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NOMENCLATURE 

a  Location of the positive pole of the bipolar coordinate system on the x-axis of the 
Cartesian coordinate system (constant in the bipolar transformation equations, equal to ri 
sinh ηi or ro sinh ηo), m 

 
cp     Specific heat of fluid at constant pressure, kJ/kg K 
 
Dh  Hydraulic or equivalent diameter of annulus, ( ) ( ) ooiio echNRarr ηcos122 2−=− , m 

e  Eccentricity (distance between the axes of the two cylinders forming the eccentric 
annulus), a (coth ηo – coth ηi), m   

E  Dimensionless eccentricity, ( )oiio rr
e
−

 

F  Dimensionless volumetric flow rate, ( )2
21 NRUF o −=  

g Gravitational body force per unit mass (acceleration), m/s2 

Gr Grashof number, 
( )

2

3

γ
β how DTTg −

  

Gr* Modified Grashof number, 
l

GrDh  

h Coordinate transformation scale factor, m 

H Dimensionless coordinate transformation scale factor, 
hD

h
 

HFi,ex Dimensionless Local heat flux on inner interface at channel exit 

HFo,ex Dimensionless Local heat flux on outer interface at channel exit 

i Index for bi-polar grid in the η-direction and the cylindrical grid in the radial direction 

Iwall Dimensionless thickness of inner cylinder wall, NR2-NR1

j Index for the bi-polar grid in the ξ-direction and the cylindrical grid in the tangential 

direction 

Kf Thermal conductivity of fluid, W/m.K 

Ks Thermal conductivity of solid, W/m.K 

KR Solid-fluid conductivity ratio, Ks/Kf 

l      Height of the channel, m 

L Dimensionless height of channel (value of Z at channel exit), 1/Gr*  

M Number of intervals in each of the ξ & φ directions 

N Number of intervals in the η-direction 

NR1 Ratio between inner radius of inner cylinder and inner radius of outer cylinder, 
io

ii

r
r
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NR2 Ratio between outer radius of inner cylinder and inner radius of outer cylinder (Fluid 

annulus radius ratio), 
io

oi

r
r

 

NR3 Dimensionless inner radius of outer cylinder, 1=
io

io

r
r

 

NR4 Ratio between outer radius of outer cylinder and inner radius of outer cylinder, 
io

oo

r
r

 

NSI Number of radial intervals in the inner cylinder wall 

NSO Number of radial intervals in the outer cylinder wall 

NUi,ex Nusselt number on inner interface at channel exit 

NUo,ex Nusselt number on outer interface at channel exit 

Owall Dimensionless thickness of outer cylinder wall, NR4-NR3

p Pressure of fluid inside the channel at any cross-section, N/m2

P Dimensionless Pressure defect of fluid inside the channel at any cross section, 

222

4

 ∗
′
Grl
DP h

γρ
  

P0 Dimensionless inlet fluid pressure, 
2

2
0U

−   

ps Hydrostatic pressure, zg ρ , N/m2

p/ Pressure defect at any point, spp − , N/m2

Q  Dimensionless heat absorbed up to the annulus exit, i.e., values of Q at z = l, Fθm,ex

rii Inner radius of inner cylinder, m 

roi Outer radius of inner cylinder, m 

rio Inner radius of outer cylinder, m 

roo Outer radius of outer cylinder, m 

R Dimensionless radial coordinate, 
ior
r

 

∆Ri NSI
NRNR 12 −

 

∆Ro NSO
NRNR 34 −

 

To Ambient or fluid entrance temperature, K 

Tw Isothermal temperature of heated wall, K 

u Axial (stream wise) velocity component, m/s  

U Dimensionless axial velocity at any point, 
∗Grl

urio

γ

2

 



 4

Uo Dimensionless axial velocity at annulus entrance, 
∗Grl

ru ioo

γ

2

 

v η-velocity component, m/s 

V Velocity vector or dimensionless η-velocity component, 
γ

ν hD
 

w ξ-velocity component, m/s 

W Dimensionless ξ-velocity component, 
γ

hwD
 

z Axial coordinate in both the Cartesian and bipolar coordinate systems, m  

Z Dimensionless axial coordinate in both the Cartesian and bipolar coordinate systems,  

∗lGr
z

 

Z,ex Value of Z at channel exit 

∆Z Dimensionless axial step increment, 
∗

∆
lGr

z  

Greek Letters 

β      Volumetric coefficient of thermal expansion, K-1 

η  First transverse bi-polar coordinate 

ηi Value of η on the inner interface, 

( ) ( ) ( ) ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −++
+

−++
= 1

2
11

2
11

log
2

2

22
2

2

22
2

ENR
EENR

ENR
EENR

η ei  

ηo Value of η on the outer interface, 

( ) ( ) ( ) ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ++−
+

++−
= 1

2
11

2
11

log
222

2
22

2

E
EENR

E
EENR

eoη  

∆η  Numerical grid mesh size in η-direction, 
N

oi ηη −
 

θ            Dimensionless temperature, 
( )
( )ow

o

TT
TT

−
−

 for isothermal walls case 

θf Value of θ  in the fluid annulus 

θm,ex Mean bulk temperature at channel exit  

θsi               Value of  θ in the inner solid wall 

θso Value of  θ in the outer solid wall. 

µ        Dynamic viscosity of fluid, N.s/m2 

γ Kinematic viscosity of fluid, 
ρ
µ

, m2/sec 
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ρ Density of Fluid, kg/m3

Ψ Normalized value of ξ, 
π
ξ

 

α Thermal diffusivity of fluid, 
pc

k
ρ

, m2/sec 

ξ Second transverse bi-polar coordinate 

∆ξ Numerical grid mesh size in ξ-direction, 
M
π

 

φ Angle along the cylinder walls  

∆φ  Numerical grid mesh size in φ-direction, 
M
π

 

Introduction 
 

The study of steady laminar induced flow in vertical eccentric annuli with conjugate heat 

transfer is of great importance because of its many engineering applications in electrical, nuclear, 

solar and thermal storage fields. A typical application is that of gas cooled nuclear reactor, in 

which cylindrical fissionable fuel elements are placed axially in vertical coolant chambers within 

the graphite moderator; the cooling gas is flowing along the channel parallel to the fuel element. 

