he reaches the level
of primitive, single-thread processes. The relationships between the processes

is represented by data flows.

OOSD (Object-Oriented System Design) is a graphical design notation
developed by Wasserman et al. [WPM89], [WPM30]. It provides a hybrid notation

for combining Structured Analysis and Object-oriented techniques. The notation

22

is based on structure-charts from Structured Analysis. Booch’s notation for Ada
packages and tasks, class hierarchy and inheritance principles from object-
oriented programming, and Hoare’s monitors. OOSD provides notation for
message arguments, classes, generic classes, inheritance, polymorphism,
exceptions, visibility relationship, and asynchronous processes. The goal of
OOSD is to provide a single architectural design that can support every software
design [WPM89]. OOSD does not address the method by which a design would -
be derived. It is expected that designers will develop and use their own design

methods within OOSD’s framework.

Walters [Wal91] describes an Ada object-based analysis and design approach
consisting of : object identification and characterisation, real-time behaviour
specifications for object services, verification that the object model satisfies top-
level requirements, definition of Ada constructs from object characterisations,

and design refinement and validation.

Limitations of the Ada-based OOD methodologies
The close coupling of the Ada-based methodologies to Ada results in some .
significant limitations in designing software systems by the methodologies.
Major features of the object-oriented paradigm such as classes, abstract
classes, inheritance, polymorphism, and message passing are not addressed
directly in the analysis and design notations. OOSD is an attempt to redress this
shortcoming, but the very idea of having a hybrid notation that can support every
software design is debatable. Wasserman et al. [WPM89] admit that such a

hybrid notation might not be aesthetically appealing.

23

2.3.3 Object-Oriented Analysis methods

Gibson [Gib90] describes an object-oriented approach to analysis called OBA
(Object Behaviour Analysis). OBA facilitates an initial understanding of an
application in terms of behaviours and objects. It then specifies how to analyse
the application, with the aim of producing a requirements specification. The
approach encourages iteration within and between the different phases of
development. It has five steps : Identifying the behaviours of the system, deriving
objects using the behavioural perspective, classifying the objects, identifying

relationships among objects, and modelling processes.

Rubin and Goldberg [RuG92] have developed an object-oriented analysis
methodology also called Object Behaviour Analysis (OBA). The methodology
consists of five steps: setting the context of the analysis, understanding the
problem by focusing on behaviours, defining objects that exhibit behaviours,
classifying objects and identifying their relationships, and modeliing system

dynamics.

Nerson [Ner92] describe an object-oriented analysis and design methodology
based on a notation called BON (Better Object Notation). The methodology
consists of the following nine steps: delineate the system borderline, list
candidate classes observed in the problem domain, group classes into clusters,
define candidate classes in terms of commands/constraints, define behaviours,
define class features, invariants and contracting conditions, refine class

descriptions, work on generalisation, complete and review the architecture.

24

Coad and Yourdon [CoY90] have set forth an object-oriented analysis model
consisting of five layers : finding classes and objects, identifying structures,

identifying subjects, defining attributes, and defining services.

Shiaer and Mellor [ShM88] have developed an object-oriented analysis method
consisting of six steps: develop an information model, define object life-cycles,
define the dynamics of relationships, define system dynamics, develop process

models, and define domains and subsystems

Hayes and Coleman [HaC91] present a set of formally based coherent models
for object-oriented analysis. The models extend current informal object-oriented
analysis techniques. They have precise semantics and they constitute a

consistent description technique for domain analysis.

Dennis de Champeaux [Den91] outlines a top-down object-oriented analysis
method consisting of three steps : developing an information model, developing

a state transition model, and developing a process model.

2.3.4 Metrics for Object-Oriented Design

Chidamber and Kemerer [ChK91] propose six software metrics for object-
oriented design as a first attempt at developing formal metrics for OOD. They
then evaluate the proposed metrics against Weyuker's list of software metric
evaluation criteria [Wey88] and provide the formal results of that evaluation. The
proposed metrics are: Weighted Methods Per Class (WWC), Depth of
Inheritance Tree (DIT), Number of Children of a class (NOC), Coupling between

25

Objects (CBO), Response set For a Class (RFC), and Lack of Cohesion in
Methods (LCOM).

2.3.5 Pure Object-Oriented Design Methodologies

Coad and Yourdon [CoY91] define an object-oriented design model consisting
of five layers : subject layer, class and object layer, structure layer, attributes
layer, and service layer. These five layers correspond to the five layers in their
OOA model [CoY90].

Gossain and Anderson [GoA90] describes an iterative design approach for
designing reusable object-oriented software. The approach concentrates on
designing code that is to be part of a hierarchy or framework of classes for an
application domain. It has five stages : Identification of initial candidate classes
by domain analysis, the creation of abstract classes from the initial initial
candidate classes, the derivation of the concrete classes of the domain, the fine

tuning of classes, and coding.

Wirfs-Brock et al. [WiW89], [WWW830] have developed a responsibility-driven
design methodology based on the client / server model. A server provides a set
of services to a client upon request. The methodology has two phases : an initial
exploratory phase and a detailed analysis phase. The initial exploratory phase
is subdivided into : finding the classes in the system, determining what
operations each class is responsible for and what knowledge it should maintain,

and determining the ways in which objects collaborate with other objects to

26

discharge their responsibilities. The detailed analysis phase consists of :
factoring common responsibilities in order to build class hierarchies, and

streamlining the collaboration between classes.

OORASS (Object-Oriented’ Role Analysis, Synthesis and Structuring) [WiJ90] is
an object-oriented design methodology consisting of three operations. These
operations are based on the encapsulation, inheritance and dynamic binding
properties of object-orientation. Analysis describes sub-problems by
encapsulating behaviour in the objects of an object-model, which is termed a
Role model. Synthesis defines composite objects by inheriting behaviour from
several simpler objects. Structure specification prescribes how objects can be

bound together in an actual instance of a system.

Lieberherr et al. [LHR88], [LiH89] have developed an object-oriented CASE tool,
called the Demeter system, which generates C++ [EIS90] or Flavors [Moo86]
class definitions from language-independent class dictionaries. Class
dictionaries describe the part-of and inheritance relationships between classes.
The Demeter system includes tools for checking design rules and for

implementing design.

Rumbaugh et al. [RBP+91] have developed a design methodology called Object
Modelling Technique (OMT) which covers the entire development life-cycle:
analysis, design, and implementation. The methodology has the following steps:

write or obtain an initial description of the problem, build an object model,

27

develop a dynamic model, construct a functional model, combine the three
models to obtain the operations on classes, design algorithms to implement the

operations.

CHAPTER 3

THE STATIC MODEL: SEMANTICS

3.1 Extending the Entity Relationship Model

The entity relationship model was first proposed by Chen [Che76]. A number of
researchers have proposed extensions to the model. In this section we present
another extension to the entity relationship model. This extension is part of the

static mode! for our design methodology which is presented in Chapter 4.

3.1.1 Relationships between classes

A relationship is an association between the objects in one or more classes.
The degree of a relationship is the number of classes participating in the
relationship. A unary relationship is an association between the objects of a
single class, a binary relationship is an association between the objects of two
classes, and a ternary relationship is an association between the objects of
three classes. Relationships of degree greater than three are not common. Two
main constraints can be placed on relationships : cardinality ratio constraint and
participation constraint. The participation of the entities in a relationship can be
total or partial. A total participation of a class in a relationship means that every
instance of that class must participate in the relationship. A partial participation
means that some instances of the class may not participate in the relationship.
The cardinality ratio constraint specifies how many instances of one class may

relate to a single instance of an associated class.

28

29

A relationship between two classes is denoted by a diamond shaped box with

lines connecting the two classes. The name of the relationship is placed inside

this box. We denote total participation of a class in a relation by a shaded circle

at the end of an association line; partial participation is denoted by a circle. The

cardinality of a class is usually written at the end of an association line. We use

the notation shown below for cardinality. In the notations k, m, and n are

integers such thatk 2 1,n,m 20andm <n.

Notation

m,nk

m/n

m/n”

m/n[c]

Meaning

exactly n instances

n or more instances
n or less instances
n or n+2k or n+3k or ... instances.

n or n-2k or n-3k or ... instances.

m, m+1, m+2, ... or n instances.
m or n or k instances.
m instances participate in a relationship but at

any instant exactly n are executing concurrently
m instances participate in a relationship but at

any instant a maximum of n can execute
concurrently

m instances participate in a relationship but at

any instant 2a maximum of n can execute
concurrently provided condition ¢ is true.

30

Note: The only exception to the notation 0%, denoting zero or more instances, is
when we indicate a many to many relationship. In that case instead of using
ot : oF we use (0,1)* : (0,1)*. The reason for choosing this notation will be

apparent below when the notion of exceptions on cardinalities is introduced.

3.1.2 Exceptions on cardinalities

Sometimes we may wish to indicate that for given possible cardinality values,
some values occur only as exceptions, i.e. few class instances participate in a
given relationship with such cardinalities. The following notations are used,
where k, m, n and p are integers suchthatk 2 1,m,n,p 20,andm<n<p:

Notation Meaning

ncte n is the nomal cardinality, n+k, n+2k, ... areé exceptional.

"ke+ n+k, n+2k, ... are the normal cardinalities, n is exceptional.

nk'e n is the normmal cardinality, n-k, n-2k, ... are exceptional.

Nke™ n-k, n-2k, ... are the normal cardinalities, n is exceptional.

nk""e n is the normal cardinality, n-k, n-2k, ... and n+k, n+2k, ... are
exceptional.

nke"' n-k, n-2k, ... and n+k, n+2k, ... are the normal cardinalities, n is
exceptional.

k+e k is the normal cardinality, k+1, k+2, ... are exceptional.

ke+ k+1, k+2, ... are the normal cardinalities, k is exceptional.

-at

31

k+e k is the nomal cardinality, k-1, k-2, ... and k+1, k+2,... exceptional.
ke"" k-1, k-2, ... and k+1, k+2, ... are the normal cardinalities, k is
exceptional.

m, ng, k m and k are the normal cardinalities, n is exceptional.

m_p,ng every integer in the range m to p is a normal cardinality except p.

As an example consider a relationship between a class A and a class B with
cardinality ratio 1+ : 1¥ . We can define eight different cardinality ratios :

1+ . 1+€ 1ot 1et, 118 1et, 1et: 118, {+€ .+ 1t 1+ 4ot 1+

1*+: 1et.

For the many to many cardinality ratio (0,1)* : (0,1)* we can define exceptions
on either an entire bracket or on individual digits. For example :

(0,1)e*: (0,1)e* means that 2% : 2+ is the normal cardinality ratio.
(0,1)*: (0,1)e* means that 1~ : 2% is the normal cardinality ratio.
(0e,1)* : (0e,1)* means that 1¥: 1% is the normal cardinality ratio.

(0e,1)*: (0,1)e* means that 1*: 2% is the normal cardinality ratio.

3.1.3 Cardinality ratios for ternary relationships
Unless ternary relationships are given stringent semantic interpretation they can

be ambiguous. To remove any ambiguity on the semantics of a ternary

32

relationship we use nine cardinality ratios. Three of these cardinality ratios
relate the three pairs of classes. Each of the remaining six ratios relate one
instance of a particular class to instances of another class taking into account

the third class. We use the following notation for each of these six other ratios :
1 INSTANCE OF CLASS-1 : N INSTANCES OF CLASS-2 (1INSTANCE OF CLASS-2 : K INSTANCES OF
cLAss-3). The semantics we attach to this notation is that one instance of

CLASS-1 is related to N instances of CLASS-2, and each instance of CLASS-2
related to one instance of CLASS-1 is related to K instances of CLASS-3. As an
example consider the ternary relationship shown in Figure 3.1. The three
cardinality ratios shown in Figure 3.1 are interpreted as follows:

One teacher can teach zero or more courses.

One course can be taught by zero or more teachers.

One teacher can teach zero or more students.

One student can be taught by zero or more teachers.

One course can have zero or more students.

One student can take zero or more courses.

These six interpretations are not sufficient to explain the semantics of the
ternary relation without ambiguity. For example, we know that one teacher can
teach many courses and that a student can take many courses; but how do we
specify the restriction that a student cannot be taught a particular course by
more than one teacher ? To answer questions such as this we define the
remaining six cardinality relations. In each case we give two different
interpretations. In the following cardinality relations, we use T to denote

Teacher, C to denote Course, and S to denote Student:

(0,1)+:(0,1)+ (0,1)+:(0,1)+
TEACHER STUDENT
(0,1)+:(0,1)+ (0,1)+:(0,1)+
COURSE

Figure 3.1: Ternary relationship

33

TEACHER-STUDENT PAIR:

Semantics

1T:OS+(1S:1C+)
One teacher can teach zero or more

students.

One student can be taught by one

particular teacher one or more courses.

15:07 (111

One student can be taught by zero
or more teachers.

One teacher can teach a particular

student one or more courses.

TEACHER-COURSE PAIR:

1TZOC+(1C:1S+) 1T:%+(1C:1s)
A teacher can teach zero or more
courses.

A course taught by one teacher can
have one or more students.

1 C:0T+(1 T:1S+)
A course can be taught by zero or
more teachers.

A teacher can teach one course to
one or more students.

34

Alternative semantics

11:05%(1g:1¢)

One teacher can teach zero or more
students.

One student can be taught by a

teacher one course only.

15:017(11:1¢)

One student can be taught by zero
or more teachers .

One teacher can teach a particular

student one course only.

A teacher can teach zero or more
courses.

A course taught by one teacher can
have one student only.

1 C:0T+(1 T1s)
A course can be taught by zero or
more teachers.

A teacher can teach a course to one
student only.

35

STUDENT-COURSE PAIR:

1S:OC+(1C:1T+) 1S:OC+(1 c:17)

A student can take zero or more A student can take zero or more
courses. courses.

A student can be taught a particular A student can be taught a particular

course by one or more teachers. course by one teacher only.
1C:OS+(1S:1T+) 1C:OS+(1S:1T)

A course can be taken by zero or A course can be taken by zero or
more students. more students.

A student can be taught a particular A student can be taught a particular

course by one or more teachers. course by one teacher only.

3.1.4 Dependent relationships

We use the notation in Figure 3.2 to denote that relation R1 and R2 must occur
together, and the notation in Figure 3.3 to denote that they cannot occur
together. For example, Figure 3.4 has the semantics: Every person studying in a
primary school is not married, and every married person is not studying in a

primary school.

3.1.5 OR-association links
We use the notation in Figure 3.5 to denote that either class C1 or class C2 is

related to class C3 through relation R.

36

S>—&

Figure 3.2: Inclusive relations

R

Figure 3.3: Exclusive relations

PERSON PRIMARY SCHOOL

MARRIED

Figure 3.4: Exclusive relations: An example

Figure 3.5: An OR-association

37

38

3.2 The is-a relationship: Notation and semantics

In Chapter 2 we defined the is-a (inheritance) relationship between two or more
classes. We also gave definitions for a concrete class, an abstract class, a
deferred abstract class, and a partially deferred abstract class. The notations for

these different types of classes are given in Figure 3.6.

The is-a relationship between a superclass and a subclass is represented by a
shaded arrow pointing from the subclass to the superclass as in Figure 3.7. An
alternative notation for an is-a relationship between a superclass and a number
of subclasses is given in Figure 3.8. The meaning of the symbols v and Ain

Figure 3.7 and 3.8 is given below.

The is-a relationship is transitive, anti-symmetric, and trivially reflexive.
Extending on the work of Abiteboul and Hall [AbH87] and that of Elmasri and
Navathe [EIN89] on is-a semantics we define twelve types of is-a relationships
between a superclass and its subclasses:
1. Complete, total, exclusive
2. Incomplete, total, exclusive

. Complete, partial, exclusive

. Incomplete, partial, exclusive

. Complete, total, inclusive

. Complete, patrtial, inclusive

3
4
5
6. Incomplete, total, inclusive
7
8. Incomplete, partial, inclusive
9

. Complete, total, exclusive-inclusive

39

y D* d D
CLASS NAME CLASS NAME CLASS NAME CLASS NAME
Concrete class Abstract class Deferred abstract Partially deferred
class abstract class

Figure 3.6: Class notation

&

T

Figure 3.7: Exclusive is-a

o8

®

O

Figure 3.8: Exclusive-inclusive is-a

40

10. Incomplete, total,exclusive- inclusive
11. Complete, partial, exclusive-inclusive

12. Incomplete, partial, exclusive-inclusive

A superclass has a complete is-a relationship with its direct subclasses if these
subclasses are the only specialisations of interest for the class. We may have
several specialisations of the same class based on different distinguishing
characteristics of the instances of the class. By introducing the notion of
complete is-a relationship we are putting restriction on the way we can
specialise a class. This is one way of controlling careless subclassing as well
as controlling unwarranted modifications to the application being designed. A
superclass has an incomplete is-a relationship with its direct subclasses if other

specialisations for the class may be allowed in future modifications.

A class has a total is-a relationship with respect to a given specialisation if every
instance of the class is an instance of some direct subclass in the
specialisation. In a partial is-a relationship an instance of a class may not

belong to any of the direct subclasses in the specialisation.

A class has an exclusive is-a relationship with its direct subclasses if any two or
more of these subclasses cannot have a common subclass. It has an inclusive
is-a relationship with its direct subclasses if any two or more of the subclasses
can have a common subclass. A class has an exclusive-inclusive is-a
relationship with its direct subclasses if some of these direct subclasses can

have common subclasses while others cannot.

41

We use a shaded circle at the head of the is-a relationship arrow to denote total
is-a relationship, a circle to denote partial is-a relationship, the letter ¢ to denote
complete is-a relationship , and the symbols —c¢ to denote incomplete is-a
relationship. We denote exclusive is-a relationship by using the symbol V in the
is-a relationship arrow as in Figure 3.7, and we denote inclusive is-a
relationship by the symbol A as in Figure 3.8. A typical notation for exclusive-

inclusive relationships is shown in Figure 3.8 .

3.3 The is-part-of and has-part relationships

A class may be predefined without any attributes, or it may have a number of
attributes, and any of the attributes may have as their domains other non-
predefined classes. A composite class is a class with one or more attributes

with domains which are related to the class by the is-part of relationship.

3.3.1 Is-part-of semantics
The is-part-of relationship is transitive, antisymmetric, and non reflexive.
Extending on the work of Kim et al. [KBG89] on composite objects we define six
types of is-part-of relationships:
1. Dependent exclusive:
A class B is a dependent exclusive component of a class A if B is a
component of A only, and if the existence of B depends on the existence of A.
2. Independent exclusive:
A class B is an independent exclusive component of a class A if B is a
component of A only, and if the existence of B does not depend on the

existence of A.

42

3. Single-dependent shared:
A class B is a single-dependent shared component of a class Aif B is a
component of A and possibly other classes, and if the existence of B depends
on the existence of A only.

