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Abstract 
 
In this paper, a fast hardware architecture for elliptic curve cryptography computation in Galois Field GF(p) is 

proposed. The architecture is implemented for 160-bits, as its data size to handle. The design adopts projective coordinates 
to eliminate most of the required GF(p) inversion calculations replacing them with several multiplication operations. The 
hardware is intended to be scalable, which allows the hardware to compute long precision numbers in a repetitive way. 
The design involves four parallel scalable multipliers to gain the best speed. This scalable design was implemented in 
different versions depending on the area and speed. All scalable implementations were compared with an available FPGA 
design. The proposed scalable hardware showed interesting results in both area and speed. It also showed some area-time 
flexibility to accommodate the variation needed by different crypto applications. 
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1. INTRODUCTION 
 
Public Key Cryptography (PKC) is becoming very 

important for today’s computer applications security. 
Most of the systems that use PKC for data encryption 
and digital signature involve RSA [19]. By time, the 
number of bits (key size) used in RSA is increasing 
making the computation process very lengthy and 
unpractical which motivated for the use of Elliptic curve 
cryptography (ECC) as a promising substitute [20]. 

ECC has been proposed independently by Koblitz [7] 
and Miller [10]. ECC is based on the discrete logarithm 
problem providing equal security to RSA for a far 
shorter key size. “A typical example of the size in bits of 
the keys used in different public key systems, with a  
comparable level of security (against known attacks), is 
that a 160-bit ECC key is equivalent to RSA with a 
modulus of 1024-bits” [15]. This advantage of ECC is 
being recognized in many standards [18]. The Elliptic 
Curve Digital Signature Algorithm is now included in 
the ISO/IEC 15946 draft standards. Other standards that 
include Elliptic Curves as part of their specifications are 
the IEEE P1363 (http://grouper.ieee.org/groups/1363), 
the ATM Forum (http://www.atmforum.com/meetings/ 
rich_bios.html), and the Internet Engineering Task 
Force (http://www.ietf.cnri.reston.va.us).  

ECC systems can be implemented in software as well 
as hardware. Hardware is preferred due to its better 
speed and security [14-17]. Software on the other hand, 
provides flexibility in the choice of the key size [6], 
which will be gained by our hardware using special 
multipliers named scalable multipliers as will be 
clarified later. Hardware processes provides more 
security. For crypto applications, the security improves 
when the computations is handled in hardware instead 
of software. Software-based systems can be terminated 
and/or trespassed by intruders easier than hardware, 
which risk the entire security of the application [9]. 

ECC computations complexity depends on the 
efficiency and speed of elliptic curve scalar 
multiplications and finite field it is defined over. ECC is 
normally defined in one of Galois Fields GF(p) or 
GF(2m) [2]. The focus in this paper is on GF(p) since it  
is more complex and lengthy than GF(2m)  due to  its 
carry  propagation problem [3]. 

It is well-known that GF(p) ECC involve point adding 
operations over an elliptic curve which require a 
division (or inversion) operation. This inversion 
operation is the most expensive and complex calculation 
over GF(p) [3]. We avoid most of the inversion 
computations by a substitution of several 
multiplications, replacing the elliptic curve points as 
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projective coordinate points similar to the research work 
presented in [2,11,14,15]. There are several projective 
coordinate systems candidates. The choice thus far has 
been based on selecting the system that has the least 
number of parallel multiplication steps, since 
multiplication over GF(p) is a common operation and 
the next most time consuming process - after inversion - 
in ECC. We choose the projective coordinates system 
depending on its inherent parallelism to four parallel 
multipliers as proven in [5].  

