
Multiobjective VLSI Cell Placement Using
Distributed Simulated Evolution Algorithm

Sadiq M. Sait Mustafa I. Ali Ali Mustafa Zaidi

King Fahd University of Petroleum & Minerals
Computer Engineering Department

Dhahran 31261, Saudi Arabia
E-mail: {sadiq,mustafa,alizaidi}@ccse.kfupm.edu.sa

Abstract— Simulated Evolution (SimE) is a sound stochastic
approximation algorithm based on the principles of adaptation.
If properly engineered it is possible for SimE to reach near-
optimal solutions in lesser time then Simulated Annealing [1], [2].
Nevertheless, depending on the size of the problem, it may have
large run-time requirements. One practical approach to speed
up the execution of SimE algorithm is to parallelize it. This is
all the more true for multi-objective cell placement, where the
need to optimize conflicting objectives (interconnect wirelength,
power dissipation, and timing performance) adds another level of
difficulty [3]. In this paper a distributed parallel SimE algorithm
is presented for multiobjective VLSI standard cell placement.
Fuzzy logic is used to integrate the costs of these objectives. The
algorithm presented is based on random distribution of rows
to individual processors in order to partition the problem and
distribute computationally intensive tasks, while also efficiently
traversing the complex search space. A series of experiments are
performed on ISCAS-85/89 benchmarks to compare speedup with
serial implementation and other earlier proposals. Discussion
on comparison with parallel implementations of other iterative
heuristics is included.

I. INTRODUCTION

Simulated Evolution algorithm (SimE) is a general search
strategy for solving a variety of combinatorial optimization
problems [2]. It operates on a single solution, termed as
population. Each population consists of elements. In case of
the placement problem, these elements are cells to be moved.
The algorithm has one main loop consisting of three basic
steps, Evaluation, Selection and Allocation.

In the Evaluation step, goodness of each element is mea-
sured as a single number between ‘0’ and ‘1’, which is an
indicator of how near the element is from its optimal location.

Then comes Selection, which is the process of selecting
elements which are unfit (badly placed) in the current solution.
An individual having high goodness measure still has a non-
zero probability of being selected. It is this element of non-
determinism that gives SimE the capability of escaping local
minima. The last step, Allocation, has the most impact on
the quality of solution. Its main function is to mutate the
population by altering the location of selected cells.

The above three steps are executed in sequence until no no-
ticeable improvement to the population goodness is observed
after a number of iterations, or a fixed number of iterations
are completed.

The pseudo-code of SimE is similar to that given in Fig-
ure 1 [1]. Although the illustration depicts the slave process
to be discussed later, if the entire set of rows is allocated to
a single processor, then the execution of the algorithm is the
same as that of the serial SimE.

For large test cases, SimE has large runtime requirements.
The reason is that, like other stochastic iterative algorithms,
SimE is blind. It has to be told when to stop. Depending on
which stopping criteria are used, as well as the size of the
problem, SimE may consume hours of CPU time before it
stops. The most practical approach to speed up the execution
of SimE algorithm is to parallelize it. Unlike Simulated
Annealing [4], [5] Genetic Algorithms [6] and Tabu Search [7]
the parallelization of SimE has not been the subject of much
research. Kling and Banerjee suggested three ways of speeding
up the SimE algorithm [2], [8].

A parallelization strategy for VLSI cell placement for a
single objective (wirelength) was attempted on a network of
workstations [2], where each station is assigned a number of
rows of the placement problem, in a pre-determined order.
The stations executes one iteration of the SimE algorithm on
the cells of the rows assigned to it. In each iteration, the
rows are redistributed among the processors in a predetermined
order [2].

In this paper we are addressing the problem of parallelizing
SimE to solve the multiobjective VLSI standard cell placement
by using a cluster of low cost PCs. The goal is to achieve a
placement quality very near or equal to that achieved by serial
algorithm, but with run times that decrease linearly (or super-
linearly) with increasing number of processors.

