
 

 
PARALLELIZING GF(P) ELLIPTIC CURVE CRYPTOGRAPHY 

COMPUTATIONS FOR SECURITY AND SPEED 
 

Adnan Abdul-Aziz Gutub, Mohammad K. Ibrahim*, Turki F. Al-Somani,  
 

Computer Engineering Department, King Fahd University of Petroleum and Minerals 
Dhahran 31261, Saudi Arabia 
Email: gutub@kfupm.edu.sa 

 

Abstract:  
 The elliptic curve cryptography can be 
observed as two levels of computations, upper 
scalar multiplication level and lower point 
operations level. We combine the inherited 
parallelism in both levels to reduce the delay 
and improve security against the simple power 
attack. The best security and speed performance 
is achieved when parallelizing the computation 
to eight parallel multiplication operations. This 
strategy is worth considering since it shows 
very attractive performance conclusions. 
 
Keywords: ECC, GF(p) arithmetic, Projective 
coordinate systems, parallel elliptic curve point 
operations. 
 
1. Introduction:  
 In recent years, Elliptic Curve 
Cryptosystem (ECC), which was originally 
proposed by Niel Koblitz and Victor Miller in 
1985 [1-9], is seen as a serious alternative to 
RSA since it requires a much shorter world 
length. ECC with a key size of 128~256 bits is 
shown to offer equal security to that of RSA 
with key size of 1~2Kbits [2]. The strength of 
ECC is that it is based on the discrete logarithm 
problem over points on an elliptic curve. To 
date, no significant breakthroughs have been 
made in determining weaknesses in the ECC 
algorithm. The fact that the problem appears so 
difficult to crack means that key sizes can be 
reduced in size considerably, even 
exponentially [2,5,8]. This advantage of ECC is 
being recognized recently where it is being 
incorporated in many standards. In 1999, the 
Elliptic Curve Digital Signature Algorithm was 
adopted by ANSI, and it is now included in the 
ISO/IEC 15946 draft standards. Other standards 
that include Elliptic Curves as part of their 
specifications are the IEEE P1363 
(www.stdsbbs.ieee.org), Internet Engineering 
Task Force (www.ietf.cnri.reston.va.us), and 
the ATM Forum.  
____________________ 
 
* Professor M.K. Ibrahim is now at the School of 
Engineering and Technology, De Montfort University, 
Leicester LE1 9BH, UK, Email: ibrahim@dmu.ac.uk 

 
Several GF(p) ECC processors have been 

proposed in the literature recently [15,19,20,22-
25]. The advantage of using dedicated 
processors for encryption and decryption is that 
it results in a considerable higher speed when 
compared to a software solution on a general-
purpose programmable processor. It also 
provides higher security than software solutions 
[16], which is shown increased by proper 
parallelization.  

It is well known that adding two points 
over an elliptic curve would require an 
inversion operation, which is the most 
expensive operation over GF(p) [16,17]. Many 
proposed processors are based on representing 
the elliptic curve points as projective coordinate 
points in order to eliminate division, hence 
inversion, operations [4,6,15-17,22,24,25]. 
There are many projective coordinates systems 
to choose from [1,9]. Our selection is the 
projection of (x,y) to (X/Z,Y/Z), which is proven 
in [19] and [20] to give the best performance 
based on the hardware architecture of four 
parallel multipliers.  

In this letter, we assume applying the 
algorithms using the hardware strategy of [19] 
and its (X/Z,Y/Z) elliptic curve (EC) projection 
algorithm. However, we exploit the 
parallelization and its affect on security 
considering the upper level of ECC 
computation, i.e. the binary method to calculate 
the multiples of an EC point, which is 
introduced next. 