4. AND-dependent shared:
A class B is an AND-dependent shared component of a class A if B is a
component of A and one or more other classes, and if the existence of B
depends on the existence of A and at least one other class of which it is a
component.

5. OR-dependent shared:
A class B is an OR-dependent shared component of a class A if B is a
component of A and possibly other classes, and if the existence of B depends
on either the existence of A or on the existence of at least one other class of
which it is a component.

6. Independent shared:
A class B is an independent shared component of a class A if B is a
component of A and possibly other classes, and if the existence of B does not

depend on the existence of A .

The is-part-of relationship between a component class and its composite class
is represented by an arrow, bearing a head with a letter P, pointing from the
component class to the composite class. We use a shaded circle at the tail of
this arrow to denote dependent is-part-of relationship, a circle to denote

independent is-part-of relationship, the letter s to denote shared is-part-of

43

relationship , the symbols —s to denote exclusive is-part-of relationship , the
symbols vs to denote OR-shared is-part-of relationship, and the symbols As to
denote AND-shared is-part-of relationship.

The cardinality relationship between a component and its composite class
specify how many instances of the component class make up one instance of

the composite class.

As an example on the above notations, Figure 3.9 shows a dependent
exclusive is-part-of relationship and an AND-dependent shared is-part-of

relationship.

3.3.2 Has-part semantics
There are five types of has-part relationships:

1. Dependent exclusive:
A class A is a dependent exclusive composite of a class B if B is a
component of A only, and if the existence of A depends on the existence of
B.

2. Independent exclusive:

A class A is an independent exclusive composite of a class B if B is a
component of A only, and if the existence of A does not depend on the
existence of B.

3. Single-dependent shared:
A class A is a single-dependent shared composite of a class B if B is a
component of A and possibly other classes, and if the existence of A

depends on the existence of B.

A LINE

P P
2+
B INTERSECTION
POINT
Dependent exclusive AND-dependent shared

Figure 3.9: Part-of relationships

45

4. AND-dependent shared:
A class A is an AND-dependent shared composite of a class B if B is a

component of A and one or more other classes, and if the existence of A and
at least one other composite class of B depends on the existence of B.

5. Independent shared:
A class A is an independent shared composite of a class B if B is a
component of A and possibly one or more other classes, and if the existence

of A does not depend on the existence of B.

The notations used for has-part relationships are the same as those for is-part-
of relationships except that the symbols are placed at the tips of the arrows

representing the is-part-of relationships.

3.3.3 Constraints on composite class topologies

1. A component class can participate in at most one independent exclusive is-
part-of relationship.

2. A component class can participate in at most one dependent exclusive is-
part-of relationship.

3. If a class is a component in an independent exclusive is-part-of relationship,
then it cannot be a component in an exclusive dependent is-part-of
relationship with another class; and vice versa.

4. If a class is a component in a dependent or independent exclusive is-part-of
relationship, then it cannot be a component in a dependent or independent

shared is-part-of relationship with other class; and vice versa.

3.3.4 Make-component rule

A class B can be made a component of a class A through an attribute T of A if

the following conditions are satisfied:

1. If T is an exclusive composite attribute, B must not be a component in any
other exclusive or shared is-part-of relationship.

2. If T is a shared composite attribute, B must not already be a component in any

other exclusive is-part-of relationship.

3.3.5 Semantics of deletion for composite classes

If a class B is a component of a class A, then the deletion of A implies the
deletion of B if any of the following conditions holds:

1. B is a dependent exclusive component of A.

2. B is a single-dependent shared component of A.

3. B is an AND-dependent shared component of A.

4. B is an OR-dependent shared component of A and there is no other

composite class to which B is an OR-dependent shared component.

If a class B is a component of a class A, then the deletion of B implies the
deletion of A if any of the following conditions holds:

1. Ais a dependent exclusive composite class of B.

2. Ais a single-dependent shared composite class of B.

3. Ais an AND-dependent shared composite class of B.

47

3.3.6 Recursive composite classes

A composite class is recursive if it consists of both exclusive is-a and is-part-of
relationships such that it has one is-a specialisaiion in which one subclass is a
composite class having as its component one of its superclasses. We use the

notation in Figure 3.10 to denote a recursive composite class.

ar

CLASS NAME

Figure 3.10 : A recursive composite class.

48

CHAPTER 4
THE DESIGN METHODOLOGY

4.1 Outline of the design methodology

Our design methodology consists of the following seven stages:
1. Exploratory stage.

2. Division of the design task into subtasks.

3. Extraction of additional subsystems and classes.

4. Construction of class interfaces.

5. Evaluation and refinement of classes and subsystems.

6. Construction of the dynamic-model.

7. Integration of the design subtasks.

4.2 The exploratory stage

The input to this stage is the requirements specification document if it is
available, otherwise a complete object-oriented analysis is carried out. A group
workshop approach is used in conducting this exploratory stage. The design
team is divided into a number of groups. Each group considers all the
requirements and tries to come up with an initial list of subsystems, classes, and
their collaborations without performing a detailed analysis of the requirements.
Members are then chosen from these groups to merge the different lists into
one list. Based on this tentative list of subsystems, classes, and their
collaborations a criteria for the subdivision of the design task is reached. The
purpose of this stage is to give all the designers an overview of the problem

domain, to supply a set of design tasks for division amongst the design team,

49

50

and to supply a better understanding of the complexity of each design task and

the resources necessary for that task.

This stage has seven substages:

1.Determination of system behaviours.

2. Construction of event-response lists.

. Determination of the external interfaces to the system.
. Determination of an initial list of subsystems.

. Determination of an initial list of classes and class lattices/hierarchies.

O 0 A~ W

. Construction of an initial list of CRC (Class, Responsibility, Collaboration)
cards, subsystem specification cards, class specification sheets, entity
relationship diagrams, and inheritance diagrams.

7. Integration of the class and subsystem lists found by different design teams.

4.2.1 Determination of system behaviours

1. From the requirements specification elicit a list of desired behaviours of the
system. These behaviours define the system roles and responsibilities. Find
answers to the following questions:
- What are the main roles of the system ?
- What are the main responsibilities under each role ?

2. Find system behaviours from the expected usage of the system,i.e.,
- What do users expect the behaviour of the system to be ?

3. Find system behaviours from domain knowledge. This includes domain
experts, widely used literature on the subject, and previous experience with

the type of problem being solved.

51

4. Find major behaviours of known similar systems,i.e.,

- Does the system to be designed exclude any behaviour of a similar
system ? If yes, why ? Is there a need to modify the behaviour list of the
system to include this behaviour ?

- Does the system to be designed have any behaviour not found in all or most
known similar systems ? If yes, why ? Is there a need to modify the
behaviour list of the system to exclude this behaviour ?

- Is there a need at all to design a new system ? If yes, why ? How different is

the proposed system from current systems ?

4.2.2 Construction of event-response lists

From the list of behaviours found above determine the external behaviours of
the system. From this list construct event-response lists. An event-response list
is a description of possible requests to the system along with accompanying

system reactions.

4.2.3 Determination of the external Interfaces to the system

1. Find the classes required to mode! user interfaces.

2.Find the classes required to model the interfaces to external hardware
devices.

3. Find the classes required to model the interfaces to external databases if any.

4. Find the collaborator classes of the interface classes if the process of doing
so will not require detailed analysis. Collaborations represent requests from

a client class to a server class in fulfilment of a client responsibility. For the

52

most part classes that represent external interfaces do not require the

services of other classes in the system; they are server classes.

4.2.4 Determination of an initial list of subsystems

A subsystem is a group of classes that collaborate among themselves to
provide a clearly delimited unit of functionality. A subsystem may contain other
subsystems. The division of an application into a number of subsystems is
crucial in managing the complexity of the design process. Answers to questions
like those given below are helpful in determining subsystems:

- Are any subsystems apparent or implied from the requirements ?

- Is there any system behaviour which will be better realized as a subsystem ?

- Do any of the interface classes form a subsystem ?

4.2.5 Determination of an initial list of classes and class
lattices/hierarchies
1. From domain knowledge and past experience on similar problems try to find
off- the-shelf classes.

- What modifications, if any, do these classes require or what of their
features need to be redefined in their subclasses for them to fit into the
application being designed ?

2. For each of the major system responsibilities found in 4.2.1 try to find the
classes satisfying each responsibility.

- What are the categories of these classes ?,i.e., do these classes form any

- abstractions ?

53

- What does each of these classes collaborate with in order to accomplish
each of its responsibilities ?

- What are the categories of these collaborator classes ?

3. For each class found determine if it belongs to any of the identified
subsystems.

4. Determine any is-a, has-parts and is-part-of semantics of the classes found.

5. Try to determine the types of each class found. Apart from being either
concrete, or abstract, or deferred abstract, or partially deferred abstract, a
class can be composite, recursive composite, actor, agent, server, or helper.
Actor classes are classes whose instances send messages to instances of
other classes based on an internal or external stimulus. Agent classes are
classes whose instances provide services and may send messages to other
instances. Instances of an agent class are passive in the sense that they do
not initiate action without being called by instances of an actor class or
another agent class. Server classes are classes whose instances provide
services but do not send messages to other instances. A helper class is a
class whose instances help the instances of another class to provide its
services.

6. Try to find the attributes of each class found.

4.2.6 Construction of an initial list of CRC cards, subsystem
specification cards, class specification sheets, entity
relationship diagrams, and inheritance diagrams.

1. Start to draw inheritance diagrams for classes related by the is-a

relationship. Indicate the semantics of the is-a relationship for each class

54

having more than one subclass whenever appropriate. Check that each
inheritance lattice/hierarchy is structurally consistent (We develop the design
consistency checking algorithms to be applied in Chapter 5). Use
inheritance diagrams to capture the inheritance structure only. Do not fill
class diagrams with method and attribute names. Record them on CRC
cards and class specification sheets instead.

2. Start to draw composite classes, if any, and indicate their has-parts and is-
part-of semantics. Make sure that there are no is-part-of semantic conflicts.

3. Start to draw the entity relationship diagrams for any related classes found.
The approach is not to draw one, huge entity relationship diagram; but a
number of diagrams in which classes bound by closely related relationships
appear in a single diagram. Although this approach will produce many
separate entity relationship diagrams, it allows designers to deal with groups
of closely related classes one at a time. Do not indicate class attributes in
these diagrams. As mentioned, attributes are recorded on CRC cards and
class specification sheets. The sole purpose of using entity relationship
diagrams is to capture as much of the semantics of the application as
possible. Most semantics of interest, possible exceptions, constraints, and
actions to be taken in case of exceptions or constraint violations for a group
of related classes are recorded on the corresponding entity relationship
diagram.

4. Start to construct a CRC card for each class found. We use a modified form of
CRC cards to that presented in both [BeC83] and [WWW8Q). In our cards we
group the responsibilities of a class under class roles, we indicate the class

attributes in each role, we indicate role states, and we include the roles of

55 -

the collaborator classes. The intent is not to try to find all these parameters in
one design stage, but rather to do so in stages as the design process
evolves. The format of our CRC card is shown in Figure 4.1. On the back of a
CRC card we write a short description of the overall purpose of the class.
Note that we do not record on a CRC card inherited roles and that a class
can have a subsystem as a collaborator if it is collaborating with a class
inside the subsystem. The responsibilities under a role can be private or
public. A private responsibility represents a class behaviour which cannot be
requested by other classes, whereas a public responsibility represents a
class behaviour which can be requested by other classes.

. Start to construct a class specification sheet for each class found. At this
stage only some fields of a class specification sheet can be filled. The fields
of a class specification sheet are shown in Figure 4.2. Later on in stage four
of the design process, after the construction of class interfaces, each non-
inherited class role will be expanded as in Figure 4.3.

. Start to construct a subsystem specification card for each subsystem found.
A subsystem supports public responsibilities just as a class. The public
responsibilities of a subsystem are the public responsibilities of its classes or
its subsystems that provide services to clients outside the subsystem. Record
any subsystem public responsibility on the subsystem card. Besides
each public responsibility, record the internal class or subsystem that
actually supports the responsibility. The format of a subsystem specification

card is shown in Figure 4.4.

CLASS NAME:

CLASS TYPE:

DIRECT SUPERCLASSES:

DIRECT SUBCLASSES:

CLASS ROLES

COLLABORATORS | COLABORATOR ROLE

ROLE-1

PRIVATE
RESPONSIBILITIES:

PUBLIC
RESPONSIBILITIES:

STATES:

ATTRIBUTES:

ROLE-2

ROLE-N

Figure 4.1: A CRC card

56

CLASS NAME :
CLASS TYPE :
VERSION NUMBER :
CLASS DESCRIPTION :
INHERITANCE DIAGRAM : PAGE #
STATECHART : PAGE #
DIRECT SUPERCLASSES :
DIRECT SUBCLASSES :
SUBCLASS IS-A SEMANTICS :
ATTRIBUTES :
STATES :
CLASS IS PART OF :
IS-PART-OF SEMANTICS :
CLASS HAS PARTS :
HAS-PARTS SEMANTICS :
INHERITED ROLES :
NON-INHERITED ROLES:
COMMENTS:

Figure 4.2 : A class specification sheet.

57

ROLE NAME:
DESCRIPTION :

PRIVATE RESPONSIBILITIES :

PRIVATE RESPONSIBILITY-1
Signature-1:
Description:
List of collaborations:
Signature-2:
Description:
List of collaborations:
Signature-3:
®
®
®
Signature-n:
PRIVATE RESPONSIBILITY-2:
[]
o

PRIVATE RESPONSIBILITY-M:

®
L]
®
PUBLIC RESPONSIBILITIES:
PUBLIC RESPONSIBILITY-1:
L]
°

PUBLIC RESPONSIBILITY-K:

Figure 4.3: Expanded Role field

58

SUBSYSTEM NAME:

DESCRIPTION:

ENCAPSULATED SUBSYSTEMS:

DIRECTLY ENCAPSULATED CLASSES:

ROLES:

PUBLIC RESPONSIBILITY SUPPORTING CLASS OR SUBSYSTEM

Figure 4.4: Subsystem specification card

59

60

4.2.7 Integration of the class and subsystem lists found by different
design teams.
In this preliminary stage the best class-design and subsystem-design
alternatives are chosen. If two or more class designs are deemed equally good
they are assigned different version numbers. New classes are designed if
necessary by generalising, specialising, composing or decomposing some of
the classes in the lists. Class names are chosen carefully and each class is
given a unique name. The proper selection of class names early in the design
process greatly simplifies and facilitates later design steps. New subsystems
may be generated in this stage. Necessary additions are made to the CRC
cards and the specification sheets of the chosen classes. Similarly necessary
changes are made to the subsystem specification card of each chosen

subsystem if it undergoes any modifications.

4.3 The division of the design task into subtasks

From the class and subsystem list formed above, the representative team of

designers:

1. Determines what system requirements the subsystems obtained so far fulfil.

2. Divides the remaining system requirements into small related subsets, paying
particular attention to the functional and operational requirements of the
system.

3. Determines which subset contains classes which are not members of any

subsystem found so far.

61

4. Determines any classes appearing in more than one subset. These classes
will be assigned to more than one design team to be developed
independently. Later on they will be integrated.

5. Figures out the complexity of each subsystem and each requirements subset
and the resources required to design them. This is a difficult process heavily
dependent on the past experience of the design team.

6. Divides the design task into design subtasks accordingly.

7. Assigns the design subtasks to different groups of designers. Each design
subtask will at this point contain a number of identified classes and possibly a

number of identified subsystems.

4.4 Extraction of additional subsystems and classes from each
design subtask
Our approach in this stage is to use some of the procedures used in the
preliminary stage, but a more detailed analysis than that carried out in that
stage is carried out here. Also, for each design team, the analysis is only
directed to the assigned design subtask. The emphasis is on getting answers to
the questions: What are the roles of each class ? What are the responsibilities
for each role ? Can a class perform any of its responsibilities independently
without collaborating with other classes ? What are the collaborators of each
class ? For a given responsibility of a class and the corresponding collaborator
what is the role of the collaborator ? What are the attributes required in each

role ? What are the role-states ?

62

Since the requirements subsets are much smaller than the entire requirements
specification, we may augment the process of finding classes and subsystems
by Booch’s lexical method for identifying problem-domain entities and their
operations [Boo83]. The procedure is to create a list of the key nouns and noun
phrases, a list of key verbs, verb phrases, and adjectival phrases, and a list of
adjectives, adjectival phrases, adverbs, and adverbial phrases. The first list
serves as the first approximation to the problem-domain entities and some of
their attributes, the second to their operations, and the third, to most of their

attributes.

It is likely that of the classes found so far, some will be abstract and others
concrete. From these classes we can obtain more classes by the inheritance
relationship. For a class to be related by inheritance to another class, there
should be some relationship of functionality and data between the two
classes.We identify abstract superclasses by grouping concrete classes having
common behaviours and common attributes. We identify more abstract classes
by grouping related abstract classes into more abstract superclasses. We
identify concrete subclasses from abstract classes by progressively specialising

these classes into less and less abstract classes.

As we go on deriving abstract classes from concrete classes, and concrete
classes from abstract ones, we specify the is-a semantics between pairs of
direct subclasses of each class if appropriate. The design process will

necessitate making changes to the class lattices by adding, deleting, or

63

redesigning classes. We must make sure that the structural consistency of the
class lattices are not violated (use the design consistency checking algorithms

given in chapter 5).

It is important that we assign each of the smaller design tasks to more than one
designer, so that we can obtain design alternatives. We then evaluate these
design alternatives and choose the best one, at the same time we record why

any meaningful alternative was rejected.

As we do the above process of abstraction and specialisation we follow the

following class design guidelines :

1. Select meaningful class names.
Each class name must be unique. Choose names that are descriptive of the
responsibilities attached to the classes. Avoid abbreviations that may
confuse other designers.

2. Do not overuse inheritance.
Overuse of inheritance results in an application which is hard to understand
by having too many classes with duplicate functionality. Two courses of
action are possible if two or more classes have duplicate functionality, either
merge the classes into one new class, or make the classes subclasses of a
common superclass providing the shared functionality.

3. Do not use inheritance inappropriately.
Do not use inheritance between classes when the relationship between

them is not is-a; but is either is-part-of relationship or another relationship.

64

. Do not create abstract classes inheriting from concrete classes.

Concrete classes can be instantiated whereas abstract classes cannot.
Therefore an abstract class should never inherit from an abstract class.

. Do not create classes with excessive coupling unless necessary.

A class should be dependent on as few other classes as possible. Fewer
collaborations means that the class is less likely to be affected by changes to
other parts of the system.

. Do not create classes with excessive responsibilities.

If a class has too many responsibilities perhaps it can be split into two or
more classes. Often a portion of class behaviour can be abstracted out and
assigned to one or more helper classes. A good design balances the goal of
having a small number of classes with the conflicting goal of having a small
number of classes whose relationship with other classes can be easily
grasped.

