
1

Two Analytical Models for Evaluating Performance of Gigabit
Ethernet Hosts with Finite Buffer

Khaled Salah**

Department of Information and Computer Science
King Fahd University of Petroleum and Minerals

Dhahran 31261, Saudi Arabia
Email: salah@kfupm.edu.sa

Abstract. Two analytical models are developed to study the impact of interrupt overhead on operating system

performance of network hosts with limited-size or finite buffer. Under heavy network traffic such as that of

Gigabit Ethernet, the system performance will be negatively affected due to interrupt overhead caused by

incoming traffic. In particular, packet loss, excessive latency and significant degradation in system throughput

can be experienced. Also, user applications may livelock as the CPU power is mostly consumed by interrupt

handling and protocol processing. In this paper, we present and compare two analytical models that capture

host behavior and evaluate its performance. The first model is based on Markov processes and queueing theory,

while the second, which is more accurate but more complex, is a pure Markov process. The models yield

equations for a number of important system performance metrics. These performance metrics include

throughput, latency, packet loss, stability condition, CPU utilizations of interrupt handling and protocol

processing, and CPU availability for user applications. Both models yield closed-form solutions and equations

that are either mathematically equivalent or very closely matching. Our analysis yields insight into

understanding and predicting the impact of system and network choices on the performance of interrupt-driven

systems when subjected to light and heavy network loads. More importantly, our analytical work can also be

valuable in improving host performance. The paper gives guidelines and recommendations to address design

and implementation issues. Simulation and reported experimental results show that our analytical models are

valid and give a good approximation.

KEYWORDS: High-Speed Networks, Operating Systems, Interrupts, Receive Livelock, Modeling and
Analysis.

1. Introduction

Interrupt overhead of Gigabit network devices can have a significant negative impact on system performance.

Traditional operating systems were designed to handle network devices that interrupt on a rate of around 1000

packets per second, as is the case for 10Mbps Ethernet. The cost of handling interrupts in these traditional

systems was low enough that any normal system would spend only a fraction of its CPU time handling

interrupts. For 100Mbps Ethernet, the interrupt rate increases to about 8000 interrupts per second using the

** Correspondence to: Prof. K. Salah, PO Box 5066, ICS Department, KFUPM, Dhahran 31261, Saudi Arabia, phone:
+96638604493 fax: +96638602174

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by King Fahd University of Petroleum and Minerals

https://core.ac.uk/display/266087066?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

standard maximum 1500 byte packets. However for Gigabit Ethernet, the interrupt rate for the maximum sized-

packet of 1500 bytes increases to 80,000 interrupts per second. Of course with 10 Gigabit Ethernet and

considering smaller packets, the problem is much worse.

In Gigabit networks, the packet arrival rate surpasses the system packet processing rate which includes network

protocol stack processing and interrupt handling. With Gigabit Ethernet and a rate of 80,000 interrupts per

second for a minimum sized packet of 512 bytes, the CPU must handle an interrupt in less than 4 µs in order to

keep up with such a rate. According to [1], a null system call (not an interrupt) on a typical 666 MHz Intel

Pentium III takes on the order of 10 µs. Also, a typical latency for handling interrupt due to a packet arrival in

Linux is in the order of 50 µs. It is important to notice that with the presence of more powerful multi gigahertz

processors these days, it is expected the interrupt cost will not be reduced linearly by the speed frequency of the

processor, as I/O and memory speed limits dominate [2]. In [2] it was concluded that the performance of

2.4GHz processor only scales to approximately 60% of the performance of an 800MHz processor.

Interrupt-driven systems tend to perform very badly under such heavy network loads. Interrupt-level handling,

by definition, has absolute priority over all other tasks. If interrupt rate is high enough, the system will spend

all of its time responding to interrupts, and nothing else will be performed; and hence, the system throughput

will drop to zero. This situation is called receive livelock [3]. In this situation, the system is not deadlocked,

but it makes no progress on any of its tasks, causing any task scheduled at a lower priority to starve or not have

a chance to run. At low packet arrival rates, the cost of interrupt overhead for handling incoming packets are

low. However, interrupt overhead cost directly increases with an increase of packet arrival rate, causing

receive livelock.

The receive livelock was established by experimental work on real systems in [3-5]. A number of solutions

have been proposed in the literature [4,6-15] to address network and system overhead and improve the OS

performance. Some of these solutions include interrupt coalescing, OS-bypass protocol, zero-copying, jumbo

frames, polling, pushing some or all protocol processing to hardware, etc. In most cases, published

performance results are based on research prototypes and experiments. However little or no research has been

done to study analytically the impact of interrupt overhead on OS performance. In [10,14], a simple

calculation of the interrupt overhead was presented. In [10], a mathematical equation was given directly for the

application throughput based on packet length and cost of interrupt overhead per byte and per packet. In [14],

the interrupt overhead was computed based on the arrival rate, interrupt handling time, and a fixed cost of

interrupt overhead. Both of these calculations are very simple. The calculations fail to consider complex cases

such as interrupt masking, CPU utilization, and effect of ISR and its overhead on packet processing at OS and

application levels. Moreover, the calculations fail to capture the receive livelock phenomenon and fail to

identify the saturation point of the host.

In [16], a preliminary throughput analysis was presented for interrupt-driven kernels when utilizing PIO and

DMA in high-speed networks such as that of Gigabit Ethernet. In this paper, we present and compare two

analytical models to capture host behavior and evaluate its performance. We consider hosts with limited-size

or finite buffer. For the most part both models give mathematically-equivalent closed-form solutions for a

3

number of important system performance metrics. These performance metrics include system throughput,

system latency, packet loss, host saturation point and system stability condition, CPU utilizations of ISR

handling and protocol processing, and CPU availability for other processing including user applications. As

opposed to prototyping and simulation, these two models can be utilized to give a quick and easy way of

studying the receive livelock phenomenon and system performance in high-speed and Gigabit networks. These

models yield insight into understanding and predicting the performance and behavior of interrupt-driven

systems at low and at very-high network traffic. Our analytical work can be important for engineering and

designing various NIC and system parameters. These parameters may include the proper service times for ISR

handling and protocol processing, buffer sizes, CPU bandwidth allocation for protocol process and application,

etc. The paper also gives guidelines and recommendations to improve overall system performance.

The rest of the paper is organized as follows. Section 2 describes the receive livelock phenomenon reported in

literature. Section 3 presents two mathematically-equivalent analytical models that capture the system behavior

and study the performance of Gigabit Ethernet hosts. Section 4 shows numerical examples to compare and

validate the analysis. Section 5 gives some guidelines and recommendations to address design and

implementation issues. Finally, Section 6 concludes the study and identifies future work.

2. Receive Livelock

In this section we briefly describe the phenomenon of receive livelock. Incoming network packets received at a

host must either be forwarded to other hosts, as is the case in PC-based routers, or to application processes

where they are consumed. The delivered system throughput is a measure of the rate at which such packets are

processed successfully. Figure 1, adopted from [3,4], shows the delivered system throughput as a function of

offered input load. Please note that the figure illustrates conceptually the expected behavior of the system and

does not illustrate analytical behavior. The figure illustrates that in the ideal case, no matter what the packet

arrival rate, every incoming packet is processed. However, all practical systems have finite processing

capacity, and cannot receive and process packets beyond a maximum rate. This rate is called the Maximum

Loss-Free Receive Rate (MLFRR) [3]. Such rate is an acceptable rate and is relatively flat after that.