 
2. Point Operation Algorithm:  
 It will be assumed that the reader is familiar 
with the arithmetic over elliptic curves. For a 
good review the reader is referred to [9]. In 
brief, the basic operation for ECC is Scalar 
multiplication, which is the algorithm used for 
calculating EC-point: kP from EC-point: P. 
Scalar multiplication in the group of points of 
an elliptic curve is the analogous of 
exponentiation in the multiplicative group of 
integers modulo a fixed integer. The 
computation of kP can be done with the 
straightforward double-and-add method, since it 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by King Fahd University of Petroleum and Minerals

https://core.ac.uk/display/266089153?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

is known to be efficient and practical to 
implement in hardware [2,5,7,9,10]. This 
method is based on the binary representation of 
k = (kn-1,…,k0) where kn-1 is the most significant 
bit of k. In fact, several scalar multiplication 
methods have been proposed in the literature. A 
good survey is presented by Gordon in [18].  

Two scalar multiplication forms of binary 
methods are considered. Both techniques have 
identical interface and take similar number of 
iterations as summarized below: 

 
Define:  n: number of bits in k;  ki: the ith bit of k  
Input:  k and P (a point on the elliptic curve). 
Output:  Q=kP (another point on the curve). 
 
Left to Right Algorithm (LtR-Alg) 
1.  if kk-1 = 1, then Q:=P else Q:=0; 
2.  for i = n-2 down to 0; 
3.   { Q := Q+Q ; 
4.      if ki = 1 then Q:= Q+P ; } 
5.  return Q; 
 
Right to Left Algorithm (RtL-Alg) 
1.  Q:=0; 
2.  for i = 0 to n-1; 
3.   if ki = 1 then Q:= Q+P ; 
4.  P := P+P ; 
5.  return Q; 
 

The basic operations in all scalar 
multiplication algorithms are point addition and 
point doubling over an elliptic curve. Both 
binary methods need to double a point in all n 
iterations, where n is the number of binary bits 
of k. The algorithms scan the bits of k; 
whenever, a particular bit of k is found to be 
one, an extra operation is needed. This extra 
operation is EC point addition (Q+P).  The left 
to right algorithm (LtR-Alg) has received more 
attention due to its efficiency for sequential 
computation. The problem is that it becomes 
open to Simple Power Attacks (SPA) that will 
reduce the security of ECC. However, the right 
to left algorithm (RtL-Alg) is more secure and 
suitable for our parallel execution since the 
doubling can be carried out in parallel with the 
point addition [5,8] as will be clarified in the 
following section. 

 
 

3. Simple Power Attacks:  
 Now, here we show that monitoring power 
consumption during the computation of kP 
knowing P may enable to recover k. Power 
consumption enables to visually identify large 
features, such as, the main iteration loop in the 
binary algorithms LtR-Alg and RtL-Alg. Power 
consumption analysis may also enable to 
distinguish between instructions being 
executed, i.e., it is possible to distinguish 
between point doubling and point addition in 

the algorithms, thus revealing the bits of the 
exponent k. 

Coron in [10] showed that for algorithms 
LtR-Alg and RtL-Alg, in order to be unaffected 
by SPA, the instructions performed during a 
cryptographic algorithm should not depend on 
the data being processed. There should not be 
any branch instructions conditioned by the data. 
This could be done by performing the addition 
and doubling each time and then at the end of 
the loop decide either to accept the result or to 
eliminate the addition part according to ki  
value. In this work, we adopt this idea by using 
RtL-Alg. However, we parallelize the EC point 
addition and doubling to gain the best speed, 
which will also insure the system immunity 
against SPA. 

The next section describes EC projective 
coordinates point operations.  Since, as 
mentioned earlier, point operations (EC point 
doubling and adding) requires complex 
inversion [16,17], it can almost be eliminated 
using projective coordinates[1,9], as clarified in 
the following section. 

 
4. Projective Coordinate Procedures:    

 For elliptic curve defined over GF(p), 
two different forms of formulas are found [1,9] 
for point addition and doubling. One form 
projections (x,y)=(X/Z2, Y/Z3) [9], while the 
second projects (x,y) = (X/Z,Y/Z)  [1]. The 
projection of (x,y) = (X/Z,Y/Z)  is found better 
for speed, especially when four parallel 
multipliers are adopted [19,20]. The dataflow 
graphs for EC point adding is shown in Fig.1. 
Each EC point addition operation needs four 
steps with full utilization of all multipliers. 
Similarly, the EC point doubling is shown in 
Fig. 2, where it needs three steps for each 
doubling operation.  