In such a system, laminar free convection may provide the sole means of the necessary cooling 

during the shut down or accident periods.  
 

In conventional heat transfer analyses, one of the common practices is to prescribe the 

temperature at the fluid-wall interface. Consequently, the energy equation of the fluid alone has 

to be solved. The results thus obtained are good only for heat transfer in flows bounded by walls 

having extremely small thermal resistance, i.e. very high thermal conductivity and/or very small 

thickness. However, in actual practice, the wall thermal resistance is finite and consequently the 

temperature at the fluid-wall interface is different from that imposed at the other surface of the 

solid wall. Such type of problems, where heat conduction in the solid is coupled with convective 

heat transfer in the fluid, is often referred to as conjugate problems. If the bounding cylinder 

walls are thick and have low thermal conductivity, conjugation (coupling of conduction and 

convection) must be taken into account as it can significantly affect the heat transfer. 
 

Considerable work has been done to study the problem of flow and conjugate heat 

transfer in various geometries and annuli, both concentric and eccentric. Anand and Tree [1] 

studied the effect of axial conduction in a tube wall on the steady-state laminar convective heat 

transfer. Kim and Anand [2] numerically investigated the effect of wall conduction on the free 

convection between asymmetrically heated vertical plates with uniform wall heat flux. Kim et al. 
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[3] numerically studied laminar free convection heat transfer in channels formed between series 

of vertical parallel plates with an embedded line heat source. Sakikabara et al. [4], analytically, 

investigated the steady conjugate heat transfer problem in an annulus with a heated core and an 

insulated outside tube when the laminar flow is hydrodynamically fully developed. El-Shaarawi 

et al. [5] presented a finite-difference scheme to solve the transient conjugate forced convection 

in a concentric annulus with simultaneously developing hydrodynamic and thermal boundary 

layers. Using finite-difference technique, El-Shaarawi and Negm [6] solved the laminar 

conjugate natural convection problem in vertical open-ended concentric annuli. Shu and Wu [7] 

developed a numerical approach, the Domain Free Discretization (DFD), to simulate natural 

convection in an eccentric annulus.  
 

Similarly, in spite of the many studies reported in the literature for the conventional case 

of convection in annuli [8-16], the only work available for the conjugate case is that of El-

Shaarawi and Haider [17] for forced convection. They presented results for a fluid of Prandtl 

number 0.7 flowing in an annulus of radius ratio NR2=0.5 with E=0.1, 0.3, 0.5 and 0.7.  
 

A thorough literature survey revealed that conjugate natural convection heat transfer in 

vertical eccentric annuli has not been investigated yet. The present paper presents a numerical 

algorithm, employing finite-difference technique, to solve the boundary layer model for this 

problem. Numerical results are presented for the conjugation effect on the induced flow rate and 

heat transfer under two thermal boundary conditions. In each of these two boundary conditions 

there is one surface maintained at a prescribed temperature other than the inlet fluid temperature 

while the other surface is kept at the inlet fluid temperature. 

 

Governing Equations  
 

Figure 1(a) depicts two dimensional cross-section plan and elevation of the geometry 

under consideration. Bipolar coordinate system is used to express the partial differential 

equations describing the flow and heat transfer through the eccentric fluid annulus. The cylinder 

walls have uniform thickness. Hence, the cylindrical coordinate system is more appropriate for 

the solid walls. So, the energy equation for the solid walls will be expressed in cylindrical 

coordinates.  
 

The vertical eccentric annulus of finite height is open at both ends and immersed in a 

stagnant Newtonian fluid of infinite extent maintained at constant temperature To. Free 

convection flow is induced inside this annular channel as a result of heating one of the channel 

walls isothermally while keeping the other wall at ambient temperature To. Thus two cases are 

under investigation. One is named case (I) in which the heated wall is the inner cylinder whereas 
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the other is called case (O) in which the heated wall is the outer cylinder.  The fluid entering the 

channel at the ambient temperature To obeys the Boussinesq approximation, according to which 

its density is allowed to vary with temperature in only the gravitational body force term of the 

vertical (axial) momentum equation. Since the eccentric annular geometry is symmetric about 

line AB, one half of the symmetric section is considered in the solution. Figure 1(b) shows the 2-

D cross-section of that half.  
 

The fluid is assumed to be Newtonian with constant physical properties. The flow is 

steady, laminar, enters the eccentric annulus with a velocity (Uo) and then development of its 

hydrodynamic and thermal boundary layers occurs. Body forces in other than the vertical 

direction, viscous dissipation, internal heat generation and radiation heat transfer are absent. The 

governing equations describing the flow and heat transfer through the eccentric fluid annulus are 

as follows. 

 

Continuity Equation 

0. =∇V                            (1) 

Momentum Equation 

VPF
Dt
DV 2∇+∇−= µρ                          (2) 

Energy Equation 

Φ+′′′+∇= µρ QTk
Dt
DTcp

2            (3) 

 

Hughes and Gaylord [18] gave these governing equations in a general orthogonal 

curvilinear coordinate system. However, as previously stated, bipolar coordinate system is used 

to express the partial differential equations describing the flow and heat transfer through the 

eccentric fluid annulus. This bi-polar coordinate system is as shown in Fig. 1(c).  Moreover, 

some parabolic-flow assumptions [16] will be used to simplify the model comprising of these 

governing equations. These assumptions include: the pressure is a function of the axial 

coordinate only ( 0=
∂
∂

=
∂
∂

ξη
pp ), the axial diffusions of momentum and energy in the axial (z) 

direction are neglected ( 02

2

=
∂
∂
z

), and the η-velocity component (v) is much smaller than ξ and 

z-velocity components (w and u). Carrying out the order of magnitude analysis, taking into 
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consideration that the latter assumption results in dropping the η-momentum equation, and 

introducing the dimensionless parameters given in the nomenclature, the governing equations, 

for a steady flow without internal heat generation ( 0=′′′Q ), negligible viscous dissipation (Φ = 

0) and body force (F) in the vertical direction, can be written in the following dimensionless 

forms. 