In this paper, we use Tenca’s high-radix scalable 
GF(p) multiplier proposed in [22]. Scalable multipliers 
benefits the trade-offs between area and time, compared 
to conventional GF(p) multipliers, giving the hardware 
designer the priority option between area and time as 
required by the crypto-application. The scalable 
multiplier calculation is based on Montgomery modular 
multiplication method [12]. Normal GF(p) 
multiplication involves division by the modulus. 
Division, however, is a very expensive operation (more 
complex than inversion) [4]. Montgomery in [12] 
proposed an algorithm to perform modular 
multiplication that replaces the usual complex division 
with divisions by two, which is easily performed in the 
binary representation of numbers. The cost behind using 
Montgomery’s method is paid in some extra 
computations to represent the numbers into 
Montgomery domain and vice-versa. Once the numbers 
are transformed into Montgomery domain, all operations 
(addition, subtraction, multiplication, and inversion) are 
performed in this domain. The result is then converted 
back to the original integer values.  

The scalable ECC design, in principal, can be 
generalized to compute any number of key size bits. 
However, it is modeled in this work for 160-bits. This 
number of bits is specified to make the design 
comparable to another similar hardware implemented on 
FPGA by Ors [15], with the assumption that 160-bits 
ECC give equivalent security to 1024-bits RSA.  

In the coming section, Section 2, some elliptic curve 
background is presented followed by a simple crypto 
demonstration of encryption and decryption. Section 2 
also outlines the elliptic curve scalar multiplications 
algorithm giving some details on the elliptic curve 
operations using projective coordinates. Section 3, 
provides a description of the proposed ECC hardware 
architecture with elaboration on the scalable multiplier 
used. The section derives the formulae to estimate the 
area and computation time of the ECC architecture. 
Section 4 briefly introduces an FPGA implementation as 
another available hardware to compare with in terms of 
area and computation time (speed). Finally, the 
conclusion of the paper is presented as Section 5. 

 

2. ELLIPTIC CURVES  OVER GF(P) 
 
2.1  Elliptic Curve Theoretical Background 
 
It will be assumed that the reader is familiar with the 

arithmetic over elliptic curves. The reader is directed to 
reference [2] for more details. In brief, the GF(p) elliptic 
curve arithmetic is the usual mod p arithmetic. The 
elliptic curve equation over GF(p) is:  

y2 = x3 + ax + b 

where p > 3, 4a3 + 27b2≠ 0, and x, y, a, b∈ GF(p). 

There is also a single element named the point at infinity 
or the zero point denoted ‘ϕ’. The point at infinity is 
computed as the sum of any three points on an elliptic 
curve that lie on a straight line. If a point on the elliptic 
curve is to be added to another point on the curve or to 
itself, some special elliptic curve addition rules are 
applied as shown below: 

(x1 , y1) + (x2 , y2) = (x3 , y3) 
x3 = λ2 – x1 – x2 

y3 = λ(x1 – x3) – y1 

where λ is calculated as: 

λ = (y2 – y1)/(x2 – x1); if x1 ≠ x2 

or

λ = (3(x1)2 + a) /(2y1); if x1=x2 and x1 ≠ 0 
 
Notes that if x1=x2 then y1=y2 and the elliptic curve 
addition operation is known as point doubling [2]. 

Considering the squaring of a number as 
multiplication, to add two different elliptic points in 
GF(p) the operations required are: six additions, one 
inversion, and three multiplication computations. To 
double a point the operations needed are: four additions, 
one inversion, and four multiplication computations. 
Because the inversion operation is too lengthy, as 
introduced earlier, the normal (x,y) affine coordinate is  
converted to projection coordinates (X,Y,Z) as will be 
discussed later in Section 2.4. 

 
 
2.2 Encryption and Decryption 
 
Several ways can use elliptic curves for encryption 

and decryption [2] where one method is given here as an 
example. Users randomly chose a base point  G=(x,y), 
lying on the elliptic curve E. The plain text (the original 
message to be encrypted) is coded into an elliptic curve 
point Pm=(xm,ym). Each user selects a secret key ‘s’ and 
generates his public key P = sG. For example, user A’s 
private key is sA and his public key is PA = sAG. 
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For any one to encrypt and send the message point Pm 
to user A, the sender choose a random integer r and 
generate the ciphertext: 

Cm = {rG , Pm+ kPA }. 