In the next section we present the details of our NP-
hard, multiobjective, VLSI cell placement problem. Problem
formulation and models for estimating the costs for the various
objectives to be optimized are presented. In Section III, the
distributed algorithm is detailed. Experimental setup, results
obtained on ISCAS benchmark circuits, and other observations
are given in Section IV, followed by Conclusion in Section V.

II. MULTIOBJECTIVE FUZZY COST FUNCTION

In this section, we formulate our multiobjective fuzzy cost
function used in the optimization process.

62260-7803-8834-8/05/$20.00 ©2005 IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by King Fahd University of Petroleum and Minerals

https://core.ac.uk/display/266084812?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Algorithm Slave Process(CurS, Φs)
Notation
(* B is the bias value. *)
(* CurS is the current solution. *)
(* Φs are the rows assigned to slave s. *)
(* mi is module i in Φs. *)
(* gi is the goodness of mi. *)

Begin
Receive Placement And Indices

Evaluation:
ForEach mi ∈ Φs evaluate gi;

Selection:
ForEach mi ∈ Φs DO

Begin
If Random > Min(gi + B, 1)
Then

Begin
S = S ∪ mi; Remove mi from Φs

End
End

Sort the elements of S
Allocation:

ForEach mi ∈ S Do
Begin

Allocate(mi, Φs)
(* Allocate mi in local partial solution rows Φs. *)

End
Send Partial Placement Rows
End. (*Slave Process*)

Fig. 1. Structure of the Distributed Simulated Evolution Algorithm.

The objectives considered in our problem include: opti-
mizing power consumption, improving timing performance
(delay), and reducing overall wirelength, while, considering
layout width as a constraint. A semi-formal description of the
placement problem can be found in [3]. The multiobjective
cost function is similar to the one formulated in [9]. The first
objective, wirelength cost (Costwire) is estimated using an
approximate Steiner tree algorithm.

The power consumption cost pi is computed for each net
i. Assuming a a fix supply voltage and clock frequency, the
estimate can be obtained by pi � Ci · Si, (where Si is the
switching probability and Ci the total capacitance, of net i).
This can be further improved to pi � li ·Si (since interconnect
capacitances are a function of the interconnect lengths, and the
input capacitances of the gates are constant). The total estimate
of the power dissipation reduces to Costpower =

∑
i∈M pi =∑

i∈M (li · Si).
The delay cost is taken as the delay along the longest

path in a circuit. The delay Tπ of a path π consisting of
nets {v1, v2, ..., vk}, is expressed as: Tπ =

∑k−1
i=1 (CDi+IDi)

where CDi is the switching delay of the cell driving net vi and
IDi is the interconnect delay of net vi. The placement phase
affects IDi because CDi is technology dependent parameter
and is independent of placement: Costdelay = max{Tπ}.

The layout width is constrained not to exceed a certain
positive ratio α to the average row width wavg .

Since we are optimizing three objectives simultaneously, we
need to have a cost function that represents the effect of all

Algorithm Parallel Simulated Evolution
Read User Input Parameters
Read Input Files

Begin
Construct Initial Placement
Repeat
Generate Random Row-Indices

ParFor
Slave Process(CurS, Φs)

(* Broadcast Cur Placement And Row-Indices. *)
EndParFor
ParFor

Receive Partial Placement Rows
EndParFor

Construct Complete Solution
Calculate Cost

Until (Stopping Criteria is Satisfied)
Return Best Solution.

End. (*Parallel Simulated Evolution*)

Fig. 2. Outline of Overall Parallel Algorithm.

three objectives in the form of a single quantity. We use fuzzy
logic to integrate these multiple, possibly conflicting objectives
into a scalar cost function. Fuzzy logic allows us to describe
the objectives in terms of linguistic variables. Then, fuzzy rules
are used to find the overall cost of a placement solution. In
this work, we have used following fuzzy rule:

IF a solution has SMALL wirelength AND LOW power
consumption AND SHORT delay THEN it is an GOOD
solution.