Figure 1. Receive livelock phenomenon

4

Under network input overload, a host can be swamped with incoming packets to the extent that the effective

system throughput falls to zero. Such a situation, where a host has not crashed but is unable to perform useful

work, such as delivering received packets to user processes or running other ready processes, is known as

receive livelock. Similarly, under receive livelock, a PC-based router would be unable to forward packets to the

outgoing interfaces.

The main reason for receive livelock is that interrupts are handled at a very high priority level, higher than

software interrupts or input threads that process the packet further up the protocol stack. At low packet arrival

rates, this design allows the kernel to process the interrupt of the incoming packet almost immediately, freeing

up CPU processing power for other user tasks or threads before the arrival of the next packet. However, if

another packet arrives before the completion of handling the first one (e.g., in the case of high packet arrival

rate), starvation will occur for user tasks and threads resulting in unpleasant performance of dropping packets

due to queue overflows, excessive network latency, and bad system throughput.

3. Analysis

In this section we present two analytical models to examine the impact of interrupt overhead on OS

performance. First we define the system parameters. Let λ be the mean incoming packet arrival rate and µ be

the mean protocol processing rate carried out by the kernel. Note that 1/µ is the average time the system takes

to process the incoming packet and deliver it to the user application. This time includes primarily the network

protocol stack processing carried out by the kernel, excluding any time disruption due to interrupt handling.

Let r/1 be the mean interrupt handling time, which is basically the interrupt service routine time for handling

incoming packets. r/1 basically includes the interrupt-context switching overhead as well as the ISR handling.

The main function of ISR handling is to notify the kernel to start protocol processing of the received packet. In

[10,15], ISR handling included flushing DMA’d incoming packets from kernel’s host memory to protocol

incoming buffer. Keeping r/1 to minimum execution is highly desirable. Hence, flushing of incoming

packets is highly recommend to be performed outside of the ISR and to be combined with protocol processing.

After the notification of the arrival of a new packet, the kernel will process the packet by first examining the

type of frame being received and then invoking immediately the proper handling stack function or protocol, e.g.

ARP, IP, TCP, UDP, etc. The packet will remain in the kernel or system memory until it is discarded or

delivered to the user application. The network protocol processing for packets carried out by the kernel will

continue as long as there are packets available in the system memory buffer. However, this protocol processing

of packets can be interrupted by ISR executions as a result of new packet arrivals. This is so because packet

processing by the kernel runs at a lower priority than the ISR.

There are two possible system delivery options of packet to user applications. The first option is to perform an

extra copy of packet from kernel space to user space. This is done as part of the OS protection and isolation of

user space and kernel space. This option will stretch the time of protocol processing for each incoming packet.

A second option eliminates this extra copy using different techniques described in [7-9,14,17-19]. The kernel

5

is written such that the packet is delivered to the application using pointer manipulations. Our analytical model

captures both options. The only difference is in the protocol processing time. The second option will have a

smaller processing time than the first.

Throughout our analysis, we assume the following:

i) It is reasonable not to assume the times for protocol processing or ISR handling to be constant. These

times change due to various OS activities. For example ISR handling for incoming packets can be

interrupted by other interrupts of higher priority, e.g. timer interrupts. Also, protocol processing can be

interrupted by higher priority kernel tasks, e.g. scheduler. For our analysis, we assume these service

times to be exponential. In Section 4, we demonstrate that this assumption gives an adequate

approximation.

ii) The network traffic follows a Poisson process, i.e., the packet interarrival times are exponentially

distributed. In many situations, assuming Poisson arrivals is adequate. In [20], it was concluded that

modeling the voice traffic as Poisson gives adequate approximation, especially if the voice traffic is high.

iii) The packet sizes are fixed. This assumption is true for Constant Bit Rate (CBR) traffic such as

uncompressed interactive audio and video conferencing.

3.1. Limitations

Our analytical models assume the packet arrivals are Poisson, and the packets are of a fixed size. In practice,

network packets are not always fixed in size, and their arrivals do not always follow a Poisson process. An

analytical solution becomes intractable when considering variable-size packets and non-Poisson arrivals. As

we will demonstrate in Section 4, it turns out that our model with the above assumptions gives a good

approximation to real experimental measurements. The impact of having a constant network traffic instead of a

Poisson is studied using simulation in this paper and results are shown and compared to those of Poisson.

However, having variable-size packets, e.g. Jumbo frames, and other traffic distributions, e.g. bursty traffic

[21,22], are currently being studied by the author using simulations and results are expected to be reported in

the near future.

3.2. DMA-Based Design

For our hosts, we assume that the NIC is equipped with DMA engines. However, a NIC adapter can be

designed with a PIO-based option. A NIC adapter with PIO-based design can be an attractive option when

considering factors such as cost, simplicity, and speed and efficiency in copying relatively small-size packets

[23]. However, a major drawback for a PIO-based design is burdening the CPU with copying incoming

packets from the NIC to kernel memory. In order to save CPU cycles consumed in copying packets, major

network vendors equip high-speed NICs with DMA engines. These vendors include Intel, 3Com, HP, Alteon

owned now by Nortel, Sundace, and NetGear. NICs are equipped with a receive Rx DMA engine and a

transmit Tx DMA engine. A Rx DMA engine handles transparently the movement of packets from the NIC

internal buffer to the host system memory. A Tx DMA engine handles transparently the movement of packets

from the host memory to the NIC internal buffer. Both DMA engines operate in a bus-master fashion, i.e. the

6

engines request access to the PCI bus instead of waiting to be polled. It is worth noting that the transfer rate of

incoming traffic into the kernel memory across the PCI bus is not limited by the throughput of the DMA

channel. These days a typical DMA engine can sustain over 1 Gbps of throughput for PCI 32/33 MHz bus and

over 4 Gbps for PCI 64/66 MHz bus [24, 25].

It is important to note that the NIC is typically configured such that an interrupt is generated after the incoming

packet has been completely DMA'd into the host system memory. In order to minimize the time for ISR

execution, ISR handling mainly sets a software interrupt to trigger the protocol processing for the incoming

packet. Please note in this situation if two or more packets arrive during an ISR handling, the ISR time for

servicing all of these packets will be the ISR time for servicing a single packet, with no extra time introduced.

3.3. Modeling Interrupts is a Challenging and Difficult Task.

Modeling Interrupts is a challenging and difficult task. As noted earlier the ISR execution preempts protocol

processing, and hence, one may think that such an interrupt-driven system can be simply modeled as a priority

queueing system with preemption in which there are two arrivals of different priorities. The first arrival is the

arrival of ISRs, and has the higher priority. The second arrival is the arrival of incoming packets, and has the

lower priority. However this is an invalid model because ISR handling is not counted for every packet arrival.

ISR handling is ignored if the system is servicing another interrupt of the same level. In other words, if the

system is currently executing another ISR, the new ISR which is of the same priority interrupt level will be

masked off and there will be no service for it. We use instead two analytical models: one is based on an

M/G/1/B queueing model and the other is a pure Markov process.

