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ABSTRACT 
New elliptic curve cryptographic processor architecture is 
presented that result in considerable reduction in power 
consumption as well as giving a range of trade-off between speed 
and power consumption. This is achieved by exploiting the 
inherent parallelism that exist in elliptic curve point addition and 
doubling. Further trade-off is achieved by using digit serial-
parallel multipliers instead of the serial-serial multipliers used in 
conventional architectures. In effect, the new architecture exploits 
parallelism at the algorithm level as well as at the arithmetic 
element level. This parallelism can be exploited either to increase 
the speed of operation or to reduce power consumption by 
reducing the frequency of operation and hence the supply voltage. 

Categories and Subject Descriptors 
B.2.4 High-Speed Arithmetic (Algorithms, Cost/performance)
C.5.4 VLSI Systems 

General Terms 
Algorithms, Measurement, Performance, Design, Security. 

Keywords 
Elliptic Curve Cryptography, Projective Coordinate arithmetic, 
Parallel architecture, Crypto-Systems Power-time tradeoff. 

1. INTRODUCTION 
Elliptic Curve Cryptosystem (ECC) has received considerable 
attention from mathematicians around the world ever since the 
original proposal by N. Koblitz and V. Miller in 1985 [1-8]. ECC 
is based on the Discrete Logarithm problem over the points on an 
elliptic curve. To date, no significant breakthroughs have been 
made in determining weaknesses in the algorithm. The fact that 
the problem appears so difficult to crack means that key 
sizes can be reduced in size considerably, even exponentially 
[2,7], especially when compared to the key size used by other 
 

cryptosystems. This made ECC become a challenge to the RSA, 
one of the most popular public key methods. Although critics are 
still skeptical as to the reliability of this method, several 
encryption techniques have been developed recently using the 
properties of elliptic curve.  

Several cryptographic processors have been proposed in the 
literature recently [4,5,12]. The conventional approach used in the 
design of these processors is to adopt serial computations at both 
the algorithmic level by using a single multiplier, as well as at the 
arithmetic level by using a serial multiplier. The reason for 
sequential operation is that it leads low area for large word 
lengths that is needed for secure encryption (i.e. > 160 bits [8]).  
This classical approach could lead to the reduction of area, 
however, the constraint of current technology is not on gate count 
but power consumption. Reducing area is not necessarily the best 
approach to reducing power consumption.  

In this paper, a power-time flexible architecture is proposed that 
exploits the parallelism inherent at both the algorithmic level and 
the arithmetic level of ECC. This is contrary to existing designs 
[4,5,12], which opt for sequential operations to minimize area. It 
is strongly believed that these two aspects would lead to an even 
better trade-off between the time and power consumption. 

2. ELLIPTIC CURVES OVER GF(2k) 
It will be assumed that the reader is familiar with the arithmetic 
over elliptic curve. For good review the reader is referred to [8]. 
The elliptic curve equation over GF(2k) is: y2+xy = x3+ax2+b; 
where: x,y,a,b∈GF(2k) and b≠0. The addition of two different 
points on the elliptic curve is computed as shown below: 

(x1 , y1) + (x2 , y2) = (x3 , y3) ; where x1 ≠ x2 
λ = (y2 + y1)/(x2 + x1) 
x3 = λ2 + λ + x1 + x2 + a 
y3 = λ(x1 + x3) +  x3 + y1 

The addition of a point to itself (Doubling a point) on the elliptic 
curve is computed as shown below: 

(x1 , y1) + (x1 , y1) = (x3 , y3) ; where x1 ≠ 0
λ = x1

 + (y1)/(x1) 
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x3 = λ2 + λ + a
y3 = (x1)2 + (λ + 1) x3 

For elliptic curve cryptography several point addition and 
doubling operations are needed [2,6,8]. As seen from the 
equations above, any point operations over elliptic curve requires 
inversion, which is the most expensive operation over GF(2k) 
[1,8,12]. A common approach is to eliminate the need for 
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inversion by representing the elliptic curve points as projective 
coordinate points [1,4,6,8,12]. This results in replacing the 
inversion with several multiplication operations. This approach is 
also adopted in the processor proposed here. 