 

Continuity Equation 

( ) ( ) ( ) ( ) 014
2

2
2 =

∂
∂

−+
∂

∂
+

∂
∂

Z
UHNRHVHW

ηξ
                                                                                   (4) 

Momentum Equation In Z-Direction 

( )
( ) ( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

−
−

−
=

∂
∂

−+
∂
∂

+
∂
∂

2

2

2

2

2

2
2

2
2

2
2

1

14
1

14
14

ηξ

θ
ηξ

UU
H

Z
P

NRNRZ
UUNRU

H
VU

H
W

                           (5) 

Momentum Equation In ξ-Direction 

( ) ( ) ( ) ( )

( ) ( ) ( )
Z
UH

H
NRHHVHW

H

HWHW
H

H
H
V

Z
WUNRHW

H
VW

H
W

∂
∂

∂
∂−

+
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
−

∂
∂

−

⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
+

∂
∂

=
∂
∂

−
∂
∂

−+
∂

∂
+

∂
∂

ξηξη

ξηξηξ

2

2
2

4

2

2

2

2

32

2
2

22

182

114

          (6) 

Energy Equation for Fluid 

( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

∂

∂
=

∂
∂

−+
∂
∂

+
∂
∂

2

2

2

2

2Pr

12
214

ξ

θ

η

θθ
η
θ

ξ
θ

HZ
UNR

H
V

H
W

 (7) 

As each cylinder wall has uniform thickness, the cylindrical coordinate system is more 

appropriate for writing the governing energy equation in each of these solid walls. So, the energy 

equation for each of the solid walls in cylindrical coordinate system is as follows:  

Energy Equation for Solid Walls 

011
2

2

22

2

=
∂
∂

+
∂
∂

+
∂
∂

φ
θθθ sss

RRRR
                                   (8) 
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For outer cylinder, θs = θso & R vary from NR3=1 to NR4 and for inner cylinder, θs = θsi & 

R vary from NR1 to NR2. 
 

It is worth mentioning that the bi-polar coordinate system has been used to describe the 

flow and heat transfer in the eccentric fluid annulus. In this bipolar coordinate system the 

boundary surfaces of the fluid annulus are taken as one of the coordinates (η) and the other 

coordinate (ξ) comprises a set of eccentric annuli whose centers lie on the y-axis and 

orthogonally intersect the boundaries of the fluid annulus. However, since the cylinder solid 

walls have uniform thickness, the cylindrical coordinate system is more appropriate for these 

solid walls. Therefore, the energy equation for each of the inner and outer solid cylinder walls is 

expressed in cylindrical coordinate. Continuity of temperature and heat flux at the solid fluid 

interfaces provides the necessary link. The use of two coordinate systems rather than one was 

proven to be successful in describing the conjugate problem for the forced convection case [17] 

and consequently has been applied in the present free convection case. Thus, the bi-polar 

coordinate system has been used in writing the energy equation (7) for the fluid region as this 

coordinate system best suits the eccentric fluid annulus. On the other hand, the cylindrical polar 

coordinate system has been used in writing the energy equation (8) for each concentric solid 

annular region. 
 
The continuity equation (4) subject to the no-slip conditions at the walls can be written in the 

following integral form. 

 

Integral Form of the Continuity Equation 

( )
( ) ∫ ∫

+
−

=
π η

η
ξη

π 0

2

2

2

1
18 i

O

ddUH
NR
NRU                                          (9) 

Equations (4) through (8) are subject to the following boundary conditions:  

• For Z = 0 and  ηo < η < ηi , V = W = 0 , and U = Uo , P = -Uo
2/2 

• For Z = L and  ηo < η < ηi , P = 0  

• For Z ≥ 0 and η = ηi  or  η = ηo ,  , U = V = W = 0 

• For case (I), θsi = 1.0  and  θso = 0.0  and for case (O), θsi = 0.0  and  θso = 1.0    

• For Z > 0 and ξ = 0 and π (the line of symmetry): 

0=
∂
∂

=
∂
∂

=
∂
∂

=
∂
∂

=
∂
∂

φ
θ

ξ
θ

ξξξ
sUWV  

• For Z > 0  and R = NR2 and R = NR3 = 1 (i.e. the interfaces) 

θf = θs , continuity of temperature, and 
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kf ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂ j

H
i

H ξ
θ

η
θ 11  = ks ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂ j

R
i

R
ss

φ
θθ 1  , continuity of heat flux, where 

i , unit vector in the η and R directions 

j , unit vector in the ξ and φ directions 

 
Numerical Analysis  
 
The above governing equations are numerically treated using a finite-difference technique to 

solve for the three velocity components, pressure and temperature in the fluid field and for the 

temperature in the two solid cylinders. Using backward finite-difference to express all first 

derivatives with respect to Z and the first derivative of (HV) with respect to η in the continuity 

equation and replacing the second and other first order derivatives in η and ξ directions by 

central finite-differences, equations (4) through (9) can be written in the following forms: 

 

Continuity Equation 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 0,,,14

,1,1,,
2

1,1,1,1,

22
2 =

∆
−

−+

∆
−−−

+
∆

−−−++

∗

Z
jiUjiUjiHNR

jiV  jiHjiV  jiHjiW  jiHjiW  jiH
ηξ

                           (10) 

 

Z-Momentum Equation 

( )
( )

( ) ( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( )
( )

( )[ ]
( ) ( ) ( )

( )
( ) ( ) ( )

( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∆

++−−
+

∆

++−−

+
−

+
∆
−

−
−=

∆
−

−

+
∆

−−+
+

∆
−−+

∗∗
∗

222

2
2

2
2

2
2

**

1,,21,,1,2,1.
,
1

14
,,

14
1,,,14

2
,1,1

,
,

2
1,1,

,
,

ξη

θ
ηξ

jiUjiUjiUjiUjiUjiU
jiH

NRZ
jiPjiP

NRZ
jiUjiUjiUNR

jiUjiU
jiH
jiVjiUjiU

jiH
jiW

f  (11) 

 

ξ-Momentum Equation 



 11

( )
( )