3.4. Analytical Model I

The model is based on first determining the CPU utilization for ISR handling, next finding the mean effective

protocol processing rate, and then modeling the protocol processing as M/G/1/B queueing system with this

mean effective rate. M/G/1/B queueing model is chosen as opposed to M/G/1 for two important reasons. First,

in M/G/1/B, the arrival rate go beyond the service rate, i.e., µλ > . This assumption is a must for Gigabit

environment where under heavy load λ can be very high compared to µ. Second, hosts practically and

realistically has a finite amount of buffer space reserved for protocol processing. More details on Analytical

Model I can be found in [16]. In [16], the system performance was only studied in terms of throughput. In this

paper we extend the analysis work to examine more performance metrics. In particular we study system

latency, saturation point, packet loss, CPU utilizations of ISR handling and protocol processing, and CPU

availability for user applications.

In order to find the CPU utilization percentage for ISR handling, we use a Markov process to model the CPU

usage, as illustrated in Figure 2. The process has state (0,0) and states (1,n). State (0,0) represents the state

where the CPU is available for protocol processing. States (1,n) with ∞<≤ n0 0 represents the state where the

CPU is busy handling interrupts. n denotes the number of interrupts that are batched or masked off during ISR

handling. Note that n also denotes the number of packet arrivals during ISR handling. Therefore, state (1,0)

7

means there are no interrupts being masked off and the CPU is busy handling an ISR with one packet arrival.

State (1,1) means that one interrupt has been masked off and the CPU is busy handling an ISR with two packet

arrivals. Both of these packets will be serviced together with a mean rate r of servicing only one packet.

Figure 2. Markov state transition diagram for modeling CPU usage with DMA

The steady-state difference equations can be derived from pQ=0 , where p },,,,{ 2,11,10,10,0 �pppp= and Q is

the rate-transition matrix and is defined as follows:

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

+−
+−

+−
+−

−

=

�����

�

�

�

�

�

)(000

)(00

0)(0

00)(

000

rr

rr

rr

rr

λ
λλ

λλ
λλ

λλ

Q

This will yield .0)(2,11,10,10,0 =++++− �ppprpλ

Since we know that 1
0 ,10,0 =+�

∞

=n npp , then

.0)1(0,00,0 =−+− prpλ
Solving for p0,0, we thus have

,0,0 r

r
p

+
=

λ

and .1 0,0 r
p

+
=−

λ
λ

Therefore, the CPU utilization for ISR handling, ISRU , can be expressed as

�
�

�
�
�

�

+
=

r
U ISR λ

λ
. (1)

The mean effective service rate µ′ for protocol processing can be computed in terms of CPU percentage
availability for protocol processing. The mean effective service rate can be expressed as

×=′ µµ (% CPU availability for protocol processing), (2)

8

r

r

+
⋅=′
λ

µµ .

The term
r

r

+λ
is the percentage of CPU bandwidth available for protocol processing, and is equal to

r+
−

λ
λ

1 .

CPU Availability. For such a model, the percentage of CPU power available for other processing, including

user applications, is basically the probability when there is no ISR handling and there are no packets being

processed by the protocol stack. It is to be noted from equation (2) that the mean effective service time µ′1 is

exponential. Therefore, the protocol processing can be modeled as M/M/1/B queue with a mean service rate of

µ ′ . Hence, the CPU availability for other processing can be expressed as

0p
r

r
V ⋅�

�

�
�
�

�

+
=

λ
, (3)

where 0p is the probability of not queueing, i.e. finding zero packets, in the M/M/1/B queueing system of the

kernel’s protocol processing.

11

1
0 +−

−
=

B
IP

IPp
ρ
ρ

, (4)

where ��
�

�
��
�

�
=

'µ
λρ IP . Note that IPρ is the network load, or traffic intensity, being encountered due to kernel’s

protocol processing.

CPU Utilization. The CPU utilization, IPISRU + , which includes ISR handling and protocol processing can be
expressed as

VU IPISR −=+ 1 (5)

The CPU utilization for protocol processing, IIPU , can be determined two ways. Both ways give the same

outcome. One way is ISRIPISRIP UUU −= + . Substituting equation (1) and equation (5), IPU can be simplified

to ()01 p
r

−⋅�
�

�
�
�

�

+λ
λ

. The other way is to express as the probability of no ISR handling and the probability of

queueing, i.e. finding one or more packets, in the M/M/1/B queueing system of the kernel’s protocol processing.

Hence, the CPU utilization for protocol processing, IIPU , can be expressed as

()01 p
r

U IP −⋅�
�

�
�
�

�

+
=

λ
λ

. (6)

9

Mean System Throughput and Blocking Probability. The mean system throughput γ is basically the

departure rate due to protocol processing, and it can be expressed as

)1(' 0p−= µγ ,

where 0p is expressed by equation (3). Also γ can be expressed as the effective arrival rate 'λ which is

)1(lossP−λ . Therefore,

)1()1(' 0 lossPp −=−= λµγ , (7)

where lossP is the loss probability for a protocol buffer of size B can be expressed as

11

)1(
+−

−
=

B

B

IP

IPIP
lossP

ρ
ρρ

. (8)

Saturation Point. A critical operating point for the system is computing the saturation point. It is the point at

which the system can not keep up with the offered network load. This is also referred to the “cliff” point of

system throughput, i.e. µλ ′= . It is where the throughput starts falling as the network load increases. Also the

system will become unstable causing dropping of packets, excessive latencies and timeouts. In addition, the

user applications will livelock at this point as the CPU power is at 100% with 1=+IPISRU , and thus resulting in

0=V . The CPU power is being consumed by ISR handling and protocol processing. The saturation condition

can be expressed as

µρ λ ′= == ororV IP 10 . (9)

Note that when 0=V , 1=IPρ . This relation can be derived simply setting V in equation (3) to zero.

Therefore, 00 =⋅�
�

�
�
�

�

+
p

r

r

λ
, or 00 =p . Substituting for 0p in equation (4), we get 1=IPρ .

Using equation (1), the saturation point can be derived and solved for λ as follows:

0)(2 =−+�=+ rrrr µλλµλλ .

The roots of the quadratic equation 02 =−+ rr µλλ are

2

41

2

42
r

rrrrr
µ

µ
λ

+−
=

+−
=

�
�

.

Since the term under the square root is always greater than one then the negative sign is neglected. Therefore,

the saturation point occurs at

�
�
�

�
�
�
�

�
−+= 141

2 r

r µλ . (10)

10

Later we will refer to this point as the cliff point or cliffλ . It is to be noted that this equation can also be derived

by finding the maximum point of system throughput. This can be done by taking the derivative of the system

throughput of equation (6) with respect to λ and setting it to zero, i.e. 0=
λ
γ

d

d
, and then solving for λ .