The above rule is translated to and-like OWA fuzzy operator
[10] and the membership µ(x) of a solution x in fuzzy set
GOOD solution is obtained by:

µ(x) =

β · min
j=p,d,l

{µj(x)} + (1 − β) · 1
3

∑
j=p,d,l

µj(x);

if Width − wavg ≤ α · wavg,

0; otherwise.
(1)

Here µj(x) for j = p, d, l, width are the membership values
in the fuzzy sets LOW power consumption, SHORT delay, and
SMALL wirelength respectively. β is the constant in the range
[0, 1]. The solution that results in maximum value of µ(x) is
reported as the best solution found by the search heuristic. The
membership functions for fuzzy sets LOW power consumption,
SHORT delay, and SMALL wirelength and the lower bounds
for different objectives can be found in [9].

III. DISTRIBUTED SIMULATED EVOLUTION ALGORITHM

The parallelization of the SimE algorithm is carried out
by partitioning the workload among available processors. The
partitioning is done according to rows. The workload for each
slave in the cell placement problem is the computation of
SimE operations of Evaluation, Selection, and Allocation on
it’s assigned rows [2].

The row allocation pattern that was proposed in [2] is made
up of two alternating sets of rows. In the even iterations, each

6227

Runtime vs. no. of processors

0

10

20

30

40

50

60

70

80

p=1 p=2 p=3 p=4 p=5

Number of Processors

R
u

n
ti

m
e

(s
ec

)

s1238
s1494
s1488

Speed-up of circuits (Random Strategy)

p=1 p=1 p=1
p=2

p=2

p=2
p=3

p=3

p=3

p=4

p=4

p=4

p=5

p=5

p=5

0

2

4

6

8

10

12

14

16

18

20

s1238 s1494 s1488

Circuits

S
p

ee
d

u
p

p=1
p=2
p=3
p=4
p=5

a b

Fig. 3. (a) The decrease in runtime to reach a pre-defined fitness objective with increasing number of processors; (b) Speedup versus number of machines.

slave gets a slice of �K
m� rows, (where m is the number of

slaves, and K is the total number of rows in the placement)
while in the odd iterations the jth slave gets the set of rows
j, j + m, j + 2m, and so on. It has been shown that with
the above fixed pattern of assigning rows to slaves in alternate
steps, each cell can move to any position on the grid in at most
two steps [2]. The consequence of row partitioning however
is that the each processors has only a partial view of the
placement. This hinders free cell movement, making it more
difficult for cells to reach their optimal locations. Results from
implementing this strategy on our multiobjective optimization
problem revealed that even when given a large amount of time,
the best solution obtained was poorer than one achieved by the
serial implementation.

Though the lack of a global placement view will always
exist in case of a distributed algorithm, the effects of restric-
tive cell movement can be alleviated by using a better row
allocation pattern. Use of a pattern that facilitates a variety
of combination among the rows sounds intuitively better. This
lead us to experiment with a random row allocation.

The pseudo code of the parallel simulated evolution is
illustrated in Figures 1 and 2. As can be seen, one of the
processors (the master) is in-charge of running SimE on a
particular partition as well as performing the following tasks
periodically at the end of each iteration: (1) receive the
partial placements from all other processors and combine them
into a new solution and evaluate its fitness, (2) partition the
new solution to obtain a new row allocation, and finally, (3)
distribute the resulting sub-populations among the processors.
The number of rows randomly assigned depends on the size of
the placement and the number of processors. This is repeated
for all iterations until the termination condition is met.

IV. RESULTS AND DISCUSSION

The parallel SimE strategies mentioned were implemented
in C/C++ using MPICH Message Passing Interface imple-
mentation ver 1.2.4. for communication between nodes. The
experimental environment used consists of a dedicated cluster
of 8 Pentium IV 2 GHz PCs with 256 MB RAM, running

RedHat Linux ver 7.3 connected with a fast Ethernet switch.
ISCAS-89 circuits are used as performance benchmarks for
evaluating the parallel SimE placement techniques. These
circuits are of various sizes in terms of number of cells and
paths, and thus offer a variety of test cases.