( ) ( ) ( )
( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )
( )( )

( ) ( )

( )( )

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )
( )

( )( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( )( )

( ) ( ) ( ) ( )
Z

jiUjiUjiHjiH
jiH

NR

jiVjiHjiVjiH

jiWjiHjiWjiH
jiHjiH

jiH

jiWjiHjiWjiHjiWjiH

jiWjiHjiWjiHjiWjiH

jiH

jiHjiH
jiH
jiV

Z
jiWjiWjiUNR

jiWjiHjiWjiH
jiH
jiVjiWjiW

jiH
jiW

∆
−

∆
−−+−

+

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

∆
−−−++

−

∆
−−−++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆

−−+
−

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

∆

+++−−−
+

∆

+++−−−

=

∆
−−+

−
∆
−

−+

∆
−−−++

+
∆

−−+

∗

∗∗
∗

∗∗

,,
2

1,1,
,

18

2
1,1,1,1,

2
,1.,1,1,1

2
,1,1

,
2

1,1,,,21,1,

,1,1,,2,1,1

,
1

2
1,1.

.
,,,,14

2
,1,1,1,1

,
,

2
1,1,

,
,

2

2
2

4

2

2

3

2

2
2

2

2

ξ

ξ

η
η

ξ

η

ξ

ηξ

                        (12) 

 

Energy Equation for Fluid 

( )
( )

( ) ( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( )
( )( )

( ) ( ) ( )
( )

( ) ( ) ( )
( ) ⎟

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

∆

++−−

+
∆

++−−

=
∆

−
−

+
∆

−−+
+

∆

−−+

∗
∗

∗∗

2

2

2
2

2 1,,21,

,1,2,1

,Pr
1,,

,14

2
,1,1

,
,

2
1,1,

,
,

ξ

θθθ
η

θθθ
θθ

η
θθ

ξ
θθ

jijiji

jijiji

jiHZ
jiji

jiUNR

jiji
jiH
jiVjiji

jiH
jiW

fff

fff

ff

ffff

              (13) 

Energy Equation for Outer Solid Wall 

( ) ( ) ( )
( ) ( )[ ]

( ) ( )

( )[ ]
( ) ( ) ( )

( )
01,,21,

1
1

2
,1,1

1
1,1,2,1

22
4

4
2

=
∆

−+−+

∆−−
+

∆
−−+

∆−−
+

∆

−+−+

φ
θθθ

θθθθθ

jijiji
RiNR

R
jiji

RiNRR
jijiji

sososo

o

o

soso

oo

sososo

                              (14) 

 

Energy Equation for Inner Solid Wall 

( ) ( ) ( )
( ) ( )[ ]

( ) ( )

( )[ ]
( ) ( ) ( )

( )
01,,21,

1
1

2
,1,1

1
1,1,2,1

22
2

2
2

=
∆

−+−+

∆−−
+

∆
−−+

∆−−
+

∆

−+−+

φ
θθθ

θθθθθ

jijiji
RiNR

R
jiji

RiNRR
jijiji

sisisi

i

i

sisi

ii

sisisi

                              (15) 

Integral Form of the Continuity Equation 

( )
( )

( ) ( )( ) ( ) ( )( )

( ) ( )( )
ξη

π
∆∆

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

++

++

+
−

=
∑∑∑

== =

2

2

2

2 2

2

2

2

1,1,

1,1,5.0,,

1
18

MiHMiU

iHiUjiHjiU

NR
NRU

N

i

M

j

N

i                                      (16) 
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The finite-difference equations (10) through (12) are linearized by assuming that, where 

ever the product of two unknowns occurs, one of them is given approximately by its value at the 

previous axial step, the variable subscripted with an asterisk (*). Moreover, in Eq. (12), the finite 

difference representation of the ξ-momentum Eq. (6), all the values of V have been deliberately 

taken at the previous axial step in order to make this equation locally (i.e. within one axial step) 

uncoupled from the continuity Eq. (10) and make the finite-difference Eqs. (10-16) represent a 

complete mathematical model of seven equations in seven unknowns (U, V, W, P, θf, θsi, θso); 

hence enable these equations to be numerically solved in the manner described later in this 

section. The dependent variables (U, V, W, P, θf, θsi, θso) are computed, for each axial (vertical) 

location (Z) at the intersections of the grid lines, i.e., the mesh points. The solution proceeds 

from the entrance of the channel to its exit in axial steps, the size of which increases 

exponentially.  
 

Thermal boundary conditions are imposed on the inner surface of the inner cylinder and 

the outer surface of the outer cylinder. The thermal conditions at the two fluid-wall interfaces are 

not known. These thermal conditions depend on the thermal properties and flow characteristics 

of the fluid as well as the dimensions and properties of the solid walls. Having the governing 

equations for the fluid in bipolar coordinates and the energy equations for the solid walls in 

cylindrical coordinates generates unmatched grid points on both the interfaces. However, these 

points can be linked to determine the temperatures at the two interfaces by applying the 

principles of continuity of temperature and continuity of heat flux at these interfaces. For this 

purpose, continuity of heat flux principle is applied to determine the thermal conditions on the 

cylindrical mesh points at each of the solid-fluid interfaces whereas interpolation relations, 

representing the principle of continuity of temperature, are applied to calculate the temperature 

on the bipolar mesh points at each of the interfaces. At the interface points, continuity of 

temperature and continuity of heat flux can be expressed in finite-difference forms as follows: 

 
At the corner points I through IV, shown in Fig. 1(d), continuity of temperature and heat 

flux are expressed by the following relations, in which b, n, c and s are numerical indices 

replacing the index i at these corners; the first pair (b and n) in the fluid zone and the second pair 

(c and s) in the solid zone, respectively.  