 
5. Vulnerable Parallelization:  

 As stated previously, using the right to 
left binary algorithm (RtL-Alg), point doubling 
and point additions can be carried out in 
parallel. However, as will be shown in this 
section, higher degree of parallelism can be 
achieved when the concurrency within each 
doubling and point additions operations is 
exploited. To achieve this, the dataflow graphs 
of point addition and doubling operations is to 
be revisited. 

Observe the dataflow graphs of Fig. 1 and 
Fig. 2, when four multipliers are used to 
perform RtL-Alg, the total time for each RtL- 
Alg computation is approximated: Ttotal  = 3 n + 
4 x, where n  is the number of binary bits of k, 
and x is the number of bits in k with values one. 
Note that only the GF(p) multiplication time is 
considered while the addition and subtraction 
 



 

    

time is ignored as clarified in [19,20]. We can 
form the normalized computation time for a 
single bit per one RtL-Alg operation as: T = 3  
+  4 τ, where τ  is the ratio x/n and has a value  
0 < τ < 1.  
For the worst case scenario: τ = 1  T = 7. For 
the average case assuming half the bits of k are 
ones:  τ = 0.5  T = 5. Since the time 
depends on the data factor τ, someone can study 
the time and power of each iteration within 
RtL-Alg and extract the value k which is 
making the system not very secure. 

Even if two multipliers are used instead of 
four, to compromise in area as suggested in 
[20], the critical paths will be affected and the 
normalized computation time for a single bit 
per one multiplication is going to be: T=6+8τ, 
This two multipliers hardware worst case 
scenario will be: τ = 1  T = 14, and the 
average case:  τ = 0.5  T = 10. Making the 
design with two multipliers and running the 
procedures normally will just double the time, 
which is a usual time area trade-off. However, it 
is making the security worse because the factor 
of data dependency τ increased allowing the 
SPA to be simpler. 
 
6. Secure Parallelization:  
 The complete security benefit of the RtL-
Alg is obtained if the data dependency factor τ 
is omitted. One way to perform this is to use the 
four multipliers design of [20] but dedicating 

two multipliers for each EC operation, i.e. two 
multipliers for point addition and two for 
doubling. 
Both operations are performed in parallel, then, 
the ki bit is checked to control the use of the EC 
point addition result. The normalized 
computation time for a single bit per one RtL-
Alg operation will be: T = 8; since the point 
addition operation will dominate the timing. 

To gain the full benefit of parallelization 
speed and security, two hardware designs with 
four multipliers each are used in parallel, i.e. an 
eight multiplier design. The critical path in this 
hardware will be dominated be EC point 
addition dataflow graph. The normalized 
computation time for a single bit per one RtL-
Alg operation will be: T = 4, which is fixed and 
not affected by the k value. 

 
7. Security and Speed Trade-off:  
In the full eight multipliers parallelization 
attempt, we are performing the EC point 
addition in every RtL-Alg iteration although it 
may be unneeded, i.e. even if ki is zero. This is 
to insure security against SPA. If this security 
constraint is released, the eight multiplier 
hardware can have better speed by checking ki 
bit immediately after completing the doubling 
operation. If ki is zero, the addition operation 
can be terminated. The normalized computation 
time for a single bit per one RtL-Alg operation 

Y1Z2        Y2Z1                                       X2Z1       X1Z2  

λ2 λ1 

Z2 

Y1      Z2    Y2   Z1                                     X2   Z1   X1   Z2  

       λ5-λ4                                                        λ2-λ1               λ1+λ2 