Table I shows the amount of time taken to reach a predefined
fitness objective with increasing number of processors for both
the proposed random row allocation strategy, and the fixed
row allocation strategy. For the proposed strategy, as can be
seen, there is a constant decrease in runtime for all circuits.
Better trends are observed for medium to large circuits, than
for smaller ones, as can be seen in Figure 3(a). Speedup is
also illustrated in the bar-chart given in Figure 3(b). Due to
space restrictions, and scaling factor limitations, not all results
have been included in the same figure for sake of clarity.

The fitness values achieved with the proposed row allocation
are consistently higher in all test cases when compared to
the fixed row allocation scheme, as shown by the Qual Fixed
column in Table I, the fixed row allocation never equals 100%
of the solution quality obtained by the proposed scheme.
Further, the run times are far better, and the speedup is
super linear in most cases. This can be attributed to modified
working space of the selection and allocation operators on
each slave, as in each iteration different sets and combination
of rows are addressed. This has resulted in even more reduced
times to obtain desired solution quality than with workload
partitioning alone.

A. Comparison With Other Iterative Heuristics

The runtimes and solution quality was also compared with
those obtained from parallelizing simulated annealing [4],
genetic algorithms (a distributed search space parallel strat-
egy) [6], and tabu search [7]. For GAs, the time for completion
to obtain solutions of a certain pre-specified quality were
exorbitantly high. And in some cases, for the given run-time,
acceptable solutions could not be obtained. For example, for
the S1494, the serial GA implementation took 1883 seconds,
and when the parallel version was executed on 7 processors
the best time was 418 seconds (with 8% inferior quality than

6228

TABLE I

TABLE DEPICTING THE RUN TIMES FOR A SPECIFIED FITNESS, FOR SERIAL, AND 2, 3, 4, AND 5 PROCESSORS, FOR BOTH RANDOM AND FIXED ROW

ALLOCATION STRATEGIES. UH INDICATES UNREASONABLY HIGH TIMES.

Circuit # of Random Row Distribution Qual Fixed Row Distribution
Name Cells Np=1 Np=2 Np=3 Np=4 Np=5 Fixed Np=2 Np=3 Np=4 Np=5
s641 433 UH 4.99 4.97 3.99 3.87 79.7% 9.14 1.08 0.76 0.55
s1238 540 16.5 9.24 9.29 6.12 3.14 95.8% 17.83 8.47 11.30 5.71
s1494 661 67 17.4 6.15 4.88 5.89 82.3% 2.77 1.85 1.76 4.34
s1488 667 60.23 24.6 7.78 3.72 3.02 96.6% 22.0 4.89 5.1 16
s3330 1961 UH 678.02 115 108.5 49.14 33.8% 316 215 4.6 3.4
s5378 2993 UH 1620 338.2 286.6 178.6 46.8% UH UH 124.3 95.0

that obatined by SimE).
Since cost computation of new generated solutions is very

expensive in our problem, TS was parallelized by partitioning
and distributing the candidate list (moves) to various slaves.
While better quality was obtained in some cases at the cost
of high computation time, for the same quality the run-time
requirements for TS were over three times more than that
required by parallel SimE. For example, for s1494, the time
taken by serial TS was 268 seconds, and when parallel TS was
run on 6 processors, the runtime was 57 Seconds, (compared
to 5 Seconds by SimE) with slightly better quality, and TS
took over 15 Seconds to obtain solutions of same quality as
SimE. A similar trend was seen for all circuits.