 

At ξ = 0 (Widest Gap, j=1)  [Points I (on outer interface) and II (on inner interface)] 
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At ξ = π (Narrowest Gap, j=M+1) [Points III (on inner interface) and IV (on outer interface)] 
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The continuity of temperature and heat flux on rest of the mesh points ( Mj ≤≤2 ) are 

expressed using the following relations: 
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where, Mj ≤≤2  

In equations (17 through 19): 
 
 θs = θso      (For Outer Interface),    θs = θsi         (For Inner Interface) 

∆R = ∆Ro   (For Outer Interface),  ∆R = ∆Ri     (For Inner Interface)  

NR = NR3 (For Outer Interface),  NR = NR2   (For Inner Interface)  

The values of the numerical indices 

b = 0          (For Outer Interface),    

b, c, n and s are 

b = N          (For Inner Interface)    

c = NSO    (For Outer Interface),    c = 1           (For Inner Interface)    

n = 1          (For Outer Interface),    n = N          (For Inner Interface)    

s = NSO    (For Outer Interface),    s = 0           (For Inner Interface)    

 

Interpolation of Temperature on Interfaces: 
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At both interfaces, interpolation relations are used to evaluate the temperature at every 

mesh point of the bipolar grid by means of the temperatures at the two neighboring mesh points 

of the cylindrical grid. The x-coordinate of the grid points is used for this purpose. This 

interpolation can be expressed as follows (See Fig. 1(d)): 

Fluid temperatures on the outer interface: 

( ) ( ) ( ) ( )[ ] ( ) ( )
( ) ( )⎥⎦
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−
+−++++=

jjXjjX
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Fluid temperatures on the inner interface: 
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Method of Solution 

In practice, the dimensions of the channel (l and Dh) and both the wall conditions and 

ambient temperature are normally known while the volumetric flow rate f (and hence F) is 

unknown. However, the present model and method of solution are handling the problem in a 

reverse manner, i.e. obtaining an unknown dimensionless channel height (L) for a given 

dimensionless volumetric flow rate (F). Therefore, the condition P=0 at Z=L is not explicitly 

imposed on the solution, but continually checked for satisfaction; recall that the governing 

equations (4-9) are parabolic in Z and need only one condition with respect to Z.  Due to 

symmetry, these equations need to be solved in only half the domain, i.e. for 0 ≤ ξ ≤ π. The 

problem under investigation is governed by six dimensionless parameters, namely, the radius 

ratio (NR2), the eccentricity (E), the Prandtl number (Pr), inlet fluid velocity (Uo), conductivity 

ratio (KR) and thicknesses of the two walls (Owall and Iwall).  
 

For a fluid of a given Pr in an annulus of given NR2 and E, the solution starts by 

computing the corresponding values of ηi and ηo by means of the relations given in the 

nomenclature. Selecting the numbers of increments in η and ξ directions (N and M, respectively) 

the values of ∆η  & ∆ξ can be computed by using the relations given in the nomenclature. 

Similarly, for the solid walls, by selecting the values of NR1 and NR4 and the number of radial 

increments in the outer and inner walls and the number of increments in the tangential (φ) 

direction (NSO, NSI and M, respectively), the values of ∆Ro, ∆Ri and ∆φ can be determined. 

Assume a value for the uniform axial velocity at the entrance Uo (i.e., F since F=Uo(1-NR2
2)).  

Since at entrance W = V = 0, the inlet pressure will be 
2

2
o

o
U

P −= .  
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For each axial location (cross-section), the energy equations for the fluid (13) and solids 

(14 and 15) are simultaneously solved for the temperatures using Gauss-Seidel iteration. The 

solution starts by simultaneously solving Eqs. (13), (14) & (15), using Gauss-Seidel iteration, to 

obtain the unknown values of θf, θsi and θso at the second cross-section. Within the Gauss-Seidel 

iteration process, the temperature values of the cylindrical grid points at the two interfaces are 

calculated using the principles of continuity of temperature and continuity of heat flux. The 

temperature values of the bipolar grid points at both the interfaces are computed by interpolating 

between the temperature values of the two neighboring cylindrical grid points at both sides of 

each bipolar grid point. To solve for the two unknowns P and U at the aforesaid plane, the 

integral form of the continuity equation (16) and the finite difference form of the axial 

momentum equation (11) are used. The resulting set of algebraic equations is solved by a 

modified Gauss-Jordan elimination scheme. Then, ξ-Momentum equation (12) is solved for W-

velocity component using Gauss-Seidel iteration method. Finally, the continuity equation  (10) is 

used to evaluate V-velocity component at all the interior grid points. These steps are repeated to 

advance axially (vertically) until the pressure defect (P) becomes zero indicating that channel 

exit has been reached.  

 
Results and Discussion 
 
 The Grashof number is inherent in the dimensionless formulation of the problem 

(
l

GrDGr h=∗ ) and thus it is not explicitly needed for the solution. However, six other similarity 

parameters are explicitly required to solve the problem under consideration. These are the fluid 

annulus radius ratio (NR2), the dimensionless eccentricity (E), the dimensionless flow rate F (or 

effectively Uo=F/(1-NR2
2)), solid-fluid thermal conductivity ratio (KR), inner and outer cylinder 

walls thickness (Iwall and Owall) and the Parandtl number (Pr). However, one should recall that 

the inlet velocity (Uo) and hence the inlet pressure (Po) and the volumetric flow rate (F) are not 

predetermined initial conditions independent of the channel height as in the case of forced flows. 

Rather, each of them is dependent on the channel height (L) and the applied thermal boundary 

conditions on the annulus walls. The numerical solutions in this paper are obtained for a fluid of 

Pr=0.7 in an annulus of radius ratio, NR2=0.5 and dimensionless eccentricity, E=0.5.  
 
 Computational errors can be minimized by increasing the number of grid points or in other 

words, decreasing the mesh size. To establish grid independence, twelve different mesh sizes for 

fluid annulus and inner & outer solid walls were tested. Among all, the mesh sizes of 25 x 25 (in 

η and ξ directions), 20 x 25 (in r and  φ directions) and 10 x 25 (in r and  φ directions) for the 
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fluid annulus, outer cylinder wall and inner cylinder wall, respectively were selected representing 

the best compromise between the execution time of the program and percentage difference in the 

obtained results (less than 1 %). To clarify quantitatively this point, Table 1 shows examples of 

the results obtained using some of the tested mesh-size combinations in the fluid annulus. This 

table gives comparisons between the values at the exit cross section for the inner wall heat flux, 

the outer wall heat flux, the inner wall Nusselt number, the outer wall Nusselt number, and the 

mixing-cup temperature. Moreover, it gives also the computer time needed for each tested mesh 

combination. The results in this table are compared with reference to the corresponding results 

pertaining to the 30x 30-mesh (in η and ξ directions).  The results in the table show that the mesh 

of 25 x 25 (in η and ξ directions) gives results within less than 1% of those corresponding to the 

30x 30-mesh. 
 

