
Parallelization of Stochastic Evolution for Cell

Placement

MS Thesis Proposal

Khawar Saeed Khan

Student ID: 220514

Computer Engineering Department

College of Computer Sciences & Engineering

King Fahd University of Petroleum & Minerals

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by King Fahd University of Petroleum and Minerals

https://core.ac.uk/display/266085173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 2

1.1 Low power VLSI standard cell placement 2

1.2 Iterative Heuristics . 3

1.2.1 Sequential Iterative Heuristics 3

1.2.2 Iterative Heuristics parallelization 5

2 Parallelization 7

2.1 Introduction . 7

2.2 MPI . 9

2.2.1 Introdution . 9

2.2.2 Parallelization Effects 10

2.2.3 Parallelizing I/O Operations 10

2.2.4 Parallelizing Loops . 11

2.2.5 Message Passing . 12

2.2.6 Future of MPI . 13

3 Stochastic Evolution 13

3.1 Introduction . 13

3.2 Sequential StocE . 14

3.2.1 Definition . 14

3.2.2 StocE Algorithm . 14

3.2.3 StocE Applications . 17

3.2.4 Implementation Details 19

3.3 Parallel StocE . 21

3.3.1 General Description . 21

3.3.2 Implementation Details 22

4 Problem Formulation and Cost Functions 22

4.1 Problem Statement . 22

4.2 Cost Function for Power . 24

4.3 Cost Function for Delay . 24

4.4 Cost Function for Wirelength 25

5 Objectives 26

6 Tasks Outline 27

i

List of Figures

1 The Stochastic Evolution algorithm. 15

2 The PERTURB function. 16

3 The UPDATE procedure. 17

4 General parallel stochastic evolution algorithm where synchro-

nization is forced after each trial. 23

ii

Abstract

VLSI physical design and the problems related to it such as placement, chan-

nel routing, etc, carry inherent complexities that are best dealt with iterative

heuristics. However the major drawback of these iterative heuristics has been

the large runtime involved in reaching acceptable solutions especially when op-

timizing for multiple objectives. Among the acceleration techniques proposed,

parallelization is one promising method. Distributed memory multiprocessor

systems and shared memory multiprocessor systems have gained considerable

attention in recent years of research. This idea of parallel computing has at-

tracted both the researchers and manufacturers who are targeting to reduce

the time to market. Our objective is to exploit the benefits of parallel com-

puting for a time consuming placement problem in VLSI. Finding the best

solution for the placement of n modules is a hard problem. Thus the enu-

merative search techniques, specially those which employ the brute force, are

unaccepted for the circuits in which n (number of modules) is large. Con-

structive and Iterative heuristics play the key role in this scenario and hence

are frequently used. We will use Stochastic Evolution for finding the opti-

mal solution to the above mentioned placement problem where the major task

in our objective will be the parallelization of Stochastic Evolution using dif-

ferent parallelization techniques and the comparison between these different

parallelized versions based on the results achieved. The parallelization will be

carried out using MPI (Message Passing Interface) on a distributed memory

multiprocessor system and conclusion will be based on the results achieved

that are expected to show speedup nearly equal to linear speedup when run

over increasing number of processors.

1

1 Introduction

The process of mapping structural representation of a circuit into its layout

representation is termed as physical design of VLSI circuits. In structural

representation a system is defined in terms of logic components and their in-

terconnects whereas layout representation describes the circuit in terms of a

set of geometric object which specify the dimensions and locations of tran-

sistors and wires on a silicon surface. As the module count on a chip grows,

the quality and speed of automatic layout algorithms need to be re-evaluated.

One of the most critical problems encountered in the design of VLSI circuits

is how to assign locations to circuit modules and to route the connections

among them such that the ensuing area is minimized. Due to the complexity

of this problem, it is partitioned into two consecutive stages. The first deals

with assigning locations to individual modules and is commonly referred to

as the Placement problem. The second involves routing of the connections

among the already positioned modules. The quality of the routing obtained

at the second stage depends critically on the placement output of the first

stage. Hence, the goal of a good placement techniques is to position the cells

such that the ensuing area is minimized, while the wire lengths are subject to

critical length constraints.

Literature survey of current researches being carried out in all VLSI fields

reveals that until now the objectives that have emerged as the prime objec-

tives in optimizing VLSI circuit designs are wirelength (area), performance

(timing) and power dissipation. Wirelength and performance being the target

objectives from quite past whereas power dissipation emerged quite recently

as a critical objective of VLSI circuit design specially in power-constrainted

applications such as mobile phones and laptop computers. The problem of

optimizing these three objectives in VLSI circuit design can be addressed at

any of design steps. In this work, we are concerned with optimization at the

physical level, in particular the cell placement phase.

1.1 Low power VLSI standard cell placement

The VLSI cell placement problem involves placing a set of cells on a VLSI

layout, given a netlist which provides the connectivity between each cell and

a library containing layout information for each type of cell. This layout

information includes the width and height of the cell, the location of each

pin, the presence of equivalent pins, and the possible presence of feed through

paths within the cell. The primary goal of cell placement is to determine the

2

best location of each cell so as to minimize the total area of the layout and the

length of the nets connecting the cells together. With standard cell design,

the layout is organized into equal height rows, and the desired placement

should have equal length rows. Standard cell placement is a crucial step in

the layout of VLSI circuits which has a major impact on the final speed and

cost of the chip. This problem has been studied for several years and the

best solutions have been obtained by iterative improvement algorithms such

as simulated annealing, genetic algorithm and stochastic evolution which have

some mechanism for escaping from local minima.

1.2 Iterative Heuristics

In combinatorial optimization the complexity of any algorithm that searches

for better solutions increases with the increase in modules present in a given

workspace where this complexity may also increase linearly. Considering the

time limits it becomes impossible to apply a brute force technique which eval-

uates all possible combinations in a solution space with large number of mod-

ules. Moreover, the search space in these combinatorial problems consists of

many frequent high or low jumps and deep craters due to which a searching

criteria that only accepts good solutions (greedy algorithms) once trapped in

a crater or a local optima will never come out of it. These greedy algorithms

may search efficiently in scenarios where there is a parabolic search space with

only one minima but for a combinatorial optimization problem they will never

work. Another technique to search in the environments of combinatorial prob-

lems is a random walk. Studies have shown that given the limited CPU time

algorithms that apply random walk performs worst.