Mean System Latency. The mean system latency per packet is affected by both ISR handling and protocol

processing. An incoming packet experiences a delay due to interrupt handling and due to the delay of protocol

processing. In order to find such a delay, we utilize the principles of Jackson theorem for analyzing our

queueing model. In particular, we use the approximation method of analyzing queueing models or systems by

decomposition discussed in [26]. In this method, the arrival rate must be Poisson and the service times are

exponentially distributed, which are the case in our model. Analysis by decomposition is summarized in first

isolating the queueing system into subsystems, e.g., single queueing system or process. Next, analyzing each

subsystem separately, considering its own surroundings of arrivals and departures. Then, finding the average

delay for each individual queueing subsystem. And finally, aggregating all the delays of queueing subsystems

to find the average total end-to-end network delay.

Accordingly, the mean system delay is therefore decomposed to be the sum of the mean delay of interrupt

handling plus the mean delay of protocol processing. Hence the total mean system delay,)(rE , can be

expressed as

)()()(rErE IPISRrE += ,

where)(rEISR is the mean delay due to ISR and)(rEIP is mean delay due to protocol processing.

)(rEISR is simply r/1 . This is so due to the nature of servicing packets during ISR handling. The mean ISR

handling time for one packet or many packets is the same, i.e. r/1 . This delay can also be computed using the

Markov process depicted in Figure 2. First we compute np ,1 from Figure 2. Using mathematical induction

and the iterative method of solving the steady-state difference equations, .
2

,1

+

�
�

�
�
�

�

+
=

n

n r

r
p

λ
λ

λ
The average

number of packets being serviced by one ISR,)(nEISR , can be expressed as

���
∞

=

∞

=

∞

=

+=+=
0

,1
1

,1
0

,1)1()(
n

n
n

n
n

nISR pnppnnE .

With further simplification,

r
nEISR

λ=)(.

And therefore, the average ISR delay per packet,)(rEISR , according to Little’s law, is

11

r

nE
rE ISR

ISR

1)(
)(==

λ
.

As for the mean delay caused by protocol processing,)(rEIP , it simply the mean delay encountered in the

M/M/1/B queueing system with ��
�

�
��
�

�
=

'µ
λρ IP . According to [27], such delay can be expressed as

'

)(
)(

λ
nE

rE IP
IP = .

where
1

1

1

)1(

1
)(+

+
=

−

+
−

− B

B

IP

IP

IP

IP
IP

B
nE

ρ
ρ

ρ
ρ

and 'λ is the mean effective arrival rate. 'λ is expressed in equation

(7). Therefore, the mean system delay, according to approximation by decomposition method, is

'

)(1
)(

λ
nE

r
rE IP+= . (11)

3.5. Analytical Model II

This model captures the behavior of the interrupt-driven system using only a Markov process. The interrupt-

driven system with DMA design option can be modeled as a pure Markov chain with a state space

}}1,0{,0),,({ ∈∞≤≤= mnmnS , where n denotes the number of packets in the buffer and m denotes the type

of activity the CPU is performing. State (0,0) represents the state where the CPU is idle. States (n,1) represent

the states where the CPU is busy handling interrupts. States (n,0) represent the states where the CPU is busy

processing protocol. The rate transition diagram is shown in Figure 3.

Figure 3. Markov state transition diagram for interrupt-driven system with finite buffer

Let pn,m be the steady-state probability at state(n,m). A system of difference equations can be derived for the

stationary probabilities as follows:

0,10,00 pp µλ +−= ,

0,01,1)(0 ppr λλ ++−= ,

1for)(0 0,11,0, ≥+++−= + nprpp nnn µµλ ,

2for)(0 1,10,11, ≥+++−= −− npppr nnn λλλ .

(12)

12

The first two equations constitute the initial values. The last two equations constitute the system of difference

equations. In order to solve this system of equations, we need to re-arrange them as follows:

.1

,1

1,0,1,1

1,0,0,1

≥
+

+
+

=

≥−+=

+

+

np
r

p
r

p

np
r

pp

nnn

nnn

λ
λ

λ
λ

µµ
µλ

These equations can be written in the vector form as

)()1(npAnp =+ ,
where

�
�
�
�
�

�

�

�
�
�
�
�

�

�

++

−+

=

rr

r

A

λ
λ

λ
λ

µµ
µλ

,

�
�
�

�

�

�
�
�

�

�

=

1,

0,

)(

n

n

p

p

np , and
�
�
�

�

�

�
�
�

�

�

=+

+

+

1,1

0,1

)1(

n

n

p

p

np .

Therefore, our equations have been nicely converted to a system of first order difference equation, in which we

can apply Putzer algorithm to obtain the solution [28].

Before we proceed further, let us denote µλα /= , and)/(r+= λλβ . Then, matrix A can be rewritten as

�
�
�

�

�

�
�
�

�

� −−+
=

ββ

ββαα /)1(1

A .

The eigenvalues of matrix A can be obtained by solving the characteristic equation 0)det(=− zIA where z is

the eigenvalue, and I is the identity matrix. Now

0))(1(

/)1(1

det)det(=−−−=
�
�
�

�

�

�
�
�

�

�

−

−−−+
=− βα

ββ

ββαα
zz

z

z

zIA .

Hence, the eigenvalues of matrix A are 11 =z and βα +=2z .

So, according to Putzer Algorithm,

�
�
�

�

�

�
�
�

�

�

−

−−
=−==

1

/)1(

)1(and,)0(1

ββ

ββαα
IzAMIM .

13

Then,

11)(1 == nnu ,
and

�
−

=
−−

+−
+−=+=

1

0

1
2)(1

)(1
)1()()(

n

i

n
iinnu

βα
βαβα .

Finally, we have

�
�
�
�
�

�

�

�
�
�
�
�

�

�

+−
+−+−

+−
+−

+−
+−−

+−
+−−

=

×+×=

)(1

))(1(

)(1

))(1(

))(1(

))(1)(1(

)(1

)(1

)1()()0()(21

βα
βαβα

βα
βαβ

βαβ
βαβα

βα
βααβ

nn

nn

n MnuMnuA

.

The solution of the difference equation is given by

�
�
�
�
�

�

�

�
�
�
�
�

�

�

×
+−

+−+−+×
+−
+−

×
+−

+−−+×
+−

+−−

=

�
�
�
�
�

�

�

�
�
�
�
�

�

�

×

�
�
�
�
�

�

�

�
�
�
�
�

�

�

+−
+−+−

+−
+−

+−
+−−

+−
+−−

==+

0,00,0

0,00,0

0,0

0,0

)(1

))(1(

)(1

))(1(

))(1(

))(1)(1(

)(1

)(1

)(1

))(1(

)(1

))(1(

))(1(

))(1)(1(

)(1

)(1

)1()1(

pp

pp

p

p

pAnp

nn

nn

nn

nn

n

β
βα

βαβαα
βα
βαβ

β
βαβ

βαβαα
βα

βααβ

β

α

βα
βαβα

βα
βαβ

βαβ
βαβα

βα
βααβ

The solution can be nicely simplified to

1
)(

)(
1

0,01,

1
0,00, ≥

��

�
�
�

+=
+=

−

−

n
pp

pp
n

n

n
n

βαβ
βαα

(13)

The boundary probabilities at state (B, m) are

0)(1,0, =++− BB prpµλ , (14)

00,0,11,11, =+++− −− BBBB ppppr λλλ . (15)

Substituting equation (15) into (14), we get

0)(0,0,11,10, =++++− −− BBBB pppp λλλµλ ,

)(1,10,10, −− += BBB ppp λµ ,

)(1,10,10, −− += BBB ppp
µ
λ

.