For simulated annealing, the asynchronous multiple-Markov
chain parallelization strategy was chosen [4]. Like TS, Parallel
SA was also able to achieve slightly better quality solutions
than SimE, given enough time. However, for a fixed quality,
SimE was seen to be increasingly faster than SA as processors
were increased. For instance, for s1494, with 2 processors SA
took 86 seconds to achieve the desired quality, while SimE
took only 17 seconds. With 5 processors, SA required 63
seconds on average, while SimE needed only 6. Similar trends
are seen for most circuits.

For appreciable quality solutions, SimE has exhibited dra-
matic speedups with increase in number of processors, even
when compared to other, more established heuristics. The re-
sults obtained suggest that in scenarios where placement qual-
ity considerations are overridden by design time constraints,
the proposed parallel SimE algorithm should be favored.

V. FUTURE WORK, CONCLUSION & DISCUSSION

This paper presented the application of a modified Dis-
tributed SimE algorithm to a multi-objective VLSI cell place-
ment problem. The algorithm focused on distributing the work
load among processors. Random allocation of work load in
each iteration resulted in better traversal of search for our
complex multiobjective NP-hard design problem.

The results showed a significant reduction in runtime for
all circuits, although the speedup was more obvious for larger
ones. This speedup trend was compared to other established
iterative and evolutionary heuristics from literature, and was
shown to be more consistent with increasing number of
processors.

This work can be extended along several lines. One would
be to investigate suitable parameters for the SimE algorithm
that will enable better quality and run-times. At the moment,
the same parameters that have been set for serial execution are
used. Another approach is to relieve computational resources
during execution when the quality ceases to improve. This can
be achieved by modifying the stopping criteria. If the quality
does not improve for the last j iterations on k processors, then
the number of processors can be reduced to k−1, and this can
continue until all processors are relieved. The effects of this
experiment will be, that while execution continues to improve
the obtained best solution, the distribution of increased number
of rows on reduced number of processors will enable exploring
different regions of the search space in the same run, and will
hopefully result in better quality with reduced resources. Our
initial experiments on this idea have been encouraging.

ACKNOWLEDGMENT

The authors thank King Fahd University of Petroleum &
Minerals (KFUPM), Dhahran, Saudi Arabia, for support under
Project Code COE/CELLPLACE/263.

REFERENCES

[1] Sadiq M. Sait and Habib Youssef. Iterative Computer Algorithms
with Applications in Engineering: Solving Combinatorial Optimization
Problems. IEEE Computer Society Press, California, December 1999.

[2] Ralph M. Kling and Prithviraj Banerjee. ESP: A new standard cell
placement package using simulated evolution. Proceedings of 24th
Design Automation Conference, pages 60–66, 1987.

[3] Sadiq M. Sait and Habib Youssef. VLSI Physical Design Automation:
Theory and Practice. World Scientific Pubishers, 2001.

[4] John A. Chandy, Sungho Kim, Balkrishna Ramkumar, Steven Parkes,
and Prithviraj Banerjee. An evaluation of parallel simulated annealing
strategies with application to standard cell placement. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 16:398–
410, April 1997.

[5] Robert Azencott, editor. Simulated Annealing Parallelization Tech-
niques. John Wiley & Sons, 1992.

[6] Erick Cant-Paz. Designing efficient master-slave parallel genetic algo-
rithms. Genetic Programming, 1998.

[7] E. Taillard. Robust tabu search for the quadratic assignment problem.
Parallel Computing, 17:443–455, 1991.

[8] Prithviraj Banerjee. Parallel Algorithms for VLSI Computer-Aided
Design. Prentice Hall International, 1994.

[9] Sadiq M. Sait, Mahmood R. Minhas, and Junaid Asim Khan. Perfor-
mance and low-power driven VLSI standard cell placement using tabu
search. Proceedings of the 2002 Congress on Evolutionary Computation,
1:372–377, May 2002.

[10] Ronald R. Yager. On ordered weighted averaging aggregation operators
in multicriteria decision making. IEEE Transaction on Systems, MAN,
and Cybernetics, 18(1), January 1988.

6229