1.2.1 Sequential Iterative Heuristics

Following are the five dominant algorithms that are instance of general iterative

non-deterministic algorithms,

1. Genetic Algorithm (GA),

2. Tabu Search (TS),

3. Simulated Annealing (SA),

4. Simulated Evolution (SimE), and

5. Stochastic Evolution (StocE).

3

We have categorized the above mentioned five (5) heuristics as ’sequential

iterative heuristics’ because these heuristics were developed and thus meant to

run on a single processor environment. These heuristics have certain common

properties which are as follows [1]:

1. They are blind, in that they do not know when they reached the optimal

solution. Therefore, they must be told when to stop.

2. They are approximation algorithms, that is, they do not guarantee find-

ing an optimal solution.

3. They have ’hill climbing’ property, that is, they occasionally accept uphill

(bad) moves.

4. They are easy to implement. All that is required is to have suitable

solution representation, a cost function, and a mechanism to traverse

the seach space.

5. They are all ’general’. Practically they can be applied to solve any

combinatorial optimization problem.

6. They all strive to exploit domain specific heuristic knowledge to bias the

search toward ’good’ solution subspace. The quality of subspace searched

depends to a large extent on the amount of heuristic knowledge used.

7. Although they asymptotically converge to an optimal solution, the rate

of convergence is heavily dependent on the adequate choice of several

parameters.

The performance of these heuristics is heavily dependent on how in any

problem the cost function and mechanism to traverse the search space is de-

veloped. Also, the configuration and tuning of the control parameters in these

heuristics have a major and critical impact on performace. However, as de-

scribed earlier, since, these heuristics are sequential in nature thus the platform

on which these heuristics or algorithms are executed also have an impact on

runtimes of these heuristics. These runtimes becomes crictical when we talk

about combinatorial problems with very large number of modules since any

reduction in time makes the algorithm a prior algorithm for that specific prob-

lem.

4

1.2.2 Iterative Heuristics parallelization

1.2.2.1 Introduction Given the combinatorial problems with large num-

ber of modules, requiring large runtimes of the applied iterative heuristics,

it becomes important to reduce these runtimes either by carrying out config-

uration tuning of the control parameters involved or by any other effective

methods. Two (2) methods to reduce these large run times have been men-

tioned in [1].

1. Hardware acceleration, and

2. Software accelration.

Hardware acceleration requires the computationally intensive part of an

algorithm to be mapped on hardware. This increases the cost in terms of

resources and the speed up achieved in the end does not encourage one to

opt for hardware acceleration, thus, it is not a cost effective strategy. On

the other hand, software accelration can be carried out using multiprocessor

environment using either MISD or MIMD machine.

1.2.2.2 Some Parallelized Heuristics Almost all of the above men-

tioned iterative heuristics have already been parallelized and their results as

compared to their sequential counter parts have encouraged researchers to

ponder in this direction. It is worth mentioning that none of the research has

been carried out on the parallelization of Stochastic Evolution. Following are

some details on parallel versions of some iterative heuristics:

• Parallel Simulated Annealing

Applicability of three different parallel simulated annealing (SA) strate-

gies to the problem of standard cell placement was investigated in [2].

The first strategy, parallel moves, based on the use of priorities and a dy-

namic message sizing, was used to deliver good consistent speedups with

little degradation in the wire length. Multiple Markov chains appears to

be promising as a means to achieving moderate speedup without losing

quality, and in fact in some cases improving quality. Speculative compu-

tation, however, is shown to be inadequate as a means of parallelization

of cell placement. A combination of the parallel moves approach with

intermediate exchanges as in multiple Markov chains may offer benefits

in terms of reducing the error present in the parallel moves approach

alone.

5

Following are the four (4) strategies for parallelizing simulated anneal-

ing [2]:

1. Move Acceleration:

In this approach, each individual move is evaluated faster by break-

ing up the task of evaluating a move into subtasks such as selecting

a feasible move, evaluating the cost changes, deciding to accept or

reject, and perhaps updating a global database. Concurrency is

obtained by delegating individual subtasks to different processors.

Such approaches to parallelization are restricted to shared memory

architectures and have limited scope for large scale parallelism.

2. Parallel Moves:

In this method, each processor generates and evaluates moves inde-

pendently as if the other processors are not making any moves. One

problem with this approach is that the cost function calculations

may be incorrect due to the moves made by the other processors.

This can be handled by either evaluating only moves that do not

interact, or by handling interacting moves with some error tolerance

procedure.

3. Multiple Markov Chains:

Multiple Markov chains calls for the concurrent execution of sepa-

rate simulated annealing chains with periodic exchange of solutions.

This algorithm is particularly promising since it has the potential

to use parallelism to increase the quality of the solution.

4. Speculative Computation:

Speculative computation attempts to predict the execution behav-

ior of the simulated annealing schedule by speculatively executing

future moves on parallel nodes. The speedup is limited to the in-

verse of the acceptance rate, but it does have the advantage of

retaining the exact execution profile of the sequential algorithm,

and thus the convergence characteristics are maintained.

• Parallel Tabu Search

A parallel tabu search (TS) strategy for accelerating the solution to a

constrained multiobjective VLSI cell placement problem is proposed in

[3]. The proposed strategy belongs to p-control, RS, MPSS class and was

implemented on a dedicated cluster of workstations where a distributed

6

parallel Genetic Algorithm (GA) was also implemented for the compari-

son purposes. Experimental results on ISCAS-85/89 benchmarks exhib-

ited that the proposed parallel TS shows an excellent trend in terms of

speedup and requires far lesser run times as compared to serial TS for

obtaining the same quality of placement solutions.

