
Power-Time Flexible Architecture For GF(2k) Elliptic Curve
Cryptosystem Computation

Adnan Abdul-Aziz Gutub and Mohammad K. Ibrahim
Computer Engineering Department

King Fahd University of Petroleum and Minerals
Dhahran 31261, SAUDI ARABIA

E-mail: {gutub,ibrahimm}@ccse.kfupm.edu.sa

ABSTRACT
New elliptic curve cryptographic processor architecture is
presented that result in considerable reduction in power
consumption as well as giving a range of trade-off between speed
and power consumption. This is achieved by exploiting the
inherent parallelism that exist in elliptic curve point addition and
doubling. Further trade-off is achieved by using digit serial-
parallel multipliers instead of the serial-serial multipliers used in
conventional architectures. In effect, the new architecture exploits
parallelism at the algorithm level as well as at the arithmetic
element level. This parallelism can be exploited either to increase
the speed of operation or to reduce power consumption by
reducing the frequency of operation and hence the supply voltage.

Categories and Subject Descriptors
B.2.4 High-Speed Arithmetic (Algorithms, Cost/performance)
C.5.4 VLSI Systems

General Terms
Algorithms, Measurement, Performance, Design, Security.

Keywords
Elliptic Curve Cryptography, Projective Coordinate arithmetic,
Parallel architecture, Crypto-Systems Power-time tradeoff.

1. INTRODUCTION
Elliptic Curve Cryptosystem (ECC) has received considerable
attention from mathematicians around the world ever since the
original proposal by N. Koblitz and V. Miller in 1985 [1-8]. ECC
is based on the Discrete Logarithm problem over the points on an
elliptic curve. To date, no significant breakthroughs have been
made in determining weaknesses in the algorithm. The fact that
the problem appears so difficult to crack means that key
sizes can be reduced in size considerably, even exponentially
[2,7], especially when compared to the key size used by other

cryptosystems. This made ECC become a challenge to the RSA,
one of the most popular public key methods. Although critics are
still skeptical as to the reliability of this method, several
encryption techniques have been developed recently using the
properties of elliptic curve.

Several cryptographic processors have been proposed in the
literature recently [4,5,12]. The conventional approach used in the
design of these processors is to adopt serial computations at both
the algorithmic level by using a single multiplier, as well as at the
arithmetic level by using a serial multiplier. The reason for
sequential operation is that it leads low area for large word
lengths that is needed for secure encryption (i.e. > 160 bits [8]).
This classical approach could lead to the reduction of area,
however, the constraint of current technology is not on gate count
but power consumption. Reducing area is not necessarily the best
approach to reducing power consumption.

In this paper, a power-time flexible architecture is proposed that
exploits the parallelism inherent at both the algorithmic level and
the arithmetic level of ECC. This is contrary to existing designs
[4,5,12], which opt for sequential operations to minimize area. It
is strongly believed that these two aspects would lead to an even
better trade-off between the time and power consumption.

2. ELLIPTIC CURVES OVER GF(2k)
It will be assumed that the reader is familiar with the arithmetic
over elliptic curve. For good review the reader is referred to [8].
The elliptic curve equation over GF(2k) is: y2+xy = x3+ax2+b;
where: x,y,a,b∈GF(2k) and b≠0. The addition of two different
points on the elliptic curve is computed as shown below:

(x1 , y1) + (x2 , y2) = (x3 , y3) ; where x1 ≠ x2
λ = (y2 + y1)/(x2 + x1)
x3 = λ2 + λ + x1 + x2 + a
y3 = λ(x1 + x3) + x3 + y1

The addition of a point to itself (Doubling a point) on the elliptic
curve is computed as shown below:

(x1 , y1) + (x1 , y1) = (x3 , y3) ; where x1 ≠ 0
λ = x1

 + (y1)/(x1)
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

GLSVLSI’03, April 28-29, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-677-3/03/0004…$5.00.

x3 = λ2 + λ + a
y3 = (x1)2 + (λ + 1) x3

For elliptic curve cryptography several point addition and
doubling operations are needed [2,6,8]. As seen from the
equations above, any point operations over elliptic curve requires
inversion, which is the most expensive operation over GF(2k)
[1,8,12]. A common approach is to eliminate the need for

CORE Metadata, citation and similar papers at core.ac.uk

Provided by King Fahd University of Petroleum and Minerals

https://core.ac.uk/display/266089281?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

inversion by representing the elliptic curve points as projective
coordinate points [1,4,6,8,12]. This results in replacing the
inversion with several multiplication operations. This approach is
also adopted in the processor proposed here.