. Do not create classes with unconnected responsibilities.

The responsibilities of a class must be connected by data, functionality or
any other obvious binding. A class representing the behaviour of two or
more concepts should be separated into two or more distinct classes.

. Do not create classes with no responsibilities unless they are deferred
classes.

If a class inherits a responsibility that it will implement in a unique way, then
it adds functionality despite having no responsibilities of its own. On the
other hand, abstract classes that define no responsibilities and which will not

be implemented as deferred classes should be discarded.

65

9.The only members of the public interface of a class should be the public

methods of a class.

From the classes identified and their collaborations, we try to identify
subsystems. Subsystems are identified by finding a group of classes, each of
which fulfils different responsibilities; but which collaborate closely to fulfil a
greater responsibility. A class is part of a subsystem only if it exists solely to fulfil

the responsibilities of that subsystem.

At the end of this design stage, we should have a set of classes that match the
objects in the problem space. Their attributes and responsibilities are well
defined and their collaborations have been identified. Together with this we
should have identified most of the subsystems in our application. We update
the class inheritance diagrams, entity-relationship diagrams, CRC cards, class

specification sheets, and subsystem specification cards.

4.5 The construction of class interfaces.

Consider one role of a class at a time. Turn each role responsibility into a set of
signatures. The signature ot a method defines the interface to the method: the
number of arguments it requires, their order and their types and the number,
order and types of the values it returns. Each responsibility will have one or
several messages associated with it. Use different scenarios, including
exceptional conditions, to generate the list of messages associated with each
responsibility. For each message sent by the class use the information recorded

on the CRC card for the class to determine the receiving class. Turn the

66 .

corresponding responsibility in this receiving class into a signature. Again
consider different scenarios of the requests this receiving class can demand on
the sender class in order to generate more messages. Similarly for each
message received by the class, consider the sending class. Turn the
corresponding responsibility into a set of signatures by considering different
scenarios. In this way we ensure that each message will have 2 sender and a
receiver. Name the methods and messages carefully. Make sure the names are
consistent and accurately describe the methods and messages they label. Use
short names if possible; but avoid abbreviations that may confuse other
designers. Record the signatures and messages for each class on the class
specification sheet for the class. Write short descriptions for the signatures and
a list of their collaborations. Repeat this process for each class in the design

subtask.

4.6 Evaluation and refinement of classes and subsystems

In this stage we check that the class-design and subsystem-design guidelines
have been adhered to. The responsibilities and collaborations of classes and
subsystems should be validated against the original requirements. Classes are
tested by scenario, evaluated and then revisions made if required. The process
of class and subsystem evaluation is iterative. All throughout the process
classes may be added, deleted, composed, decomposed, or altered. We must
make sure that throughout the process the structural consistency of class

lattices is preserved.

67

4.7 The construction of the dynamic-model.

We use Harel's Statechart notation [Har88] to construct the dynamic model of
our application. Statecharts are an extension of state-transition diagrams. They
address the problem of the combinatorial explosion of transitions which can

result when state-transition diagrams are used to represent complex systems.

4.7.1 Harel’s Statechart notation

Statecharts introduce hierarchy and concurrency into state-transition diagrams.
Hierarchy allows states with common transitions to be abstracted into an
exclusive-OR state. An object in an exclusive-OR state can only be in one
substate of the state. Concurrency can be represented by an AND-state. A
simple AND-state consists of two or more concurrent exclusive-OR states. An
object in a simple AND-state must be concurrently executing all its exclusive-
OR components. Thus an AND-state represents the Cartesian product of all its
substates. Concurrent states generally correspond to composite objects with
interacting parts. Arbitrarily complex state structures can be constructed out of

combinations of exclusive-OR and AND-states.

A state is represented by a closed contour in the form of a rounded box. A
superstate encloses all its substates. The contour of an AND-state is partitioned
into two or more segments by dotted lines; each segment represents a substate.
A superstate can have a default initial state. It is represented by a small arrow,
with no source state, ending at the contour of the default initial state. A transition
originating at the boundary of a superstate applies to all substates in the state.

A transition ending at the boundary of a superstate applies to the default initial

68

state only unless the transition is multiple conditional in which case it is
applicable to all substates, with each transition being fired if its guard is true. A
transition out of an AND-superstate from any of its substates has the effect of
terminating execution in all other substates. Transitions in the components of an

AND-state may depend on each other or they may be independent.

In the following state-transition diagrams and statecharts we use non-bracketed
lower case letters for event-messages that trigger the transitions. bracketed
lower case letters are conditions on guarded transitions. A bracketed condition
in the form [in(S)] means that the particular guarded transition of a substate can
only fire when the object is in state S in another substate. The state-transition
diagram in Figure 4.5 can be abstracted into the exclusive-OR state X shown in
Figure 4.6. The AND-state Y and states H and | in Figure 4.7 represent the
state-transition diagram in Figure 4.8. Figure 4.7 and 4.8 are modified from
[Har88].

4.7.2 Extension to Harel’s notation

We represent dependencies between transitions and states in other substates
by joining the transition to the state. We use the notion of conduits in
contours for AND-states. Instead of subdividing the contour directly by dotted
lines as in Figure 4.9 we patrtition it as in Figure 4.10 in which conduits are left
between the segments. We use these conduits to direct the lines joining
dependent transition-arc and state pairs. Two types of connections are used to
connect these pairs. An in-state connection indicates that for a transition to fire

the composite object must be in the connected state in another of its

69

h
A b
C
a
h|LC bd B
ifc1] e b
i[c3]
g |t
e .
ifc2] = |
ifca]
F

Figure 4.5: State-transition diagram.

X)

[c1]
[c2]
[c3]
[c4]

g J
Figure 4.6: Exclusive-OR state.

Figure 4.8: AND-state expansion

70

Figure 4.9: AND-state partitioning

T T r—-1)
| Lo
| |

l p P

R

A A

o _ 1 _ _1

_ Y,

Figure 4.10: Conduits in AND-state

71

72

substates. A not-in-state connection indicates that for a transition to fire the
composite object must not be in the connected state in another of its substates.
An in-state connection is represented by a line ending with dots joining a
transition-arc and a state as in Figure 4.11. A not-in-state connection is
represented by a line ending with small circles joining a transition-arc and a

state as in Figure 4.12.

Sometimes for a transition to fire, it can require a composite object to be in two
or more other substates. To reduce the number of such transition-arc state
connections we can join the connecting lines by a dot. We call such a dot an
AND-connection. Similarly the firing of a transition can require a composite
object to be in any one of two or more particular states. We use a dot
surrounded by a small circle to represent an OR-connection. A guarded
condition on a transition participating in a transition-arc state pair can either be
an AND-condition or an OR-condition. An AND-condition means that the firing
of a transition is only possible if both the AND-condition and the condition
implied by the transition-arc state pair are satisfied. An OR-condition means that
the firing of a transition is only possible if either the OR-condition is satisfied or
the condition implied by the transition-arc state pair is satisfied. We represent an
AND-condition by placing the symbol A in front of the guarded condition and an
OR-condition by placing the symbol V. The use of these notations is shown in
Figure 4.13.

Figure 4.11: An in-state connection

Figure 4.12: A not-in-state connection

73

[HEAT SENSOR 1

~

Figure 4.13: Dependent AND-states

74

We use the notation in Figure 4.14 for a state transition. M1 is the stimulus
message triggering the transition, C1 is the class of the object sending the
message. M2 is the response message sent by the object, C2 is the class of the
object to which this message is sent. CONDITION represents a guard on the
transition if the transition is guarded. A transition arrow without a stimulus
message name indicates an automatic transition that fires when the activity
associated with the source state is completed. As an alternative to showing
response-messages on transitions, response messages can be associated with
entering or exiting a state. If all transitions into a state result in the same
response-message, the notation: entry / response-message is used inside the
state box. Similarly, the notation: exit / response-message is used if all the
transitions out of a state result in the same response-message. This notation is

taken from Rumbaugh et al. [RBP+91].

-
We use the notation Event on a transition arc to denote an event which must

have occurred for that particular transition to occur.

4.7.3 Steps in constructing the dynamic model

1. For each event-response list formed in the exploratory stage trace the
sequences of internal events and their responses generated by the external
event. Record down the classes participating in the event-response
sequence.

2. Obtain more events for a class from its class specification sheet. list all the
messages received and sent by an object class in a given role.

3. With the help of CRC card for a class, list down the states the class can

assume under each role responsibility, public as well as private.

[CONDITION]
M1 M2

Cl

Figure 4.14: State-transition notation

75

76

Consider relevant attributes only when defining a state, pay particular
attention to attributes whose value changes affect the dynamic behaviour of
the class.

4. Use different what-if scenarios to generate more states.

5. Abstract the states found in step 3 into exclusive-OR states if possible.

6. For each state construct a stimulus-message response-message table as in
Figure 4.15.

7. Map the stimulus events on a class to the signatures obtained for that class.
Deduce missing signatures by what-if scenarios.

8. Determine the sequence of events sent by a class as a response to a
stimulus event. Capture this sequence in a high-level control of flow diagram
within the relevant state of the class. For each event sent by a class,
specifically mention the collaborator class in the control flow diagram.

9. Combine the states obtained for each role responsibility to form the
Statechart for that particular role. Each role forms an abstract exclusive-OR
state.

10.Combine the statecharts of the roles to form the Statechart for the whole
class.

11.For a composite class follow the above steps in drawing a Statechart for
each component class. Join these statecharts into an AND-state. Find the

interactions between component states and identify guarded transitions.

Note that a subclass inherits the statechans of its superclasses. If a subclass
adds a new service an extra state and transitions corresponding to the new
service are added to the Statechart. If a subclass does not add new services but
it redefines a service of its superclass then the Statechart is the same except
that it will have some transitions with different firing conditions.

STATE: CLASS:
STIMULUS SENDING RESPONSE RECEIVING GUARD ON NEXT
MESSAGE CLASS MESSAGE CLASS TRANSITION STATE

Figure 4.15: State table

77

78

4.8 The integration of the design subtasks

In this final high-level design stage all classes and subsystems obtained in the
various design subtasks are integrated. More design consistency checks are
carried out. The responsibilities and collaborations of classes and subsystems
are then validated against the requirements specification in the presence of the

user. Revisions are made if necessary. Class specification sheets and

subsystem cards are then finalised.

CHAPTER 5
DESIGN -CONSISTENCY CHECKING

5.1 Introduction

Object-oriented software design is an iterative process in which an
application’s inheritance graph is built using both generalisation and
specialisation. Existing classes may be generalised into more abstract classes
and abstract classes may be specialised into more concrete classes. In addition
to generalisation and specialisation, a wide variety of changes to the
inheritance graph may be required before the desired inheritance graph is
obtained. The types of changes required for a preliminary design may include
addition and deletion of classes, addition and deletion of attributes or
signatures from classes, alteration of the is-a relationship between classes, and
others. As these changes are performed, the structural consistency of the

inheritance graph must be ensured.

In this chapter we give a number of design-consistency checking algorithms.
Our work in this chapter is greatly influenced by work in object-oriented
database schema evolution [BCG+87], [Bar91], [DeZ91], [Hyo91), [Kim90],
[LeH90].

5.2 Taxonomy of Inheritance-graph modifications
There are three types of changes that can occur to the inheritance-graph of an
object-oriented software at the preliminary design stage. The first is changes to

the contents of a class, the second is changes to the name of a class, and the

79

80"

third is changes to the structure of the inheritance-graph. The following is a

taxonomy of inheritance-graph changes at the preliminary design stage :

1. Changes to the contents of a ciass
1.1 Changes to an attribute
1.1.1 Add a new attribute to a class.
1.1.2 Delete an existing attribute from a class.

1.1.3 Change the name of an attribute of a class.

1.2 Changes to a signature
1.2.1 Add a new signature to a class.
1.2.2 Delete an existing signature from a class.
1.2.3 Change a signature.
1.2.3.1 Change the name of a signature.

1.2.3.2 Change the parameter list of a signature.

1.2.3.3 Change the domain of the returned value of a signature if any.

2. Change the name of a class.
3. Changes to the inheritance-graph structure.
3.1 Make a class S a superclass/subclass of a class C.

3.2 Remove a class from the superclass/subclass list of a class C.
3.3 Add a new class.

3.4 Delete an existing class.

3.5 Change the is-a semantics between a pair of subclasses of a class.

5.3 Invariants of Inheritance-graph modifications

An inheritance-graph is structurally consistent if and only if any of the following

invariants is not violated :

81

1. Structure invariant
There are two views regarding how the inheritance-graph of an object-
oriented software should be structured. One view, reflected in languages
such as Smalltalk-80 [GoR83], Objective-C [Cox86], CLOS [Kee89], [Moo89],
and LOOPS [Bob83], holds that the inheritance-graph should have one root
only. The second view, represented by languages such as C++ [EIS90],
Eiffel [Mey88], and Hybrid [Nie87], holds that the inheritance-graph can be
composed of several inheritance-trees. Each inheritance-tree can in turn

have saveral roots.

In the design-consistency checking algorithms we shall discuss, we assume,
without loss of generality, the following structure invariant : The inheritance-
graph is rooted, connected, directed, non-transitive, and acyclic.

2. Unique-name invariant
Each class in the inheritance-graph must have a unique name. All attributes
of a class must have unique names. Similarly, all signatures c¢f a class must
have unique names.

3. Full-inheritance invariant
A class inherits the union of attributes and the union of signatures from its
superclasses with the exception that if the class defines an attribute or
signature with the same name as that occurring in one or more of its
superclasses then that attribute or signature is never inherited. If more than
one superclass of a class, occurring in different inheritance-paths to the
class, define an attribute or a signature with identical names and if an

attribute or a signature with that name is not defined in the class, a name

82

contlict occurs. Figure 5.1 illustrates an attribute name-contflict. Both class Co
and Cg define an attribute with name p resulting in a name conflict in Cy4.
The name conflict can be removed by defining p in C4, in that case we say
that the attribute p in C4 blocks the name conflict.
4. Domain compatibility invariant

If a class Co defines an attribute with the same name as an attribute it would
otherwise inherit from its superclass C4, then the domain of Co’s attribute
must either be the same as that of C4's attribute or it must be a subclass of
the domain of C4's attribute. For example, in Figure 5.2 a class C4 defines
an attribute p with domain Cg, and C», a subclass of C4, defines an attribute
p with domain C4. Domain compatibility invariant is preserved since C4 is a

subclass of 03.

We use the notation domain(p,C4) < domain(p,C») to indicate that the
domain of an attribute p defined in a class C4 is the same or is a subclass of
the domain of an attribute p defined in class C».
5. Signature compatibility invariant
If a class B defines a signature with the same name as a signature it would
otherwise inherit from its superclass C then the signature defined in B must
be signature compatible with that in C. We use the notation Signature(s,B)
= Signature(s,C) to indicate that a signature named s, defined in a class B, is
signature compatible with a signature named s, defined in a class C.
Signature(s,B) < Signature(s,C) if and only if
Signature(s,B) = s(p{:By, p2:Bog, ..., Py :Bp) 1 Bpaiq:
Signature(s,C) = s(p1:C1,p2:Co, ..., Pn:Cp) : Cpi1
and B; = C;,fori=1,2,3,..., n+1

where p; is a parameter, B, and C,fori=1, 2, 3, ... ,n are parameter domain
classes and B,,¢ and C, 4, if present, are the domains of the objects
returned by the signatures.

83

C1

C2 e p p @& C3

®
Cc4

Figure 5.1: Attribute name conflict

co

@
c3 04 Cl1 @ p:C3
C5 & C2 @ p:Ca

Csi @

Figure 5.2: Domain Compatibility

84

6. Attribute-domain invariant

10.

The domain of an attribute, if it is not predefined, must be a class in the
inheritance-graph.

Parameter-domain invariant

The domain of a parameter, if it is not predefined, must be a class in the
inheritance-graph.

Returned-object-domain invariant

The domain of the object returned by a signature, if it is not predefined, must
be a class in the inheritance-graph.

Is-a semantics invariant

Two classes specified as having exclusive is-a semantics cannot have a
common subclass.

Is-a semantics compatibility invariant

if classes By and C, have no is-a relationship then two classes B and C
having no is-a relationship and having both B and C4 as either direct- or
indirect-superclasses cannot have different is-a semantics in By and C4. For
example, in Figure 5.3 the is-a semantics for C{ and C1o defined in C4,
i.e the is-a semantics for C5 and C4, must be the same as the is-a semantics

for C1 1 and C4 5 defined in 02, i.e the is-a semantics for 05 and 06~

C1

Cc11

85

C2
C5
C4
C7
]
C6
C8
C9
/. C10
®
Cc12

Figure 5.3: Is-a semantics compatibility

86

5.4 Design-consistency checking algorithms

5.4.1 Introduction

As mentioned in section 5.2, the process of object-oriented software design is
an iterative one. The final design is only obtained after making a wide variety of
changes to the inheritance-graph being designed. Some of these changes may
violate the structural consistency of the graph by violating one or more

invariants given in the previous section .

To ensure that inheritance-graph modifications do not violate the structural-
consistency of the graph, we give a number of design-consistency checking
algorithms. We start with six definitions which are important in the discourse to

follow.

Definition: Attribute-scope

If an attribute p is inherited by or defined in a class C, then the scope of that
attribute for the class C, Attribute-Scope(p, C), is the class C and all subclasses
of C where the attribute is inherited from C, with possible name conflicts. For
example, in Figure 5.4 p and q are attributes defined in classes as shown.
Attribute-Scope(p, C4) = {Cq, C3, C4, C7, C4q}, Attribute-Scope(q, C4) = {C4,
Co, Cg, Cg}.

Definition: Signature-scope

It a signature s is inherited by or defined in a class C, then the scope of that
signature for the class C, Signature-Scope(s, C), is the class C and all
subclasses of C where the signature is inherited from C, with possible name

conflicts.

87

c2
P q
c5 C6 c7
%) S |
C8 C9 c10
[®r o

Figure 5.4: Attribute-scope

88

Definition: Attribute positive-shield

if an attribute p is inherited by or defined in a class C, then the positive-shield of
that attribute for the class C, Attribute-Positive-Shield(p, C), are those
subclasses of C in which p is redefined and which would have inherited p from
C if not for the redefinitions. For example, in Figure 5.4 Attribute-Positive-

Shield(p, C1) = {Cp, Cg}, Attribute-Positive-Shield(q, C1) = {Cg, C4}.

Definition: Signature positive-shield

If a signature s is inherited by or defined in a class C, then the positive-shield of
that signature for the class C, Signature-Positive-Shield(s, C), are those
subclasses of C in which s is redefined and which would have inherited s from

C if not for the redefinitions.