• Parallel Genetic Algorithm

Different Genetic Algorithm (GA) parallelization strategies for multiob-

jective optimization problems are proposed in [4]. One approach de-

scribed is a variation of the canonical Master-Slave parallel GA, with

both fitness and crossover distributed among processors where selection

is only implemented by the Master. Performance gains in terms of re-

duced run-time were seen only for larger circuits. On the other hand,

another approach called Multi-Deme approach reported consistent per-

formance gains independent of problem complexity and size of the search

space.

2 Parallelization

2.1 Introduction

Despite the advances in VLSI technology, there are still a few challenges that

pose an obstacle in its rapid development. One of them is the large run-time

required for iterative heuristics which play a crucial role in VLSI design. Of

the various acceleration strategies attempted, parallel computing has always

exhibited the most potential. Not only is it possible to achieve shorter run-

times with parallel processing but also handle larger problem sizes, obtain

better quality results, etc. These potential advantages are enumerated and

detailed below [5]:

1. Faster Runtimes: Most of the VLSI design problems are computa-

tionally intensive and take a large amount of time ranging from several

hours to days. Moreover, future design tools will require even more

computational capabilities. Given such increased requirements for speed

and accuracy, parallel processing is the only way to accelerate the design

tasks.

2. Larger Problem Sizes: Sometimes, due to time or memory limita-

tions, these design tools cannot handle larger problem sizes. This can

7

be overcome by using parallel processing, as both computational speed

and memory size are enhanced by using parallel architectures.

3. Better Quality: As most of the VLSI design problems are NP com-

plete [6], heuristics used to solve them may give non-optimal solutions.

The solutions obtained are function of the fraction of the search space

traversed. With the use of parallel search techniques, better quality re-

sults can be obtained. This is possible as a larger search space can be

traversed in the same time constraint.

4. Cost-effective Technology: With the proliferation of parallel comput-

ers, powerful workstations, and fast communication networks, parallel

implementation of iterative heuristics, seem to be a natural alternate to

speedup the search for approximate solutions.

Parallelization strategies can be implemented in many different ways de-

pending on the problem to be parallelized. But in the end all software paral-

lelization strategies can majorly be categorized in two (2) ways depending on

the their basic infrastructure. These two (2) categories are as follows:

1. Shared Memory Parallelization

A single computer system utilizing multiple CPUs that share access to a

common set of memory addresses is defined as a Shared Memory Parallel

system. This parallelization assumes the following:

• All processors can access all the memory in the parallel system, i.e.,

there is only one address space accessible by all,

• The time to access the memory may not be equal for all processors,

• Parallelizing on a shared memory procedure does not reduce CPU

time - it reduces wallclock time,

• Parallel execution is achieved by generating threads which execute

in parallel,

• Number of threads is independent of the number of processors.

This parallelization is more a fine-grained approach to parallel computing

that involves creating independent ”threads” of execution within one

process rather than passing messages among many separate processes.

This alternative may be more efficient but is much more complex to

program. OpenMP is the most commonly used and accepted tool or

language for parallelizing a code for SMP.

8

2. Distributed Memory Parallelization

Multiple single-CPU computers connected over a high speed network to

process a single program is known as a Distributed Memory Process-

ing (DMP) system. This approach has proven to be very successful at

solving extremely large problems and is popular within the University re-

search and high energy physics communities. The typical hardware con-

figuration is a group of commodity (often Intel-based) PCs with lots of

memory connected via high speed ethernet. This configuration, dubbed

a ’Beowulf’ class system, passes instructions and data between systems

via Message Passing Interface (MPI) libraries, a portable, easy to use

system of exchange.

For this particular problem we have selected MPI for parallelizing our code

for standard cell placement. We have discussed MPI in more details in the

following section.

2.2 MPI

2.2.1 Introdution

In April of 1992, a group of parallel computing vendors, computer science re-

searchers, and application scientists met at a one-day workshop and agreed

to cooperate on the development of a community standard for the message-

passing model of parallel computing. The MPI Forum that eventually emerged

from that workshop became a model of how a broad community could work to-

gether to improve an important component of the high performance computing

environment. The Message Passing Interface (MPI) definition that resulted

from this effort has been widely adopted and implemented, and is now virtually

synonymous with the message-passing model itself. MPI not only standardized

existing practice in the service of making applications portable in the rapidly

changing world of parallel computing, but also consolidated research advances

into novel features that extended existing practice and have proven useful in

developing a new generation of applications. [7]

In short, the standard message-passing interface (MPI) library is a way to

share data among parallel processes running on distributed-memory parallel

computers.

9

2.2.2 Parallelization Effects

MPI works on the basic parallelization principle defined by Amdahl’s law,

which states ”If p is the fraction of your program that can be parallelized (and

1-p is the fraction that cannot), and if you run it on n processors, then the

ideal parallel running time will be

((1-p) + p/n) x (serial running time)

This suggests the importance of carefully idenifying the fraction of the

code that can be parallelized, since it sets a limit on improvements in how

fast the parallelized program will run. The effectiveness of parallelization also

depends on how well the program’s many processes communicate with each

other. Effective bandwith is one way to collectively assess the many factors

that influence interprocess communication.

In any paralleization the major objective is always to acheive the speed-up.

Speed-up thus remains the evaluating parameter for any parallelized program.

To improve speed-up in any parallelization strategy, following are the key

factors:

1. Decrease the amount of data sent between processes, and

2. Decrease the number of times data is send.

2.2.3 Parallelizing I/O Operations

There are two (2) cases in parallelizing I/O operations. These two (2) cases

are describes below:

2.2.3.1 Input Cases For a massively parallel program, there are three

ways to handle data input among multiple processes:

1. All processes read the same input file from a shared file system (if there

is one),

2. All processes have a local copy of the input file before computation starts,

and

3. One process reads the input file and distributes it to the others using

appropriate MPI library routines.

10

2.2.3.2 Output Cases For a massively parallel program, there are three

ways to handle data output from among the many processes:

1. All processes write to a standard output,

2. One process gathers all the data and writes it to a local file. The appro-

priate MPI library routine for this approach is MPI GATHER, and

3. Each process writes its data sequentially to a shared file. Use routine

MPI BARRIER to synchronize the processes and avoid data corruption.