14

Using equations (12) to obtain 0,1−Bp and 1,1−Bp , and then substituting them into the above equation, we get

1
0,00,)(−+= B

B pp βαα . (16)

Now substitute equation (16) into equation (14), we have

1
0,01,))(1(−++= B

B p
r

p βααλ
. (17)

Since the summation of all probabilities is equal to 1, we get

1)(1,0,

1

1
1,0,0,0 =++++�

−

=
BB

B

n
nn ppppp ,

1)))(1(()(1
0,0

1

1
0,00,0 =++++++ −

−

=
�

B
B

n

n

r
ppp βααλαβα .

Therefore,
1

1
0,0)))(1((

)(1

)()(
1

−
−
�
�

�
�
�

�
++++

+−
+−++= B

B

r
p βααλα

βα
βαβα

.

Now, let βαρ += and)1/()1(/ βραλα −=+⋅+ r , then

B
p

ρ
β

α
ρ

−
−

−=

1
1

1
0,0 .

(18)

CPU Utilization and Availability. Using the pure Markovian model, the CPU utilization for ISR handling can

be derived as

.

)1()1(

1

)1()1(

)1)(1()1()1(

1

)1(

1

1

)1(
1

0,0

11

0,0

11

0,0

1
0,0

1

1

1
0,0

1,

1

1
1,

1
1,

β
βρ

αρββ

βρ
ρραρβββ

β
ρα

ρ
ρβ

ρα
β

βρβ

=

��
�

�
��
�

�

−−
−−=

�
�
�

�
�
�
�

�

−−
−++−−−=

�
�
�

�
�
�
�

�

−
++

−
−=

+
−

+��
�

�
�
�
�

�
=

+��
�

�
�
�
�

�
=

=

−−

−−

−
−

=

−

−

=

=

�

�

�

B

BB

BB

B
B

n

n

B

B

n
n

B

n
nISR

p

p

p

pp

pp

pU

15

Therefore,

�
�

�
�
�

�

+
=

r
U ISR λ

λ
.

ISRU derived here for Analytical Model II is equivalent to equation (1) of Analytical Model I.

Similarly, the CPU utilization for protocol processing can be derived as

.

1

11
1

1

)1)(1(

1

1

0

1
0,0

1
0,

B

B

B

B

B

n

n

B

n
nIP

p

pU

ρ
βα

ρ

αρβ
ρβ

ρ
ρα

ρα

−
−

−=

��
�

�
��
�

�

−−
−−

��
�

�
��
�

�

−
−=

=

=

�

�

=

−

=

Therefore,

.

1

11
1

B

B

IPU
ρ

βα

ρ

−
−

−=

IPU derived here for Analytical Model II is not mathematically equivalent to equation (6) of Analytical Model

I, but are very closely matching, as will be demonstrated numerically and graphically in Section 4, Figure 4b.

The CPU availability for other processing can be expressed as

0,0pV = .

The CPU utilization for both ISR handling and protocol processing, IPISRU + , can be expressed as

VU IPISR −=+ 1 .

Also IPISRU + is equal to the sum of ISRU and IIPU . As a verification point, it can also be proven that

.1 0,0 IPISR UUp +=− When simplified, both sides of the equations yield the same term.

B

B

IPISR UUp
αρβ

αρβρ
−−

−−=+=−
1

)1(
1 0,0 .

Mean System Throughput. The mean system throughput,γ , for the pure Markovian model is the rate at

which packets are successfully being processed by the kernel’s protocol stack. According to [27], γ can be

expressed as �
=

B

n
np

1
0,µ . Therefore, γ can be derived as follows

16

.
1

1
0,0

1

1
0,0

1
0,

ρ
ραµ

ραµ

µγ

−
−×=

=

=

�

�

=

−

=

B

B

n

n

B

n
n

p

p

p

(19)

γ derived here for Analytical Model II is not mathematically equivalent to equation (7) of Analytical Model I,

but are very closely matching, as will be demonstrated graphically in Section 4, Figure 4a.

Saturation Point. The saturation or the cliff point using the pure Markovian model occurs when

00,00 == porV .

Substituting in equation (18), we get
.1 1)/(/ =++= ror λλµλρ

The saturation point can be solved for λ and can be expressed exactly the same as in Analytical Model I given

by equation (10). Please note that the term 1)/(/ =++ rλλµλ can be simplified to 02 =−+ rr µλλ , which is

the term used in the derivation of equation (10).

Blocking Probability. The loss probability for a buffer of size B of Figure 3 is the probability of being in

either state (B,0) or state (B,1). This can be expressed as

))1((

)1(

1
0,0

1
0,0

1
0,0

1,0,

++=

++=

+=

−

−−

αλαρ

ραλρα

r
p

p
r

p

ppP

B

BB

BBloss

.

If you let)1/()1(/ βραλα −=+⋅+ r , then

��
�

�
��
�

�

−
=

β
ρ

10,0

B

loss pP .

lossP derived here for Analytical Model II is not mathematically equivalent to equation (8) of Analytical Model

I, but are very closely matching, as will be demonstrated graphically in Section 4, Figure 4d.

Mean System Latency. The mean system latency,)(rE , for the pure Markovian model can be computed as

follows

,
'

)(
)(

λ
nE

rE =

17

where)(nE is the expected number of packets in the system and 'λ is the mean effective arrival rate. 'λ is

expressed in equation (19). However)(nE can be derived as follows

.
1)1(

)1(

)1(

1

)()(

)()(

0,022

0,0

1

1
0,0

1,0,

1

1
1,0,

1
1,0,

p
BB

p
B

np

ppBppn

ppnnE

BB

B
B

n

n

BB

B

n
nn

B

n
nn

×��
�

�
��
�

�

−
+

−
+−−

−
=

−
+=

+×++=

+=

�

�

�

−

=

−

=

=

ρ
β

ρ
ρ

ρρ
ρ

ρ

ρ
β

ρ

Simplifying the above equation, we get

BB

B B
nE

αρβ
α

αρβρ
ρβρ

−−
−

−−−
−−=

1)1)(1(

)1)(1(
)(.

)(rE derived here for Analytical Model II is not mathematically equivalent to equation (11) of Analytical

Model I, but are very closely matching, as will be demonstrated graphically in Section 4, Figure 4c.

3.6. Comparison between the Two Models

Thus far we derived equations for the various performance measures using Analytical Model I and Analytical

Model II. An important question to address is how these derived equations of the two analytical models

compare to one another. By examining the equations of both models and as discussed in Section 3.5 and 3.6,

we find that the models give exact mathematical equivalence for two performance measures: 1) CPU utilization

for ISR handling, and 2) system saturation point. For other performance measures, the derived equations given

by the two models are not mathematically equivalent, but very closely matching. This will be demonstrated

numerically and graphically in Section 4, as very close matching results were obtained. In fact in the majority

of cases, the results were exactly matching.