Definition: Attribute negative-shield

If an attribute p is defined in a class C then the negative shield of that attribute
for the class C, Attribute-Negative-Shield{p, C), is the set of all superclasses of
C in which p is defined and from which C would have inherited p, with possible
name conflicts, if p had not been redefined in C. For example, in Figure 5.5,
Attribute-Negative-Shield(p, Cq) = {C3, Cy4, Cg}, Attribute-Negative-Shield(q,
Cg) ={Csg}.

Definition: Signature negative-shield

If a signature s is defined in a class C then the negative shield of that signature
for the class C, Signature-Negative-Shield(s, C), is the set of all superclasses of
C in which s is defined and from which C would have inherited s, with possible

name conflicts, if s had not been redefined in C.

89

Cc1

Csrp Cc2 p csFP’q

ce @ 07: cst

Figure 5.5: Attribute Negative Shield

90

5.4.2 Inheritance-graph maodifications

1. Adding an attribute to a class

In order to add an attribute p to a class C we have to ensure that:

1. The unique-name invariant is not violated.

2. The attribute-domain invariant is not violated.

3. The domain-compatibility invariant is not violated:
This involves: (i) The determination of whether the added attribute is domain-
compatible with an attribute or attributes with a similar name, if any, defined _
in Attribute-Negative-Shield(p, C). We call this an upward-domain-
compatibiliy-check. (ii) The determination of whether the added attribute is
domain-compatible with an attribute or attributes with a similar name, if any,
defined in Attribute-Positive-Shield(p, C). We call this a downward-domain-

compatibiliy-check.

For example, in Figure 5.6, an attribute p with domain C is added to class

C3. The added attribute causes upward-domain-incompatibility since
domain(p, C3) £ domain(p, Co). In Figure 5.7, an attribute p with domain C,

is added to class Cg. Although the added attribute does not cause
downward-domain-incompatibility in Cg since domain(p, Cg) <

domain(p, Cg3), it causes downward-domain-incompatibility in Cg since
domain(p, Cg) * domain(p, C3).

4. The full-inheritance invariant is not violated:
This involves the determination of whether the added attribute

causes name-conflicts in Attribute-Scope(p, C). These will occur if

C1 :pzc1
c2 :p:cz

3 @ g ADDATTRIBUTE

Figure 5.6: Upward-domain-incompatibility

C1

p:C2
-ag= ADD ATTRIBUTE
C2

p:C5

c7T @ cs @ p:c7

Figure 5.7: Downward-domain-incompatibility

91

92

Attribute-Scope(p, C) M Attribute-Scope(p, C;) # D |, where C;is aclass in
which p is defined and C; € Subclasses(C). For example, in Figure 5.8 the
addition of an attribute p in Co causes name conflicts in C4 since Attribute-
Scope(p, Co)M Attribute-Scope(p, C1) ={Co, C4} M {C4,C3,Cy,C5} ={Cyq} #
o

The algorithms for determining whether or not Unigue-name invariant and
Attribute-domain invariant are violated are trivial. To check for domain-

compatibility and name-conflicts, we define the following algorithms :

Algorithm 1: Upward domain-compatibility checking algorithm

function UPWARD-DOMAIN-COMPATIBLE(p, C) : BOOLEAN
begin

for each C; € Atiribute-Negative-Shield(p, C) do

if domain(p, C) * domain(p, Cj) then
return FALSE;
endif
endfor
return TRUE;

end

Figure 5.8: Attribute name conflict after attribute addition

93

94

The detailed algorithm is:

function UPWARD-DOMAIN-COMPATIBLE(p, C) : BOOLEAN
begin
QUEUE = @ ; VISITED := 9;
QUEUE = QUEUE v {C}; VISITED :=VISITED v {C};
while QUEUE # 9 do
QUEUE := QUEUE - {C}}; /* delete C; from QUEUE */
for each direct-superclass C; of C; do

J

if Cj- € VISITED then
VISITED = VISITED v {Cj};

if p is defined in Cj then
if domain(p, C) ¥ domain(p, C;) then

return FALSE;
endif
else
QUEUE = QUEUE V{Ch:
endif
endif
endfor

endwhile
return TRUE;

end

95

Algorithm 2: Downward domain-compatibility checking algorithm

function DOWNWARD-DOMAIN-COMPATIBLE(p, C) : BOOLEAN
begin

for each Cj € Attribute-Positive-Shield(p, C) do

if domain(p, C;) * domain(p, C) then

return FALSE;
endif
endfor
return TRUE;

end
The detailed algorithm can be defined in a similar way as done in Algorithm 1.

Algorithm 3: Name-conflict detection algorithm after attribute addition.

function ATTRIBUTE-NAME-CONFLICT(p, C) : BOOLEAN
begin
for each Cj € Subclasses(C) and in which p is defined do
if Attribute-Scope(p, C) M Attribute-Scope(p, Cj) = © then
return TRUE;
endif
endfor
return FALSE;

end

The detailed algorithm is:

function ATTRIBUTE-NAME-CONFLICT(p, C) : BOOLEAN
begin
G := ATTRIBUTE-SCOPE(p, C);
H := Subclasses(C);
QUEUE = D ;VISITED = 9;
QUEUE = QUEUE Vv {RootClass}; VISITED = VISITED ¥ {RootClass};
while QUEUE = 9 do
QUEUE := QUEUE - {C;}; /* delete Ci from QUEUE */
for each direct-subclass C; of C; do
if Cj € Hthen
if Cj € VISITED then
VISITED := VISITED V {Cj}
QUEUE := QUEUE ¥ {C}};
if p is defined in C; then

i
ifG ATTRIBUTE-SCOPE(p, Cj) # @ then

return TRUE;
endif
endif
endif
endif
endfor

endwhile

return FALSE;

end

where ATTRIBUTE-SCOPE(p, C) is the function :

function ATTRIBUTE-SCOPE(p, C) : SET
begin
QUEUE = 9 ;VISITED .= 9;SET = 9;
QUEUE = QUEUE V{C}; VISITED := VISITED V{C}: SET = SET V{C};
while QUEUE = 9 do
QUEUE = QUEUE - {G;}; /" delete C; from QUEUE */
for each direct-subclass C; of C; do
if Cj € VISITED then
VISITED := VISITED V{Cy};
if p is not defined in C]- then
QUEUE := QUEUE Y{Cj};
SET = SET V{Cjk
endif
endif
endfor
endwhile
return SET,;

end

2. Adding a signature to a class

In order to add a signature to a class we have to ensure that :
1. The unique-name invariant is not violated.

2. The parameter-domain invariant is not violated.

3. The returned-object domain invariant is not violated.

97

98"
4. The signature-compatibility invariant is not violated.

5. The full-inheritance invariant is not violated.

The algorithms for case 1, 2, and 3 are trivial, for case 4 and 5 we define the

following algorithms:

Algorithm 4: Upward signature-compatibility checking algorithm

function UPWARD-SIGNATURE-COMPATIBLE(s, C) : BOOLEAN
begin
for each Cj € Signature-Negative-Shield(s, C) do

if signature(p, C) ¥ signature(s, Cj) then

return FALSE;
endif
endfor
return TRUE;

end

Algorithm 5: Downward signature-compatibility checking algorithm

function DOWNWARD-SIGNATURE-COMPATIBLE(s, C) : BOOLEAN
begin
for each Cj '6 Signature-Positive-Shield(s, C) do
if signature(s, C;) £ signature(s, C) then
return FALSE;
endif

endfor
return TRUE;

end

99

Algorithm 6: Name-conflict detection algorithm after signature addition.

function SIGNATURE-NAME-CONFLICT(s, C) : BOOLEAN
begin
for each Cj € Subclasses(C) and in which s is defined do
if Signature-Scope(s, C) N Signature-Scope(s, Cj) # 9 then
return TRUE;
endif
endfor
return FALSE;

end

3. Changing the name of an attribute or a signature
This modification is equivalent to adding a new attribute or a new signature to a
class except that there is no need to check for the existence of the domain

classes in the inheritance-graph.

4. Changing the domain of an attribute, parameter, or returned-
object
We have to ensure that:
1. Attribute-domain invariant, parameter-domain invariant, or returned-object
domain invariant is not violated, respectively.

2. Domain- or Signature-compatibility invariant is not violated.

100

The algorithms for case 1 are trivial. The algorithms used for case 2 are
UPWARD-DOMAIN-COMPATIBLE (Algorithm 1) and DOWNWARD-DOMAIN-
COMPATIBLE (Algorithm 2), if the domain of an attribute is changed, or
UPWARD-SIGNATURE-COMPATIBLE (Aigorithm 4) and DOWNWARD-
SIGNATURE-COMPATIBLE (Algorithm 5), if the domain of a parameter or

returned-object is changed.

As an example, in Figure 5.9 changing the domain of p in Cg from C4 to C4
causes an upward-domain-incompatibility, since by doing so

domain(p, C5) * domain(p, Cg).

5. Deleting an attribute or a signature from a class

The deletion of an attribute p or a signature s from a class C will cause a name-
conflict if that attribute or signature was blocking the name-conflict, i.e. if the
cardinality of Attribute-Negative-Shield(p, C) is greater than one or if the
cardinality of Signature-Negative-Shield(s, C) is greater than one, respectively.
For example, in Figure 5.9 the deletion of attribute p from Cg will cause a name-

conflict in Cg, since the cardinality of Attribute-Negative-Shield(p, Cg) is 2.
Algorithm 7: Name-conflict detection algorithm after attribute deletion

function NAME-CONFLICT-IN-ATTRIBUTE-DELETION(p, C): BOOLEAN
begin
if Cardinality(Attribute-Negative-Shield(p, C)) > 1 then
return TRUE;
else
return FALSE;
endif
end

101

/
N\

cs @ pCa

NS

Figure 5.9: Changing an attribute’s domain

102

The detailed algorithm is :

function NAME-CONFLICT-IN-ATTRIBUTE-DELETION(p, C): BOOLEAN
begin

CARDINALITY :=0; QUEUE := 9 ; VISITED := 9 ;

QUEUE := QUEUE V{C}: VISITED := VISITED V{C};

while QUEUE = 9 do

QUEUE := QUEUE - {Cj}; /" delete C; from QUEUE */
for each direct-superclass CJ- of C; do
if Cj € VISITED then
VISITED := VISITED U{Cj};
if p is defined in Cj then
CARDINALITY := CARDINALITY +1;
it CARDINALITY > 1 then
return TRUE;
endif
else
QUEUE = QUEUE V{Cik:
endif
endif
endfor
endwhile
return FALSE;

end

103

Algorithm 8: Name-conflict detection algorithm after signature deletion

function NAME-CONFLICT-IN-SIGNATURE-DELETION(s, C): BOOLEAN
begin
if Cardinality(Signature-Negative-Shield(s, C)) > 1 then
return TRUE;
else
return FALSE;
endif
end

6. Changing the name of a class

In order to change the name of a class we have to:

1. Check that the inheritance-graph does not have a class with a name similar
to the new name, i.e. we have to ensure that the unique-name invariant is
not violated.

2. Find all references to the class and change the name in those references to
the new name, i.e. we have to ensure that Attribute-domain invariant,
Parameter-domain invariant, and Returned-object domain invariant are not

violated.

The algorithms for both cases are trivial.

7. Deleting a class from the Inheritance graph
There are two cases to consider :

1. The deleted class C is deleted together with all its subclasses which are

descendants of C only.

104

2. C is deleted, but none of its subclasses is deleted. Each direct-subclass of C

is made a direct-subclass of each direct-superclass of C.

In both cases we have to take into account classes in which each deleted class
is referenced as a domain; appropriate modifications have to be made to these

classes.

In case 1 mentioned above no possible name-conflicts can arise in deleting C,
even if C was blocking name-conflicts before its deletion. In case 2, if C is
blocking a name-conflict by redefining an attribute p or a signature s then the
deletion of C will cause name conflicts if p or s is not redefined in each direct-
subclass of C. For example in Figure 5.10a class C is blocking name conflicts
by redefining an attribute p and a signature s. If C is deleted, resulting in Figure
5.10b, no attribute-name conflicts occur since p is redefined in each former

direct-subclass of C. However, a signature-name conflict occurs in Cy and Cg .

The algorithm for determining whether the deletion of a class C will cause

name-conflicts is then :
Algorithm 9: Name-conflict detection algorithm after a class deletion

1. Find all attributes and signatures whose name-conflicts are blocked by C, if
any.

2. For each direct-subclass of C determine whether each of the attributes and
signatures found in step 1 is redefined. If not, a name conflict will occur in

deleting C.

105

c10 cl @

Figure 5.10a: A class blocking name conflicts

C1 Cc2 c3
s

o '

ca g cs c6
Cc7 p c8 p C9 PSs
c10 @ cn @ c12 @

Figure 5.10b: Name-conflict in class deletion

106

The detailed algorithm makes use of the functions NAME-CONFLICT-IN-
ATTRIBUTE-DELETION (Algorithm 7) and NAME-CONFLICT-IN-SIGNATURE- -
DELETION (Algorithm 8):
function NAME-CONFLICT-IN-CLASS-DELETION(C) : BOOLEAN
begin
for each attribute p of C do
if NAME-CONFLICT-IN-ATTRIBUTE-DELETION(p, C)then
for each direct-subclass C; of Cdo
if p is not defined in C; then
return TRUE;
endif
endfor
endif
endfor
for each signature s of C do
if NAME-CONFLICT-IN-SIGNATURE-DELETION(s, C) then
for each direct-subclass C; of Cdo
if s is not defined in C; then
return TRUE;
endif
endfor
endif
endfor
return FALSE;

end

107

8. Adding a new class to the Inheritance-graph
We consider two basic cases:
1. Adding a new class C as a direct-superclass to a specified class C;.

2. Adding a new class C as a direct-subclass to a specified class C;.

Adding a class as a direct-superclass/direct-subclass to a number of specified
classes is equivalent to adding the new class as a direct-superclass or direct-
subclass to only one of the classes, then adding inheritance-links to the rest of
the classes, one at a time, with the deletion of any redundant inheritance links
which may arise. We defer the discussion of inheritance-link deletion and

addition.

In adding a new class C as a direct-superclass or as a direct-subclass to a

specified class C; we must ensure that:

1. The new class does not have local name-conflicts.

2. The inheritance-graph does not have a class having the same name as the
new class.

3. The specified class C; exists in the inheritance-graph.

4. Each attribute, parameter, or returned-object of the new class, it it is not
predefined, has as its domain a class in the inheritance-graph.

If the new class is added as a direct-superclass we must in addition ensure that:

5. The new class is made a direct-subclass of the root class (since by
assumption the inheritance-graph must have a single root).

6. Each attribute p of the new class is downward-domain-compatible with the

definitions of p in Attribute-Positive-Shield(p, C), if the shield is not empty.

108

7. Each signature s of the new class is downward-signature-compatible with the
definitions of s in Signature-Positive-Shield(s, C), if the shield is not empty.

8. Each atiribute p and each signature s of the new class does not introduce
name-conflicts in Attribute-Scope(p, C) and Signature-Scope(s, C),
respectively.

if the new class is added as a direct-subclass we must in addition ensure that:

9. Each attribute p of the new class is upward-domain-compatible with the
definitions of p in Attribute-Negative-Shield(p, C), if the shield is not empty.

10. Each signature s of the new class is upward-signature-compatible with the

definitions of s in Signature-Negative-Shield(s, C), if the shield is not empty.

The algorithms for case 1 to 5 are trivial. For case 6 to 10 we use the following

algorithm, which makes use of algorithms 1, 2, 3, 4, 5, and 6:

Algorithm 10: Conflict detection algorithm after a class addition

function ADDED-CLASS-IS-INHERITANCE-GRAPH-COMPATIBLE(C) : BOOLEAN
begin
for each attribute p of C do
if not UPWARD-DOMAIN-COMPATIBLE(p, C) then
return FALSE;
endif
if not DOWNWARD-DOMAIN-COMPATIBLE(p, C) then
return FALSE;

endif

109

if ATTRIBUTE-NAME-CONFLICT(p, C) then
return FALSE;
endif
endfor
for each signature s of C do

if not UPWARD-SIGNATURE-COMPATIBLE(s, C) then
return FALSE;
endif

if not DOWNWARD-SIGNATURE-COMPATIBLE(s, C)then
return FALSE;
endif
if SIGNATURE-NAME-CONFLICT(p, C) then
return FALSE;
endif
endfor
return TRUE;

end

9. Deleting an Inheritance-link
In deleting an inheritance-link we must ensure that:

1. A class is never deleted from the inheritance-graph (a class can only be
deleted by a delete-class operation).

2. Domain-compatibility and signature-compatibility invariants are not violated.
For example, in Figure 5.11 the deletion of the inheritance-link between
class Cg and Cg will result in domain-compatibility

invariant violation since in that case domain(g, C7) £ domain(q, Cy) and

domain(p, C1q) * domain(p, Cg).

110

ct
o
c2 c3
c4 Ccs
q:Cé6 Cé
DELETE
——
c7
q:C10 cs

09: p:C3

Cio @ p:C8

Figure 5.11: Inheritance-link deletion

111

Algorithm 11: Domain- and Signature-compatibility checking

algorithm after an inheritance-link deletion

Let Parameter(s, C) be a Boolean function which returns true if a signature s
has one or more parameters with domains in C. Let ReturnedObiject(s, C) be a
Boolean function which returns true if a signature s retums an object
with domain in C. Let DeleteLink(C, C;) be a procedure which deletes the
inheritance-link between a class C; and its direct-subclass C and which will join
C to the root class if C has only C; as a direct-superclass. Let AddLink(C, C;) be
a procedure which makes C a direct-subclass of C;, deleting any direct-link
between C and the root class if such a link exists. The algorithm for determining
whether the deletion of an inheritance-link will cause domain- or signature-

compatibility invariant violation is then :

function INCOMPATIBILITY-IN-DELETING-A-LINK(C, G) : BOOLEAN
begin
S1 := Superclasses(C);
DeleteLink(C, C;);
S2 = Superclasses(C);
G =51-82;
for each class Cj do
for each attribute p of CJ- do
if domain(p, Cj) € Gthen
if not DOWNWARD-DOMAIN-COMPATIBLE(p, CJ-) then
AddLink(C, G;);
return TRUE;
endif
endif
endfor

112
for each signature s of Cj- do

if Parameter(s, G) or ReturnedObiject(s, G) then
if not DOWNWARD-SIGNATURE-COMPATIBLE(s, C;) then
AddLink(C, C;);
return TRUE;
endif
endif
endfor
endfor
end

10. Adding an Inheritance-link

The addition of an inheritance-link is accepted if :

1. The link does not introduce a cycle.

2. The link is not redundant.

3. The link does not violate is-a semantics.

4. The link does not introduce is-a semantics incompatibilities.

5. The link does not introduce domain- or signature-incompatibilities.

6. The link does not introduce attribute- or signature-name conflicts.

Algorithm 12: Cycle detection algorithm

Assuming that the inheritance-graph has no cycle before the addition of the link,

the cycle detection algorithm is :

1. Add the inheritance-link.

2. Perform a superclass breadth-first search starting at C, the subclass at the
end of the added link. If C is found in the search then a cycle exists otherwise

it does not.