λ4               λ5 

λ6 

     λ6
2

               Z2λ3                                      λ3
2         Z1Z2        

Z1 

Z2 
λ3 λ7 

   λ1λ3
2

           Z2λ3
3

                                                             λ7λ3
2             Z1Z2λ6

2  

λ1 

λ6
2Z1Z2-λ7λ3

2 

λ3
2X1Z2 -λ8

 

λ8 

Y1Z2λ3
3
           Z1Z2λ3

3
                                                        λ9λ6         λ3λ8 

Y1            Z1              λ9 

λ6λ9-λ3
3λ1Z2 

Z3                                     Y3                 X3 

      Y1    X1    Y1  Z1                                   X1 3X1   Z1 aZ1 

    Y1X1       Y1Z1                                     3X1
2       aZ1

2   

3X1
2 + aZ1

2    

λ2 

λ1 
Y1 

 Y1X1λ2     Y1λ2                                    λ2
2         λ1

2  

λ1
2-8λ3 

λ3 

4λ3-λ4 

λ4 

      λ5λ1      (Y1λ2)2                               8λ2
3      2λ4λ2  

λ5 

λ5λ1-8(Y1λ2)2 

Y3                                                    Z3          X3 

Fig. 1 Adding two points data flow Fig. 2 Doubling a point data flow graph 



 

will be: T = 3 + τ, which is a compromise 
between speed and security. 

 
8. Conclusion 
 This letter explores the ability to gain 
security from performing GF(p) elliptic curve 
cryptography computation in parallel methods. 
The best security can be achieved when making 
the design computation independent to the data, 
which can be obtained both elliptic curve 
addition and doubling are performed in parallel. 
The best security and speed performance is 
achieved when using full parallelization of the 
elliptic curve point operations, which can be 
attained with eight parallel multipliers in 
hardware. Implementing these parallelisms 
seems complex because of its large hardware 
requirement, however, it worth consideration 
especially because of its interesting benefits in 
security and speed performance.  
 
Acknowledgments 
Thanks to King Fahd University of Petroleum 
and Minerals for supporting all research work. 
 
References 
[1] Miyaji A.,: Elliptic Curves over FP Suitable for 

Cryptosystems, Advances in cryptology- 
AUSCRUPT’92, Australia, December 1992. 

[2] Stallings, W. “Cryptography and Network 
Security: Principles and Practice”, Second Edition, 
Prentice Hall Inc., New Jersey, 1999. 

[3] Chung, J., Sim, S., and Lee, P.,: Fast 
Implementation of Elliptic Curve Defined over 
GF(pm) on CalmRISC with MAC2424 
Coprocessor, Workshop on Cryptographic 
Hardware and Embedded Systems, CHES 2000, 
Massachusetts, August 2000. 

[4] Okada, S., Torii, N., Itoh, K., and Takenaka, 
M.,: Implementation of Elliptic Curve 
Cryptographic Coprocessor over GF(2m) on an 
FPGA, Workshop on Cryptographic Hardware and 
Embedded Systems, CHES 2000, Massachusetts, 
August 2000. 

[5] Crutchley, D. A.,: Cryptography and Elliptic 
Curves, Master Thesis under Supervision of Prof. 
Gareth Jones, submitted to the Faculty of 
Mathematics at University of Southampton, 
England, May 1999. 

[6] Orlando, G., and Paar, C.,: A High-Performance 
Reconfigurable Elliptic Curve Processor for 
GF(2m), Workshop on Cryptographic Hardware 
and Embedded Systems, CHES 2000, 
Massachusetts, August 2000. 

[7] Stinson, D. R.,: Cryptography: Theory and 
Practice, CRC Press, Boca Raton, Florida, 1995. 

[8] Paar, C., Fleischmann, P. and Soria-Rodriguez, 
P.,: Fast Arithmetic for Public-Key Algorithms in 
Galois Fields with Composite Exponents, IEEE 
Transactions on Computers, Vol. 48, No. 10, 
October 1999. 

[9] I. Blake, G. Seroussi, N.  Smart,: Elliptic Curves 
in Cryptography, Cambridge University Press: 
New York, 1999. 

