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ABSTRACT 

Modular multiplication is an essential operation in many 
cryptography arithmetic operations. This work serves the 
modular multiplication algorithms focusing on improving 
their underlying binary adders. Different known adders 
have been considered and studied. The carry-save adder, 
carry-lookahead adder and carry-skip adder showed 
interesting features and trade-offs. The adders VHDL 
implementations gave some more beneficial details 
promising for improved crypto designs. 
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1. INTRODUCTION 

Modular multiplication is the fundamental arithmetic 
operation in most cryptographic systems. The crypto 
operands size needed to achieve secured systems is 
usually very large; which makes the modular 
multiplication operation too lengthy. Several modular 
multiplication algorithms have been proposed to solve 
this problem based on various computer arithmetic 
principles where all depend heavily on the binary adders 
as their basic building blocks. Most multiplication 
approaches perform operations through repeated number 
of additions, which makes our focus of this paper. Parts 
of this work have been presented earlier in [1]. 
 This work discusses different types of adders and 
compares between them and their effect in selected 
modular multiplication hardware. Hardware components 
studied in this work were modeled using VHDL and 
synthesized. ModelSim Se 5.6a was used to design and 
test the VHDL code. The Xilinx ISE 5.2i tool was used 
for synthesis. 

2. MODULAR MULTIPLICATION 

Modular multiplication is defined as the computation of 
P=A×B mod M, which are represented using n bits. In 
the literature, various algorithms for modular 
multiplication have been proposed with different 
hardware implementations. A straightforward way to 
perform the modular multiplication operation is to do the 
multiplication first and then divide the result by the 

modulus. This method is too expensive in terms of time 
and area requirements. An N×N bit multiplier is required 
followed by a 2N×N bit divider used to computer the 
remainder of the division process. Since the 
multiplication result of A×B is not important to the result 
of the modular multiplication, doing the reduction during 
the multiplication step is more suitable and also more 
efficient for the modular multiplication problem [2]. This 
work applies to the basic common algorithms for 
modular multiplication of good performance so it might 
serve as an introduction to this widely evolving field. 

Most related multiplication algorithms are described 
in the literature using binary representation, so that direct 
mapping with the hardware can be induced from it. Our 
binary adders research is concerned with two 
implemented algorithms: interleaving multiplication and 
reduction [3], and Montgomery’s method [4]. The 
multipliers proposed in references [3] and [4] are chosen 
since they have efficient performance and similar 
hardware structure. Details of both algorithms can be 
found in the mentioned references. The two 
implementations were modeled using VHDL and 
synthesized using the Xilinx synthesis tool (ISE Series 
5.2i). Summarize of the differences between the two 
algorithms are found in [1]. 

In general, the classical method in reference [3] 
takes slightly larger amount of hardware than the 
Montgomery’s method in reference [4]. In addition, the 
multiplication step of the classical method takes slightly 
more time than Montgomery’s method. Moreover, it has 
a correction step at the end of the algorithm that will 
complicate the hardware for the final summation circuit.  

However, a full-custom design of the sign-
estimation logic needed by the classical method will 
reduce the latency to its minimum. The carry-save logic 
and the sign-estimation logic are both of three logic 
levels. This means that parallel execution of the two 
logics will take about the same time as one individual 
carry-save stage. Hence, the multiplication steps of two 
algorithms are expected to have the same latency.  

By considering the pre and post-calculations needed 
by both algorithms, we see that Montgomery’s method 
needs much more expensive calculations. Reference [5] 
shows how practically pre and post-calculations of 
Montgomery’s method take very long time over the 
multiplication step. These calculations doubled the 
amount of time required by Montgomery’s method by 
more than 20 times. In addition, the hardware was 
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complicated. Thus, carry save implementations of the 
classical method of interleaving multiplication and 
reduction has the potential to be one of the most effective 
solutions in terms of time and hardware requirements. 
Further improvements by researchers on the classical 
method would lead to a high speed modular multiplier 
which is scalable and regular by its nature. The reader is 
referred to [1] for more remarks on the implementation 
by Koc in [3], which is a promising hardware design for 
modular multiplication. The adders in all modular 
multipliers play a curtail role, which if improved the 
overall process performance will improve. These adders 
study will be the focus of the rest of the paper. 

3. BINARY ADDERS 

Binary addition is one of the most important operations in 
modular multiplication as well as all digital computer 
systems. Statistics showed that more than 70% of the 
instructions perform additions in the data path of RISC 
machines [7]. In modular multiplication hardware, binary 
addition is considered the bottleneck [1].  Thus, the 
cryptography computation time is considerably affected 
by the speed of adders. 

In the literature, there exist many types of adders 
with different time and space complexities. The focus in 
this work is on some practicable and commonly used 
binary adders which will be discussed and compared. For 
the sake of completeness, the ripple-carry adder and the 
carry-save adder are presented first. Then, the carry-
lookahead adder and the carry-skip adder are studied. 