2.2.4 Parallelizing Loops

Parallelizing loops among multiple processors is a critical task in paralleliza-

tion. Three (3) possible solutions for distributing loops that are not nested

among multiple processors are as follows:

1. Block Distribution

The block distribution approach divides the loop iterations into p equal-

sized parts, where p is the number of parallel processes. You can ei-

ther make the parts as evenly sized as possible, so that all processes

get the same number of interations. This allows the use of routine

MPI REDUCE to manage results afterward. Use a specified part size to

create the iteration blocks, and leave a remainder (possibly but usually

not zero) for one process. The PESSL library uses this method.

2. Cyclic Distribution

Cyclic distribution assigns loop iterations to parallel processes one iter-

ation at a time, round robin. In some situations (e.g., LU factorization)

this can balance the workload better than block distribution, but it can

also cause frequent cache misses.

3. Block-Cycle Distribution

Block-cyclic distribution assigns loop iterations to parallel processes by

first dividing them into equal-sized blocks and then assigning the blocks

to processes round robin, cyclicly. The goal is to reduce cache misses yet

still get the workload balance of cyclic distribution.

For parallelizing nested loops we can parallelize them in a way that mini-

mizes the communication between processes as well as the frequency of cache

misses if we consider:

11

• Storage order for multidimensional arrays. Fortran stores such arrays in

column-major order, but C stores them in row-major order,

• Dependence of each element on its neighboring elements in the same row,

and

• Possible dependence of an element on its neighbors in more than just

one dimension.

2.2.5 Message Passing

Message passing is the solution to the distributed memory problem of processes

that do not have data required for computational iterations where the data

has been distributed among multiprocessors. Two basic cases occur:

1. No order (loop-carried) dependencies exist among the iterations.

2. Order (loop-carried) dependencies do exist among the iterations that are

distributed.

2.2.5.1 No Order Dependencies When there exist no dependencies among

the iterations we can carry out the following steps to pass messages among pro-

cessors:

1. Broadcasting Single Element,

2. 1-D Finite Difference Method,

3. Bulk Data Transmissions, and

4. Reduction Operations.

2.2.5.2 Order Dependencies When there exist dependencies among it-

erations, i.e., the loops are nested, there are two (2) ways of parallelization:

1. Pipeline Method

The pipeline method is the way to parallelize a loop that has a flow

dependence, so that each iteration has to be executed strictly in order.

The Incomplete Cholesky Conjugate Gradient Method is an example of

such a situation. In this method, there is no danger of deadlock.

12

2. Twisted Decomposition

This is the way to parallelize when one loop is flow dependent on one di-

mension of a matrix, and a second loop is simultaneously flow dependent

on the second dimension of the matrix. Here, unlike with the pipeline

method, there is a danger of deadlock.

2.2.6 Future of MPI

MPI was deliberately designed to grant considerable flexibility to implemen-

tors, and thus provides a useful framework for implementation research. Suc-

cessful implementation techniques within the MPI standard can be utilized

immediately by applications already using MPI, thus providing an unusually

fast path from research results to their application. At Argonne National Lab-

oratory MPICH, a portable, high performance implementation of MPI, has

been developed and distributed from the very beginning of the MPI effort.

Now MPICH-2, a completely new version of MPICH is being released. This

hopefully will stimulate both further research and a new generation of com-

plete MPI-2 implementations, along with some early performance results. A

speculative look at the future of MPI, including its role in other programming

approaches, fault tolerance, and its applicability to advanced architectures is

also expected shortly. [7]

3 Stochastic Evolution

3.1 Introduction

In biological processes, most species adapt themselves better to the existing

environment as they evolve from one generation to the next one. The evolution

process hopefully eliminates some of the bad characteristics of the old genera-

tion resulting in a better new generation. This concept has been exploited in

iterative improvement techniques for some specific combinatorial optimization

problems. [8]

Stochastic Evolution is a powerful general and randomized iterative heuris-

tic for solving combinatorial optimization problems. The first paper describing

Stochastic Evolution appeared in 1989. The paper was authored by Youssef

Saab and Vasant Rao. [1]

Stochastic Evolution is an instance of the class of general iterative heuris-

tics discussed in [9]. It is stochastic because the decision to accept a move

is a probabilistic decision. Good moves, i.e., moves which improve the cost

13

function are accepted with probability one, and bad moves may also get ac-

cepted with a non-zero probability. Thus feature gives Stochastic Evolution

hill-climbing propoerty. The word evolution is used in reference to the al-

leged evolution processes of biological species. Like simulated annealing and

simulated evolution stochastic evolution is conceptually simple and elegant.

Actually stochastic evolution is somehow inspired in part by both simulated

annealing and simulated evolution. [1]

3.2 Sequential StocE

3.2.1 Definition

The state model: Given a finite set M of movable elements and a finite set L

of locutions, a state is defined as a function S : M + L satisfying certain state-

constraints. Also, each state S has an associated cost given by COST(S). [8]

3.2.2 StocE Algorithm

Stochastic Evolution algorithm, shown in Figure 1, seeks to find the global

minimum in a given search space. During this search the algorithm when

stucked into a local minimum comes out of it by accepting bad solutions. This

acceptance of good and bad solutions is probabilistic where the good moves

are always accepted with probability one (1) and bad moves may also be

accepted or rejected based on certain probability. This probabilistic decision

of accepting or rejecting the bad moves is what makes this algorithm stochastic.

The algorithm as discussed earlier is an iterative algorithm that searches for the

solutions within the constraints while minimizing or maximizing the objective

function as desired. The algorithm is blind in a sense that it needs to be told

when to stop.

