
GF(2k) Elliptic Curve Cryptographic Processor Architecture Based
On Bit Level Pipelined Digit Serial Multiplication

Adnan Abdul-Aziz Gutub
Computer Engineering Department, King Fahd University of Petroleum and Minerals

Dhahran 31261, SAUDI ARABIA
Email: gutub@ kfupm.edu.sa

Abstract
New processor architecture for elliptic curve encryption is
proposed in this paper. The architecture exploits projec-
tive coordinates to convert GF(2k) division needed in ellip-
tic point operations into several multiplication steps. The
processor has three GF(2k) multipliers implemented using
bit-level pipelined digit serial computation. It is shown
that this results in a faster operation than using fully par-
allel multipliers with the added advantage of requiring less
area. The proposed architecture is a serious contender for
implementing data security systems based on elliptic curve
cryptography.

Keywords
Architectures, Elliptic Curve Cryptography, Security proc-
essors, Mapping algorithms to hardware.

INTRODUCTION
In 1985 Niel Koblitz and Victor Miller proposed the Ellip-
tic Curve Cryptosystem (ECC) [1,2,3,4,5,6,7,8,9], a
method based on the Discrete Logarithm problem over the
points on an elliptic curve. Since that time, ECC has re-
ceived considerable attention from mathematicians around
the world, and no significant breakthroughs have been
made in determining weaknesses in the algorithm. Al-
though critics are still skeptical as to the reliability of this
method, several encryption techniques have been devel-
oped recently using these properties. The fact that the prob-
lem appears so difficult to crack means that key sizes can
be reduced in size considerably, even exponentially [2,5,8],
especially when compared to the key size used by other
cryptosystems. This made ECC become a challenge to the
RSA, one of the most popular public key methods known.
ECC is showing to offer equal security to RSA but with
much smaller key size [2].

Several crypto processors have been proposed in the litera-
ture recently [4,7,17]. A common feature of these proces-
sors is that they eliminate the need for an inversion circuit.
It is well known that adding two points over an elliptic
curve would require a division operation, and hence an
inversion. Calculating the inverse is the most expensive
operation over GF(2k) [18,19]. To eliminate the need for
performing inversion in GF(2k), designs replace the inver-

sion by several multiplication operations by representing
the elliptic curve points as projective coordinate points
[1,4,7,9,17]. This approach is also adopted in the processor
proposed in this paper.

The different crypto-processor designs differ mainly in the
architecture of the basic GF(2k) multiplier. Clearly it is
impractical to use bit-parallel multipliers for large word
length, i.e. k > 512.

In [4] a ndxmd digit multiplier is used to implement the mul-
tiplication over GF(2k), where k > nd and md. While in [7] a
digit serial multiplier was adopted. A similar approach was
used in the elliptic curve processor over GF(qm) in [17].
There are two basic drawbacks with the existing proces-
sors. The first is that digit serial multiplication is not as
efficient as sub-digit pipelined digit serial computation
[15,16]. The second is that none of the existing designs
exploit the inherent parallelism in the computation of the
elliptic curve point operations. In this paper a new elliptic
curve crypto processor architecture is proposed that takes
an advantage of both of these aspects. It is strongly be-
lieved that these two aspects would lead to an even better
trade off between the area and time of computation.

ENCRYPTION AND DECRYPTION
It will be assumed that the reader is familiar with the arith-
metic over elliptic curve. For a good review the reader is
referred to [9]. There are many ways to apply elliptic
curves for encryption/decryption purposes. In it most basic
form, users randomly chose a base point (x, y), lying on the
elliptic curve E. The plaintext (the original message to be
encrypted) is coded into an elliptic curve point (xm, ym).
Each user selects a private key ‘n’ and compute his public
key P = n(x, y). For example, user A’s private key is nA and
his public key is PA = nA(x, y).

For any one to encrypt and send the message point (xm, ym)
to user A, he/she needs to choose a random integer k and
generate the cipher text Cm = {k(x, y) , (xm, ym)+ kPA }. The
cipher text pair of points uses A’s public key, where only
user A can decrypt the plaintext using his private key.