The detailed algorithm is given as the Boolean function A-CYCLE-EXISTS :

function A-CYCLE-EXISTS(C, C;): BOOLEAN

begin
AddLink(C, C;); QUEUE = 9 ; VISITED := 9;
QUEUE := QUEUE V{C}; VISITED := VISITED V{C};
while QUEUE = 9 do

QUEUE = QUEUE - {CJ-}; /* delete Cj from QUEUE */

for each direct-superclass Cy of Cj do
if Cy € VISITED then
VISITED = VISITED V{Cy};
if Cx =Cthen
DeleteLink(C, C;);
return TRUE;
else
QUEUE := QUEUE “{Cy};
endif
endif
endfor
endwhile

return FALSE;

end

113

114
Algorithm 13: Link redundancy detection algorithm ’

Assuming that the inheritance-graph is consistent before the addition of the link,
the link redundancy detection algorithm is :
Perform a superclass breadth-first search starting at C, the subclass at the
tail of the intended link, before the link is added. if C;, the superclass at the
head of the intended link, is found then the intended link is redundant
otherwise it is not.
The detailed algorithm is given as the Boolean function ADDED-LINK-IS-
REDUNDANT :

function ADDED-LINK-IS-REDUNDANT(C, C;): BOOLEAN
begin
QUEUE = O ; VISITED = 9;
QUEUE = QUEUE Y{C}; VISITED = VISITED Y{C};
while QUEUE = 9 do
QUEUE := QUEUE - {CJ-}; /I* delete Cj from QUEUE */
for each direct-superclass Cy of Cj do
if Ci € VISITED then
VISITED := VISITED V{C};
if C = Cithen
return TRUE;
else
QUEUE = QUEUE V{Cy};
endif
endif
endfor
endwhile
return FALSE;
end

115

Algorithm 14: Conflict detection algorithm for an added inheritance-

link

To ensure that an inheritance-link added to make C a direct-subclass of C;

neither introduces domain- or signature-incompatibilities nor does it introduce

attribute- or signature-name contflicts we use the algorithm:

function A-CONFLICT-EXISTS-IN-ADDING-A-LINK(C, C;): BOOLEAN

beg

end

in
AddLink(C, G;);
for each attribute p defined in or inherited by C; do
if p introduces downward-domain-incompatibility then
DeleteLink(C, C;);
return TRUE;
endif
if p introduces an attribute-name conflict then
DeleteLink(C, C;);
return TRUE;
endif
endfor
for each signature s defined in or inherited by C; do
if s introduces downward-signature-incompatibility then
DeleteLink(C, C;);
return TRUE;
endif
if s introduces a signature-name conflict then
DeleteLink(C, C;);
return TRUE;
endif
endfor
return FALSE;

116

The detailed algorithm is:

function A-CONFLICT-EXISTS-IN-ADDING-A-LINK(C, C;): BOOLEAN
begin
QUEUE =9 ; VISITED = D ; ATTRIBUTE-LIST = © ; SIGNATURE-LIST := 9 ;
QUEUE = QUEUE VY{G;}; VISITED := VISITED VY{C;};
AddLink(C, C;);
while QUEUE = @ do

QUEUE = QUEUE - {Cj}; I* delete Cj from QUEUE */
for each attribute p of Cj do
if p € ATTRIBUTE-LISTthen
ATTRIBUTE-LIST := ATTRIBUTE-LIST U{p};
if not DOWNWARD-DOMAIN-COMPATIBLE(p, C;) then
DeleteLink(C, G;);
return TRUE;
endif
if ATTRIBUTE-NAME-CONFLICT(p, G;) then
DeleteLink(C, C;);
return TRUE;
endif

endif

endfor

117

for each signature s of Cj do
if s € SIGNATURE-LIST then
SIGNATURE-LIST := SIGNATURE-LIST V{s};
if not DOWNWARD-SIGNATURE-COMPATIBLE(s, C;) then
DeleteLink(C, C;);
return TRUE;
endif
if SIGNATURE-NAME-CONFLICT(s, ;) then
DeleteLink(C, C;);
return TRUE;
endif
endif
endfor
for each direct-superclass Cy of Cjdo
if Cy € VISITED then
VISITED := VISITED V{Cy};
QUEUE := QUEUE VY{C};
endif
endfor
endwhile
return FALSE;

end

118
Algorithm 15: Is-a semantics violation detection algorithm

Let IS-A-SEMANTICS(C;, Cj, C) be a function which returns the is-a semantics,
either “INCLUSIVE” or “EXCLUSIVE™ , between two direct-subclasses C; and C;
of a class C. Let REQUIRED- IS- A-SEMANTICS(C;, C;. C) be a function which
first prompts the user to input the required is-a semantics between a direct-
subclass C; of C and a class C; which is to be made a direct-subclass of C, and

then it returns the supplied semantics.

To ensure that an inheritance-link added to make Ci a direct-subclass of C does

not violate is-a semantics we use the algorithm :

function IS-A-SEMANTICS-VIOLATION(C, C;): BOOLEAN
begin
for each superclass C; of G; do
if Cj € Superclasses(C) then
if the is-a semantics between C and C; in G;is exclusive then
return TRUE;
endif
exit; /* this for loop */
endif
endfor
for each direct-subclass Cy of C; do
if the required is-a semantics between C and Cy is exclusive then
if Subclasses(C) M Subclasses(Cy) = D then
return TRUE;
endif
endif
endfor
return FALSE;
end

119
The detailed algorithm is:

function IS-A-SEMANTICS-VIOLATION(C, C;): BOOLEAN
begin
S1 := Superclasses(C); QUEUE := 9; VISITED = 9 ;
QUEUE := QUEUE V{C}; VISITED := VISITED Y{C;};
while QUEUE = 9 do
QUEUE = QUEUE - {C]—}; I* delete Cj from QUEUE */
for each direct-superclass Cy of C; do
if Cy, € VISITED then
if C € S1then
for each direct-subclass C,, of Ci do
if Cm € S1 then
if IS-A-SEMANTICS(Cy, Gy, Cy) = “EXCLUSIVE” then
return TRUE;
else
exit ; /* this while loop */
endif
endfor
else
VISITED := VISITED V{Cy};
QUEUE := QUEUE V{Cy};
endif
endif
endfor

endwhile

120

S2 := Subclasses(C);
for each direct-subclass C; of C;do
if the required is-a semantics between C and Cj is exclusive then
if S2 O Subclasses(C;j) * D then
return TRUE;
endif
endif
endfor
return FALSE;

end
Algorithm 16: Is-a semantics compatibility detection algorithm

To ensure that an inheritance-link which is to be added to make C a direct-
subclass of Ci will not cause is-a semantics incompatibilities we use the

following algorithm before the addition of the link :

function IS-A-SEMANTICS-COMPATIBLE(C, C;): BOOLEAN
begin
for each direct-subclass C; of C; do
/* Determine the required is-a semantics, before the link is added */
Required-semantics := REQUIRED-IS-A-SEMANTICS(CJ-, C, Gy
G:= Subclasses(Cj)U {Cj};

121

foreach C, € Gdo
Perform a superclass breadth-first search starting at C,,. The
search should exclude any path leading to C;;
if the search intersects Superclasses(C) at Cy then
if the appropriate is-a semantics at Ci # Required-semantics then
return FALSE;
endif
endif
endfor
endfor
return TRUE;

end

CHAPTER 6
AUTOMATED TELLER MACHINE (ATM): A CASE STUDY

6.1 Problem statement

It is required to design a software to support an ATM network serving a number
of banks. The ATM system consists of a number of ATM terminals connected to
bank computers via a central computer. Each bank maintains its own computer

network.

Each ATM terminal consists of a display screen, a card reader, a cash
dispenser, a travellers cheque dispenser, a deposits drawer, a receipt printer,
and a keyboard consisting of a cancel key, an enter key, numeric input keys and
special input keys used for menu item selection and the selection of a yes or no

alternative on a prompt.

The system performs the following financial services for a bank customer: Cash
withdrawals in local currency, Funds transfer (in local currency) between
Savings and Current accounts, Travellers cheque purchases (in US dollars,
Pound Sterlings, and Deuch Marks), Cheque deposits, Statement requests, and

Cheque book orders.

The system should:

1. Provide appropriate recordkeeping, error handling, and cryptographic
security provisions.

2. Provide the customer with an alternative, whenever possible, if a requests

cannot be satisfied.

122

123

3. Give the customer the ability to cancel a chosen transaction any time he is
prompted for a response.

4. Give a customer an opportunity to verify the amount he entered and change it
if necessary before commitment.

5. Be capable of handling multiple transactions for any transaction type other
than a cash withdrawal or a travellers cheque purchase transaction.

6. Enable a terminal to continue to function in case it runs out of receipts or in
case of receipt ejection error. It should also enable a terminal to provide other
financial services in case it runs out of cash or a particular type of travellers
cheques.

7. Provide a central computer user interface where a user can issue commands
to read and/or modify ATM attributes, (ii) read, delete, or modify the contents
of ATM container classes.

8. Provide each bank with a user interface where a user can issue commands to
read, delete, or print the contents of ATM class instances of that particular
bank.

Access to the system is provided by using an ATM card and a secret four digit
personal identification number (PIN). Imprinted on the magnetic stripe of the
card is the primary account number (PAN) and the card’s serial number. The
PAN consists of a unique issuer bank identification number and a unique
customers account number. Each card can access one savings and one current

account.

124

Each ATM terminal has a unique identification number. This number
accompanies each request from the terminal to the central computer. It is
through terminal identity numbers that the central computer identifies ATM
terminals sending requests. When the central computer passes a transaction
request to a particular bank computer, it sends along with the request the
identity number of the ATM terminal at which the request originated. The bank -
computer in turn sends request results to the central computer accompanied

with this terminal identity number.

When an ATM terminal is idle, a prompt to insert an ATM card is displayed. The
keyboard and deposit drawer remain inactive until card is inserted. To initiate a
transaction a customer inserts his card into the card reader. If the card is
unreadable, the customer is informed, and the card is ejected, otherwise the
ATM terminal requests the central computer to validate the PAN’s bank code. If
the bank code is invalid, the customer is informed, and the card is ejected,
otherwise the ATM terminal requests the appropriate bank computer, via the
central, to verify card validity.

If the validity of the card has expired or if it has been temporarily revoked, the
customer is informed and the card is retained, otherwise the customer is
prompted to enter his PIN using the keyboard. For each digit entered an X is
echoed on the screen. The PIN is encrypted and is sent, along with the PAN, to
the central computer and subsequently to the appropriate bank computer for
PIN authentication. The maximum number of PIN entry tries and/or PIN entry
time-outs is three. If this maximum is exceeded, the customer is informed and
the card is retained. If the entered PIN corresponds to the customer's PAN the
main menu is displayed. An ATM terminal has a two-level hierarchical menu
depicted in Figure 6.1.

o SAVINGS ACCOUNT

—|cASH WITHDRAWAL BALANCE INQUIRY |-
—| cHEQUE pEPOSIT FUNDS TRANSFER |-
T-CHQ PURCHASE OTHERS -
T-CHQS IN:
| e STATEMENT REQUEST
e US DOLLARS
e POUND STERLINGS ¢ CHQ BOOK ORDER
e DEUTCH MARKS
DEPOSIT TO: TRANSFER FROM:
e CURRENT ACCOUNT e CURRENT TO SAVINGS

e SAVINGS TO CURRENT

WITHDRAW FROM:
o CURRENT ACCOUNT

& SAVINGS ACCOUNT

INQUIRY ON:

& CURRENT ACCOUNT
® SAVINGS ACCOUNT

Figure 6.1: ATM-Terminal menu hierarchy

125

126

The maximum number of time-outs on menu item choice and/or non-amount
entry prompts for any transaction is four. Similarly, the maximum number of
time-outs ad/or wrong amount entry for any transaction requiring amount entry

is four. In both cases exceeding the maximum causes a card ejection.

The amocunt entered for a US dollars, or a Deutch Mark travellers cheque
purchase, or a cash withdrawal must be in multiples of 100, whereas for a
Pound Sterling travellers cheque purchase it must be in multiples of 50. For a
funds transfer or a cheque deposit any positive integral amount may be entered.
There is a daily cash withdrawal limit as well as a daily travellers cheque
purchase limit fixed at a particular local currency limit. The deduction from a
customers account for a travellers cheque purchase is in local currency. The
central computer maintains current exchange rates for US dollars, Pound

Sterlings, and Deutch Marks.

if a cheque deposit transaction is selected, the customer is requested to insert a
deposit envelope and to enter the total cheque amount as a truncated integral
value. Upon insertion, the PAN, time, date, amount, and ATM terminal

identification number are stamped on the deposit envelope.

At the end of a successful cash withdrawal or a travellers cheque purchase
transaction the ejected ATM card must be removed before cash or travellers
cheques are dispensed. Failure to remove an ejected card, dispensed cash, or
dispensed travellers cheques within 2 minutes of an ejection causes the ATM

terminal to issue a warning prompt. Another minute delay in doing so results in

127

the retention of the card, cash, or travellers cheques. The ATM keeps a record

of such a retention.

A card ejection error, cash dispense error, or a travellers cheque dispense error

causes the ATM terminal to issue a redo transaction request.

6.2 ATM high-level design
6.2.1 The exploratory stage
The following main roles, external interfaces, initial list of subsystems, and initial

list of classes were determined in the exploratory stage:

Main roles: An ATM network performs financial services for bank customers.
To perform these services the system acts in three different roles:
1. Access-right validator.
2. Cryptographic system.
3. Bank financial transaction server:

3.1 Cash withdrawal server.

3.2 Travellers cheque purchase server.

3.3 Cheque deposit server.

3.4 Funds transfer server.

3.5 Account-balance inquiry server.

3.6 Statement request server.

3.7 Cheque book order request server.

External Interfaces:

e ATM-Terminal-User-interfaces.
e CentralComputerUserinterface.
e BankComputerUserinterfaces.

e ExternalDatabaselnterfaces

Initial list of subsystems:

e User-interface subsystem.

e Access right validator subsystem.

e Financial subsystem.

e Communications subsystem.

Initial list of classes:
Menu, DisplayScreen,

TravellersChequeDispenser,

128

CardReader, CashDispenser,

Deposits-Drawer, ReceiptPrinter,

ValidationManager, TransactionManager, Log, CommunicationsManager,

EncryptionManager, DecryptionManager.

6.2.2 The division of the design task into sub-tasks

Since the system to be designed is not complex, there was no need to divide

the design task into sub-tasks.

6.2.3 The extraction of additional subsystems and classes

The following role-responsibilities were determined:

Responsibilities as an access-right validator:
e Verify bank code.

e Verify card validity.

e Authenticate PIN.

e Eject card if the bank code is invalid.

o Retain card if its validity has expired

e Retain card if PIN entry tries exceed 3.

e Provide access to the system.

Responsibilities as a Cryptographic system:
e Encrypt PIN.
e Decrypt PIN.

e Transmit the encrypted PIN from an ATM terminal to a bank computer.

Responsibilities as a Bank financial transaction server:
1. Cash withdrawal server.

e Accept a cash withdrawal request.

e Prompt a customer for the withdrawal account.

e Prompt a customer for the withdrawal amount.

e Ensure that the withdrawal amount is of right multiple.

e Prompt a customer to verify whether the amount he entered is correct.

129-

130

e Cancel a transaction if selection tries or amount-entry tries exceed the given

limit.
@ Verify that there is sufficient cash in an ATM terminal o satisfy a request.

e Issue a warning if cash in an ATM terminal gets below some critical value.

e Verify that a customer has not exceeded the daily cash withdrawal limit.

e Verify that the withdrawal amount is within ActualAccntBinc - MinAccntBinc.

e Debit from Account balance.

e Modify a customer’s daily cash withdrawal amount.

e Dispense cash.

e Detect cash dispense error, if any.

e Know if some or all cash has not been removed after some time limit after
being dispensed. Retain this cash.

e Redo a cash withdrawal transaction if there is a card ejection error, or a
cash dispense error.

e Issue a receipt for a successful cash withdrawal transaction.

e Record a successful cash withdrawal transaction.

e Inform a customer of any transaction error.

2. Travellers cheque purchase server:

e Accept a customer’s Travellers cheque purchase request.

e Prompt a customer for debit account.

e Prompt a customer for the type of travellers cheques.

e Prompt a customer for the amount of travellers cheques.

e Ensure that the amount is of right multiple for the selected travellers cheque
type.

e Prompt a customer to verify whether the amount he entered is correct

131

e Verify that there are sufficient travellers cheques of the selected type in an
ATM terminal to satisfy a request.

e Convert a travellers cheque amount to its local currency equivalent.

e Prompt a customer to verify whether a travellers cheque purchase request
should proceed at the current exchange rate.

e Issue a warning if any travellers cheque amount gets below some critical
vaiue.

e Cancel a transaction if selection tries or amount-entry tries exceed the
given limit.

e Verify that a customer has not exceeded the daily travellers cheque
purchase amount limit.

e Verify that a travellers cheque purchase amount is within ActualAccntBInc -
MinAccntBInc.

e Debit from Account balance.

e Modify a customers daily travellers cheque purchase amount.

e Dispense travellers cheques.

e Detect travellers cheque dispense error, if any.

e Know if some or all travellers cheques have not been removed after some
time limit after being dispensed. Retain these cheques.

e Redo a travellers cheque purchase transaction if there is a travellers
cheque dispense error or a card ejection error.

e Issue a receipt for a successful travellers cheque purchase transaction.

e Record a successful travellers cheque purchase transaction.

e Inform a customer of any transaction error.

132.
3. Cheque deposit server:

e Accept a cheque deposit request.

e Prompt a customer to insert a deposit envelope.

e Prompt a customer for a deposit account.

e Prompt a customer for a cheque deposit amount.

e Prompt a customer to verify whether the amount he entered is correct.

e Cancel a cheque deposit transaction if selection tries or amount entry tries
exceed the given limit.

e Stamp a deposit envelope.

e Record a cheque deposit transaction.

e Issue a receipt for a cheque deposit transaction.

e Inform a customer of any transaction error.

4. Funds transfer server:

e Accept a funds transfer request.

e Prompt customer for transfer-from and transfer-to accounts.

e Prompt customer for transfer amount.

e Prompt customer to verify whether the amount he entered is correct.

e Cancel a transaction if selection tries or amount-entry tries exceed the
given limit.

e Verify that the amount to be transferred is within ActualAccntBine -
MinAccntBInc for the transfer-from account.

e Deduct from transfer-from account.

e Deposit to transfer-to account.

e Record funds transfer transaction.

e Issue a receipt for a funds transfer transaction.

e Inform a customer if there is a transaction error.