3. GF(2k) ECC POINT OPERATIONS
OVER PROJECTIVE COORDINATES
To eliminate the need for performing inversion in GF(2k), its
coordinates (x,y) are projected to (X, Y, Z), where x=X/Z2, and
y=Y/Z3. The projected elliptic curve equation becomes:

Y2 + XYZ = X 3 + a X2Z2+ b Z6

The formulas for projective point addition of two elliptic curve
points are as follows:

P=(X1,Y1,Z1);Q=(X2,Y2,Z2);P+Q=(X3,Y3,Z3); where P ≠ ±Q
(x, y) = (X/Z2,Y/Z3) (X,Y,Z)

λ1 = X1 Z2
2 2M

λ2 = X2 Z1
2 2M

λ3 = λ1 + λ2
λ4 = Y1 Z2

3 2M
λ5 = Y2 Z1

3 2M
λ6 = λ4 + λ5

λ7 = Z1 λ3 1M
λ8 = λ6 X2 + λ7Y2 2M
Z3 = λ7 Z2 1M
λ9 = λ6 + Z3

X3 = a Z3
2 + λ6 λ9 + λ3

3 5M
Y3 = λ9 X3 + λ8 λ7

2 3M

 20M

The formulas for projective point doubling of P is given by:
P = (X1,Y1,Z1); P+P = (X3,Y3,Z3)

Z3 = X1 Z1
2 2M

X3 = (X1 + bZ1
2)4 3M

λ = Z3 + X1
2 + Y1

 Z1 2M
Y3 = X1

4 Z3 + λ X3 3M

 10M

The complete data flow graph for doubling a point is shown in
Figure 1. It requires ten multiplications and four k-bit XOR
operations. Figure 2 shows the data flow graph for adding two
elliptic curve points. It requires twenty multipliers and seven k-bit
XOR gates. From the binary method, any elliptic curve crypto
processor that uses projective coordinates must implements the
dataflow graphs in Figure 1 and 2 iteratively.

4. PROPOSED ARCHITECTURE
The architecture of the new processor is shown in Figure 3. The
new architecture has the following features:
• It has three digit serial-parallel multipliers,
• It can perform multiply-add operation in the same instruction,
• It has a power management unit.
The basic motivation behind the design of the proposed
architecture is to exploit, as much as possible, the full parallelism
that exists in the ECC. The trade-off between power and time can
be achieved by reducing the clock frequency and hence
consequently the source voltage. It is well known that reducing
the source power is the most effective means of reducing power
consumption. In the proposed design here, this is exploited at the
algorithmic level by using more than one multiplier. It is also
exploited at the arithmetic element level by using serial-parallel
multiplier such as those reported in [10,11] rather than the

conventional approach of using a serial multiplier. The benefits of
parallel implementation of ECC on power are discussed in more
details in section 7.
The reason for using three multipliers only is as follows. From
Figures 1 and 2, the corresponding critical path of each dataflow
diagram is effectively of 5 GF(2k) multiplications and 7 GF(2k)
multiplications, respectively. Here the time GF(2k) addition is
ignored since it is negligible compared to multiplication.
Therefore, the lower bound of the minimum computation time to
perform one elliptic point operation in the calculation of nP is 12
GF(2k) multiplications.