A key point to notice here is that Analytical Model II is an accurate model. It is a pure Markovian process

which captures totally the interaction between ISR handling and protocol processing. However, Analytical

Model I is an approximation by decomposition method that introduces somewhat loose coupling of ISR

handling and protocol processing, and therefore introduces some error [26]. Analytical Model I decomposes

the system and focuses on the subsystem or portion of protocol processing. The protocol processing is modeled

as a queueing system with an effective service rate. The effect of interrupt disruption is captured by the

effective service rate. As will be demonstrated in Section 4, the error introduced by Analytical Model I is really

negligible when B is large, i.e., when utilizing a large buffer size for protocol processing. It was found that

when B > 50, we obtain very closely matching results. In practice, B is usually much larger than 1000 packets.

18

On the other hand, it should be noted that conducting analysis using Analytical Model I is easier and more

convenient than that of Analytical Model II. Once the CPU utilization is determined for ISR handling, the

performance metrics can be directly computed by applying known and already derived equations for M/M/1/B

queueing system [27]. In fact, such a technique is currently being utilized to examine and compare the

performance of different proposed schemes for minimizing and eliminating the interrupt overhead caused by

heavy network loads. Conducting analysis using Analytical Model II for such proposed methods will give

intractable mathematical solution.

3.7. Simulation

In order to verify and validate our analytical models, a discrete-event simulation model was developed and

written in C language. The assumptions of analysis were used. The simulation followed closely and carefully

the guidelines given in [29]. We used the PMMLCG as our random number generator [28]. The simulation

was automated to produce independent replications with different initial seeds that were one million apart. The

initial seeds for the simulation model random variables within each replication were chosen to be five million

apart. During the simulation run, we checked for overlapping streams and ascertain that such a condition did

not exist. The simulation was terminated when achieving a precision of no more than 10% of the mean with a

confidence of 90%. We employed and implemented dynamically the replication/deletion approach for means

discussed in [29]. We computed the length of the initial transient period using the MCR (Marginal Confidence

Rule) heuristic developed by White [30]. Each replication run lasts for five times of the length of the initial

transient period. Analytical and simulation results, as will be demonstrated in Section 4, were very much in

line.

4. Numerical Examples

In this section, we report and compare results of analysis and simulation. Numerical results are given for key

performance indicators. These indicators include mean system throughput, CPU utilization, latency, and packet

loss probability. For validation, we compare our analysis and simulation results. Also we compare the system

throughput to results obtained by lab experiment reported in [5]. For our numerical examples we use the same

values for system parameters as those reported in [5]. In [5], the lab experiment basically consisted of a PC-

based router, 450 MHz Pentium III, running Linux 2.2.10 OS with two Fast-Ethernet NICs with DMA. A

traffic of fixed-size packets was generated back-to-back to the router. As measured by [5], the mean service

time for ISR (r1) was 7.7 µ seconds and the mean protocol processing time (µ1) was 9.7 µ seconds.

Figure 4a, Figure 4b, Figure 4c, and Figure 4d plot the mean system throughput, CPU utilization, and mean

system latency, and packet loss probability, respectively, as a function of packet arrival rate. For Figures 4a,

4b, and 4c, we fix the kernel’s protocol processing buffer B to a size of 1000 packets. As for validation, we

compare the experimental results for system throughput to those of analysis. Other performance indicators

were not measured in [5]. From Figure 4, it is clear that the discrete-event simulation results are very much in

line with those of analysis. It is also depicted that the analysis results give an adequate approximation to real

experimental measurements of system throughput.

19

0 20 40 60 80 100 120 140
0

20

40

60

80

Packet Arrival Rate (Kpps)

T
hr

ou
gh

pu
t (

K
pp

s)

Experimental
Analtyical Model I
Analytical Model II
Simulation

Saturation Condition

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

90

100

Packet Arrival Rate (Kpps)

C
P

U
 U

til
iz

at
io

n
(%

)

Analytical Model I
Analytical Model II
Simulation

IP

ISR + IP

ISR

CPU Availibility

(a) (b)

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12

14

16

S
ys

te
m

 D
el

ay
 (

m
se

c)

Packet Arrival Rate (Kpps)

Analytical Model I
Analytical Model II
Simulation

B/µ’

60 65 70 75 80

10
−4

10
−3

10
−2

10
−1

10
0

Lo
ss

 P
ro

ba
bi

lit
y

Packet Arrival Rate (Kpps)

Analytical Model I
Analytical Model II
Simulation

B=50

B=1000

B=10000

(c) (d)

Figure 4. Key performance indicators in relation to arrival rate

When examining the mean system throughput of Figure 4a and the corresponding CPU utilization and mean

system latency of Figure 4b and Figure 4c, it can be noted that the saturation point for the system occurs at

750,67 pps. We referred to the point, where the throughput starts being degraded, as the “cliff” or saturation

point. We denoted this point as cliffλ , and was given by equation (10). At this point, the corresponding CPU

utilization for both ISR handling and protocol processing is at 100%, with a CPU availability of zero.

Therefore, user applications will starve and livelock at this point. Also as expected and depicted in Figure 4b,

when the incoming traffic increases beyond the saturation point, the CPU utilization of ISR handling continues

increasing whereas the utilization of IP processing starts decreasing. Figure 4c shows the mean system delay

sharply increases when reaching the saturation point of an arrival rate of cliffλ = 67,750 pps. Theoretically, the

cliffλ

20

latency should flatten off at 'µB , but rather it slowly shoots to infinity. This is because as the arrival rate

increases right after the cliff point, the mean effective service rate 'µ decreases. See equation (2).

Figure 4d plots the blocking or loss probability for three values of the kernel’s protocol processing buffer B: 50,

1000, and 10,000 packets. A key point to notice in the figure is that there is a small difference encountered

(close to the saturation condition) between the results obtained by Analytical Model I and Analytical Model II.

However, when B is large, the difference is negligible. In practice, this buffer usually holds more than 1000

packets.

Two Important Observations. In general by subjectively eyeballing the curves in all of Figure 4 for

Analytical Model I and Analytical Model II, two important observations can be made. First, it can be observed

that both models give very closely matching results. In fact when the buffer size B is large, exactly matching

results are obtained. Second, Analytical Model II is more accurate than Analytical Model I. The simulation

results are closer to Analytical Model II. This is more obvious in Figure 4d when B=50. This is due to the fact

that Analytical Model II is theoretically more accurate than Analytical Model I, as discussed in Section 3.6.

5. Design and Implementation Issues

We studied the performance of hosts in terms of mean system throughput, CPU utilization, CPU availability,

latency, and packet loss probability when subjected to light and heavy network loads. As noted, degraded and

poor performance can be encountered due to heavy network loads. Our work has provided insight into

predicting such a system performance. Critical operating points of performance were identified. Based on our

analysis, simulation, and experimental studies, the following design recommendations, guidelines and

observations must be considered in order to improve host performance:

Good Overload Performance is Critical. It is imperative to design a system with good overload conditions.

The system should be stable even under extremely high load. A major contribution of our analytical work is

identifying the overload condition. Maintaining good performance under overload conditions is critical. A

system or a host under severe and heavy network traffic should sustain its throughput or capacity. Such

throughput should not be degraded as the network load or traffic increases. We referred to the point, where the

throughput starts being degraded, as the “cliff” or saturation point. It can also be called the application

starvation point. Our analysis provided equations to predict, with adequate degree of accuracy, where this point

occurs. We denoted this point as cliffλ , and was given by equation (10).