Algorithm requires the following as inputs:

1. An initial solution,

2. A range variable p0, and

3. A Termination parameter R.

At start, the algorithm saves the initial solution as best solution and cur-

rent solution. The cost for the initial solution is calculated and again this

cost is saved as best cost and current cost. A parameter ρ, initially equal to

zero, is defined and another parameter p is defined equal to p0. This main

14

AlgorithmStocE(S0, p0, R);

Begin

BestS= S = S0;

BestCost= CurCost= Cost(S);

p = p0;

ρ = 0;

Repeat

PrevCost= CurCost;

S = PERTURB(S, p); /* perform a search in the neighborhood of s */

CurCost= Cost(S);

UPDATE(p, PrevCost, CurCost); /* update p if needed */

If (CurCost< BestCost) Then

BestS=S;

BestCost= CurCost;

ρ = ρ−R; /* Reward the search with R more generations */

Else

ρ = ρ + 1;

EndIf

Until ρ > R

Return (BestS);

End

Figure 1: The Stochastic Evolution algorithm.

loop runs till the value of ρ is less than the termination parameter R. The

algorithm then enters into a its main loop where current cost of solution is

saved as previous cost and then a funtion PERTURB , shown in Figure 2, is

called.

In PERTURB funtion, the algorithm enters into a second loop that for

each main iteration runs for total number of movable elements in the given

problem. This is what is termed as a compound move of stochastic evolution.

MOVE function is called inside the loop which makes a simple move by moving

one movable element to a new location. This movement changes the whole

state of the solution thus cost of this new solution is calculated again. Gain

is calculated by subtracting the new cost from the previous cost. If the gain

15

FUNCTION PERTURB(S, p);

Begin

ForEach (m ∈ M) Do /* according to some apriori ordering */

S ′ = MOV E(S, m);

Gain(m) = Cost(S)− Cost(S ′);

If (Gain(m) > RANDINT (−p, 0)) Then

S = S ′

EndIf

EndFor;

S =MAKE STATE(S); /* make sure S satisfies constraints */

Return (S)

End

Figure 2: The PERTURB function.

calculated is positive, i.e., the new solution is better than the previous solution

if cost minimization is our objective, then the new solution is accepted. But

if the gain calculated is negative, i.e., the new solution is worse than the old

solution, then a negative random number is generated between zero (0) and

the range variable p, where range variable is also negative. If this negative

gain is greater than the random numer generated the solution is accepted else

the solution is rejected. At the end of each simple move MAKE STATE

routine is called that makes sure the solution accepted does not violate any

constraints. If any constraint is violated, then the algorithm takes few steps

back and accept the solution within the constraints.

The algorithm enters into the main loop again after the completion of a

compound move by the PERTURB function. In the main loop, the cost of

the accepted solution is calculated and is saved as current cost then UPDATE

procedure is called where the previous and current costs are compared. If

found equal the range variable p is incremented by pincr and if the two (2)

values not found equal than p is re-initialized by its initial value p0 again.

UPDATE procedure is shown in Figure 3.

After returning from UPDATE procedure, the algorithm compares the

current cost and the best cost. If the current cost is found better than the

best cost, the solution returned by the PERTURB function, i.e., the current

solution, is saved as the best solution and its cost, i.e., the current cost, is

16

PROCEDURE UPDATE(p, PrevCost, CurCost);

Begin

If (PrevCost=CurCost) Then /* possibility of a local minimum */

p = p + pincr; /* increment p to allow larger uphill moves */

Else

p = p0; /* re-initialize p */

EndIf;

End

Figure 3: The UPDATE procedure.

saved as the best cost. Also, the algorithm awards itself on finding a good

solution by decrementing the value of ρ by R else ρ is incremented by one (1)

in each iteration and the algorithm continues to search for better solutions till

ρ becomes equal to R.

It is clear that the control parameters like p0, pincr and R must be chosen

carefully since they effect the behavior of algorithm and thus will effect the

results. p0 and pincr are problem specific parameters whereas for R, it is shown

in [8] that values ranging from 10− 20 are recommended.

3.2.3 StocE Applications

Since the development of Stochastic Evolution algorithm, it has been employed

to solve several problems. Its implementation depends on the problem type it

is being applied on. Following general steps are always required to implement

StocE on any problem:

1. Solution space definition,

2. Suitable state representation,

3. Identification of the notions of cost and perturbations,

4. Initial value for control parameter p and method to update it, and

5. Value for stopping criteria.

StocE has also been used to solve the following hard combinatorial opti-

mization problems [1]:

17

• Network bisection problem,

• Vertex cover problem,

• Hamiltonian circuit problem,

• Traveling salesman problem, and

• StocE based technology mapping of FPGAs.

Literature survey reveals the application of StocE in solving variety of

problems. Some recent applications and their brief details are listed below:

1. Graph covering problem

Stochastic Evolution algorithm is applied to solve the graph covering

problem in which a set of patterns that fully covers a subject graph

with a minimal cost is sought. This problem is a typical constrained

combinatorial optimization problem and is proven to be NP-complete.

Many branch-and-bound algorithms with different heuristics have been

proposed. But most of them cannot handle practical sized problems like

the technology mapping problem from the VLSI synthesis area. Exper-

imental results with some selected benchmark circuits show that StocE

algorithm produces better results than traditional tree mapping algo-

rithm within a reasonable range of run time. Though efforts have been

made to reduce the run time, the StocE algorithm still takes far more

time compared with SIS. Experiences from this work show that StocE

can be a good altenative for constrained optimization problems like graph

covering problems. [10]

2. StocE non-linear model of neuronal activity with random am-

plitude

A new stochastic nonlinear evolution model is proposed with the stochas-

tic amplitude in neuronal activities to obtain the average number density,

which is used to describe the neurocommunication among population of

neurons. The average number density is a function of the amplitude,

phase and time. The number density of the diffusion process of neuro-

communication is given for the active states of populations of coupled

oscillators under perturbation by both periodic stimulation and random

noise. Particularly, the evolution model presented in this problem can

be used to describe the stochastic evolution process of the amplitudes in

activities of multiple interactive neurons. [11]

18

3. StocE based register allocation using multiport memories

In data path synthesis, intermediate outputs of functional blocks are

stored in registers. Allocation of physical resources (register files) to

registers is done by the designer. In some High Level Synthesis systems

(CMU-DA), memory ports are allocated to registers with disjoint ac-

cess times. In this problem, a Stochastic Evolution based approach to

Register Allocation using multiport memories is used. In this approach

aIlocation of registers to multiport memories proceeds in a way as to

minimize the interconnection between memory ports and the functional

units, while placing constraints on access time requirements of registers.

