
EFFICIENT ADDERS TO SPEEDUP MODULAR MULTIPLICATION
FOR CRYPTOGRAPHY

Adnan Abdul-Aziz Gutub and Hassan A. Tahhan

Computer Engineering Department, KFUPM, Dhahran, SAUDI ARABIA

ABSTRACT

Modular multiplication is an essential operation in many
cryptography arithmetic operations. This work serves the
modular multiplication algorithms focusing on improving
their underlying binary adders. Different known adders
have been considered and studied. The carry-save adder,
carry-lookahead adder and carry-skip adder showed
interesting features and trade-offs. The adders VHDL
implementations gave some more beneficial details
promising for improved crypto designs.

Keywords: Cryptography hardware, Modular
multiplication, Binary adders in cryptosystems.

1. INTRODUCTION

Modular multiplication is the fundamental arithmetic
operation in most cryptographic systems. The crypto
operands size needed to achieve secured systems is
usually very large; which makes the modular
multiplication operation too lengthy. Several modular
multiplication algorithms have been proposed to solve
this problem based on various computer arithmetic
principles where all depend heavily on the binary adders
as their basic building blocks. Most multiplication
approaches perform operations through repeated number
of additions, which makes our focus of this paper. Parts
of this work have been presented earlier in [1].
 This work discusses different types of adders and
compares between them and their effect in selected
modular multiplication hardware. Hardware components
studied in this work were modeled using VHDL and
synthesized. ModelSim Se 5.6a was used to design and
test the VHDL code. The Xilinx ISE 5.2i tool was used
for synthesis.

2. MODULAR MULTIPLICATION

Modular multiplication is defined as the computation of
P=A×B mod M, which are represented using n bits. In
the literature, various algorithms for modular
multiplication have been proposed with different
hardware implementations. A straightforward way to
perform the modular multiplication operation is to do the
multiplication first and then divide the result by the

modulus. This method is too expensive in terms of time
and area requirements. An N×N bit multiplier is required
followed by a 2N×N bit divider used to computer the
remainder of the division process. Since the
multiplication result of A×B is not important to the result
of the modular multiplication, doing the reduction during
the multiplication step is more suitable and also more
efficient for the modular multiplication problem [2]. This
work applies to the basic common algorithms for
modular multiplication of good performance so it might
serve as an introduction to this widely evolving field.

Most related multiplication algorithms are described
in the literature using binary representation, so that direct
mapping with the hardware can be induced from it. Our
binary adders research is concerned with two
implemented algorithms: interleaving multiplication and
reduction [3], and Montgomery’s method [4]. The
multipliers proposed in references [3] and [4] are chosen
since they have efficient performance and similar
hardware structure. Details of both algorithms can be
found in the mentioned references. The two
implementations were modeled using VHDL and
synthesized using the Xilinx synthesis tool (ISE Series
5.2i). Summarize of the differences between the two
algorithms are found in [1].

In general, the classical method in reference [3]
takes slightly larger amount of hardware than the
Montgomery’s method in reference [4]. In addition, the
multiplication step of the classical method takes slightly
more time than Montgomery’s method. Moreover, it has
a correction step at the end of the algorithm that will
complicate the hardware for the final summation circuit.

However, a full-custom design of the sign-
estimation logic needed by the classical method will
reduce the latency to its minimum. The carry-save logic
and the sign-estimation logic are both of three logic
levels. This means that parallel execution of the two
logics will take about the same time as one individual
carry-save stage. Hence, the multiplication steps of two
algorithms are expected to have the same latency.

By considering the pre and post-calculations needed
by both algorithms, we see that Montgomery’s method
needs much more expensive calculations. Reference [5]
shows how practically pre and post-calculations of
Montgomery’s method take very long time over the
multiplication step. These calculations doubled the
amount of time required by Montgomery’s method by
more than 20 times. In addition, the hardware was

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by King Fahd University of Petroleum and Minerals

https://core.ac.uk/display/266087318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

complicated. Thus, carry save implementations of the
classical method of interleaving multiplication and
reduction has the potential to be one of the most effective
solutions in terms of time and hardware requirements.
Further improvements by researchers on the classical
method would lead to a high speed modular multiplier
which is scalable and regular by its nature. The reader is
referred to [1] for more remarks on the implementation
by Koc in [3], which is a promising hardware design for
modular multiplication. The adders in all modular
multipliers play a curtail role, which if improved the
overall process performance will improve. These adders
study will be the focus of the rest of the paper.