3. GF(2k) ECC POINT OPERATIONS 
OVER PROJECTIVE COORDINATES 
To eliminate the need for performing inversion in GF(2k), its 
coordinates (x,y) are projected to (X, Y, Z), where x=X/Z2, and 
y=Y/Z3. The projected elliptic curve equation becomes:  

Y2 + XYZ = X 3 + a X2Z2+ b Z6

The formulas for projective point addition of two elliptic curve 
points are as follows: 

P=(X1,Y1,Z1);Q=(X2,Y2,Z2);P+Q=(X3,Y3,Z3); where P ≠ ±Q 
(x, y) = (X/Z2,Y/Z3)  (X,Y,Z) 

λ1 = X1 Z2
2 2M 

λ2 = X2 Z1
2 2M 

λ3 = λ1 + λ2  
λ4 = Y1 Z2

3 2M 
λ5 = Y2 Z1

3 2M 
λ6 = λ4 + λ5  

λ7 = Z1 λ3 1M 
λ8 = λ6 X2 + λ7Y2 2M 
Z3 = λ7 Z2 1M 
λ9 = λ6  + Z3  

X3 = a Z3
2 + λ6 λ9 + λ3

3 5M 
Y3 = λ9 X3 + λ8 λ7

2 3M 
 --------- 
 20M 

The formulas for projective point doubling of P is given by: 
P = (X1,Y1,Z1); P+P = (X3,Y3,Z3) 

Z3 = X1 Z1
2 2M 

X3 = (X1 + bZ1
2)4 3M 

λ  = Z3 + X1
2 + Y1

 Z1 2M 
Y3 = X1

4 Z3 + λ X3 3M 
 ------ 
 10M 

The complete data flow graph for doubling a point is shown in 
Figure 1. It requires ten multiplications and four k-bit XOR 
operations. Figure 2 shows the data flow graph for adding two 
elliptic curve points. It requires twenty multipliers and seven k-bit 
XOR gates. From the binary method, any elliptic curve crypto 
processor that uses projective coordinates must implements the 
dataflow graphs in Figure 1 and 2 iteratively. 

4. PROPOSED ARCHITECTURE 
The architecture of the new processor is shown in Figure 3. The 
new  architecture has the following features: 
• It has three digit serial-parallel multipliers, 
• It can perform multiply-add operation in the same instruction, 
• It has a power management unit. 
The basic motivation behind the design of the proposed 
architecture is to exploit, as much as possible, the full parallelism 
that exists in the ECC. The trade-off between power and time can 
be achieved by reducing the clock frequency and hence 
consequently the source voltage.  It is well known that reducing 
the source power is the most effective means of reducing power 
consumption. In the proposed design here, this is exploited at the 
algorithmic level by using more than one multiplier. It is also 
exploited at the arithmetic element level by using serial-parallel 
multiplier such as those reported in [10,11] rather than the

conventional approach of using a serial multiplier. The benefits of 
parallel implementation of ECC on power are discussed in more 
details in section 7. 
The reason for using three multipliers only is as follows. From 
Figures 1 and 2, the corresponding critical path of each dataflow 
diagram is effectively of 5 GF(2k) multiplications and 7 GF(2k) 
multiplications, respectively. Here the time GF(2k) addition is 
ignored since it is negligible compared to multiplication. 
Therefore, the lower bound of the minimum computation time to 
perform one elliptic point operation in the calculation of nP is 12 
GF(2k) multiplications.  
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Figure 1. Doubling an elliptic curve point Data flow graph 
 
