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Abstract 
New processor architecture for elliptic curve encryption is 
proposed in this paper. The architecture exploits projec-
tive coordinates to convert GF(2k) division needed in ellip-
tic point operations into several multiplication steps. The 
processor has three GF(2k) multipliers implemented using 
bit-level pipelined digit serial computation. It is shown 
that this results in a faster operation than using fully par-
allel multipliers with the added advantage of requiring less 
area. The proposed architecture is a serious contender for 
implementing data security systems based on elliptic curve 
cryptography.  
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INTRODUCTION 
In 1985 Niel Koblitz and Victor Miller proposed the Ellip-
tic Curve Cryptosystem (ECC) [1,2,3,4,5,6,7,8,9], a 
method based on the Discrete Logarithm problem over the 
points on an elliptic curve. Since that time, ECC has re-
ceived considerable attention from mathematicians around 
the world, and no significant breakthroughs have been 
made in determining weaknesses in the algorithm. Al-
though critics are still skeptical as to the reliability of this 
method, several encryption techniques have been devel-
oped recently using these properties. The fact that the prob-
lem appears so difficult to crack means that key sizes can 
be reduced in size considerably, even exponentially [2,5,8], 
especially when compared to the key size used by other 
cryptosystems. This made ECC become a challenge to the 
RSA, one of the most popular public key methods known. 
ECC is showing to offer equal security to RSA but with 
much smaller key size [2].  
 
Several crypto processors have been proposed in the litera-
ture recently [4,7,17]. A common feature of these proces-
sors is that they eliminate the need for an inversion circuit. 
It is well known that adding two points over an elliptic 
curve would require a division operation, and hence an 
inversion. Calculating the inverse is the most expensive 
operation over GF(2k) [18,19]. To eliminate the need for 
performing inversion in GF(2k), designs replace the inver-

sion by several multiplication operations by representing 
the elliptic curve points as projective coordinate points 
[1,4,7,9,17]. This approach is also adopted in the processor 
proposed in this paper. 
 
The different crypto-processor designs differ mainly in the 
architecture of the basic GF(2k) multiplier. Clearly it is 
impractical to use bit-parallel multipliers for large word 
length, i.e. k > 512.  
 
In [4] a ndxmd digit multiplier is used to implement the mul-
tiplication over GF(2k), where k > nd and md. While in [7] a 
digit serial multiplier was adopted. A similar approach was 
used in the elliptic curve processor over GF(qm) in [17].  
There are two basic drawbacks with the existing proces-
sors. The first is that digit serial multiplication is not as 
efficient as sub-digit pipelined digit serial computation 
[15,16]. The second is that none of the existing designs 
exploit the inherent parallelism in the computation of the 
elliptic curve point operations. In this paper a new elliptic 
curve crypto processor architecture is proposed that takes 
an advantage of both of these aspects. It is strongly be-
lieved that these two aspects would lead to an even better 
trade off between the area and time of computation. 
 

ENCRYPTION AND DECRYPTION 
It will be assumed that the reader is familiar with the arith-
metic over elliptic curve. For a good review the reader is 
referred to [9]. There are many ways to apply elliptic 
curves for encryption/decryption purposes. In it most basic 
form, users randomly chose a base point (x, y), lying on the 
elliptic curve E. The plaintext (the original message to be 
encrypted) is coded into an elliptic curve point (xm, ym). 
Each user selects a private key ‘n’ and compute his public 
key P = n(x, y). For example, user A’s private key is nA and 
his public key is PA = nA(x, y). 
 
For any one to encrypt and send the message point (xm, ym) 
to user A, he/she needs to choose a random integer k and 
generate the cipher text Cm = {k(x, y) , (xm, ym)+ kPA }. The 
cipher text pair of points uses A’s public key, where only 
user A can decrypt the plaintext using his private key. 
 
To decrypt the cipher text Cm, the first point in the pair of    
Cm, k(x,  y), is multiplied by A’s private key to get the 
point:       nA (k(x, y)). Then this point is subtracted from the 
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second point of Cm, the result will be the plaintext point 
(xm, ym). The complete decryption  operations are:  
((xm,ym)+kPA) - nA(k(x,y)) 
= (xm,ym)+k(nA(x,y))-nA(k(x,y))  
= (xm,ym) 
 
The most time consuming operation in the encryption and 
decryption procedure is finding the multiples of the base        
point, (x,y). The algorithm used to implement this is dis-
cussed in the next section. 
 

POINT OPERATION ALGORITHM 
The ECC algorithm used for calculating nP from P is the 
binary method, since it is known to be efficient and practi-
cal to implement in hardware [2,5,7,9,10]. This binary 
method algorithm is shown below: 
 
Define k: number of bits in n and  ni: the ith bit of n  
Input:  P (a point on the elliptic curve). 
Output:  Q = nP (another point on the elliptic curve). 
 
1.  if nk-1 = 1, then Q:=P else Q:=0; 
2.  for i = k-2 down to 0; 
3.   { Q := Q+Q ; 
4.      if ni = 1 then Q:= Q+P ; } 
5.  return Q; 
 
Basically, the binary method algorithm scans the binary 
bits of n and doubles the point Q k-times. Whenever, a par-
ticular bit of n is found to be one, an extra operation is 
needed. This extra operation is Q+P.  
 