3. BINARY ADDERS

Binary addition is one of the most important operations in
modular multiplication as well as all digital computer
systems. Statistics showed that more than 70% of the
instructions perform additions in the data path of RISC
machines [7]. In modular multiplication hardware, binary
addition is considered the bottleneck [1]. Thus, the
cryptography computation time is considerably affected
by the speed of adders.

In the literature, there exist many types of adders
with different time and space complexities. The focus in
this work is on some practicable and commonly used
binary adders which will be discussed and compared. For
the sake of completeness, the ripple-carry adder and the
carry-save adder are presented first. Then, the carry-
lookahead adder and the carry-skip adder are studied.

3.1. Ripple-Carry Adder (RCA)

The ripple-carry adder consists of a sequence of cascaded
Full Adders (FA) by which each FA computes the ith bit
of the result according to the following logical relations:

si = ai ⊕ bi ⊕ ci , ci+1 = ai bi + (ai + bi) ci ,
 where i = 0, 1, …, n-1

 Obviously, both the logic complexity and the worst
case computation time are Ο(n). The ripple-carry adder
required the optimum space and has the worst
computation time among its category of parallel adders.
However, the carry propagation process takes on average
Ο(log n) time to be completed [7, 8]. The carry-
completion sensing adder is an asynchronous adder
designed based on this fact.

3.2. Carry-Save Adder (CSA)

A carry-save adder adds three n-bit numbers and
produces the result without performing carry propagation
by saving the carry. The result will be in an n-bit
redundant format represented using two bit vectors, sum
and carry. The total delay of a carry-save adder equals to
the delay of a single full adder cell. In addition, the carry
save adder requires n times the area of a full adder cell.
Thus, the carry-save adder takes Ο(1) time and Ο(n)
space. A carry-save adder design is shown in Figure 1.

According to reference [7], there are basically two
disadvantages of the carry-save adders. The carry-save
adders do not add two numbers and produce a single
output; instead, they add three inputs and produce two
outputs such that the sum of the outputs equals to the sum
of the inputs. Moreover, the sign-detection is complex.
Unless the addition on the outputs is performed in full
length, the correct sign of the sum-carry pair may never
be determined.

Figure 1. Carry-Save Adder

3.3. Carry-Lookahead Adder (CLA)

The carry-lookahead adder computes the sum as follows:

si=ai ⊕ bi ⊕ ci , pi= ai ⊕ bi , gi= ai bi , ci+1 = gi + pi ci

By expanding further the equation of the carry we get:

ci+1=gi+pi gi-1+pi pi-1 gi-2+pi pi-1 … p1 g0+pi pi-1 … p1 p0 c0

A carry-lookahead adder hardware may be designed as
shown in Figure 2.
 The carry-lookahead logic consists of two logic
levels, AND gates followed by an OR gate, for each ci.
When the adder inputs are loaded in parallel, all gi and pi
will be generated at the same time. The carry-lookahead
logic allows carry for each bit to be computed
independently. Ideally, the carry signals ci will be
produced through two-stage logic at about the same time,
which means that the adder will have a constant time
complexity. However, it is impractical to build a two-
stage full large-size carry-lookahead adder because of the
practical limitations on fan-in and fan-out, irregular
structure, and many long wires [7, 9].

Figure 2. Carry-Lookahead Adder

 In practice two approaches are used to implement the
CLA: the block carry-lookahead adder and the complete
carry-lookahead adder [7]. In the first implementation,
small (4-bit or 8-bit) carry-lookahead logic cells with
sections generate and propagate functions are built, and
then they are stacked to build larger carry-lookahead
adders. In complete carry-lookahead logic, the adder is
built for the given operand size but in a way that allow
the use of parallel prefix circuits. One well-known adder

of this type is the Brent-Kung adder [10]. The total delay
of the carry-lookahead adder is Ο(log n) which can be
significantly lees than the carry propagate adder. There is
a penalty paid for this gain: the area increases. The carry-
lookahead adders require Ο(n log n) area. Is seems that a
carry-lookahead adder larger than 256 bits is not cost
effective. Even by employing block carry-lookahead
approach, a carry-lookahead adder with 1024 bits seems
not feasible or cost effective. [7]

3.4. Carry-Skip Adder (CSK)

The carry-skip adder [11, 12, 13, 14] was invented for
decimal arithmetic operations by Babbage in the 1800’s,
and become quite popular in mechanical adding machines
later that century. Modern interest in carry-skip adders
only began in the early 1960’s by Lehman and Burla [8].