133

5. Account balance inquiry server
e Accept an account balance inquiry request.
e Prompt a customer for an account.
e Get account balance.
e Report account balance to a customer.
e Issue a receipt for a balance inquiry transaction.
e Inform a customer of any transaction error.
6. Statement request server
o Accept a statement request.
e Record a customer request if a similar request has not been recorded.
e Issue a receipt for a statement request transaction.
e Inform a customer of any transaction error.
7. Cheque-book order request server
e Accept a cheque book order request.
e Record a customer request if a similar request has not been recorded.
e Issue a receipt for a cheque book order request transaction.

e Inform a customer of any transaction error.

These role-responsibilities were assigned to classes as shown below. The
collaborators of each class were determined. More classes were found by
generalisation, specialisation, composition, and decomposition. After evaluation
and refinement the class-structure shown in Figure 6.2 and the subsystem

collaborations shown in Figure 6.3 were obtained.

134

YOUTPUT-DEVICE INPUT-DEVICE
érl
RECEIPT / DISPENSER lCARD-READER KEYBOARD DEPOSIT
’3
CASH TRAVELLERS
DISPENSER CHEQUE
DISPENSER
4 /
VIEW CONTROLLER
\\ \JJ
MESSAGE-DISPLAYER {IEW-CONTROLLER DIALOGUE-MANAGER
é)
MENU PROMPT-DISPLAYER
/ VALIDATION-MANAGER
\j\i}
BANK-CODE CARD PIN
VALIDATION-MANAGER VALIDATION-MANAGER AUTHENTICATION-MANAGER

Figure 6.2: ATM-system class-structure

135

/ TIME-DETECTOR

v
i ~ i
TIMER CLOCK-CALENDER
/ TRANSACTION
MANAGER

I I ‘AT | l

WITHDRAWAL CHEQUE-DEPOSIT ||/ cusToMER FUNDS-TRANSFER IBALANCE-INOLHHY
MANAGER MANAGER ORDERS-MANAGER MANAGER MANAGER
I & |
STATEMENT-ORDERS CHEQUE-BOOK-ORDERS
MANAGER MANAGER
COMMUNICATIONS-MANAGER
élj\
ATM-TERMINAL CENTRAL-COMPUTER BANK-COMPUTER
COMMUNICATIONS-MANAGER COMMUNICATIONS-MANAGER COMMUNICATIONS-MANAGER

Figure 6.2 (Continued)

136

ACCOUNT-MANAGER CASH-ISSUE-MANAGER T-CHEQUE-ISSUE-MNGR
EXCHANGE-RATE-MNGR ENCRYPTION-MANAGER DECRYPTION-MANAGER
DISPLAY-SCREEN

/' LoG
&
/' Bank-LOG /' SYSTEM-LOG
), Q)
CHEQUE commir | [cuSTOMER | L/ CARD AATERIAL
DEPOSITS FAILURES palLY TRANSCTN | [eTenions | | pericient | | ERROR
AMOUNT TERMINALS
LOG LOG LOG LoG LoG LOG LoG
| Y |
/o USTOMER NORMAL | INTERRUPTED ATM
ORDERS TRANSCTNS | | TRANSCTNS | | TERMINAL
LoG LOG LoG L0G
— & —
STATEMNT CHEQUE CASH TRAVLLRS RECEIPT
ORDERS BOOK DEFICIENT D‘:;fgg:.r DEFICIENT
ORDERS TERMINALS | peaisele | [rerminaLs
LOG LOG LOG LOG LOG

Figure 6.2 (Continued)

137

CRYPTOGRAPHIC SUBSYSTEM
r——- - ==
ENCRYPTION-MNGR DECRYPTION-MNGR

I
ACCESS-RIGHT VALIDATOR SUBSYSTEM

4
VALIDATION-MNGR

!

COMMUNICATIONS SUBSYSTEM

- A

COMMUNICATIONS-MNGR

|
|

|

|

|

|

|

|

i |
' |
|

|

|

|

|

|

|

l

|

|

(" FINANCIAL-SUBSYSTEM W

/TRANSCTN-MNGR ACCOUNT-MNGR CASH-ISSUE-MNGR

T-CHQ-ISSUE-MNG EXCHNG-RATEMNGR |V LOG

_ I J
|
(" USER-INTERFACE SUBSYSTEM)
4) 4 N N
CENTRAL BANK
ATM-TERMINAL et
COMPUTER COMPUTER
USER-INTERFACE USER-INTERFACE USER-INTERFACE | |&— —
SUBSYSTEM Lsuasvsrsm SUBSYSTEM
\ J J ,
\ W,

Figure 6.3: ATM-system subsystem-collaborations

Class-responsibilities and Class-collaborators:

Class-responsibilities

VIEW

e Initiates displays

CONTROLLER

e Gets user commands, interprets them,
and dispatches them to an appropriate
class.

MENU

e Displays itself.

e Gets a menu command from a user.

e Executes a menu command.

e Dispatches results to DialogueManager.

e Knows user response time.

PROMPT DISPLAYER

e Displays prompts.

e Displays numeric values.

e Gets user response.

o Dispatches user response to Dialogue
Manager.

e Knows user response time.

MESSAGE DISPLAYER

e Displays messages.

e Displays numeric values.

Class-collaborators

DisplayScreen.

Keyboard.

DisplayScreen.

Keyboard.

DialogueManager.

Timer.

DisplayScreen.
DisplayScreen.
Keyboard.

DialogueManager.

Timer.

DisplayScreen.

DisplayScreen.

DISPLAY SCREEN

e Displays messages.

e Displays prompts.

e Displays numeric values.

e Displays menus.

139

ATM TERMINAL DIALOGUE MANAGER

e Check card insertion.

e Initiates a card read.

e Gets the results of a card read.

e Initiates the display of prompts.

e Initiates the display of messages.

e Gets user response.

e Initiates access-right validation.

e Gets the resulis of access-right validation.

e Initiates PIN authentication.

o Gets the result of PIN authentication.

e Counts PIN-entry tries.

e Initiates the display of the main menu.

e Counts selection tries

e Check deposit envelope insertion.
e Counts amount-entry tries.
¢ Initiates the stamping of the deposit

envelope.

CardReader.

CardReader.

CardReader.
PromptDisplayer.
MessageDisplayer.

Menu, PromptDisplayer,
Keyboard, InputDevice.
ValidationManager.
ValidationManager.
EncryptionManager.
PIN-AuthenticationManager.
PromptDisplayer, Keyboard.
Menu.

PromptDisplayer, Menu,
Keyboard.

DepositDrawer.
PromptDisplayer, Keyboard.

DepositDrawer.

140
e Ensures that the entered amount is of right

multiple for the requested transaction.

e Verifies that there is sufficient cash in an CashlssueManager.
ATM terminal to satisfy a cash withdrawal
request.

e Verifies that there are sufficient travellers TravellersChequelssueManager.
cheques of the selected type in an ATM
terminal to satisfy a travellers cheque
purchase request.

e Converts a travellers cheque amount to ExchangeRateManager.
local currency equivalent.

e Requests the time and the date a Timer, ClockCalendar.

transaction is initiated.

e Dispatches transaction requests. TransactionManager.
e Initiates a card ejection. CardReader.
e Initiates a receipt print and ejection. ReceiptPrinter.

e Requests the recording of a successful TransactionLog.
cash withdrawal, travellers cheque

purchase, or a funds transfer transaction.

e Initiates card retention. CardReader.
e Initiates cash retention. CashDispenser.
e [nitiates travellers cheque retention. TravellersChequeDispenser.

e Requests the recording of ATM terminal ErrorLog.
errors.
e Initiates a redo for a cash withdrawal or DepositManager.

a travellers cheque purchase transaction.

141

e Requests the recording of a card retention CardRetentionsLog.

including the reason for the retention.
e Requests the recording of transactions

which result in cash or travellers cheque

retention.

ATM-TerminalLog.

CENTRAL COMPUTER DIALOGUE MANAGER

e Initiates the display of prompts.

¢ Initiates the display of messages.

e Gets user response.

e Initiates the display of the main menu.

e [nitiates a read, delete or print operation

on InterruptedTransactionsLog.

e [nitiates a read, delete, or print operation

on CardRetentionsLog.

e Initiates a read, delete, or print operation

MaterialDeficientTerminalslLog.

¢ Initiates a read, delete, or print operation

on an ATM-TerminallLog.

e Initiates a read or modify operation on an

ATM-Terminal attribute.

e Initiates an add, delete, or modify bank

code operation.

CentralComputerPromptDisplayer.

CentralComputerMessageDisplayer.

CentralComputerMenu,
CentralComputerPromptDisplayer,
CentalComputerKeyboard,
CentralComputerinputDevice.
CentralComputerMainMenu.
InterruptedTransactionsLog,
CentralComputerPrinter.
CardRetentionsLog,
CentralComputerPrinter.

MaterialDeficientTerminalsLog.

ATM-TerminalLog.

BankCodeValidationManager.

142
BANK COMPUTER DIALOGUE MANAGER

e Initiates the display of prompts. BankComputerPromptDisplayer.
¢ Initiates the display of messages. BankComputerMessageDisplayer.
e Gets user response. BankComputerMenu,

BankComputerPromptDisplayer,

BankComputerKeyboard,
BankComputerinputDevice.
o Initiates the display of the main menu. BankComputerMainMenu.
e Initiates a restricted read or print TransactionlLog.
operation on TransactionLog.
e Initiates a restricted read or print interruptedTransactionsLog.
operation on InterruptedTransactionsLog.
¢ Initiates a restricted read or print CardRetentionsLog.
operation on CardRetentionsLog.
e Initiates a read, delete, or print operation
on the banks ATM Logs.
e Initiates a read or modify operation on the
banks ATM classes attributes.
¢ Initiates a delete, add, or change PIN PIN-AuthenticationManager.

operation.

e Initiates a temporary revocation of card ValidationManager.
validity.

INPUT DEVICE

e Gets user input.

143
KEYBOARD

e Gets keypress events.

e Sends keypress events to Menu.

e Sends keypress events to PromptDisplayer.

DEPOSIT DRAWER

e Accepts an open drawer command from
the DialogueManager.

e Detects the insertion of a deposit envelope.

e Stamps the deposit envelope.

CARD READER

e Detects a card insertion.

o Reads a card.

e Ejects a card.

e Detects a card ejection error.

e Detects a card removal.

e Retains a card.

e Detects a card retention error.

OUTPUT DEVICE

e Gives output.

CASH DISPENSER

e Dispenses cash.

e Detects cash dispense error.

o Detects cash removal.

e Retains cash.

e Detects cash retention error.

TRAVELLERS CHEQUE DISPENSER

e Dispenses travellers cheques.

e Detects travellers cheque dispense error.

e Detects travellers cheque removal.

e Retains travellers cheques.

e Detects travellers cheque retention error.

RECEIPT PRINTER

e Prints receipt for a transaction.

e Ejects receipts.

e Detects Printer error.

e Detects receipt ejection error.

e Issues a warning when the number of
receipts gets below a critical value.

CASH ISSUE MANAGER

e Issues cash.

e Issues a warning when cash-in-hand

gets below critical value.

144

MaterialDeficientLog.

CashDispenser.

CashDeficientLog.

TRAVELLERS CHEQUE ISSUE MANAGER

e Issues travellers cheques.

TravellersChequeDispenser.

e Issues a warning when amount-in-hand TravellersChequeDeficientLog.

gets below critical value.

EXCHANGE RATE MANAGER

e Maintains current exchange rates for US

dollars, PoundSterlings, and Deutch Marks.

VALIDATION MANAGER

e Validates the access rights of a user.

BANK CODE VALIDATION MANAGER
e Validates a PAN's bank code.

CARD VALIDATION MANAGER

e Verifies the validity of an ATM card.
ENCRYPTION MANAGER

e Encrypts PIN.

DECRYPTION MANAGER

e Decrypts an encrypted PIN.

PIN AUTHENTICATION MANAGER
e Authenticates PIN.

TIME DETECTOR

e Detects one second events.

TIMER

e Times user response.

CLOCK CALENDAR

e Supplies the current date and time.
TRANSACTION MANAGER

145

e Executes a financial transaction for a particular bank.

e Sends results to DialogueManager.
WITHDRAWAL MANAGER

o Executes a cash withdrawal transaction.

e Executes a travellers cheque purchase

AccountManager, CommitFailures-
Log, DailyAmountLog.
AccountManager, CommitFailures-

Log, DailyAmountLog.

DEPOSIT MANAGER

e Executes a cheque deposit transaction.

o Redo a cash withdrawal transaction.

o Redo a travellers cheque purchase.

FUNDS TRANSFER MANAGER

e Executes a funds transfer transaction.

BALANCE INQUIRY MANAGER

e Executes a balance inquiry.

STATEMENT ORDERS MANAGER
e Executes a statement order request.
CHEQUE BOOK ORDERS MANAGER

e Executes a cheque book order request.

ACCOUNT MANAGER
@ Accesses bank accounts.

o Maodifies bank accounts.

BANK LOG

146

ChequeDepositsLog.
AccountManager,
DailyAmountLog.
AccountManager,

DailyAmountLog.

AccountManager, CommitFailures-

Log.

AccountManager, CommitFailures-

Log.

StatementOrdersLog.

ChequeBookOrdersLog.

e Records transactions or there aspects for a particular bank.

CHEQUE DEPOSITS LOG

e Records cheque deposits for a particular bank.

147
COMMIT FAILURES LOG

e Records withdrawal commit failures on a given account for a particular bank
for those withdrawal transactions in which the stage of accessing the account
was successful.

e Records deposit commit failures on a given account for a particular bank.

DAILY AMOUNT LOG
e Records the total daily cash withdrawals for each customer for a particular
bank.

e Records the total daily travellers cheque purchases, in local currency, of each
customer for a particular bank.

STATEMENT ORDERS LOG

e Records customer statement orders for a particular bank.
CHEQUE BOOK ORDERS LOG

e Records customer cheque book orders for a particular bank.
SYSTEM LOG

e Records errors and material deficiencies of the ATM system.
e Records transactions for all banks.

NORMAL TRANSACTIONS LOG

e Records all daily cash withdrawals, travellers cheque purchases, and fund
transfers for customers.

INTERRUPTED TRANSACTIONS LOG

e Records cash withdrawals, travellers cheque purchases, and fund transfers

which cannot be completed due to communication breakdown between the

Central Computer and one or more ATM terminals and which cannot be

redone due to transmission error.

148
ATM TERMINAL LOG

e Records all successful cash withdrawals, travellers cheque purchases, or
fund transfers on a particular ATM terminal which cannot be recorded on the
TransactionLog due to transmission error.

e Records cash withdrawal or travellers cheque purchase transactions on a
particular ATM terminal in which a customer failed to remove cash or
travellers cheques after a given time limit.

e Records withdrawal or travellers cheque purchase transactions on a
particular ATM terminal which are not completed due to either card ejection
error, cash dispense error, or cheque dispense error and which cannot be -
redone due to transmission error.

CARD RETENTIONS LOG
e Records card retentions in all ATM terminals.
CASH DEFICIENT TERMINALS LOG

e Records ATM terminal identity numbers of terminals with deficient cash.

TRAVELLERS CHEQUE DEFICIENT TERMINALS LOG

e Records ATM terminal identity numbers of terminals with deficient travellers
cheques of any kind.

RECEIPT DEFICIENT TERMINALS LOG
o Records ATM terminal identity numbers of terminals with deficient receipts.
ERROR LOG

e Records ATM terminal identity numbers of terminals with either card ejection

error, cash dispense error, travellers cheque dispense error, receipt ejection

error, card retention error, cash retention error, or travellers cheque retention

error.

149
COMMUNICATIONS MANAGER

e Manages communications.

o Detects transmission errors.

6.2.4. The construction of class interfaces

The following class signatures and attributes were determined:

Class signatures and attributes:
WITHDRAWAL MANAGER
MaxDailyWithdrawalAmount: Int
MaxDailyChequePurchaseAmount: Real
CustomerinCommitFailuresLog: Boolean
CustomerinDailyAmountLog: Boolean
WithdrawCash(PAN: Int; ATM-Terminal-id: Int; Accnt: String)
GetMaxDailyWithdrawalAmount(): Int
GetMaxDailyChequePurchaseAmount(): Real
ModifyMaxDailyWithdrawalAmount(NewMax: Int)
ModifyMaxDailyChequePurchaseAmount(NewMax: Real)
ACCOUNT MANAGER

MinSavingsBalance: Real

MinCurrentBalance: Real

AccessBalance(PAN: Int; Accnt: String): Boolean
GetBalance(PAN: Int; Acent: String): Real
AddToBalance(PAN: Int; Accnt: String; Amnt: Real)
DeductFromBalance(PAN: Int; Accnt: String; Amnt: Real)

GetMinSavingsBalance(): Real

150
GetMinCurrentBalance(): Real

ModifyMinSavingsBalance(NewBinc: Real)
ModifyMinCurrentBalance(NewBInc: Real)

DEPOSIT MANAGER

DepositCheque(PAN: Int; ATM-Terminal-id: Int; Amnt: Int; Accnt: String)
RedoCashWithdrawal(PAN: int; ATM-Terminal-id; Amnt: int; Accnt: String)
RedoTravellersChequePurchase(PAN: int; ATM-Terminal-id: Int; Amnt; Real;
Accnt: String)

FUNDS TRANSFER MANAGER

CustomerinCommitFailuresLog: Boolean

TransferFunds(PAN: Int; ATM-Terminal-id: Int; TransferCode: Int; Amnt: Real)
BALANCE INQUIRY MANAGER

Inquire-on-balance(PAN: Int; ATM-Terminal-id: Int; Accnt: String)
STATEMENT ORDERS MANAGER

OrderStatement(PAN: Int; ATM-Terminal-id: Int; Accnt: String)

CHEQUE BOOK ORDERS MANAGER

OrderChequeBook(PAN: Int; ATM-Terminal-id: Int)

EXCHANGE RATE MANAGER

US-DollarExchangeRate: Real

PoundSterlingExchangeRate: Real

DeutchMarkExchangeRate: Real

GetExchangeRate(CurrencyType: String): Real
ModifyExchangeRate(CurrencyType: String; NewRate: Real)
TRAVELLERS CHEQUE ISSUE MANAGER

USD-Amnt-in-hand: Int

PoundSterlingAmnt-in-hand: Int

151
DeutchMarkAmnt-in-hand: Int

USD-CriticalAmnt: Int

PoundSterlingCriticalAmnt: Int

DeutchMarkCriticalAmnt: Int

USD-Amnt-is-critical: Boolean

PoundSterlingAmnt-is-critical: Boolean
DeutchMarkAmnt-is-Critical: Boolean
GetChequeAmntinHand(CurrencyType: String): Int
GetCriticalChequeAmnt(CurrencyType: String): Int
SubtractFromChequeAmntinHand(CurrencyType: String; Amnt: Int)
ModifyChequeAmntinHand(Currency Type: String; NewAmnt: int)
SetCriticalAmntFlag(CurrencyType: String)
ModifyCriticalChequeAmnt(CurrencyType: String; NewAmnt: Int)
IssueCheques(CurrencyType: String; Amnt: int)