To check the adequacy of the present computer code, special runs were carried out 

simulating the three different limiting cases of conventional (without conjugation) forced 

convection, conjugate forced convection and conventional natural convection in the given 

eccentric annuli. For both conventional forced and natural convection cases, the present 

computer code was made to run for very large values of solid-fluid thermal conductivity ratio 

(KR=1000) and very thin cylinder walls (Iwall=0.001 and Owall=0.002), such that the conjugate 

effect would be negligible. On the other hand, the present computer code can simulate forced 

convection cases when the values of the inlet velocity Uo exceed the corresponding limiting 

values for natural convection [19]. The results of these special computer code experimentations 

are as follows.  
 

First, special runs of the present computer code were made to compare the results 

obtained for fully-developed conventional (without conjugation) forced convection in eccentric 

annuli with that reported by Trombetta [10], El-Shaarawi and Haider [17], and Shah and London 

[20]. The maximum deviations between the obtained results and those of Trombetta [10], El-

Shaarawi and Haider [17], and Shah and London [20] were about 0.35 %, 0.12 % and 1.34 %, 

respectively, as shown in Table 2. The present computer code was also validated with 

conventional forced convection results obtained by El-Shaarawi et. al. [14] for fully developed 

values of mixed mean temperature (θm,fd); the maximum percentage difference was found to be 

0.032 %. 
 

Secondly, the present computer code was validated for conjugate forced convection case 

in eccentric annuli by comparing the results obtained from a pertaining run of the present code 

for both the developing and fully developed temperature profiles across the widest gap (Ψ=0) of 

the eccentric annulus and the corresponding results of El-Shaarawi and Haider [17]; excellent 
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agreement of the results can be observed as the maximum deviation between the obtained results 

and those of [17] never exceeded 0.23 %. 
 

Thirdly, a special computer run simulating conventional natural convection was done. 

The obtained results for the channel height required to suck specific flow rates under thermal 

boundary conditions of first kind are compared in Fig. 2 with the corresponding results of [16].     
 

The selected values of inner and outer wall thicknesses are taken from the standard 

practical values shown in Table 3. The values of solid-fluid conductivity ratio (KR) are selected 

in such a way to represent all of its practical values shown in Table 4. Owing to space 

limitations, only a representative sample of the results will be presented. Figures 3(a) and 3(b) 

present the important variation of induced flow rate versus the channel height for different values 

of conductivity ratio for cases (I) and (O), respectively. In both cases, as the channel height 

increases the flow rate increases. Looking at Fig. 3(a), one can observe two different trends of 

flow rate variation with increasing solid-fluid conductivity ratio (KR). For short channels, the 

flow rate is high for large values of KR whereas this behavior reverses for correspondingly high 

channels. Small conductivity ratio means that the solid walls of the annulus act like thermal 

insulators. Consequently, the inner heated wall resists the heat flow into the fluid, which 

decreases the temperature level at the inner solid-fluid interface. On the other hand, the outer 

cooled wall with small conductivity ratio acts as an insulator preventing the heat to flow out from 

the fluid to the surrounding, which results in raising the temperature at the outer solid-fluid 

interface. These two opposing effects will interchange their places from the inner to the outer 

interface for case (O).  
 

For case (I), when the channel height is small and solid-fluid conductivity ratio (KR) 

increases, the temperature on the inner solid-fluid interface increases. Meanwhile, the outer wall 

effect is not prominent in this case because the heat signal is not fully sensed by the outer 

interface due to short channel height. This results in the increased flow rate into the channel. For 

high channels, the situation reverses because the outer wall cooling effect dominates due to its 

larger surface area at high solid-fluid conductivity ratio enabling more heat to flow through the 

outer wall. The result is the decrease in temperature on outer solid-fluid interface. This reduces 

the induced flow rate into the channel. For case (O), the effect of increasing solid-fluid 

conductivity ratio on induced flow rate remains consistent for all the channel height range, i.e. 

having increased flow rate with increasing values of conductivity ratio as shown in Fig. 3(b). In 

this case the outer wall heating effect is dominant on the cooling effect of the inner wall 

throughout the channel height. The effect of increased flow rate enables the fluid to absorb more 

heat, which increases the buoyancy force inducing more flow into the channel. 
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Examples of the temperature variation with conductivity ratio along the line of symmetry 

are shown for case (I) at the widest and the narrowest gaps of the annulus in Figs. 4(a) and 4(b), 

respectively. Figures 5(a) and 5(b) show the variations of the total heat absorbed (Q ) by the 

fluid versus channel height (L=1/Gr*) for different values of solid-fluid conductivity ratio for 

cases (I) and (O), respectively. Both Figs. 5(a) and 5(b) show similar trend as was observed in 

Figs. 3(a) and 3(b). This is due to the fact that the total heat absorbed (Q ) equals the product of 

induced flow rate (F) and the mean bulk temperature at channel exit (θm,ex). This makes the 

variation of the total heat absorbed (Q ) with conductivity ratio directly linked with the induced 

flow rate (F).  
 