X1 X1 Z1

Figure 1. Doubling an elliptic curve point Data flow graph

It can be easily seen from Figures 1 and 2 that performing three
multiplications in parallel will meet this lower bound, and any
further concurrent multiplications will not actually achieve any
further reduction in the computation time. It should also be noted
that the utilization of the three multipliers is very high. As can be
seen from Figures 1 and 2, all the three multipliers will be used in
eight out of the 12 steps, and in only two out of the 12 cycles
where a single multiplier is used.
The advantage of performing multiply-add operation in one
instruction is that the dataflow in Figures 1 and 2 include many

 X1
2

Y1 Z1 Z1

Y1Z1 Z1
2

X1 b

 bZ1
2X1Z1

2

Z3

X1+bZ1
2

X3

 X1
4

Y1Z1+ X1
2

X1

Y1Z1+ X1
2+Z3 Z3

λ
 Z3X1

4

GF(2k)

multiplier

xy

x y

x+y

x ⊕ y

x y

xy mod f(x)

(X1+bZ1
2)2

(X1+bZ1
2)4

 λX3

 Z3X1
4+λX3

Y3

computations where the addition of the output of two multipliers
must be carried out. Such a feature will circumvent the need to
store these values back in the registers and fetching them back
again for their subsequent addition. This will save
both in cycles and power. The purpose of the power management
unit is to ensure that the power consumption of blocks that are not

Figure 2. Data flow graph for adding two points

used is kept to a minimum. This is achieved by clock-gating the
registers of these blocks and ensuring that the logic in these

blocks is static. There are two possible cases where blocks are not
used. The first is when not all three multipliers are used, and the
second is when the application wordlength is less than the
wordlength of the processor.

Y2

Figure 3. The elliptic curve point operations hardware

5. PERFORMANCE COMPARISONS
5.1 Serial-Parallel Vs. Serial Multiplication
In the crypto processor presented here we also propose to use
GF(2k) digit serial multipliers such as those reported in [10,11].
These digit serial-parallel structures lead to a much better trade-
off between power and time. Given N as the wordlength and M as
the number of digits of size (N/M), Table 1 shows the comparison
of serial-parallel multiplier with a serial one with the same digit
size.

Table 1. Comparison of digit-serial multiplier [16] vs. serial
multiplier[4]. Co is the capacitance of a single-bit arithmetic.

Type of
Multiplier

Normalized
Area

Time
(Cycles)

Freq Power =
kf3C

Serial (N/M)2 M2 fo k(N2/M)2fo
3Co

Serial-Parallel N2/M M fo/M k(N2/M4)fo
3Co

Since Power, P=fCVS

2 and assuming that VS=kfo, where fo is the
maximum operating frequency for the given Vs, then P=kf3C.
Given that serial-parallel computation requires M cycles
compared to M2 cycles for the serial multiplier, the clock
frequency of the serial parallel multiplier can be reduced by a
factor of M for the same execution time. As can be clearly seen
from Table 1, operating the serial-parallel multiplier at clock
frequency of fo/M will lead to a reduction of power by a factor of
M2. A further advantage of the proposed architecture is that it
allows the designer the flexibility to operate at a higher clock
frequency up to fo, but of course at the expense of higher power
consumption. Clearly this demonstrates the superiority of using
digit serial-parallel computation.

aZ3
2+λ6λ9+λ3

3

λ3
3

Z2 Z2 Z1 Z1

 Z2
2

Z2

 Z2
3

X1

X1Z2
2

λ1

 Z1
2

Y2Z1
3

Y2Z1X2

X2Z1
2

λ2

λ1+λ2

λ3

Y1 Z1

Z1λ3Y1Z2
3

λ4

Z3

λ5

λ5

λ4+λ5

λ6

λ7
Z2 X2

Y2

λ6 X2λ6 Z2λ7λ7Y2

X2λ6+λ7Y2 Z3+λ6

λ9 λ8

 Z3
2

 a Z3
2

a λ6λ9

λ3

λ3
2

λ3
2

λ3

λ3
3

λ3
3

λ7 λ7

λ7
2

λ7
2

λ9

 X3λ7
2λ8

X3λ9

λ7
2λ8

X3λ9+λ8λ7
2

 Y3

As with regard to the GF(2k) modulo adder, it is to be
implemented in bit parallel fashion since the area is not
significant compared to the multiplier and minimizing the
addition time will reduce the overall multiply-add cycle time.

5.2 Parallel Vs Sequential Implementation
The power consumption of using three multipliers is compared
with that of using a single multiplier and two multipliers in Figure
4 for different execution times. Here time is computed as follows,
time=No. of cycles x fo. Also, the same assumptions made in
Table 1 are used for Figure 4.