The carry-skip adder is and an improvement over
the ripple-carry adder. By grouping the ripple cells
together into blocks, it makes the carry signal available to
the blocks further down the carry chain, earlier. The
primary carry ci coming into a black can go out of it
unchanged if and only if, ai and bi are exclusive–or of
each other. This means that corresponding bits of both
operands within a block should be dissimilar. If ai = bi =
1, then the block generates a carry without waiting for the
incoming carry signal. And the generated carry will be
used by blocks beyond this block in the carry chain. If ai
= bi = 0, then the block does not generate a carry and will
absorb any carry coming into it.

By ANDing all (ai ⊕ bi) of a block, the skip signal
will be generated to select between the incoming carry
and the generated carry using a 2×1 multiplexer as shown
in Figure 3. However, reference [13] presented a more
simplified skip logic that requires less area as Figure 4.

If the adder input is assumed to be loaded in
parallel, then the skip signal of all blocks will be ready at
about the same time. The last FA stage of a block will
generate a carry, if any, before arrival of the input carry
ci. When the input carry arrives, it needs to pass through
two logic gates only so that the output carry ci+1 will
stabilize.

In order to count for the overall delay, we need to
look at the longest path delay of the carry-skip adder. The
longest path is the path that passes through the skip logic
plus the un-skipped FA stages at the two ends of the
adder as shown in Figure 5.

Figure 3. Using multiplexers in the carry-skip logic.

 Note that the first skipped block needs to have the
same size as the un-skipped block prior to it so that all

the first multiplexer’s inputs arrive simultaneously.
Subsequent blocks can have larger size so that the carry
will skip more bits and the adder speed will be increased.
In this case, the adder is called one-level carry-skip adder
with variable block sizes. The adder speed can be
improved even more by using a multilevel skip structure;
the skip logic determines whether a carry entering one
block may skip the next group of blocks. However, the
main design problem with the adder is working out how
best to group the “skips” [12].

Figure 4. More simplified carry-skip logic.

 In the literature, there exist many proposals for
optimum design of carry-skip adders. Based on some
assumptions and some input variables in addition to the
desired size, the proposed algorithms decide on the
optimum size of each block and some times the number
of skip levels. For more details, please refer to the
mentioned references at the beginning of this section.

Figure 5. The longest path delay in carry-skip adders.

The carry-skip adder has a simple and regular
structure that requires an area in the order of Ο(n) which
is hardly larger then the area required by the ripple-carry
adder. The time complexity of the carry-skip adder is
bounded between O(n) and Ω(log_n). An equal-
block-size one-level carry-skip adder will have a time
complexity of O(n). However, a more optimized
multi-level carry-skip adder will have less time latency
reported in reference [15] to be Ο(log n).

4. COMPARISON

This section compares two fast speed adders described
above: the carry-skip adder and carry-lookahead adder.
By relaying on some recently published research, the two
adders will be compared in terms of time, area and
power.
 In order to have a fair comparison, we claim that the
adders need to be design at the VLSI level. Using FPGAs
to implement and compare both adders will give results
that are most probably inconsistent with results obtained
from a practical implementation. In addition, it has been
shown that optimizing the carry-skip adder is highly

dependent on the time delay deference between the skip
logic and the propagate logic. Thus, optimizing the carry-
skip adder on FPGAs is difficult and may not lead to an
optimum time delay. This explains why implementing the
carry-skip adder on FPGAs as in reference [16] results in
a time delay that is not much better that the delay of the
ripple-carry adder.
 In reference [15], the two adders were designed
using the CMOS technology and compared. A 32-bit
carry-skip adder was better than a 32-bit carry-lookahead
adder in terms of time, area and power. A carry-skip
adder, that has multi-level skip logic, was compared with
a conventional carry-lookahead adder. The carry-skip
adder was 14 % faster. However, if the adder size is
increased to 64 bits, the carry-lookahead adder starts to
have slight improvement in time over the carry-skip
adder.
 The carry-skip adders have the potential for reduced
power dissipation because they requires only propagate
signals, in contrast with the carry-lookahead adders that
require both propagate and generate signals [15].
Moreover, the carry-skip adders require a linear area that
is hardly larger then the area required by the ripple-carry
adder. This means much lower power consumption than
the carry-lookahead adders. Reference [15] reports that
the carry-skip adder’s power dissipation was 58 % of that
of the carry-lookahead adder.
 If one-level carry-skip adder is used, as in [9], then
64-bit carry-skip adder is 38% slower than 64-bit carry-
lookahead adder. However, the carry-skip adder is still
better than the carry-lookahead adder in the average
power consumption by 33% and in chip area by 32%.
 The results presented here matches with the
theoretical analysis presented before. A full-optimized
carry-skip adder is comparable in speed with a
conventional carry-lookahead adder since they are of the
same complexity class, Ο(log n). However, the carry-skip
adder is much better than the carry-lookahead adder in
terms of area and power consumption.