As a good design practice and in order to sustain the system throughput with no noticeable degradation at

overload condition, precisely at the cliff point of cliffλ , the host should disable interrupts and enable polling

technique. Therefore, interrupt overhead will be eliminated. In polling, the OS periodically polls its host

system memory (i.e., protocol processing buffer) to find packets to process. In general, there is a maximum

number of packets to process in each poll in order to leave some CPU power for application processing. There

are primarily two drawbacks for polling. First, unsuccessful polls can be encountered as packets are not

21

guaranteed to be present at all times in the host memory, and thus CPU power is wasted. Second, latency of

processing the packet is larger, as the packets get queued until they are polled. Therefore, disabling interrupts

and enabling polling is only practical at high load. At low load, polling yields excessive latency. And hence,

it is only practical to switch to polling mode at overload condition. Switching between interrupts and polling is

proposed in [4,10]. However in [4,10], the overload condition was not identified accurately as is the case with

our analytical study. In [10], the overload condition was based on the arrival rate and was chosen arbitrarily

and has to be tuned manually. Also in [4], the overload condition was based on the host buffer occupancy and

two levels of occupancy were selected arbitrarily.

Identifying properly where overload conditions occurs is important. In our analysis, the overload condition

occurs at cliffλ . Given the system parameters of interrupt overhead and protocol processing, cliffλ can be

computed. We propose the use of two thresholds of operations: upper (U) and lower (L), where cliffwU λ=

and cliffzL λ= . w and z are tunable and design parameters, and their value selection depends on how

aggressive or releaxed the need of switching between interrupts and polling. The value selection also depends

on the CPU availability percentage required to be reserved for application processing. Good design values for

w and z can be 95% and 85%, respectively.

cliffλ

Figure 5. Critical design and operating points

As depicted in Figure 6, it is to be noted that as long as the host is operating in the region between U and L

thresholds, no mode switching between interrupts and polling should take place. Using two thresholds is

necessary in order to avoid possible significant overhead that may result from frequent fluctuation around one

threshold point. When the arrival rate λ exceeds the upper threshold U, the host’s OS must switch to polling

mode. When the arrival rate λ becomes lower than the lower threshold L, the host’s OS must switch to

interrupt mode.

From implementation point of view, we propose two solutions to measure the overload condition and

implement such a hybrid interrupt-polling scheme.

A) NIC-Side Solution. In this solution, the OS should initially set the values for U and L thresholds in the NIC.

The NIC should be capable of computing λ by recording and measuring the inter-arrival times of incoming

packets using exponential averaging method as reported in [31]. When U>λ , the NIC should notify the OS to

22

disable interrupts and enable polling. When L<λ , the NIC should notify the OS to enable interrupts and

disable polling.

B) OS-Side Solution. This solution should be employed when the NIC is not equipped with software to

measure the inter-arrival times of incoming packets. In this solution the measurement of the overload condition

is performed entirely by the OS. This solution requires more overhead on the part of the OS. There are three

possible approaches to measure the overload condition by the OS:

o CPU Utilization. Monitoring the CPU utilization of the host in order to determine network overload

condition is an invalid approach. This approach is stated here for the sake of discussion and coverage

of all possible approaches. The CPU utilization can go high due to so many reasons other than

interrupt handling and protocol processing. For example the CPU utilization can be high due to heavy

CPU-bound processes or threads activities.

o Host System Buffer Occupancy. In this approach, the networking subsystem of the OS must

periodically checks the status of kernel host buffer of where the incoming packets are being copied or

DMA’d. This approach was proposed in [4]. If the buffer occupancy is at 75%, then the OS should

disable interrupts and enable polling. Conversely if the buffer occupancy reaches a level of 25%, then

the OS should enable interrupts and disable polling. In [4], the upper and lower levels of buffer

occupancy were selected arbitrarily. According to [4], determining the proper upper and lower buffer

occupancy is an arbitrary and in reality a non-trivial task. These levels vary significantly as they

depend on the size of the buffer being used.

o System Throughput. We propose and recommend this approach when the NIC-side solution is not

feasible. In this approach, the OS keeps track of the average system throughput of the packets that get

processed and delivered to applications. This average system throughput was referred to analytically as

γ by equation (7) or equation (19). The point of overload condition occurs when cliffλγ = . Also note

that U and L thresholds for arrival rate is the same U and L thresholds for system throughput. Hence,

when U>γ , the OS must switch to polling mode. When L<γ , the OS must switch to interrupts

mode. This method is as accurate as that of the NIC-side solution, however this method requires more

overhead on the part of the OS. The OS can use similar method, as that of the NIC, by recording and

measuring the inter-arrival times of processed and delivered packets using exponential averaging

method.

Maximum Throughput, Latency, and CPU Availability. Our analysis effort provided equations that can be

used to easily and quickly predict the host performance and behavior. Given certain known system parameters

of protocol processing time and interrupt overhead, it would be useful to know how much traffic the system can

process and how it would behave, even before building a prototype. As discussed and shown in Figure 4a, the

maximum system capacity is basically cliffλ , and is given by equation (10). In addition, given a worst-case

network load, acceptable performance levels for throughputs, CPU availability, and latency can be reached by

tuning the proper system parameters for protocol processing and ISR times. An acceptable performance level

varies from one system requirement to another and depends on the worst tolerable throughput, CPU

availability, and latency. These worst tolerable performance indicators depend on the nature traffic and

23

application. For example real-time applications and traffic such as Voice over IP (VoIP) require a latency of

30ms at the end host [20]. However, non-real time traffic and applications HTTP and FTP tolerate much larger

latencies.

Queue Length. One important design issue is selecting the proper size for the kernel’s protocol processing

buffer. Given input system parameters and a desired packet loss probability, one can determine the proper size

of the buffer. For example, given a desired packet blocking or loss probability lossP and other input system

parameters such as λ and µ , one can determine the required buffer size B for kernel’s protocol processing.

For Analytical Model I, this can be derived from equation (8) as follows

()
.

)1(1

,)1(1 1

IPloss

loss
IP

IPIPIPloss

P

P

P

B

BB

ρ
ρ

ρρρ

−−
=

−=−× +

Taking the natural logarithm of both sides and solving for B, we get

)(ln
)1(1

ln IP
IPloss

loss

P

P
B ρ

ρ ��
�

�
��
�

�

−−
= .

Similarly, one can also derive B from Analytical Model II. It is worth noting that the input parameter of packet

loss probability depends on the nature of traffic. Real-time traffic such as voice and video tolerates very small

(almost no) packet loss, where as data traffic such as FTP and Email tolerates much larger packet loss

probability. According to [20], the required VoIP packet loss should be less than 10-5.