3.1. Ripple-Carry Adder (RCA) 

The ripple-carry adder consists of a sequence of cascaded 
Full Adders (FA) by which each FA computes the ith bit 
of the result according to the following logical relations: 

si = ai ⊕  bi ⊕  ci ,  ci+1 = ai bi + (ai + bi) ci ,    
 where i = 0, 1, …, n-1     

  
 Obviously, both the logic complexity and the worst 
case computation time are Ο(n). The ripple-carry adder 
required the optimum space and has the worst 
computation time among its category of parallel adders. 
However, the carry propagation process takes on average 
Ο(log n) time to be completed [7, 8]. The carry-
completion sensing adder is an asynchronous adder 
designed based on this fact.  

3.2. Carry-Save Adder (CSA) 

A carry-save adder adds three n-bit numbers and 
produces the result without performing carry propagation 
by saving the carry. The result will be in an n-bit 
redundant format represented using two bit vectors, sum 
and carry. The total delay of a carry-save adder equals to 
the delay of a single full adder cell. In addition, the carry 
save adder requires n times the area of a full adder cell. 
Thus, the carry-save adder takes Ο(1) time and Ο(n) 
space. A carry-save adder design is shown in Figure 1. 

According to reference [7], there are basically two 
disadvantages of the carry-save adders. The carry-save 
adders do not add two numbers and produce a single 
output; instead, they add three inputs and produce two 
outputs such that the sum of the outputs equals to the sum 
of the inputs. Moreover, the sign-detection is complex. 
Unless the addition on the outputs is performed in full 
length, the correct sign of the sum-carry pair may never 
be determined. 

 
Figure 1. Carry-Save Adder 

3.3.   Carry-Lookahead Adder (CLA) 

The carry-lookahead adder computes the sum as follows: 

si=ai ⊕  bi ⊕  ci , pi= ai ⊕  bi , gi= ai bi , ci+1 = gi + pi ci 

By expanding further the equation of the carry we get: 

ci+1=gi+pi gi-1+pi  pi-1 gi-2+pi  pi-1 …  p1 g0+pi  pi-1 …  p1  p0 c0 

A carry-lookahead adder hardware may be designed as 
shown in Figure 2.  
 The carry-lookahead logic consists of two logic 
levels, AND gates followed by an OR gate, for each ci. 
When the adder inputs are loaded in parallel, all gi and pi 
will be generated at the same time. The carry-lookahead 
logic allows carry for each bit to be computed 
independently. Ideally, the carry signals ci will be 
produced through two-stage logic at about the same time, 
which means that the adder will have a constant time 
complexity. However, it is impractical to build a two-
stage full large-size carry-lookahead adder because of the 
practical limitations on fan-in and fan-out, irregular 
structure, and many long wires [7, 9]. 
 

 
Figure 2. Carry-Lookahead Adder 

  
 In practice two approaches are used to implement the 
CLA: the block carry-lookahead adder and the complete 
carry-lookahead adder [7]. In the first implementation, 
small (4-bit or 8-bit) carry-lookahead logic cells with 
sections generate and propagate functions are built, and 
then they are stacked to build larger carry-lookahead 
adders.  In complete carry-lookahead logic, the adder is 
built for the given operand size but in a way that allow 
the use of parallel prefix circuits. One well-known adder 



of this type is the Brent-Kung adder [10]. The total delay 
of the carry-lookahead adder is Ο(log n) which can be 
significantly lees than the carry propagate adder. There is 
a penalty paid for this gain: the area increases. The carry-
lookahead adders require Ο(n log n) area. Is seems that a 
carry-lookahead adder larger than 256 bits is not cost 
effective. Even by employing block carry-lookahead 
approach, a carry-lookahead adder with 1024 bits seems 
not feasible or cost effective. [7] 

3.4.  Carry-Skip Adder (CSK) 

The carry-skip adder [11, 12, 13, 14] was invented for 
decimal arithmetic operations by Babbage in the 1800’s, 
and become quite popular in mechanical adding machines 
later that century. Modern interest in carry-skip adders 
only began in the early 1960’s by Lehman and Burla [8]. 

The carry-skip adder is and an improvement over 
the ripple-carry adder. By grouping the ripple cells 
together into blocks, it makes the carry signal available to 
the blocks further down the carry chain, earlier.  The 
primary carry ci coming into a black can go out of it 
unchanged if and only if, ai and bi are exclusive–or of 
each other. This means that corresponding bits of both 
operands within a block should be dissimilar. If ai = bi = 
1, then the block generates a carry without waiting for the 
incoming carry signal. And the generated carry will be 
used by blocks beyond this block in the carry chain. If ai 
= bi = 0, then the block does not generate a carry and will 
absorb any carry coming into it. 

By ANDing all (ai ⊕  bi) of a block, the skip signal 
will be generated to select between the incoming carry 
and the generated carry using a 2×1 multiplexer as shown 
in Figure 3. However, reference [13] presented a more 
simplified skip logic that requires less area as Figure 4. 