[10] D. Hankerson, J. Hernandez, and A. Menezes, 
Software Implementation of Elliptic Curve 
Cryptography Over Binary Fields, Workshop on 
Cryptographic Hardware and Embedded Systems, 
CHES 2000, Massachusetts, August 2000. 

[11] G. A. Orton, M. P. Roy, P. A. Scott, L. E. 
Peppard, and S. E. Tavares,: VLSI implementation  
of  public-key  encryption algorithms, Advances in 
Cryptology -- CRYPTO '86, Vol 263 of Lecture 
Notes in Computer Science, (1987) pp. 277-301. 

[12] Norman R. Scott,: Computer Number Systems 
and Arithmetic, Prentice-Hall Inc., NJ, 1985.  

[13] R. J. Tocci, and N. S. Widmer, Digital Systems: 
Principles and Applications, Eighth Edition, 
Prentice-Hall Inc., New Jersey (2001). 

[14] M. D. Ercegovac, T. Lang, and J. H. Moreno,: 
Introduction to Digital System, John Wiley & 
Sons, Inc., New York (1999). 

[15] G. Orlando and C. Paar,: A scalable GF(p) 
elliptic curve processor architecture for 
programmable hardware, Cryptographic Hardware 
and Embedded Systems, CHES 2001. 

[16] Adnan Gutub, Tenca, and Koc,: Scalable VLSI 
architecture for GF(p) Montgomery modular 
inverse computation, IEEE Computer Society 
Annual Symposium on VLSI (ISVLSI), 2002.  

[17] Adnan Abdul-Aziz Gutub and Alexandre F. 
Tenca,: Efficient Scalable VLSI Architecture for 
Montgomery Inversion in GF(p), Integration, the 
VLSI Journal, Vol. 37, No. 2, May 2004. 

[18] Gordon D.: A Survey of Fast Exponentiation 
Methods, Journal of Algorithms, 1998. 

[19] Adnan Abdul-Aziz Gutub,: VLSI Core 
Architecture For GF(P) Elliptic Curve Crypto 
Processor, IEEE 10th International Conference on 
Electronics, Circuits and Systems (ICECS 2003), 
pages 84-87, University of Sharjah, United Arab 
Emirates, December 14-17, 2003. 

[20] Adnan Abdul-Aziz Gutub and  Mohammad K. 
Ibrahim,: High Radix Parallel Architecture For 
GF(p) Elliptic Curve Processor”, IEEE Conference 
on Acoustics, Speech, and Signal Processing, 
ICASSP 2003, Hong Kong, April 6-10, 2003.  

[21] Coron, J.-S.,: Resistance against differential 
power analysis for elliptic curve cryptosystems, In 
Cryptographic Hardware and Embedded Systems - 
CHES '99, 1999. 

[22] Adnan Abdul-Aziz Gutub, “Fast 160-Bits GF(p) 
Elliptic Curve Crypto Hardware of High-Radix 
Scalable Multipliers)”, International Arab Journal 
of Information Technology (IAJIT), Vol. 3, No. 4, 
Pages: 342-349, October 2006.  

[23] Turki F. Al-Somani, M. K. Ibrahim and Adnan 
Gutub, “High Performance Elliptic Curve GF(2m) 
Crypto Processor”, Information Technology 
Journal (ITJ), Vol. 5. No. 4, Pages: 742-748, 2006. 

[24] Turki F. Al-Somani, M. K. Ibrahim and Adnan 
Gutub, “Highly Efficient Elliptic Curve Crypto-
Processor with Parallel GF(2m) Field Multipliers”, 
Journal of Computer Science (JCS), Vol. 2, No 5. 
Pages: 395-400, 2006. 

[25] Adnan Abdul-Aziz Gutub, “Merging GF(p) 
Elliptic Curve Point Adding and Doubling on 
Pipelined VLSI Cryptographic ASIC 
Architecture”, International Journal of Computer 
Science and Network Security (IJCSNS), Vol.6, 
No.3A, March 2006. 