6. Conclusion

We developed and validated two analytical models to study and investigate the impact of interrupt overhead

caused by Gigabit Ethernet network traffic on OS performance. The two models yielded equations for a number

of important system performance metrics. These metrics included system throughput, CPU utilization and

availability, latency, and packet loss. The two models yield closed-form solutions and equations that are either

mathematically equivalent or very closely matching. In fact when using a large buffer size, exactly matching

results can be obtained. As demonstrated in the paper, Analytical Model II was shown to be more accurate than

Analytical Model I. However, Analytical Model I is more convenient and can yield more tractable

mathematical solution than Analytical Model II. Analytical Model I is based on queueing system and hence

known equations can be directly applied to compute performance metrics. The analytical techniques employed

for both models can be utilized to model and analyze other similar systems. In fact, Analytical Model I is

currently being utilized by the author to evaluate the performance of the proposed schemes for resolving

receive livelock and eliminating interrupt overhead. Our analysis effort provided equations that can be used to

easily and quickly predict the system and host performance and behavior. The paper also provided design and

implementation guidelines and recommendations to improve performance. The two analytical models were

verified by simulation. Also reported experimental results show that our analytical models give a good

approximation. The impact of generating variable-size packets instead of fixed-size and bursty traffic instead of

Poisson is being studied using simulation, and results are expected to be reported in the near future. A lab

24

experiment of 1-Gigabit links is also being set up to measure and compare the performance of different system

metrics. As a further work, we are currently studying and evaluating the performance of the different proposed

schemes for minimizing and eliminating the interrupt overhead caused by heavy network loads.

References

[1] W. Feng, “Is TCP an Adequate Protocol for High-Performance Computing Needs?” Proceedings of
SC2000, Dallas, Texas, USA, November 2000.

[2] A. Foong, T. Huff, H. Hum, J. Patwardhan, and G. Regnier, “TCP Performance Re-Visited,” IEEE
Symposium on Performance of Systems and Software, March 2003, pp. 70-79

[3] K. Ramakrishnan, “Performance Consideration in Designing Network Interfaces,” IEEE Journal on
Selected Areas in Communications, vol. 11, no. 2, February 1993, pp. 203-219.

[4] J. Mogul, and K. Ramakrishnan, “Eliminating Receive Livelock In An Interrupt-Driven Kernel,” ACM
Trans. Computer Systems, vol. 15, no. 3, August 1997, pp. 217-252.

[5] R. Morris, E. Kohler, J. Jannotti, and M. Kaashoek, “The Click Modular Router,” ACM Transactions on
Computer Systems, vol. 8, no. 3, August 2000, pp. 263-297.

[6] A. Indiresan, A. Mehra, and K. G. Shin, “Receive Livelock Elimination via Intelligent Interface Backoff,”
TCL Technical Report, University of Michigan, 1998.

[7] P. Druschel, “Operating System Support for High-Speed Communication,” Communications of the ACM,
vol. 39, no. 9, September 1996, pp. 41-51.

[8] P. Druschel, and G. Banga, “Lazy Receive Processing (LRP): A Network Subsystem Architecture for
Server Systems,” Proceedings Second USENIX Symposium on Operating Systems Design and
Implementation, October 1996, pp. 261-276.

[9] P. Shivan, P. Wyckoff, and D. Panda, “EMP: Zero-copy OS-bypass NIC-driven Gigabit Ethernet Message
Passing,” Proceedings of SC2001, Denver, Colorado, USA, November 2001.

[10] C. Dovrolis, B. Thayer, and P. Ramanathan, “HIP: Hybrid Interrupt-Polling for the Network Interface,”
ACM Operating Systems Reviews, vol. 35, October 2001, pp. 50-60.

[11] Alteon WebSystems Inc., “Jumbo Frames,”
http://www.alteonwebsystems.com/products/white_papers/jumbo.htm

[12] A. Gallatin, J. Chase, and K. Yocum, "Trapeze/IP: TCP/IP at Near-Gigabit Speeds", Annual USENIX
Technical Conference, Monterey, Canada, June 1999.

[13] C. Traw, and J. Smith, "Hardware/software Organization of a High Performance ATM Host Interface,"
IEEE JSAC, vol.11, no. 2, February 1993.

[14] C. Traw, and J. Smith, "Giving Applications Access to Gb/s Networking," IEEE Network, vol. 7, no. 4,
July 1993, pp. 44-52.

25

[15] I. Kim, J. Moon, and H. Y. Yeom, “Timer-Based Interrupt Mitigation for High Performance Packet
Processing, ” Proceedings of 5th International Conference on High-Performance Computing in the Asia-
Pacific Region, Gold Coast, Australia, September 2001.

[16] K. Salah and K. Badawi, "Evaluating System Performance in Gigabit Networks", The 28th IEEE Local
Computer Networks (LCN), Bonn/Königswinter, Germany, October 20-24, 2003, pp. 498-505

[17] J. Brustoloni and P. Steenkiste, "Effects of Buffering Semantics on I/O Performance ," Proceedings
Second USENIX Symposium. on Operating Systems Design and Implementation, October 1996, pp. 277-
291.

[18] Z. Ditta, G. Parulkar, and J. Cox, "The APIC Approach to High Performance Network Interface Design:
Protected DMA and Other Techniques," Proceeding of IEEE INFOCOM 1997, Kobe, Japan, April 1997,
pp. 179-187.

[19] H. Keng and J. Chu, "Zero-copy TCP in Solraris," Proceedings of the USENIX 1996 Annual Technical
Conference, January 1996.

[20] M. Karam and F. Tobagi, “Analysis of Delay and Delay Jitter of Voice Traffic in the Internet,” Computer
Networks Magazine, vol. 40, no. 6, December 2002, pp. 711-726.

[21] W. Leland, M. Taqqu, W. Willinger, D. Wilson, "On the Self-Similar Nature of Ethernet Traffic",
IEEE/ACM Transaction on Networking, vol. 2, pp. 1-15, 1994.

[22] V. Paxson and S. Floyd, “Wide-Area Traffic: The Failure of Poisson Modeling,” IEEE/ACM Transactions
on Networking, vol. 3, no. 3, June 1995, pp. 226-244

[23] P. Steenkiste, "A Systematic Approach to Host Interface Design for High-Speed Networks," IEEE
Computer magazine, Vol. 24, No. 3, March 1994, pp. 44-52.

[24] K. Kochetkov, “Intel PRO/1000 T Desktop Adapter Review,” http://www.digit-
life.com/articles/intelpro1000t

[25] 3Com Corporation, "Gigabit Server Network Interface Cards 7100xx Family,”
http://www.costcentral.com/pdf/DS/3COMBC/DS3COMBC109285.PDF

[26] K. M. Chandy and C. H. Sauer, “Approximate methods for analyzing queueing network models of
computing systems,” Journal of ACM Computing Surveys, vol. 10, no. 3, September 1978, pp. 281-317.

[27] L. Kleinrock, Queueing Systems: Theory, vol 1, Wiley, 1975.

[28] S. N. Elaydi, S. N., An Introduction to Difference Equations, Springer-Verlag, 1996, pp. 113.

[29] A. Law and W. Kelton, Simulation Modeling and Analysis, McGraw-Hill, 2nd Edition, 1991.

[30] J. White, “An Effective Truncation Heuristic for Bias Reduction in Simulation Output,” Simulation
Journal, vol. 69, no. 6, December 1997, pp. 323-334

[31] A. Silberschatz, P. Galvin, and G. Gagne, “Operating System Concepts,” John Wiley & Sons, Inc, 4th

Edition, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