It can be easily seen from Figures 1 and 2 that performing three 
multiplications in parallel will meet this lower bound, and any 
further concurrent multiplications will not actually achieve any 
further reduction in the computation time. It should also be noted 
that the utilization of the three multipliers is very high. As can be 
seen from Figures 1 and 2, all the three multipliers will be used in 
eight out of the 12 steps, and in only two out of the 12 cycles 
where a single multiplier is used. 
The advantage of performing multiply-add operation in one 
instruction is that the dataflow in Figures 1 and 2 include many 
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computations where the addition of the output of two multipliers 
must be carried out. Such a feature will circumvent the need to 
store these values back in the registers and fetching them back 
again for their subsequent addition. This will save 
both in cycles and power. The purpose of the power management 
unit is to ensure that the power consumption of blocks that are not 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Data flow graph for adding two points 

 
used is kept to a minimum. This is achieved by clock-gating the 
registers of these blocks and ensuring that the logic in these 

blocks is static. There are two possible cases where blocks are not 
used. The first is when not all three multipliers are used, and the 
second is when the application wordlength is less than the 
wordlength of the processor.  
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Figure 3. The elliptic curve point operations hardware 
 

5. PERFORMANCE COMPARISONS 
5.1 Serial-Parallel Vs. Serial Multiplication 
In the crypto processor presented here we also propose to use 
GF(2k) digit serial multipliers such as those reported in [10,11].  
These digit serial-parallel structures lead to a much better trade-
off between power and time. Given N as the wordlength and M as 
the number of digits of size (N/M), Table 1 shows the comparison 
of serial-parallel multiplier with a serial one with the same digit 
size.  
 
Table 1. Comparison of digit-serial multiplier [16] vs. serial 
multiplier[4]. Co is the capacitance of a single-bit arithmetic.  
 

Type of 
Multiplier 

Normalized 
Area 

Time 
(Cycles) 

Freq Power = 
kf3C 

Serial  (N/M)2 M2 fo k(N2/M)2fo
3Co

Serial-Parallel  N2/M M fo/M k(N2/M4)fo
3Co

 
Since Power, P=fCVS

2 and assuming that VS=kfo, where fo is the 
maximum operating frequency for the given Vs, then P=kf3C. 
Given that serial-parallel computation requires M cycles 
compared to M2 cycles for the serial multiplier, the clock 
frequency of the serial parallel multiplier can be reduced by a 
factor of M for the same execution time. As can be clearly seen 
from Table 1, operating the serial-parallel multiplier at clock 
frequency of fo/M will lead to a reduction of power by a factor of 
M2. A further advantage of the proposed architecture is that it 
allows the designer the flexibility to operate at a higher clock 
frequency up to fo, but of course at the expense of higher power 
consumption. Clearly this demonstrates the superiority of using 
digit serial-parallel computation.  
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As with regard to the GF(2k) modulo adder, it is to be 
implemented in bit parallel fashion since the area is not 
significant compared to the multiplier and minimizing the 
addition time will reduce the overall multiply-add cycle time. 

5.2  Parallel Vs Sequential Implementation 
The power consumption of using three multipliers is compared 
with that of using a single multiplier and two multipliers in Figure 
4 for different execution times. Here time is computed as follows, 
time=No. of cycles x  fo. Also, the same assumptions made in 
Table 1 are used for Figure 4. 

 
Figure 4. Comparison of using different multipliers. 

 
In existing designs [4,5], a single multiplier is used to perform all 
the multiplications needed in Figures 1 and 2. The reason is that 
using more than one multiplier is perceived to be too expensive. 
However, as can be seen from Figure 4, the proposed architecture 
would lead to much lower power consumption than using one or 
two multipliers for the same execution time. 
It is also clear that using three multipliers gives a wider range of 
trade-off between power and speed.  In fact, the case of using two 
multipliers does not provide any advantage over the other two 
options. Finally, the proposed architecture can support a further 
reduction in power by switching to one multiplier based operation 
in cases where a further reduction in power is required. In this 
case the power management unit will simply ensure that the other 
two multipliers do not consume any dynamic power. 

6. CONCLUSION 
A novel GF(2k) elliptic curve crypto processor is proposed in this 
paper. The new architecture results in considerable reduction in 
power consumption as well as offering users a range of trade-off 
between power and time. The basic feature of the new 
architecture is that it exploits the inherent parallelism in the 
computation of doubling and adding points over an elliptic curve 
as well as in multiplication. Performance evaluation shows a 
considerable advantage over sequential implementation in terms 
of power consumption and time. 
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