Figure 4. Comparison of using different multipliers.

In existing designs [4,5], a single multiplier is used to perform all
the multiplications needed in Figures 1 and 2. The reason is that
using more than one multiplier is perceived to be too expensive.
However, as can be seen from Figure 4, the proposed architecture
would lead to much lower power consumption than using one or
two multipliers for the same execution time.
It is also clear that using three multipliers gives a wider range of
trade-off between power and speed. In fact, the case of using two
multipliers does not provide any advantage over the other two
options. Finally, the proposed architecture can support a further
reduction in power by switching to one multiplier based operation
in cases where a further reduction in power is required. In this
case the power management unit will simply ensure that the other
two multipliers do not consume any dynamic power.

6. CONCLUSION
A novel GF(2k) elliptic curve crypto processor is proposed in this
paper. The new architecture results in considerable reduction in
power consumption as well as offering users a range of trade-off
between power and time. The basic feature of the new
architecture is that it exploits the inherent parallelism in the
computation of doubling and adding points over an elliptic curve
as well as in multiplication. Performance evaluation shows a
considerable advantage over sequential implementation in terms
of power consumption and time.

7. ACKNOWLEDGMENTS
The authors would like to thank KFUPM for supporting this work
and Dr Muhammad E. S. Elrabaa for discussions on figures of
merits for low power designs.

8. REFERENCES
[1] Miyaji. Elliptic Curves over FP Suitable for Cryptosystems.

Advances in cryptology-AUSCRUPT’92, Australia, 1992.
[2] Stallings. Cryptography and Network Security: Principles

and Practice. 2nd Edition, Prentice Hall Inc., NJ, 1999.
[3] Chung, Sim, and Lee. Fast Implementation of Elliptic Curve

Defined over GF(pm) on CalmRISC with MAC2424
Coprocessor. Workshop on Cryptographic Hardware and
Embedded Systems, Massachusetts, August 2000.

[4] Okada, Torii, Itoh, and Takenaka. Implementation of
Elliptic Curve Cryptographic Coprocessor over GF(2m) on
an FPGA. Workshop on Cryptographic Hardware and
Embedded Systems, Massachusetts, August 2000.

[5] Orlando, and Paar. A High-Performance Reconfigurable
Elliptic Curve Processor for GF(2m). Workshop on
Cryptographic Hardware and Embedded Systems,
Massachusetts, August 2000.

[6] Stinson. Cryptography: Theory and Practice. CRC Press,
Boca Raton, Florida, 1995.

[7] Paar, Fleischmann, and Soria-Rodriguez. Fast Arithmetic
for Public-Key Algorithms in Galois Fields with Composite
Exponents. IEEE Transactions on Computers, 48(10), Oct.
1999.

[8] Blake, Seroussi, and Smart. Elliptic Curves in
Cryptography. Cambridge University Press: NY, 1999.

[9] Scott, Norman R. Computer Number Systems and
Arithmetic. Prentice-Hall Inc., New Jersey, 1985.

[10] Ibrahim, and Almulhem. Bit-Level Pipelined Digit Serial
GF(2m) Multiplier. IEEE International Symposium on
Circuits and Systems, Sidney, Australia, 2001.

[11] Ibrahim, Junaid, Al-Abaji, and Almulhem. Trade-off
analysis of a new sign digit serial GF multiplier. Fifth
World Multi-conference on Systemics, Cybernetics and
Informatics SCI/ISAS, XIV(II):52-56. Orlando, July 2001.

[12] Orlando, and Paar. A scalable GF(p) elliptic curve processor
architecture for programmable hardware. Workshop on
Cryptographic Hardware and Embedded Systems, Paris,
France, May 2001.

	INTRODUCTION
	ELLIPTIC CURVES OVER GF(2k)
	GF(2k) ECC POINT OPERATIONS OVER PROJECTIVE COORDINATES
	PROPOSED ARCHITECTURE
	PERFORMANCE COMPARISONS
	Serial-Parallel Vs. Serial Multiplication
	Parallel Vs Sequential Implementation

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