This approach could be used in design space exploration to determine

how many readwrite ports per bank would best suit the application. The

algorithm is implemented and tested in on standard benchmarks. The

approach yields good results. [12]

4. Sceduling-based CAD methodology for low-power ASICs’ de-

sign space exploration

This problem describes a novel approach to scheduling with multiple

supply voltages in the high-level synthesis of ASICs. In a significant

shift from the existing scheduling algorithms for multiple voltages, the

proposed approach considers, identifies, and exploits the maximal paral-

lelism available in an initial schedule, and applies a modified stochastic

evolution mechanism to iteratively improve, or re-schedule, the previ-

ously obtained best schedule to reduce the maximal power consumption

of function-units. [13]

3.2.4 Implementation Details

In this particular project, StocE algorithm is employed to solve performance

driven low-power VLSI standard cell placement problem. It is a multi-objective

problem where the objective is to reduce power, width and delay of the over all

solution. Besides being objective, width is also a constraint in this problem.

Thus, a code is developed in C language that reads the bench files and the

other necessary files to have complete data structures. The complete problem

statement and cost functions used in the problem are described in detail in

Section-4. This section contains the actual implementation details of StocE

algorithm in the problem mentioned above.

In the current implementation, initially when StocE funtion is called, an

initial solution, a range variable p0 and a termination parameter R, which is

19

equal to 10, are passed as arguments. The range variable p0 is calculated by

calculating the standard deviation in cost when each new solution is gener-

ated, i.e., the standard deviation of the cost for new solution from the average

cost of a solution. In future, this p0 calculation criteria may be changed with

any alternative criteria, yet to be investigated, that may prove more beneficial.

Once the code enters into StocE function then as per general StocE algorithm

description, the cost for the initial solution is calculated and is saved as best

cost and current cost. A sorted array is generated which decrementally sorts

the cells in the initial solution according to their connectivity. This sorted

array helps to bias the PERTURB funtion by moving the most heavily con-

nected cells first. The code then enters into the main loop where the current

cost is saved as previous cost. PERTURB funtion is called afterwards for the

compound move where the first cell is always selected according to the order-

ing of sorted array and second cell is randomly selected. The two selected

cells are then swapped and thus the solution goes into a new state. The cost

of this new solution is calculated and gain is calculated by subtracting the

cost of previous solution from the cost of new solution. A random number is

generated between zero (0) and the range variable p0. Here, we are dealing

with objective value maximizing thus if the gain is greater than the random

number generated the solution is accepted. Since, we are dealing with ob-

jective function maximization this criteria of accepting solutions intrinsically

make sure that if the gain calculated is positive, i.e., new cost is greater than

previous cost, the solution is always accepted. Whereas, if the gain calculated

is negative, i.e., the new cost is less than the old cost, then the solution is only

accepted when the gain is greater than the negative random number generated

since the range variable defines the negative range. After the compound move

of PERTURB funtion, the cost of new solution is calculated and is saved as

current cost. UPDATE procedure is called afterwards where as discussed ear-

lier if the cost of current solution and cost of previous solution are found equal

then the range variable p0 is incremented. In our case, considering the very

small values of gain and rage variable p0, we multiply p0 by 10. Else, if the two

(2) costs are not equal then the range variable p0 is initialized with its first

calculated value. After returning to the main loop from UPDATE procedure

current cost is compared with the best cost. If current cost is found smaller

than the best cost, the current cost is saved as best cost and the algorithm

awards itself by decrementing ρ by R. Else, if current cost is found greater

than the best cost ρ is incremented by one (1). The code or algorithm keeps

searching for better solutions until ρ becomes equal to R.

20

3.3 Parallel StocE

As discussed already, StocE has iterative and blind nature. Due to these

characterstics of StocE it may require large run times if employed on some

big problems having thousands of moving elements and CPU intensive cost

functions. Thus, parallelizing StocE using software acceleration technique,

discussed in section 1.3.2, it is expected to get the same results in much less

time. Thus, the whole objective of parallelizing StocE is to get the same or bet-

ter results in much less time when compared with sequential implementation

results.

3.3.1 General Description

Compared to simulated annealing, StocE has an intrinsic and highly sequen-

tial nature which makes it a difficult candidate for parallelization. A possible

parallelization approach is a master-slave configuration where an initial solu-

tion is assigned to all slave processors by the master. If enough information

is available about search space of the problem one can divide the search space

among processors such that each slave has a non-overlapping search region as-

signed to it. In some cases processors may search the search space in parallel

with a minimal overlap among them. But most of the times, this assumption

is not true since very less is known about search space of the given problem.

Possible strategies for parallelization of StocE are described in [1] where it

is stated that parallelization can be carried out using the following two (2)

approaches:

1. Move acceleration, and

2. Parallel moves.

In move acceleration each simple move can be performed in parallel and

since each move has some trial relocations thus these trial relocations must be

divided among processors. Master processor will remain in-charge of accept-

ing or rejecting any simple move based on better solution cost criteria. Thus,

parallelizing simple moves will make the execution faster. This communica-

tion intensive strategy of move acceleration can be improved by using parallel

moves strategy where in parallel moves strategy several moves are performed

in parallel.

Consider the situation where master orders p simple moves to p processors.

In this case, each slave will report to master after completing its move and

all the processors are forcced to synchronize after each trial. Master accepts

21

the best move from p simple moves and again orders for p simple moves.

Thus, slaves are responsible for running PERTURB function where master

remains responsible for updating ρ and R. This was an example of move

accelration In a parallel move strategy, implementation would be such that

the movable elements will be divided among available processors and each

processor is in charge of trial relocations for each movable element assigned to

it. Synchronization is forced only when any slave processor comes with a better

solution cost, thus, communication will be less in this particular strategy. A

possible parallel StocE algorithm is shown in Figure 4.