As can be seen from the description of the above binary 
algorithm, adding two elliptic curve points and doubling a 
point are the most basic operations in each iteration. As 
mentioned earlier, adding two points over elliptic curve 
requires inversion [9]. As in the crypto processor in [6], 
inversion is eliminated using projective coordinates as dis-
cussed in the next section. 
 

POINT OPERATIONS OVER PROJECTIVE 
COORDINATES  
Elimination of inversion is achieved by projecting the co-
ordinates (x, y) into (X, Y, Z), where x=X/Z2, and y=Y/Z3. 
The projected elliptic curve equation is in [9].   The 
complete data flow graph for doubling a point is shown in 
Figure 1. It is made of ten multipliers and four k-bit XOR 
gates. Figure 2 shows the data flow graph for adding two 
elliptic curve points. The hardware of this design if 
implemented as shown in Figure 2 would need twenty 
multipliers and seven k-bit XOR gates.  
 
Any elliptic curve crypto processor that uses projective 
coordinates must implements the dataflow graphs in Figure 
1 and 2 iteratively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Data flow graph for doubling an elliptic curve 

point in projective coordinate 
 

PROPOSED CRYPTO PROCESSOR 
ARCHITECTURE 
The architecture of the new processor is shown in Figure 3. 
Unlike existing designs which use a single multiplier, the 
new architecture has three multipliers. The reason for using 
more than one multiplier is discussed fully in section 6. 
However, the reason for using no more than three multi-
plier is now explained. As can be seen from Figures 1 and 
2, the corresponding critical path each dataflow diagram is 
effectively of 5 GF(2k) multiplications and of 7 GF(2k) 
multiplications, respectively. Here the time of GF(2k) addi-
tion is ignored since it negligible compared to multiplica-
tion. Therefore, the lower bound of the minimum computa-
tion time to perform one elliptic point operation in the cal-
culation of nP is 12 GF(2k) multiplications. It can be easily 
seen from Figures 1 and 2 that performing three multiplica-
tions in parallel will meet this lower bound.  Furthermore 
the utilization of the three multipliers is very high. As can 
be seen from Figures 1 and 2, all the three multipliers will 
be used in eight out of the 12 steps, and in only two out of 
the 12 cycles where a single multiplier is used. 
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Figure 2. Data flow graph for adding two elliptic curve 

points in projective coordinates 

In the crypto processor presented here we also propose to 
use bit-level pipelined GF(2k) digit serial multipliers re-
ported in [15,16].  It is significant to point out that these 
multipliers are in fact faster and use less area than their un-
pipelined bit-parallel counterparts [15,16]. Furthermore, 
sub-digit pipelining of digit serial computation leads to a 
much better performance than the conventional digit serial 
structures as shown in Table 1 [15].  
 
Bit-level digit serial computation is more suitable for the 
elliptic curve crypto algorithm discussed above since the 
computation of elliptic point doubling, addition and the 
algorithm of computing multiples of the base point is such 
that the multiplication of one stage must be completed be-
fore starting the multiplication of the subsequent stage. 
Therefore  even if a pipelined bit-parallel multipliers is 
used, the throughput of such a multiplier can not be ex-
ploited since the next multiplication operation can not 
commence until the multiplication operations in the previ-
ous stage has completed. As with regard to the GF(2k) 
modulo adder, it is to be implemented in bit parallel fashion 
since the area is not significant compared to the multiplier 
and minimizing the addition time will reduce the overall 
multiply-add cycle time.  
 
Table 1. Comparison of the Area and Time of the pipe-
lined digit-serial GF(2k) multiplier in [16] for different 

number of sub-digit pipelining levels, K. 
 
K 1 2 4 8 
Area: AT(K)/AT(1) 1 1.3 1.4 1.9 
Time: T(K)/T(1) 1 2 4 8 

 

COMPARISON WITH EXISTING DESIGN 
In existing designs, a single multiplier is used to perform 
all the multiplications needed in Figures 1 and 2. The rea-
son is that using more than one single multiplier is per-
ceived to be too expensive. However, using three multipli-
ers will lead to a better AT2.   
 
Observe Table 2, our proposed design is compared with an 
existing design demonstrated in [6]. The number of regis-
ters needed in the proposed hardware is not that much bet-
ter than the existing one. However, the AT2 of our design is 
the real achievement. 
 
Table 2. AT2 comparison between the proposed design 

and the existing one. 
 
 Number of 

Multipliers 
(A) 

Average 
Number 

of Cycles 
(T) 

Number 
of Reg-
isters 

 
AT2 

Existing  1 20 12 400 
Proposed 3 7.5 11 168.7 
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CONCLUSION 
A new GF(2k) elliptic curve crypto processor is proposed in 
this paper. It does not need a GF(2k) inverter, because the 
inverse operation is converted into successive multiplica-
tion steps using projective coordinates. It exploits the in-
herent parallelism in the computation of doubling and add-
ing points over an elliptic curve as well as the sub-digit 
pipelined digit serial computation to achieve a better trade-
off between area and time. 
 

 
 

Figure 3. The elliptic curve point operations hardware 
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