TRAVELLERS CHEQUE DISPENSER
DispenseCheques(CurrencyType: String; Amnt: Int): Boolean
RetainCheques(): Boolean

CASH ISSUE MANAGER

CashinHand: Int

CriticalCashAmnt: int

AmntlsCritical: Boolean

GetCashinHand(): Int

GetCriticalCashAmnt(): Int

ModifyCashinHand(NewAmnt: Int)
ModifyCriticalCashAmnt(NewAmnt: Int)

SubtractFromCashinHand(Amnt: Int)

SetCriticalAmntFlag()

-IssueCash(Amnt: Int)

CASH DISPENSER

DispenseCash(Amnt: Int): Boolean

RetainCash(): Boolean

CashRemoved(): Boolean

LOG

ReadlLog()

DeleteLogContents()

PrintLogContents()

BANK LOG

CustomerisRecordedinLog(PAN: int): Boolean
RecordCustomerinLog(PAN: Int)

DeleteCustomerFromLog(PAN: Int)

CHEQUE DEPOSITS LOG
RecordChequeDepositTransaction(PAN:int;ATM-Terminal-id:Int;Amnt:int)
COMMIT FAILURES LOG
AddToCustomerWithdrawalFailures(PAN: int; Amnt: Real; Accnt: String)
AddToCustomerDepositFailures(PAN: Int; Amnt: Real; Accnt: String)
GetCustomerWithdrawalFailures(PAN: Int; Accnt: String): Real
GetCustomerDepositFailures(PAN : Int; Accnt: String): Real
DeleteCustomerWithdrawalFailures(PAN: Int; Accnt: String)
DeleteCustomerDepositFailures(PAN: int; Accnt: String)

152

153
DAILY AMOUNT LOG

AddToCustomerDailyCashWithdrawal(PAN: Int; Amnt: Int)
AddToCustomerDailyTravellersChequeAmnt(PAN: Int; Amnt: Real)
SubtractFromCustomerDailyCashWithdrawal(PAN: Int; Amnt: Int)
SubtractFromCustomerDaily TravellersChequeAmnt(PAN: Int; Amnt: Real)
GetCustomerDailyCashWithdrawal(PAN: Int): Int
GetCustomerDailyTravellersChequeAmnt(PAN: Int): Real

TRANSACTION LOG

RecordCustomerWithdrawalTransaction(PAN: Int; Amnt: Int; Accnt: String;ATM-
Terminal-id: Int; Time: Real; Day: Date)
RecordCustomerTravellersChequeTransaction(PAN : Int; Amnt : Int ;
CurrencyType: String; ExchangeRate: Real; Acent: String; ATM-Terminal-id: Int;
Time: Real; Day: Date)

RecordCustomerFundsTransferTransaction(PAN: Int; Amnt: Int; TransferCode:
Int; ATM-Terminal-id: Int; Time: Real; Day: Date)
ReadBankTransactions(BankCode: Int)

PrintBankTransactions(BankCode: Int)

DeleteBankTransactions(BankCode: Int)

CARD RETENTIONS LOG

RecordCardRetention(PAN: Int; ATM-Terminal-id: Int; ReasonForRetention:
String; Time: Real; Day: Date)
Read-ATM-TerminalCardRetentions(ATM-Terminal-id: Int)
ReadBankCardRetentions(BankCode: Int)
PrintATM-TerminalCardRetentions(BankCode: Int)
PrintBankCardRetentions(BankCode: Int)

154
DeleteATM-TerminalCardRetentions(ATM-Terminal-id: int)

DeleteBankCardRetentions(BankCode: Int)

ERROR LOG

RecordATM-TerminalError(ATM-Terminal-id: Int; ErrorType: String; Time: Real; Day: Date)
ReadATM-TemminalError(ATM-Terminal-id: Int)
PrintATM-TerminalError(ATM-Terminal-id: Int)
DeleteATM-TerminalError(ATM-Terminal-id: Int; ErrorType: String)
CASH DEFICIENT TERMINALS LOG
RecordCashDeficiency(ATM-Terminal-id: Int; Time: Real; Day: Date)
DeleteCashDeficiency(ATM-Terminal-id: Int)

RECEIPT DEFICIENT TERMINALS LOG
RecordReceiptDeficiency(ATM-Terminal-id: Int; Time: Real; Day: Date)
DeleteReceiptDeficiency(ATM-Terminal-id: Int)

TRAVELLERS CHEQUE DEFICIENT TERMINALS LOG
RecordTravellersChequeDeficiency(ATM-Terminal-id: Int; CurrencyType: String;
Time: Real; Day: Date)
DeleteTravellersChequeDeficiency(ATM-Terminal-id: Int)
ENCRYPTION MANAGER

Encrypt(PIN: Int; PAN: Int; ATM-Terminal-id: Int)

DECRYPTION MANAGER

Decrypt(EncyptedPIN: Int; PAN: Int; ATM-Terminal-id: Int)

PIN AUTHENTICATION MANAGER

Authenticate(PIN: Int; PAN: Int; ATM-Terminal-id: Int)
AddToPIN-Table(PAN: int)

DeleteFromPIN-Table(PAN: int)

ChangePIN(NewPIN: Int; PAN: int)

1565
BANK CODE VALIDATION MANAGER

ValidateBankCode(PAN: Int; CardSerialNumber: Int; ATM-Terminal-id: Int)
AddBankCode(BankCode: Int): Boolean
DeleteBankCode(BankCode: Int)

ChangeBankCode(OldCode: Int; NewCode: Int): Boolean

CARD VALIDATION MANAGER

ValidateCard(PAN: Int; CardSerialNumber: Int; ATM-Terminal-id: Int)
RevokeCardValidity(CardSerialNumber: Int)
RevokeCardValidityTemporarily(CardSerialNumber: Int)
MakeCardValid(PAN: Int; CardSerialNumber: int)

CARD READER

ReadCard()

Cardisinserted(): Boolean

EjectCard(): Boolean

CardRemoved(): Boolean

RetainCard(): Boolean

RECEIPT PRINTER

Receipts-in-hand: Int

ReceiptCriticalAmnt: Int

ReceiptAmntisCritical: Boolean

PrinterOutOfReceipts: Boolean

PrintReceipt(PAN: Int; TrnsctnType: String; Amnt: Int; Binc: Real; ATM-Terminal-
id: Int; Time: Real; Day: Date)

EjectReceipt(): Boolean

GetReceiptsinHand(ATM-Terminal-id: Int): Int
ModifyReceiptsinHand(ATM-Terminal-id: Int; NewQuantity: int)

156
SetCriticalReceiptAmntFiag()

SetReceiptAmntFlag()

KEYBOARD

GetKeyPressEvent(): KeyPressEvent

DISPLAY SCREEN

DisplayText(Text: String; Coordinate: Point)
DisplayNumbre(Number: Real; Coordinate: Point)
MESSAGE DISPLAYER
DisplayMessage(Text: String)

PROMPT DISPLAYER
PutUpPromptWindow(Text: String; WindowFrameCode: Int)
MENU

GetMenuCommand(): MenuCommandEvent
ExecuteMenuCommand(CommandNumber: Int)
DrawMenu(Menuframe: Int)

DEPOSIT DRAWER

OpenDepositDrawer()
DepositEnvelopelsinserted(): Boolean
StampEnvelope(PAN: Int; ATM-Terminal-id: Int; Time: Real; Day: Date; Amnt: Int)
TIMER

Second: Int

TimerOn: Boolean

StartTimer()

StopTimer()

ElapsedTime(): int

CLOCK CALENDAR
Day: IntRange 1 .. 31
Month: intRange 1 .. 12
Year: IntRange 1992 .. 3000
Hour: IntRange 0 .. 24
Minute: intRange 0 .. 60
Second: IntRange 0 .. 60
GetDate(): Date
GetTime(): Real
DIALOGUE MANAGER
ATM-Terminal-id: Int
SelectionTries: Int
AmntEntryTries: Int
PIN-EntryTries: Int
TransactedAmnt: Int
TransactionCode: Int

CheckCardlinsertion()

167

CardReadResult(CardisReadable: Boolean; PAN: Int; CardSerialNumber: Int)

BankCodeAuthenticationResult(BankCodelsAuthentic: Boolean;ATM-Terminal-id: Int)

CardValidationResult(CardlsValid: Boolean; ATM-Terminal-id: Int)

PIN-EntryResult(PIN: Int)

PIN-AuthenticationResult(PIN-Is-Authentic: Boolean; ATM-Terminal-id: Int)

MenuEventHandler(MenuEventCode: Int)

PromptHandler(EventCode: Int)

AmntEntryHandler(Amnt: Int)

TerminalErrorHandler(ErrorCode: Int)

158
DispatchTransaction(TransactionCode: Int)

Date(Day: Int; Month: Int; Year: Int)

Time(Hour: Int; Min: Int; Sec: Int)

CashWithdrawalResult(CompletionStatus: String; Binc: Real; ATM-Terminal-id: Int)
T-ChqPurchaseResult(CompletionResult: String; Binc: Real; ATM-Terminatid: Int)
FundsTransferResult{(CompletionStatus: String; Binc: Real; ATM-Terminal-id: Int)
ChequeDepositResult(CompletionStatus: String; Binc: Real; ATM-Terminal-id: int)
BalancelnquiryResult(CompletionStatus: String; Binc: Real; ATM-Temminal-id: Int)
StatementOrderResult(CompletionStatus: String; Binc: Real; ATM-Terminakid: Int)

ChequeBookOrderResult(CompletionStatus: String; Binc: Real;ATM-Terminal-id:int)

6.2.5. The construction of the dynamic model

Some class statecharts in the dynamic model we constructed are shown in

Figures 6.4, 6.5, 6.6, 6.7, and 6.8.

159

RqstDsply: Pis Insert your card
= Waitfor Card Insertion ~

(mmmbnum)

Rast Dsply: Card Rast Deply: Ple Walt) transmission
is unreadable Rq;," ————— 4 Error —(D
to authenticate BankCode
Invaiid l Valid
BankCods BankCode
t Dsply: Invalid Rqst CardVidtnMngr to
Bank Code validate card
é m Cardvalldlly Valid Card
I PIN-EntryTries :=0
validity has expired "Mwmm o PN
ty revoked Wait for PIN-Entry
/ Late
Responss Response
within 10 secs
Transmission Rqst Dsply: Late
®‘7 Error Rqst Dsply: Pis Walit C response)
Rqst EncryptionMngr
@. RightPIN to encrypt PIN PIN-EntryTrios
<3
W PIN
l rond Count PIN-EntryTries)‘-/
Rqst Dsply: Wrong
PIN entered PIN-EntryTrics
>3
(Rqst Dsply: Maximum
L~ PIN-Entry Attempts
koxcoeded

Figure 6.4: DialogueManager Statechart

160

@ ® 2
- to eject card
kel m“d'l‘gn:hw CardEjectionfrror o
v FdsTimsir v Trmeman Pmy——— (CashWihds v TchqPche)
L; Y \Card Ejection Error ‘A TmsmsnError)
—
CashWithdr v T
st Display: (v TchqPchs)

Gm Dmﬂwi)_ y

redo the tmsctn

T'é:o, TmsmsnErmror
Dspnse | A CardRetained
Error Y

RtntnError
Rqst Errorlog NoTrns
to rerd rintn w
i) | |
NoTrnsmsnError 4 y. y Yy,
Y,

Figure 6.4 (Continued)

161

é) @é 8 8““ Figure 6.4 (Continued)

Yes A PrompiForAmntEntry J
Yes & PromptForCorrectAmnt Right
\ J Muttiple
Y D t Dsply: isAmntCorrect?
(-
Ragst DpstDrwr ADpst Raqst Dsply: Yes-NoPtompt
to stamp Envip Yththrracponu <
ithd ‘Yu ATchqPrchse %
Yes (RqstCash Rqst TchqlssueMngr for
A | lssueMngr chq amntin-hand for the N Sfent Tchas
(e i o
Sufficie Cash No Tchqs of chgs
L> Dsply:Pls Wait \Insfcnt Rqst Dsply Rqst Dsply
q't pr' = Cash | Nocashin || NoTchqof mm T""‘
\ ' Rqst Dsply Yos-No
Ves % Prmpt J Prompt__
|ForcmAmn FR«&D&W —Cash leftis;_ Wait for response
qstE_splCuhlnHand — v c'::' ' Yes)
\ </'\'Csh Aqst Dsply Yes-No Prmpt st Exchnoratelngr
LeftPrmpt for exchng rate
e \ Yos 7
Yes A Cnt 3
‘Prm : (Rqst Dsply: The Exchng
L .qumsn'E Ex?hnﬁm: -
» Rqst Dsp!
» — W‘t or mponsc
Yesh PrmpiForExchngRate

162

¥ | Y " Rast Daply: Yes-No
Rast Dsply | (Rast Dsply mm)ﬁmm LPrompt_ . —
Printer
Error Ervor

Pls remove ctn Wait for response
Receipt ReptEj . J

(Rqst Dsply: Binc)

- insfcnt: You can
(Dpst v Bincinqry (CashWihdrwi v only transfer
v StmntOrdr v ChqBk T-chqPrchse) Rqst Dsply: Amnt
Ordr v FndsTmsfr) Rqst Dsply: Yes-No
é o _Prompt_ _ _ |
Wait for respol
Lats Response
©w—2R2Hesponse ____J} J
@ No Ance

Figure 6.4 (Continued)

163

DeposiiChg V
idle
Redo CashWithdrawal
vRedo T-Chq Purchase
(" Active A
N\)
(' ')
Rqst CHQ-DEPOSIT-LOG
Rqst CUSTOMER CUSTOMER 1o indicate whether the
DAILY AMNT LOG DAILY AMNT LOG m:::w
to deduct from to deduct from Log.
CustometDally CustomerDally
CashWhthdrawal T-Chq Purchase
Amnt. Amnt. B
recorded]
\ g cotpoe
[(
Rqst CHQ-DEPOSIT-LOG
(i ===
[Account
[Account not
Send results to Regst COMMIT-FAILURES Rqst CHQ-DEPOSIT-LOG
DIALOGUE-MNGR. LOG to indicats whether to record the cheque
the Customeris deposit transaction .
recorded In the Log.
[Customer
not recorded] [Customer
recorded]
Rqst COMMIT-FAILURES Rgst Account-Balance
LOG to record the from ACCOUNT-MNGR
Customer
[Account
' v Account nof accessible]
Rqst COMMIT-FAILURES
LOG to add to Customer's
fail
deposit fallures. Send results to
DIALOGUE-MNGR.
_

Figure 6.5: DepositManager statechart

164

A
./
|

ReadAttributes v
SetAttributes.
])
Active
= —
4 Y4 ™
do: decrement
l(cashin-hand [(Cashin-hand <
> Critical-Amnt) Gritical-Amnt) A
v Amnt-is-Criticaly] (—Amnt-is-Critical)] (m Read Critical-Amnt)
(do: Amnt-is-Critical :x true.) _)
Rgst CASH-DEFICIEN'I’-
TERMINALS LOG to record ; SetAthibutes
the d-ﬁeioncy
4 , \
Rqst CASH-DISPENSER (do: Modify Cash-in-hand.)
to dispense cash.
[Cash dispensed
v Cash dispense error] (do: Modify Critical-Amnt.)
Send resuit to
DIALOGUE-MNGR.)
@: Amnt-is-Critical:= false)
_ /L _J
J

Figure 6.6: CashlssueManager statechart

v SetAttributes

[' @ issueT-chqs v ReadAttributes

165

f -
Active J issueT-chas

do: Decrement Amnt-in-hand
for requemd T-cheque type

yicu

(do: DDM-Amnt-is-Critical := true

(do: PND-Amnt-is-Critical := true

[c2

do: USD-Amnt-is-Critical := true.

)

\

Rqst T-CHQ-DEFICIENT-
TERMINALS LOG to record
the deﬂclency

y
Rqst T-CHQ-DISPENSER to dlspense
T-chqgs of requested type

[T-chqs dispensed
v T-chq dispense error]

(_!end result to
DIALOGUE-MNGR.)
_

.

C1 = (USD-Amnt-in-hand < USD-CriticakAmnt) A (—USD-Amnt-ls-Critical))
v ((PND-Amnt-in-hand < PND-Critical-Amnt) A (— PND-Amnt-ls-Critical))

v ((DDM-Amnt-in-hand < DDM-Critical-Amnt) A (— DDM-Amnt-is-Critical))

C2 = (USD-Amnt-in-hand > USD-Critical-Amnt v USD-Amnt-is-Critical)
A (PND-Amnt-in-hand > PND-Critical-Amnt v PND-Amnt-is-Critical)
A (DDM-Amnt-in-hand > DDM-Critical-Amnt v DDM-Amnt-is-Critical)

Figure 6.7: TravellersChequelssueManager statechart

to
indicate whether Customer is
[CstmeNotRerded]
1 CstmrinDallylog
Cﬂqst DallyAmntLog for) =false
CstmrWihdrwiAmnt
Rqst CstmiTotalAmntiog for
CstmrT-chqAmnt
C Determine whether MaxDaily
WithdrwiAmnt is exceeded
Determine whether MaxDally
T-chqAmnt Is exceeded
\-_—J
[JNolExeoedod]
\[AcntNotAccessible] (o i iBine from Acniingr)
*[Aenﬂmulble]

Rqst COmmltFallunsLog to indicate whether

Determine whether Rqst CmtFirLogfor Cetmr
He a wthdrwl Is possible G‘MM and dpst failures

JlYosACatmrlnDalleog] [Yes A—CstmrinDailyLog]

Rqst DallyAmnt an DaliyAmatLog)
Logto mdlv cslmrDalIv

' [AcntNotAccessible A—Cstmwr

Acnt (" Rqst AcntMngr to Rqst CmtFirsLog
.clc?- ebit the acnt
ssible ‘ [AcniNotAccessible A CstmeinCmtFirLog]
\-@ut CmitFirsLog to add to CstmrWihdrwiFallure

S

Attributes

Set
Attributes

166

Figure 6.8: WithdrawManager Statechart

CHAPTER 7
CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

An object-oriented software design methodology has been developed. It is
based on a static- and a dynamic-model. The static-model uses a form of an
enhanced entity-relationship model, inheritance-diagrams, and CRC (Class
Responsibility Collaboration) cards to capture the static structure of the classes
and class relationships. The dynamic-model uses a modified Harel’s Statechart
notation to capture the internal behaviour of each class and the message

passing behaviour among collaborating classes in the system.