3.3.2 Implementation Details

As the current and initial design for parallelizing StocE algorithm. We have im-

plemented parallelization using asynchronous multiple markov process where

each slave processor is executing PERTURB and also is in-charge of updat-

ing ρ and R. Each slave is forced to communicate with master once it finds a

better solution than the solution it already has where it sends its solution to

master and master sends its solution to slave. The best solution among the

two (2) is kept by both and the slave starts searching for a better solution

again. In this way, a good solution found by any slave is propagated to other

slave processors as well. Slave processors keep searching till they meet their

termination criteria. Once all the slaves terminate, master has the best solu-

tion with it. This strategy has produced some interesting results which has

motivated us to investigate further in this direction.

4 Problem Formulation and Cost Functions

4.1 Problem Statement

The cell placement problem can be stated as follows: Given a collection of

cells or modules with ports (inputs, outputs, power and ground pins) on the

boundaries, the dimensions of these cells (height, width, etc), and a collection

of nets (which are sets of ports that are to be wired together), the process

of placement consists of finding suitable physical locations for each cell on

the entire layout. By suitable we mean those locations that minimize given

objective functions, subject to certain constraints imposed by the designer,

the implementation process, or layout strategy and the design style. The cells

may be standard-cells, macro blocks, etc. In this work, we deal with standard

cell design, where all the circuit cells are constrained to have the same height,

22

AlgorithmParallel StocE;

/* S0 is the initial solution */

Begin

Initialize parameters;

BestS=S0; CurS=S0; p = p0;

Repeat

Communicate CurS and a movable element mi to each processor i;

ParFor each processor i

NewSi=MOVE(CurS, mi);

If Gain(CurS, NewSi) > RANDOM(−p, 0)

THEN Ai = TRUE;

EndParFor

If Success Then

/* Success = (
∨p

i=1 Ai = True) */

Select(NewS); /* NewS is best solution among all NewSi’s */

If Cost(NewS) = Cost(CurS) Then p = p− 1;

Else p = p0;

EndIf

If Cost(NewS) < Cost(BestS) Then

BestS= NewS;

ρ = ρ−R

Else ρ = ρ + 1;

EndIf

EndIf

Until ρ > R;

Return (BestS)

End. /*Parallel StocE*/

Figure 4: General parallel stochastic evolution algorithm where synchroniza-

tion is forced after each trial.

23

while the width of the cell is variable and depends upon its complexity [1].

4.2 Cost Function for Power

In standard CMOS technology, power dissipation is a function of the clocking

frequency, supply voltages and the capacitances in the circuit.

p
total

=
∑
i∈V

pi(Ci × V 2
dd × fclk)× β (1)

where pi is the switching probability of gate i over a clock cycle, Ci represents

the capacitive load of gate i, fclk is the clock frequency, Vdd is the supply

voltage, and β is a technology dependent constant. Assuming that the clocking

frequency and power voltages are fixed, the total power dissipation of the

circuit is a function of the total capacitance and the switching probabilities of

the various gates in the logic circuit. The capacitive load of a gate comprises

the input gates capacitances of cells and those of interconnects.

Ci =
∑
j∈Fi

Cg
j + Cr

ij (2)

where Cg
j is the capacitance for gate j, Cr

ij represents the interconnect ca-

pacitance between gates i and j, and Fi = {j|(i, j) ∈ E}. Two other terms

contribute to power dissipation, the short-circuit current and the leakage cur-

rent. These are not considered at this level of design.

4.3 Cost Function for Delay

A digital circuit comprises a collection of paths. A path is a sequence of

nets and blocks from a source to a sink. A source can be an input pad or a

memory cell output, and a sink can be an output pad or a memory cell input.

The longest path (critical path) is the dominant factor in deciding the clock

frequency of the circuit. A critical path makes a problem in the design if it

has a delay that is larger than the largest allowed delay (period) according to

the clock frequency.

The delay of any given path is computed as the summation of the delays

of the nets v1, v2, ..., vk belonging to that path and the switching delay of the

cells driving these nets. The delay of a given path π is given by

Tπ =
k−1∑
i=1

(CDvi + IDvi) (3)

24

where CDvi is the switching delay of the driving cell and IDvi is the intercon-

nection delay that is given by the product of the load factor of the driving cell

and the capacitance of the interconnection net, i.e.,

IDvi = LFvi × Cvi (4)

SLACKπ of path π is given by

SLACKπ = LRATπ − Tπ (5)

where LRATπ is the latest required arrival time and Tπ is the path delay

[14, 15]. If Tπ is greater than LRATπ, then the path π will have a negative

SLACK which is an indicator of a long path problem. Upper bounds can be

applied to nets belonging to the critical path as constraints not to allow them

to exceed a certain limit beyond which the SLACK will be negative.

In this work, we shall use the approach reported in [14] to predict the

K-most critical paths. The placement program will seek to satisfy the delay

constraints imposed by these paths.

4.4 Cost Function for Wirelength

Different models have been proposed for the estimation of length of a given net.

Semi-perimeter of bounding box, minimum Steiner tree, minimum spanning

tree, etc., are among those models [1, 16]. A Steiner tree approximation de-

scribed below, which is fast and fairly accurate in estimating the wire length

will be adopted in this work [17]. To estimate the length of net using this

method, a bounding box, which is the smallest rectangle bounding the net, is

found for each net. The average vertical distance Y and horizontal distance

X of all cells in the net are computed from the origin which is the lower left

corner of the bounding box of the net. A central point (X, Y) is determined

at the computed average distances. If X is greater than Y then the vertical

line crossing the central point is considered as the bisecting line. Otherwise,

the horizontal line is considered as the bisecting line. Steiner tree approxi-

mation of a net is the length of the bisecting line added to the summation of

perpendicular distances to it from all cells belonging to the net. Steiner tree

approximation is computed for each net and the summation of all Steiner trees

is considered as the interconnection length of the proposed solution.