To decrypt the cipher text Cm, the first point in the pair of
Cm, k(x, y), is multiplied by A’s private key to get the
point: nA (k(x, y)). Then this point is subtracted from the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by King Fahd University of Petroleum and Minerals

https://core.ac.uk/display/266089259?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

second point of Cm, the result will be the plaintext point
(xm, ym). The complete decryption operations are:
((xm,ym)+kPA) - nA(k(x,y))
= (xm,ym)+k(nA(x,y))-nA(k(x,y))
= (xm,ym)

The most time consuming operation in the encryption and
decryption procedure is finding the multiples of the base
point, (x,y). The algorithm used to implement this is dis-
cussed in the next section.

POINT OPERATION ALGORITHM
The ECC algorithm used for calculating nP from P is the
binary method, since it is known to be efficient and practi-
cal to implement in hardware [2,5,7,9,10]. This binary
method algorithm is shown below:

Define k: number of bits in n and ni: the ith bit of n
Input: P (a point on the elliptic curve).
Output: Q = nP (another point on the elliptic curve).

1. if nk-1 = 1, then Q:=P else Q:=0;
2. for i = k-2 down to 0;
3. { Q := Q+Q ;
4. if ni = 1 then Q:= Q+P ; }
5. return Q;

Basically, the binary method algorithm scans the binary
bits of n and doubles the point Q k-times. Whenever, a par-
ticular bit of n is found to be one, an extra operation is
needed. This extra operation is Q+P.

As can be seen from the description of the above binary
algorithm, adding two elliptic curve points and doubling a
point are the most basic operations in each iteration. As
mentioned earlier, adding two points over elliptic curve
requires inversion [9]. As in the crypto processor in [6],
inversion is eliminated using projective coordinates as dis-
cussed in the next section.

POINT OPERATIONS OVER PROJECTIVE
COORDINATES
Elimination of inversion is achieved by projecting the co-
ordinates (x, y) into (X, Y, Z), where x=X/Z2, and y=Y/Z3.
The projected elliptic curve equation is in [9]. The
complete data flow graph for doubling a point is shown in
Figure 1. It is made of ten multipliers and four k-bit XOR
gates. Figure 2 shows the data flow graph for adding two
elliptic curve points. The hardware of this design if
implemented as shown in Figure 2 would need twenty
multipliers and seven k-bit XOR gates.

Any elliptic curve crypto processor that uses projective
coordinates must implements the dataflow graphs in Figure
1 and 2 iteratively.

Figure 1. Data flow graph for doubling an elliptic curve

point in projective coordinate

PROPOSED CRYPTO PROCESSOR
ARCHITECTURE
The architecture of the new processor is shown in Figure 3.
Unlike existing designs which use a single multiplier, the
new architecture has three multipliers. The reason for using
more than one multiplier is discussed fully in section 6.
However, the reason for using no more than three multi-
plier is now explained. As can be seen from Figures 1 and
2, the corresponding critical path each dataflow diagram is
effectively of 5 GF(2k) multiplications and of 7 GF(2k)
multiplications, respectively. Here the time of GF(2k) addi-
tion is ignored since it negligible compared to multiplica-
tion. Therefore, the lower bound of the minimum computa-
tion time to perform one elliptic point operation in the cal-
culation of nP is 12 GF(2k) multiplications. It can be easily
seen from Figures 1 and 2 that performing three multiplica-
tions in parallel will meet this lower bound. Furthermore
the utilization of the three multipliers is very high. As can
be seen from Figures 1 and 2, all the three multipliers will
be used in eight out of the 12 steps, and in only two out of
the 12 cycles where a single multiplier is used.

X1 X1

 X1
2

Z1 Y1

Y1Z1

Z1 Z1

 Z1
2

b

 bZ1
2

X1

X1Z1
2

Z3

X1+bZ1
2

X3

GF(2k)

xy

x y

x+y

x ⊕ y

x y

xy mod f(x)

X1

(X1+bZ1
2)2

(X1+bZ1
2)4

Y1Z1+ X1
2

Y1Z1+ X1
2+Z3

λ

 X1
4

 Z3X1
4

Z3

 λX3

 Z3X1
4+λX3

Y3

Figure 2. Data flow graph for adding two elliptic curve

points in projective coordinates

In the crypto processor presented here we also propose to
use bit-level pipelined GF(2k) digit serial multipliers re-
ported in [15,16]. It is significant to point out that these
multipliers are in fact faster and use less area than their un-
pipelined bit-parallel counterparts [15,16]. Furthermore,
sub-digit pipelining of digit serial computation leads to a
much better performance than the conventional digit serial
structures as shown in Table 1 [15].