The developed design methodology has the following seven steps: exploratory
stage, division of the design task into subtasks, extraction of additional
subsystems and classes, construction of class interfaces, evaluation and
refinement of classes and subsystems, construction of the dynamic-model, and

the integration of the design subtasks.

Our methodology differs from others in that it:
« incorporates design-consistency checking. It thus provides a basis for the
partial automation of the design process.

o provides a dynamic-model which is easily integrated to the static-model.

7.2 Future work
As future work we intend to:
« study more design case studies and rigorously compare our methodology with

others with the aim of refining the methodology specifically providing

167

168

heuristics for identifying subsystems.

« keep abreast with advances in research on metrics for object-oriented design
with the aim of introducing more design guidelines in our methodology.

« implement a design-tool which will incorporate design-consistency checking,

database support, version control management, and multiple user-interfaces.

[Abb83]

[AbH87]

[Agh86]

[AKTS8S8]

[AlagS]

[ArYS0]

[Baigg]

[Bar91)

REFERENCES

R.Abbot, “ Program Design by Informal English Descriptions,”
Commun. ACM, Vol. 26, No. 11, p. 884, Nov. 1983.

S.Abiteboul, R.Hull, “ IFO: A Formal Semantics Database Model,”
ACM Trans. Database Systems, Vol.12, No.4, Dec. 1987, pp. 525-
565.

G.Agha, “ An Overview of Actor Languages,” SIGPLAN NOTICES,
Vol.21, No.10, 1986, pp. 58-67.

M.Aksit, A.Tripathi, “ Data Abstraction Mechanisms in Sina/st,”
OOPSLA’'88 Conf. Proc., Sandiego, California, Sept. 25-30 1988;
ACM SIGPLAN, Vol.23, No.11, Nov. 1988, pp. 267-276.

B.Alabiso, “ Transformation of Data Flow Analysis Model to Object-
Oriented Design,” OOPSLA’'88 Conf. Proc., Sandiego, California,
Sept. 25-30 1988; ACM SIGPLAN, Vol.23, No.11, Nov. 1988, pp.
335-353.

J.L.Archibald, K.C.B.Yakemovic eds. , “ Structured Analysis and
Object- Oriented Analysis,” Panel in OOPSLA / ECOOP’90
Addendum to the Proc., Ottawa, Canada, 21-25 Oct. 1990, pp. 15-17.

S.Bailin, “An Object-Oriented Requirements Specification Method,”
Commun. ACM, Vol. 32, No. 5, pp. 608-623, May 1989.

G.Barbedette, “ Schema Modifications in LISPO2 Persistent Object-
Oriented Language,” ECOOP'91 Conf. Proc., 15-19 July 1991,
Geneva, Switzerland, P.America (Ed.), pp. 77-96, Springer-Verlag,
Berlin Heidelberg, 1991.

[BCG+87] J.Banarjee at. al, “Data Model Issues for Object-Oriented

[BeC89]

Applications,” ACM Trans. Office Info. Syst., Vol. 5, No. 1, Jan. 1987,
pp. 3-26.

K.Beck, W.Cunningham, “ A Laboratory for Teaching Object-Oriented
Thinking,” OOPSLA’'89 Conf. Proc., 1-6 Oct. 1989, New Orleans,
Louisiana; SIGPLAN NOTICES Vol.24, No.10, pp. 1-6, Oct. 1989.

[Bob83]

[Boe86]

[Boo83]

[Boo86)

[Boo91]

[Bro91]

[BuWs0]

[Che76]

[ChK91]

[Coi87]

[CoY90]

[CoY91]

[Cox86]

170

D.G.Bobrow, The LOOPS Manual: A Data and Object-Oriented
Programming System for Interlisp, Knowledge-Based VLSI Design
Group Memo KB-VLSI-81-13, Xerox PARC, Palo Alto, California,
1983.

B.Boehm, “ A Spiral Model of Software Development and
Enhancement,” ACM SIGSOFT Softw. Engg. Notes, Vol.11, No.4, pp.
14-24, Aug. 1986.

G.Booch, Software Engineering with Ada, Benjamin/Cummings,
California, 1983.

G.Booch, “ Object-Oriented Development,” IEEE Trans. Softw. Eng. ,
Vol. SE-12, No. 2, pp. 211-222, Feb. 1986.

G.Booch, Object-Oriented Design, Benjamin/Cummings, Readwood
City, California, 1991.

D.Brookman, “ SA/SD vs OOD, " ACM Ada Letters, Vol. XI, No. 9,
pp. 96-99, Nov. /Dec. 1991.

A.Burns, A.Wellings, Real-Time Systems and their Programming
Languages, Adison-Wesley, Reading, Massachusetts, 1990.

P.Chen, “ The Entity-Relationship Model : Toward a Unified View of
Data,” ACM Trans. Database Systems, Vol.1, No.1, March 1976, pp.
9-36.

S.Chidamber, C.Kemerer, “ Towards a Metrics Suite for Object-
Oriented Design,” OOPSLA'91 conf. Proc., 6-11 Oct. 1991, Phoenix,
Arizona; SIGPLAN NOTICES, Vol.26, No.11, Nov. 1991, pp. 197-211.

P.Cointe, “ Metaclasses are First Class: The ObjViisp Model,”
OOPSLA'87 Conf. Proc., Orlando, Florida, Oct. 1987; SIGPLAN
NOTICES, Vol.22, No.12, pp. 156-167.

P.Coad, E.Yourdon, Object-Oriented Analysis, Yourdon
Press/Prentice- Hall Englewood Cliffs, NJ , 1990.

P.Coad, E.Yourdon, Object-Oriented Design, Yourdon
Press/Prentice-Hall Englewood Cliffs, NJ , 1991.

B.J.Cox, Object-Oriented Programming : An Evolutionary Approach,
Addison-Wesley, Reading, MA, 1986.

[Den91]

[Dezs1]

[Ducs0]
[Dug91]

[EIN89]

[EIS90]

[Fir91]

[Gibg0]

[GLPSO0]

[GoA90]

[GoR83]

[GoR89}

171

Dennis de Champeaux, “ Object-Oriented Analysis and Top-Down
Software Development,” ECOOP’31 Conf. Proc., 15-19 July 1991,
Geneva, Switzerland, P.America (Ed.), pp. 360-375, Springer-
Verlag, Berlin Heidelberg, 1991.

C.Delcourt, R.Ziccari, “The Design of an Integrity Consistency
Checker (ICC) for an Object-Oriented Database System,” ECOOP’91
Conf. Proc., 15-19 July 1991, Geneva, Switzerland, P.America (Ed.),
pp. 97-117, Springer-Verlag, Berlin Heidelberg, 1991.

R.Ducoumnau, Y3: An Overview, SEMA Group, Montronge, 1990.

P.Dugerdil, “ Inheritance Mechanisms in the OBJLOG Language:
Multiple Selective and Multiple Vertical with Points of View, In
Inheritance Hierarchies in Knowledge Representation and
Programming Languages, pp. 245-256, M.Lenzerini, D.Nardi,
M.Simi (eds.), John Wiley & Sons Ltd., Chichester, West Sussex,
1991.

R.Eimasri, S.Navathe, Fundamentals of Database Systems,
Benjamin/Cummings, Readwood City, California, 1989.

M.Ellis, B.Stroustrup, The Annotated C++ Reference Manual,
Addison-Wesley, Reading, Massachusetts, 1990.

D.Firesmith, “ Structured Analysis and Object-Oriented Development
are not Compatible.” ACM Ada Letters, Vol.XI, No.9, Nov./Dec. 1991,
pp. 56-66.

E.Gibson, “ Objects - Bom and Bred,” BYTE, Oct. 1990, pp. 245-254.

K.Gorlen, S.Orlow, P.Plexico, Data Abstraction and Object-Oriented
Programming in C++, John Wiley and Sons, New York, 1990.

S.Gossain, B.Anderson, “ An Iterative-Design Model for Reusable
Object-Oriented Software,” OOPSLA/ECOOP’90 Conf. Proc., 21-25
Oct. 1990, Ottawa, Canada; SIGPLAN NOTICES Vol.25, No.10, Oct.
1990, pp. 12-27.

A.Goldberg, D.Robson, Smalltalk-80: The Language and Its
Implementation, Addison-Wesley, Reading, Massachusetts, 1983.

A.Goldberg, D.Robson, Smalltaik-80: The Language, Addison-
Wesley, Reading, Massachusetts, 1989.

172

[Har88] D.Harel, “ On Visual Formalisms,” Commun. ACM, Vol.31, No.5, May
1988, pp. 514-530.

[HaC91] F.Hayes,D.Coleman, “ Coherent Models for Object-Oriented
Analysis,” OOPSLA’'91 Conf. Proc., 6-11 Oct. 1991, Phoenix,
Arizona; SIGPLAN NOTICES, Vol.26, No.11, Nov. 1991, pp. 171-
183.

[HOH91] M.Hull, P.O’'Donoghue, B.Hagan, “ Development Methods for Real-
Time Systems,” The Computer Joumnal, Vol.34, No.2, 1991, pp. 164-
172.

[Hyo91] Hyoung-Joo Kim, “Algorithmic and Computational Aspects of Object-
Oriented Schema design,” in Object-Oriented Databases with
Applications to CASE, Networks, and VLSI CAD, R.Gupta,
E.Horowitz (eds.), Prentice Hall, 1991.

[Jal89] P.Jalote, “ Functional Refinement and Nested Objects for Object-
Oriented Design,” IEEE Trans. Softw. Engg., Vol.15, No.3, March
1989, pp.246-270.

[KBG89] W.Kim, E.Bertino, J.Garza, “ Composite Objects Revisited,” Proc.
ACM SIGMOD 1989, pp. 337-347.

[Kee89] S.E.Keen, Object-Oriented Programming in Common Lisp: A
Programmers Guide to CLOS, Addison Wesley, Reading,
Massachusetts, 1989.

[Kim90] W.Kim, Introduction to Object-Oriented Databases, The MIT Press,
Massachusetts, 1990.

[Kno89] N.Knolle, “ Why Object-Oriented User Interface Tools Are Better,”
Journal of Object-Oriented Programming, Vol.2, No.4, 1989, pp. 63-
67.

[Law88] D.Law, Methods for Comparing Methods: Techniques in Software
Development, NCC Publications, Manchester, England, 1988.

[LeH90] B.S.Lemer, A.Habermann, “Beyond Schema Evolution to Database
Reorganization,” OOPSLA/ECOOP’'90 Conf. Proc., 21-25 Oct. 1990,
Ottawa, Canada, as SIGPLAN NOTICES Vol.25, No.10, Oct. 1990,
pp. 67-76.

173

[LHR88] K.Lierberherr, l.Holland, A.Riel, “ Object-Oriented Programming: An
Objective Sense of Style, © OOPSLA'88 Conf. Proc., Sandiego,
California, Sepi. 25-30 1988; ACM SIGPLAN, Vol.23, No.11, Nov.
1988, pp. 323-334.

[Lie86] H.Lieberman, “ Using Prototypical Objects to Implement Shared
Behaviour in Object-Oriented Systems,” OOPSLA'86 Conf. Proc.,
Sept. 29- Oct. 2, 1986, Portland, Oregon; SIGPLAN NOTICES,
Vol.21, No.11, Nov. 1986, pp. 214-223.

[Lie87] H.Lieberman, Concurrent Object-Oriented Programming in Actil, in
Object-Oriented Concurrent Programming, pp. 9-36, A.Yonezawa,
M.Tokoro (eds), The MIT Press, 1987.

[LiH89] K.Lierberherr, l.Holland, * Assuring Good Style for Object-Oriented
Programms,” IEEE Softw., Sept. 1989, pp. 38-48.

[LVC89] M.Linton, J.Viissides, P.Caider, “ Composing User Interfaces with
InterViews,” Computer, Vol.22, No.2, 1989, pp. 8-22.

[LiR89] K.Licberherr, A.Riel, “ Contributions to Teaching Object-Oriented
Design and Programming,” OOPSLA'89 Conf. Proc., 1-6 Oct. 1989,
New Orleans, Louisiana; SIGPLAN NOTICES Vol.24, No.10, pp.
371-380, Oct. 1989.

[Mey88] B.Meyer, “ Eiffel: A Language and Environment for Software
Engineering,” The Journal of Systems and Software, Vol.8, 1988,
pp. 199-246.

[Mey90] B.Meyer, “ Tools for the new culture: Lessons from the design of the
Eiffel libraries,” Commun. ACM, Vol.33, No.9, Sept. 1990, pp. 68-
89.

[MiR89] N.Minsky, D.Rozenshtein, “ Controllable Delegation: An Exercise in
Law-Governed Systems,” OOPSLA'89 Conf. Proc., 1-6 Oct. 1989,
New Orleans, Louisiana; SIGPLAN NOTICES Vol.24, No.10, pp.
371-380, Oct. 1989.

[MNC+91] G.Masini, A.Napoli, D.Golnet, D.Leornad,K.Tombre, Object-Oriented
Languages, Academic Press, London, 1991.

[Moo86] D.Moon, “ Object-Oriented Programming with Flavors,” OOPSLA’86
Conf. Proc., Sept. 29- Oct. 2, 1986, Portland, Oregon; SIGPLAN
NOTICES, Vol.21, No.11, Nov. 1986, pp. 1-8.

[Moo89]

[Myn90]

[Nerg2]

[Nie87]

[RBP+91]

[RuG92]

[SaP90]

174

D.Moon, “ The Common LISP Object-Oriented Programming
Standard System,” in Object-Oriented Concepts, Applications, and
Databases, W.Kim, F.Lochovsky (eds.), Addison Wesley, 1989.

B.Mynatt, Software Engineering with Student Project Guidance,
Prentice-Hall, Englewood, Cliffs, New Jersey, 1980.

Jean-Mark Nerson, : “ Applying Object-Oriented Analysis and
Design,” Commun. ACM, Vol.35, No.9, Sept. 1992, pp. 63-74.

O.M.Nierstrasz, “Active Objects in Hybrid,” OOPSLA’87 Conf. Proc.,
Orlando, Florida, Oct. 1987; SIGPLAN NOTICES, Vol.22, No.12, pp.
243-253.

J.Rumbaugh, M.Blaha, W.Premeriani, F.Eddy, W.Lorensen, Object-
Oriented Modelling and Design, Prentice-Hall, Englewood, Cliffs,
New Jersey, 1991.

K.Rubin, A.Goldberg, “ Object Behaviour Analysis,” Commun. ACM,
No.9, Sept. 1992, pp. 48-62.

A.Sage, J.Palmer, Software Systems Engineering, John Wiley &
Sons, Inc., New York, 1990.

[SCB+86] C.Schaffert, T.Cooper, B.Bullis, M.Kilian, C.Wilpolt, “ An Introduction

[Seig9]

[SeS86]

[ShM88]

[Shu91]

to Trellis/Owl,” OOPSLA’86 Conf. Proc., Sept. 29- Oct. 2, 1986,
Portland, Oregon; SIGPLAN NOTICES, Vol.21, No.11, Nov. 1986, pp.
9-16.

E.Seidewitz, “ General Object-Oriented Software Development:
Background and Experience.” Journal of Systems Software, Vol.9,
1989, pp. 95-108.

E.Seidewitz, M.Stark, “ Towards a General Object-Oriented Software
Development Methodology,” in Proc. 1st Conf. on Ada
Programming Language Applications for the NASA Space Station,
June 1986, pp. D.4.6.1-D.4.6.14.

S.Shlaer, S.Mellor, Object-Oriented Systems Analysis, Yourdon
Press, Englewood, Cliffs, New Jersey, 1988.

K.Shumate, “ Structured Analysis and Object-Oriented Design are
Compatible, " Ada Letters, Vol.Xl, No.4, pp. 78-90, May/June 1991.

[Sny86]

[Ste87]

[TSK90]

[UnS87]

[Wal91]

[WaMm8s)

[WiJ90]

[WiW89]

[WPM8S]

[WPMQ0]

[WRS90]

[WWW90)

175

A.Snyder, “Common Objects: An Overview,” SIGPLAN NOTICES,
Oct. 1986, pp. 19-28.

L.Stein, “Delegation is Inheritance,” OOPSLA'87 Conf. Proc., Oct.
1987; SIGPLAN NOTICES, Vol.22, No.12, pp. 138-146.

C.Tomlinson, M.Scheevel, W.Kim, “ Sharing and Organisation
Protocols in Object-Oriented Systems,” Journal of Object-Oriented
Programming, Vol.2, No.4, 1990, pp.25-36.

D.Ungar, R.Smith, “ Self: The Power and Simplicity,” OOPSLA'87
Conf. Proc., Oct. 1987; SIGPLAN NOTICES, Vol.22, No.12, pp. 227-
242,

N.Walters, “ An Ada Object-Based Analysis and Design Approach,”
Ada Letters, Vol.Xl, No.5, pp. 62-78, July/Aug. 1991.

P.Ward, S.Melior, Structured Development for Real-Time Systems,
Vol.1 , Yourdon Press/Prentice-Hall, Englewood, Cliffs, New Jersey,
1985.

R.Wirfs-Brock, R.Johnson, “ Surveying Current Research in Object-
Oriented Design,” Commun. ACM, vol. 33, No. 9, pp. 104-124,
Sept. 1990.

R.Wirfs-Brock, B.Wilkerson, “ Object-Oriented Design: A
Responsibility- Driven Approach, " OOPSLA’89 Conf. Proc., 1-6 Oct.
1989, New Orleans, Louisiana; SIGPLAN NOTICES Vo!.24, No.10,
pp. 71-75, Oct. 1989.

A.Wasserman, P.Pircher, R.Muller, “ An Object-Oriented Structured
Design Method for Code Generation,” ACM SIGSOFT Softw. Engg.
Notes, Vol. 14, No.1, Jan. 1989, pp. 32-55.

A.Wasserman, P.Pircher, R.Muller, “ The Object-Oriented Structured
Design Notation for Software Design Representation,” Computer,
March 1990, pp. 50-63.

D.Wilson, L.Rosenstein, D.Shafer, Programming with McApp,
Addison-Wesley, Reading, Massachusetts,1990.

R.Wirfs-Brock, B.Wilkerson, L.Wiener, Designing Object-Oriented
Software, Prentice-Hall, Englewood, Cliffs, New Jersey, 1990.

176

[YBS86] A.Yonezawa, J.Briot, E.Shibayama, “ Object-Oriented Concurrent

[YonS0O]

Programming in ABCL/1,” OOPSLA'86 Cont. Proc., Sept. 29- Oct. 2,
1986, Portland, Oregon; SIGPLAN NOTICES, Vol.21, No.11, Nov.

1986, pp. 258-268.

A.Yonezawa (ed.), ABCL: An Object-Oriented Concurrent System,
The MIT Press, Cambridge, Massachusetts, 1990.