Figure 6(a) shows the effect of the wall thickness on the variation of flow rate with 

channel height for case (I). For short channels, the induced flow rate decreases as the wall 

thicknesses increase. This behavior reverses for considerably high channels. Thick walls have the 

same opposing effect as that for walls with small conductivity ratio, i.e. inner wall resisting the 

heat to flow into the fluid while outer wall preventing the heat to flow out of the fluid. For case 

(I), when the channel height is small, thick walls show lower temperature values on inner solid-

fluid interface than for thin walls. This enables less heat to be absorbed by the fluid resulting in 

small buoyancy forces. The outer wall effect is not prominent in such short channels. Both these 

effects result in the decrease in the flow rate into the channel as shown in Fig. 6(a). For higher 

channels, the situation reverses for thick walls because now there is sufficient height of the 

channel for the heat to be absorbed by the fluid along with the dominance of the outer wall effect 

resisting more the heat to flow through it. This results is an increase in the temperature on outer 

solid-fluid interface along with the higher temperature level in the fluid, hence increasing the 

induced flow rate into the channel. One can also say that the cooling effect of the outer wall is 

suppressed in the channel having thick walls. For case (O), the effect of increasing the wall 

thicknesses on induced flow rate remains consistent for all channel heights range, i.e. having 

reduced flow rate for thick walls as can be seen in Fig. 6(b). In this case, the amount of heat 

entering the fluid annulus from outer cylinder wall decreases when the wall thickness is 

increased. This imposes an overall effect of reducing the heat gained by the fluid, therefore, 

decreasing the induced flow rate. 
 

To help in explaining the phenomenon, representative results of temperature profile 

across the channel are shown in Fig. 7(a) and 7(b) for a specific flow rate of 0.00825 at an axial 

(vertical) location of 1.59x10-2 in case (I) for thin and thick walls, respectively. In each of these 

two figures, the temperature profiles are shown for Ψ = 0 (widest gap) & 1 (narrowest gap) and 

help in explaining the phenomenon. Very thin walls show almost zero temperature gradient as 
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can be seen in Fig. 7(a) whereas the temperature gradient increases in thick walls (Fig.7(b)) 

leading to a decrease in temperature on the inner solid-fluid interface and an increase in 

temperature on the outer interface. 
 

Figures 8(a) and 8(b) show the effect of the wall thicknesses on the total heat absorbed 

(Q ) by the fluid versus the channel height for case (I). Recalling that the total heat absorbed 

(Q ) is directly linked to the induced flow rate (F) as explained earlier, it follows that the trend 

of Q  is generally similar to that observed in Figs. 6(a) and 6(b).  Rather than using Nusselt 

number on the walls of the annulus, the total heat absorbed (Q ) can be used to directly obtain 

the heat gained by the fluid from entrance up to the annulus exit. As can be seen from Figs. 8(a) 

and 8(b), values of  Q  in case (O) are larger than the corresponding values in case (I), provided 

all other parameters are the same. This is a result of the larger heating surface area in case (O) 

than in case (I). 
 

Figure 9 shows the effect of KR on the percentage difference between the two values of 

the induced free convection flow rates corresponding to the cases with and without conjugation 

for various channel heights for case (I). The figure shows that, for a given channel height, 

increasing the conductivity ratio reduces the conjugate effect and brings the induced fluid flow 

rate in the channel closer to that of the conventional case (reduction in percent difference in F 

from conventional case as a result of increasing the conductivity ratio (KR)). On the other hand, 

Fig. 9 shows that increasing the channel height, for a given conductivity ratio (KR), results in an 

increase in percent difference in the flow rate from the conventional case. This means that 

conjugate effect is more pronounced in high channels than that in short channels. 
 

It is of practical importance to know the values of the conductivity ratio beyond which 

the conjugate effect can be neglected. These values are termed as the critical values. The critical 

values of conductivity ratio, for given eccentricity (E) and radius ratio (NR2), has been arbitrarily 

defined as the values which cause the channel height to differ by no more than 2% from the 

conventional (without conjugation) solution results. Based on a similar arbitrary definition for 

the critical conductivity ratio, El-Shaarawi and Haider [17] obtained a unique value for the 

critical conductivity ratio for the conjugate heat transfer in the forced convection regime. The 

present case of conjugate heat transfer in the free convection regime has no single value for the 

critical conductivity ratio. Unlike the conjugate heat transfer in the forced convection regime, the 

critical conductivity ratio in the present case is a function of the channel height (L), as can be 

seen in Fig. 9. Figure 10 gives the critical conductivity ratio against the channel height (i.e., 
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Grashof number) for the annulus under consideration (NR2=0.5, E=0.5, Iwall=0.1, Owall=0.2, 

Pr=0.7) for case (I). The critical conductivity ratio (KRcr) increases with the channel height.       

 

Conclusions 
 

Combined conduction-laminar free convection heat transfer in vertical eccentric annuli 

has been numerically investigated. A finite-difference algorithm has been developed to solve the 

bipolar model equations. Numerical results are presented for a fluid of Prandtl number, Pr=0.7 in 

an annulus of radius ratio, NR2=0.5 and dimensionless eccentricity, E=0.5. Practical ranges of the 

solid fluid conductivity ratio (KR=1-1000) and the dimensionless walls thickness that are 

commonly available in pipe standards (Iwall=0.01-0.2 and Owall=0.02-0.4) have been 

investigated. The effect of conjugation on the variations of the induced flow rate (F) and the heat 

absorbed by the fluid within the channel height has been investigated for two sets of boundary 

conditions (Cases I and O).  
 

Results show that increasing the thermal resistance of the walls, i.e., decreasing the solid-

fluid thermal conductivity ratio or increasing the cylinder walls thickness may cause an increase 

in the induced flow rate (F) for short annuli in case (I) whereas it always causes a decrease in 

case (O). Similar trend is observed for total heat absorbed (Q ) by the fluid in the eccentric 

annulus. Increasing the thermal resistance of the walls makes the conjugate effect tangible. Also 

the obtained results show that the conjugation effect is more pronounced for case (O) than case 

(I). Finally, the critical values of conductivity ratio for a range of channel heights (L) above 

which the conjugate effect can be neglected have been determined for use in practical 

applications. 
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Figure Captions 
 
Fig. 1(a) The geometry and grid points, NR2=0.5, E=0.5, NSO=8, NSI=5, N=10, M=50, 

Iwall=0.05, Owall=0.1 
 
Fig. 1(b) The domain of solution 
 
Fig. 1(c) Bi-polar coordinate system 
 
Fig. 1(d) Details of the grid points, NR2=0.5, E=0.5, NSO=10, NSI=5, N=15, M=25, 

Iwall=0.05, Owall=0.1 
 
Fig. 2 Comparison of volumetric flow rate versus channel height with the corresponding 

conventional (without conjugation) results of [16], NR2=0.5, NR1=0.499, NR3=1, NR4=1.002, 