If the adder input is assumed to be loaded in 
parallel, then the skip signal of all blocks will be ready at 
about the same time. The last FA stage of a block will 
generate a carry, if any, before arrival of the input carry 
ci. When the input carry arrives, it needs to pass through 
two logic gates only so that the output carry ci+1 will 
stabilize.  

In order to count for the overall delay, we need to 
look at the longest path delay of the carry-skip adder. The 
longest path is the path that passes through the skip logic 
plus the un-skipped FA stages at the two ends of the 
adder as shown in Figure 5. 

 
Figure 3. Using multiplexers in the carry-skip logic. 

 
 Note that the first skipped block needs to have the 
same size as the un-skipped block prior to it so that all 

the first multiplexer’s inputs arrive simultaneously. 
Subsequent blocks can have larger size so that the carry 
will skip more bits and the adder speed will be increased. 
In this case, the adder is called one-level carry-skip adder 
with variable block sizes. The adder speed can be 
improved even more by using a multilevel skip structure; 
the skip logic determines whether a carry entering one 
block may skip the next group of blocks. However, the 
main design problem with the adder is working out how 
best to group the “skips” [12].  

 
Figure 4. More simplified carry-skip logic. 

 In the literature, there exist many proposals for 
optimum design of carry-skip adders. Based on some 
assumptions and some input variables in addition to the 
desired size, the proposed algorithms decide on the 
optimum size of each block and some times the number 
of skip levels. For more details, please refer to the 
mentioned references at the beginning of this section. 
 

 

Figure 5. The longest path delay in carry-skip adders. 
 

The carry-skip adder has a simple and regular 
structure that requires an area in the order of Ο(n) which 
is hardly larger then the area required by the ripple-carry 
adder. The time complexity of the carry-skip adder is 
bounded between O( n ) and Ω(log_n). An equal-
block-size one-level carry-skip adder will have a time 
complexity of O( n ). However, a more optimized 
multi-level carry-skip adder will have less time latency 
reported in reference [15] to be Ο(log n). 

4. COMPARISON 

This section compares two fast speed adders described 
above: the carry-skip adder and carry-lookahead adder. 
By relaying on some recently published research, the two 
adders will be compared in terms of time, area and 
power.  
 In order to have a fair comparison, we claim that the 
adders need to be design at the VLSI level. Using FPGAs 
to implement and compare both adders will give results 
that are most probably inconsistent with results obtained 
from a practical implementation. In addition, it has been 
shown that optimizing the carry-skip adder is highly 



dependent on the time delay deference between the skip 
logic and the propagate logic. Thus, optimizing the carry-
skip adder on FPGAs is difficult and may not lead to an 
optimum time delay. This explains why implementing the 
carry-skip adder on FPGAs as in reference [16] results in 
a time delay that is not much better that the delay of the 
ripple-carry adder.  
 In reference [15], the two adders were designed 
using the CMOS technology and compared. A 32-bit 
carry-skip adder was better than a 32-bit carry-lookahead 
adder in terms of time, area and power. A carry-skip 
adder, that has multi-level skip logic, was compared with 
a conventional carry-lookahead adder. The carry-skip 
adder was 14 % faster. However, if the adder size is 
increased to 64 bits, the carry-lookahead adder starts to 
have slight improvement in time over the carry-skip 
adder. 
 The carry-skip adders have the potential for reduced 
power dissipation because they requires only propagate 
signals, in contrast with the carry-lookahead adders that 
require both propagate and generate signals [15]. 
Moreover, the carry-skip adders require a linear area that 
is hardly larger then the area required by the ripple-carry 
adder. This means much lower power consumption than 
the carry-lookahead adders. Reference [15] reports that 
the carry-skip adder’s power dissipation was 58 % of that 
of the carry-lookahead adder.  
 If one-level carry-skip adder is used, as in [9], then 
64-bit carry-skip adder is 38% slower than 64-bit carry-
lookahead adder. However, the carry-skip adder is still 
better than the carry-lookahead adder in the average 
power consumption by 33% and in chip area by 32%.  
 The results presented here matches with the 
theoretical analysis presented before. A full-optimized 
carry-skip adder is comparable in speed with a 
conventional carry-lookahead adder since they are of the 
same complexity class, Ο(log n). However, the carry-skip 
adder is much better than the carry-lookahead adder in 
terms of area and power consumption.   

5. CONCLUSION 

This work studied the binary adders within modular 
multiplication hardware for crypto systems of large 
operand sizes. Time-area analyses of several VHDL 
implementations have been considered. It has been noted 
that carry-save adders give the maximum speedup in 
computing the partial products of the modula 
multiplications since they have constant time complexity. 
However, full-length addition on the sum-carry pair 
needs to be carried out at the last iteration, which can be 
assumed as a drawback. This final addition must be 
performed through dedicated binary adder. Two other 
binary adders were also considered, i.e. the carry-
lookahead adder and the carry-skip adder. It has been 
shown that the two adders can be of a comparable speed. 
However, the carry-skip adders require smaller area and 
consume much less power than the carry-lookahead 
adders showing promising indications. 
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