5. CONCLUSION

This work studied the binary adders within modular
multiplication hardware for crypto systems of large
operand sizes. Time-area analyses of several VHDL
implementations have been considered. It has been noted
that carry-save adders give the maximum speedup in
computing the partial products of the modula
multiplications since they have constant time complexity.
However, full-length addition on the sum-carry pair
needs to be carried out at the last iteration, which can be
assumed as a drawback. This final addition must be
performed through dedicated binary adder. Two other
binary adders were also considered, i.e. the carry-
lookahead adder and the carry-skip adder. It has been
shown that the two adders can be of a comparable speed.
However, the carry-skip adders require smaller area and
consume much less power than the carry-lookahead
adders showing promising indications.

ACKNOWLEDGMENT

Thanks to King Fahd University of Petroleum &
Minerals (KFUPM) for supporting this work.

REFERENCES

[1] Gutub, A. and Tahhan, H., "Improving Cryptographic
Architectures by Adopting Efficient Adders in their Modular
Multiplication Hardware", 9th Annual Gulf Internet
Symposium, Khobar, Saudi Arabia, October 13-15, 2003.

[2] Mekhallalati, M.C., Ibrahim, M.K., and Ashur, A.S.,
"Radix Modular Multiplication Algorithm", Journal of
Circuits and Systems, and Computers, 6(5): 547-567, 1996.

[3] Koc, C. K. and Hung, C.Y., "Fast Algorithm For Modular
Rreduction", IEE Proceedings: Computers and Digital
Techniques, 145(4): 265-271, 1998.

[4] Kwon, Taek-Won et. al., "Two Implementation Methods
of a 1024-bit RSA Cryptoprocessor Based on Modified
Montgomery Algorithm", IEEE International Symposium On
Circuits and Systems (ISCAS), pp. 650–653, 2001.

[5] Satoh, A., and Kohji T., "A Scalable Dual-Field Elliptic
Curve Cryptographic Processor", IEEE Transactions on
Computers, 52(4): 449-460, 2003.

[6] Cheng, Fu-Chiung, Stephen Unger and Michael Theobald,
"Self-Timed Carry-Lookahead Adders", IEEE Transactions
on Computers, 49(7): 659-672, 2000.

[7] Koc, C.K., "RSA Hardware Implementation", RSA
Laboratories, RSA Data Security, Inc. 1996.

[8] Lehman, M., and Burla, N., "Skip Technique for High
Speed Carry Propagation in Binary Arithmetic Unites", IRE
Transactions on Electronic Computers, 10: 691-698, 1961.

[9] Nagendra, C., Irwin, M., and Owens, R., "Area Time
Power Tradeoffs in Parallel Adders", IEEE Transactions on
Circuits and Systems, 43(10): 689-702, 1996.

[10] Brent, R., and Kung, H., "A Regular Layout for Parallel
Adders", IEEE Transactions on Computers, C-31:260-264,
1982.

[11] Kantabutra, V., "Designing Optimum One-Level Carry-
Skip Adders", IEEE Transactions on Computers, 42(6):759-
764, June 1993.

[12] Burges, N., "Accelerated Carry-Skip Adders with Low
Hardware Cost", Conference on Signals, Systems and
Computers, 1: 852-856, 2001.

[13] Goel, A., and Bapat, P., "A New Time-Position Algorithm
for the Modeling of Multilevel Carry Skip Adders in VHDL",
Canadian Conference on Electrical and Computer
Engineering, pp. 158-61, 1996.

[14] Turrini, S., "Optimal Group Distribution in Carry-Skip
Adders", WRL Research Report 89/2, February 1989.

[15] Gayles, Eric S., Owens, R., and Irwin, M., "Low Power
Circuit Techniques for Fast Carry Skip Adders", Midwest
Symposium On Circuits and Systems, pp. 87-90, Aug. 1996.

[16] Xing, Shanzhen and Willlam, W. Yu, "FPGA Adders:
Performance Evaluation and Optimal Design", IEEE Design
& Test OF Computers, pp. 24-29, Jan–March 1998.