N=20, M=20, NSI=25, NSO=25, KR=1000 
 
Fig. 3 Variation of F with L for different values  of KR, NR2=0.5, E=0.5, Iwall=0.1, 

Owall=0.2, (a) Case I, (b) Case O 
 
Fig. 4 Temperature profiles at axial location of 4.36x10-3 for different values of KR, 

NR2=0.5, E=0.5, Iwall=0.1, Owall=0.2, F=0.0133, (a) Case I, (b) Case O 
 
Fig. 5 Conjugation effect on the total heat absorbed versus the channel height, NR2=0.5, 

E=0.5, Iwall=0.1, Owall=0.2, (a) Case I, (b) Case O  
 
Fig. 6 Effect of wall thickness on F-L variation, NR2=0.5, E=0.5, KR=2, (a) Case I, (b) 

Case O 
 
Fig. 7 Effect of wall thickness on the temperature profiles at Z=1.59x10-2, NR2=0.5, 

E=0.5, KR=2, Owall=0.2, (a) Case I with Iwall=0.01, Owall=0.02, (b) Case O with Iwall=0.2, 

Owall=0.4 
 
Fig. 8 Effect of wall thickness on Q -L variation, NR2=0.5, E=0.5, KR=2, (a) Case I, (b) 

Case O 
 
Fig. 9 Effect of dimensionless channel height on conjugation effect, NR2=0.5, E=0.5, 

Iwall=0.1, Owall=0.2 
 
Fig. 10 Critical conductivity ratio versus channel height, NR2=0.5, E=0.5, Iwall=0.1, 

Owall=0.2 
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Table. 1. Grid Independence Test for Fluid Annulus 

Fluid-Annulus Mesh (N x M) 
Parameters 

20x20 20x25 25x25 25x30 30x25 30x30 
Value 2.944036 2.943998 2.946222 2.946270 2.949074 2.949082 

HFi,ex
% Diff. 0.171 0.172 0.097 0.095 0.000   

Value -
1.468238 -1.468204 -1.467074 -1.467037 -1.465612 -1.465601 

HFo,ex

% Diff. 0.180 0.178 0.101 0.098 0.001   

Value 5.054928 5.054663 5.050683 5.050607 5.048941 5.048845 
NUi,ex

% Diff. 0.120 0.115 0.036 0.035 0.002   

Value 3.515973 3.516085 3.520960 3.521028 3.523932 3.524012 
NUo,ex

% Diff. 0.228 0.225 0.087 0.085 0.002   

Value 0.417591 0.417568 0.416669 0.416650 0.415902 0.415890 
θm,ex

% Diff. 0.409 0.403 0.187 0.183 0.003   

Value 4.902995 7.642838 13.014520 21.750520 22.525000 35.345510
Time (min.) 

% ratio 13.872 21.623 36.821 61.537 63.728   

 
 

Table.2. Comparison With Available Results For Eccentric  Annuli  
 

CONFIGURATION 

NR1=0.499 N = 20 

NR2=0.5 M = 20 

NR4=1.002 NSI = 8 

KR=1000 NSO = 16 

E=0.6 Case = 1.I  

Pr=0.7 Forced 
Convection 

Parameters/Models Present 
 El-

Shaarawi& 
Haider 

[17] 

% 
error Present

Shah 
and 

London 
[20] 

% 
error 

(dp/dz)fd 32.2466 32.2070 0.1229 32.2466 31.8180 1.3470 

  Present 
El-

Shaarawi& 
Haider [17] 

% 
error Present Trombetta 

[10] 
% 

error 

HFi,fd 3.5948 3.5930 0.0500 3.5948 3.5820 0.3573 

AVNUi,fd 5.7407 5.7380 0.0468 5.7407 5.7460 0.0925 

AVNUo,fd 4.7616 4.7620 0.0077 4.7616 4.7540 0.1606 
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Table. 3. Radius Ratios for Standard Steel Pipes 

 
 

Nominal Size 
(Inch) Radius Ratio 

Dimensionless 
Tube 

Thickness 

Inner Outer 
ASTM 

Schedule 
# 

NR1 NR2 NR4 Inner Outer 

Sch. 40 0.35 0.51 1.25 0.17 0.25 
 1/4 1     

Sch. 80 0.32 0.56 1.37 0.25 0.37 

Sch. 40 0.36 0.49 1.2 0.13 0.2 
 3/8 1 ¼ 

Sch. 80 0.33 0.53 1.3 0.2 0.3 

Sch. 40 0.39 0.52 1.18 0.14 0.18 
 1/2 1 ½ 

Sch. 80 0.36 0.56 1.27 0.2 0.27 

Sch. 40 0.4 0.51 1.15 0.11 0.15 
 3/4 2     

Sch. 80 0.38 0.54 1.22 0.16 0.22 

Sch. 40 0.42 0.53 1.16 0.11 0.16 
1     2 ½ 

Sch. 80 0.41 0.57 1.24 0.15 0.24 

Sch. 40 0.4 0.47 1.12 0.07 0.12 
1 ½ 4     

Sch. 80 0.39 0.5 1.18 0.1 0.18 

 
 

Table. 4. Common Values of KR 
 

Material 
Thermal 

Conductivity 
(W/m-0C) 

Air @ 300 K 0.02624 

Carbon Steel (1 % C) 43 

Water - Saturated @ 300 K 0.613 

Cast Iron (4 % C) @ 293 K 52 

Engine Oil (SAE 50) @ 293 K 0.145 

Aluminum Metal @ 293 K 236 

Asbestos @ 273 K 0.154 

Plastic 0.48 

Solid Fluid Conductivity Ratio (KR) 

Material / 
Fluid Air Water Oil 

Aluminum  8993.9 384.99 1627.59 

Cast Iron  1981.71 84.83 358.62 

Steel 1638.72 70.15 296.55 

Plastic 18.29 0.78 3.31 

Asbestos  5.87 0.25 1.06 
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