Bit-level digit serial computation is more suitable for the
elliptic curve crypto algorithm discussed above since the
computation of elliptic point doubling, addition and the
algorithm of computing multiples of the base point is such
that the multiplication of one stage must be completed be-
fore starting the multiplication of the subsequent stage.
Therefore even if a pipelined bit-parallel multipliers is
used, the throughput of such a multiplier can not be ex-
ploited since the next multiplication operation can not
commence until the multiplication operations in the previ-
ous stage has completed. As with regard to the GF(2k)
modulo adder, it is to be implemented in bit parallel fashion
since the area is not significant compared to the multiplier
and minimizing the addition time will reduce the overall
multiply-add cycle time.

Table 1. Comparison of the Area and Time of the pipe-
lined digit-serial GF(2k) multiplier in [16] for different

number of sub-digit pipelining levels, K.

K 1 2 4 8
Area: AT(K)/AT(1) 1 1.3 1.4 1.9
Time: T(K)/T(1) 1 2 4 8

COMPARISON WITH EXISTING DESIGN
In existing designs, a single multiplier is used to perform
all the multiplications needed in Figures 1 and 2. The rea-
son is that using more than one single multiplier is per-
ceived to be too expensive. However, using three multipli-
ers will lead to a better AT2.

Observe Table 2, our proposed design is compared with an
existing design demonstrated in [6]. The number of regis-
ters needed in the proposed hardware is not that much bet-
ter than the existing one. However, the AT2 of our design is
the real achievement.

Table 2. AT2 comparison between the proposed design

and the existing one.

 Number of

Multipliers
(A)

Average
Number

of Cycles
(T)

Number
of Reg-
isters

AT2

Existing 1 20 12 400
Proposed 3 7.5 11 168.7

Z2 Z2

 Z2
2

 Z2
3

X1

X1Z2
2

λ1

Z1 Z1

 Z1
2

Y2Z1
3

X2

X2Z1
2

λ2

λ1+λ2

λ3 Y1

Y1Z2
3

λ4

Z3

Y2

Y2Z1

λ5

Z1λ3

λ4+λ5

λ6

λ6

Z2λ7

λ

λ7Y2
 X2λ6

X2λ6+λ7Y2

λ9

Z1

λ7

X2

Y2

 λ8

Z2

Z3+λ6

 Z3
2

 a Z3
2

a
λ6λ9 λ3

2

λ3
2

λ3 λ3

λ3
3

λ3
3

aZ3
2+λ6λ9+λ3

3

 X3

λ3
3

λ7
2

λ7
2

λ7 λ7

λ7
2λ8

λ7
2λ8

X3λ9

λ9

X3λ9+λ8λ7
2

 Y3

CONCLUSION
A new GF(2k) elliptic curve crypto processor is proposed in
this paper. It does not need a GF(2k) inverter, because the
inverse operation is converted into successive multiplica-
tion steps using projective coordinates. It exploits the in-
herent parallelism in the computation of doubling and add-
ing points over an elliptic curve as well as the sub-digit
pipelined digit serial computation to achieve a better trade-
off between area and time.

Figure 3. The elliptic curve point operations hardware

ACKNOWLEDGMENT
The Author would like to thank Professor Mohammad K.
Ibrahim for his valuable suggestions and comments given
to improve this work. Also we show appreciation to King
Fahd University of Petroleum and Minerals for its support
of this research.

REFERENCES
[1] Miyaji A., “Elliptic Curves over FP Suitable for

Cryptosystems”, Advances in cryptology-
AUSCRUPT’92, Australia, December 1992.

[2] Stallings, W. “Cryptography and Network Security:
Principles and Practice”, Second Edition, Prentice
Hall Inc., New Jersey, 1999.