X =

∑n
i=1 xi

n
Y =

∑n
i=1 yi

n
(6)

25

where n is the number of cells contributing to the current net.

Steiner Tree = B +
k∑

j=1

Pj (7)

where B is the length of the bisecting line, k is the number of cells contributing

to the net and Pj is the perpendicular distance from cell j to the bisecting line.

Interconnection Length =
m∑

l=1

Steiner Treel (8)

where m is the number of nets.

In standard cell placement, cells (or blocks) of fixed heights are placed in

rows. It is the width of these rows that varies with the proposed solution ac-

cording to the type and number of cells placed in the row. An approximation

would be to treat cells as points, but in order to estimate lengths of intercon-

nects more accurately, widths of cells are taken into account. Heights of routing

channels are estimated using the vertical constraint graphs constructed during

the channel routing phase. With this information, a fairly accurate estimate

of the overall area, delay, and power dissipation can be obtained.

5 Objectives

The objectives of this research project are stated as follows:

1. Since, Stochastic Evolution algorithm has never been parallelized before

for any problem thus main objective of this research is to parallelize

StocE algorithm using MPI to get good solutions in minimum time,

2. Investigation of applied strategies for different iterative heuristics,

3. Test and compare the sequential and parallel versions of StocE on big

test cases like s15850, s35932, s38417 and s38584,

4. Translation of bigger test cases for single objective placement problem,

5. Compare the results of StocE parallelization with already parallelized

heuristics like Simulated Annealing, Tabu Search, Simulated Evolution

and Genetic Algorithm, and

6. Analyze the effect of medium dependency by executing the same sequen-

tial and parallel StocE algorithm on some physical media other than

gigabit ethernet.

26

6 Tasks Outline

The tentative designed tasks’ outline is stated as follows:

1. Study and use the cluster of workstation environment,

2. Design and implement using MPI different parallelization strategies for

StocE algorithm,

3. Analyze the bottlenecks in parallel strategies in terms of CPU time and

I/O requirements,

4. Compile results from sequential and parallel versions of StocE algorithm

in terms of achieved cost solutions, time to best solutions, etc,

5. Test the implementation on different test cases ranging from s386 to

s38584,

6. Compare the results from all employed parallelization strategies, report

the most effective strategy and analyze details in terms of CPU time,

I/O requirements, communication delays, etc,

7. Compare the results achieved through the best parallel strategy of StocE

with the documented results of other parallelized iterative heuristics.

27

References

[1] Sadiq M. Sait and Habib Youssef. Iterative Computer Algorithms and

their Application to Engineering. IEEE Computer Society Press, Decem-

ber 1999.

[2] Balkrishna Ramkumar Steven Parkes John A. Chandy, Sungho Kim and

Prithviraj Banerjee. An evaluation of parallel simulated annealing strate-

gies with application to standard cell placement. Proceedings of the 9th

International Conference on VLSI Design, January 1996.

[3] Mahmood R. Minhas and Sadiq M. Sait. A parallel tabu search algorithm

for optimizing multiobjective vlsi placement. Springer-Verlag Berlin Hei-

delberg, pages 587–595, 2005.

[4] Mahmood R. Minhas Sadiq M. Sait, Mohammed Faheemuddin and Syed

Sanaullah. Multiobjective vlsi cell placement using distributed genetic

algorithm. ACM, June 2005.

[5] Prithviraj Banerjee. Parallel Algorithms for VLSI Computer-Aided De-

sign. Prentice Hall International, 1994.

[6] M. Garey and D. Johnson. Computer and Intractability: A Guide to the

Theory of NP-completeness. W. H. Freeman, San Francisco, 1979.

[7] Ewing Lusk. Mpi in 2002: Has it been ten years already? Proceedings of

the IEEE International Conference on Cluster Computing, page 1, 2002.

[8] Youssef G. Saab and Vasant B. Rao. Stochastic evolution : A fast effec-

tive heuristic for some generic layout problems. 27th ACM/IEEE Design

Automation Conference, pages 1–6, 1990.

[9] S. Nahar, S. Sahni, and E. Shragowitz. Experiments with Simulated

Annealing. Proceedings of 22nd Design Automation Conference, pages

748–752, 1985.

[10] Lae-Jeong Park Cheol Dae-Hyun Lee, Hoon Choi and Hoon Park Se-

ung Ho Hwang. A stochastic evolution algorithm for the graph covering

problem and its application to the technology mapping. IEEE Conference,

pages 475–479, 1996.

28

[11] Rubin Wang, Hatsuo Hayashi, and Zhikang Zhang. A stochastic nonlin-

ear evolution model of neuronal activity with random amplitude. Proceed-

ings of the 9th International Conference on Neural Information Processing

(ICONIP’OZ) , Vol. 5, pages 2497–2501, 2003.

[12] S. Varadarajan, N. A. Ramakrishna, and M. A. Bayoumi. A stochas-

tic evolution based register allocation using multiport memories. IEEE

Conference, pages 472–475, 1993.

[13] Ashok Kumar and Magdy Bayoumi. A novel scheduling-based cad

methodology for exploring the design space of asics for low power. IEEE

Conference, pages 115–118, 1998.

[14] Sadiq M. Sait and Habib Youssef. Timing-influenced general-cell genetic

floorplanner. Microelectronics Journal, 28(2):151–166, 1997.

[15] Habib Youssef, Sadiq M. Sait, and K. Al-Farra. Timing-influenced force

directed floorplanning. In European Design Automation Conference Euro-

DAC 95, pages 156–161, September 1995.

[16] P. Cheung, C. Yeung, S. Tse, C. Yuen, and W. Ko. A new optimization

cost model for VLSI standard cell placement. In IEEE International

Symposium on Circuits and Systems, pages 1708–1711, June 1997.

[17] Sadiq M. Sait, H. Youssef, and Ali Hussain. Fuzzy simulated evolution

algorithm for multiobjective optimization of VLSI placement. In IEEE

Congress on Evolutionary Computation, pages 91–97, July 1999.

29