[3] Chung, Sim, and Lee, “Fast Implementation of Ellip-
tic Curve Defined over GF(pm) on CalmRISC with
MAC2424 Coprocessor”, Workshop on Crypto-
graphic Hardware and Embedded Systems, CHES
2000, Massachusetts, August 2000.

[4] Okada, Torii, Itoh, and Takenaka, “Implementation of
Elliptic Curve Cryptographic Coprocessor over
GF(2m) on an FPGA”, Workshop on Cryptographic
Hardware and Embedded Systems, CHES 2000, Mas-
sachusetts, August 2000.

[5] Crutchley, D. A., “Cryptography And Elliptic
Curves”, Master Thesis under Supervision of Prof.
Gareth Jones, submitted to the Faculty of Mathemat-
ics at University of Southampton, England, May
1999.

[6] Orlando, and Paar, “A High-Performance Recon-
figurable Elliptic Curve Processor for GF(2m)”, Work-
shop on Cryptographic Hardware and Embedded
Systems, CHES 2000, Massachusetts, August 2000.

[7] Stinson, D. R., “Cryptography: Theory and Practice”,
CRC Press, Boca Raton, Florida, 1995.

[8] Paar, Fleischmann, and Soria-Rodriguez, “Fast Arith-
metic for Public-Key Algorithms in Galois Fields
with Composite Exponents”, IEEE Transactions on
Computers, Vol. 48, No. 10, October 1999.

[9] Blake, Seroussi, and Smart, “Elliptic Curves in Cryp-
tography ”, Cambridge University Press: New York,
1999.

[10] Hankerson, Hernandez, and Menezes, “Software Im-
plementation of Elliptic Curve Cryptography Over
Binary Fields”, Workshop on Cryptographic Hard-
ware and Embedded Systems, CHES 2000, Massachu-
setts, August 2000.

[11] G. A. Orton, M. P. Roy, P. A. Scott, L. E. Peppard,
and S. E. Tavares. “VLSI implementation of public-
key encryption algorithms”, Advances in Cryptology -
- CRYPTO '86, volume 263 of Lecture Notes in Com-
puter Science, pages 277-301, 11-15 August 1986.
Springer-Verlag, 1987.

[12] Scott, Norman R., “Computer Number Systems and
Arithmetic”, Prentice-Hall Inc., New Jersey, 1985.

[13] Tocci, R. J. and Widmer, N. S., “Digital Systems:
Principles and Applications”, Eighth Edition, Pren-
tice-Hall Inc., New Jersey, 2001.

[14] Ercegovac, M. D., Lang, T., and Moreno, J. H., “In-
troduction to Digital System”, John Wiley & Sons,
Inc., New York, 1999.

[15] Ibrahim, M.K. and Almulhem, A., “Bit-Level Pipe-
lined Digit Serial GF(2m) Multiplier”, IEEE Interna-
tional Symposium on Circuits and Systems, Sidney
Australia, 2001.

[16] Ibrahim, M.K., Junaid, A.K., Al-Abaji, R. H., and
Almulhem, A., “Trade-off analysis of a new sign digit
serial GF multiplier”, Fifth World Multi-conference
on Systemics, Cybernetics and Informatics SCI / ISAS
2001. Volume XIV, Part II, pages 52-56. July 2001,
Orlando, 2001.

[17] Orlando, and Paar, “A scalable GF(p) elliptic curve
processor architecture for programmable hardware”,
Cryptographic Hardware and Embedded Systems,
CHES 2001, May 14-16, 2001, Paris, France.

[18] Gutub, Adnan Abdul-Aziz, Tenca,A., and Koc,C.,
“Scalable VLSI architecture for GF(p) Montgomery
modular inverse computation”, IEEE Computer Soci-
ety Annual Symposium on VLSI, pages 53--58, Pitts-
burgh, Pennsylvania, April 25-26, 2002.

[19] Gutub, Adnan Abdul-Aziz, Tenca,A.F., and Koc,C.,
“Scalable and Unified Hardware to Compute Mont-
gomery Inverse in GF(p) and GF(2^n)”, Crypto-
graphic Hardware and Embedded Systems - CHES
2002, pages 485-500, August 13-15, 2002.