The ciphertext pair of points uses A’s public key, where 
only user A can decrypt the plaintext using his private 
key. 

To decrypt the ciphertext Cm, the first point in the pair 
of Cm, rG, is multiplied by A’s private key to get the 
point: sA (rG). Then this point is subtracted from the 
second point of Cm, the result will be the plaintext point 
Pm. The complete decryption operations are:  

(Pm+rPA) - sA(rG) = Pm+r(sAG)-sA(rG) = Pm

The most time consuming operation in the ECC 
encryption and decryption procedure is finding the 
multiples of the base point, G (the elliptic curve scalar 
multiplications). The algorithm used to implement this 
is discussed in the next subsection. 
 
 

2.3 Scalar Multiplication Algorithm 
 
The ECC scalar multiplication algorithm used for 

calculating the multiples of an elliptic point, can be 
expressed by finding nP from P. This operation is based 
on a binary scalar multiplication method, known to be 
efficient and practical to implement in hardware 
[2,3,6,20,21]. This binary method algorithm is shown 
below: 

 
Binary Algorithm 
Define k : number of bits in n; and ni  : ith bit of n  
Input:  P (a point on the elliptic curve). 
Output: Q = nP (another point on the elliptic curve). 

 
1.  if nk-1 = 1, then Q:=P else Q:=0; 
2.  for i = k-2 down to 0; 
3.   { Q := Q +Q ; 
4.      if ni = 1 then Q:= Q +P ; } 
5.  return Q; 

 
Basically, the binary algorithm scans the bits of n and 

doubles the point Q k-times. Whenever, a particular bit 
of n is found to be one, an extra operation of point 
addition (Q+P) is needed. Every point addition or point 
doubling requires the three modulo operations of 
multiplication, inversion, and addition/subtraction as 
clarified earlier in Section 2.1.  

 
 

2.4 Projective Coordinates 
 
The projective coordinates are used to eliminate the 

need for performing the lengthy inversion similar to the 

crypto processor idea presented in [2,11,14,15]. For 
elliptic curve defined over GF(p), two different forms of 
formulas are found [2,11] for point addition and 
doubling. One form projects (x,y)=(X/Z2,Y/Z3) [2], while 
the second projects (x,y)=(X/Z,Y/Z) [11]. Both 
projection methods were visualized and studied in [5]. 
The dependency within all formulae showed that both 
projective coordinate forms can be parallelized to the 
maximum possibility when using four multipliers, but 
with different critical path stages (different number of 
multiplication cycles steps). The results in [5] showed 
that projective coordinate (x,y) = (X/Z,Y/Z) is faster than 
(x,y) = (X/Z2,Y/Z3) with the same hardware. The parallel 
data flow graph of the projection (x,y) = (X/Z,Y/Z) that 
is suitable for our design is shown in Figure 1 and 2, for 
elliptic curve point addition and doubling, respectively. 

 

 
 

The number of computations of point additions and 
point doubling depend on the binary value of n and its 
number of bits k (see the Binary Algorithm in section 
2.3). In fact, the number of point doubling is always 
equal to k, while the point additions depend on the 
number of bits that are one. Using the average 
assumption that half the bits of n are ones, the number 
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of point additions is half the number of bits, k/2. 
Projection (x,y) = (X/Z2,Y/Z3) has on the average 6.5k 
multiplication cycles, whereas the (x,y) = (X/Z,Y/Z) has 
on the average 5k multiplications [5]. 

Obviously, projection (x,y) = (X/Z,Y/Z)  would be the 
projection of choice for our implementation. Remark a 
further benefit to implement the projective coordinate 
(x,y) = (X/Z,Y/Z) is the 100% utilization of the four 
multipliers in all multiplication cycles, as seen in 
Figures 1 and 2, which is not the case of the projection 
(x,y) = (X/Z2,Y/Z3) [5]. 

 

 
 

3. MODELLING THE PROPOSED ARCHITECTURE 
 
Many interesting crypto architectures have been 

proposed in the literature, such as [14,15]. The usual 
method in these designs is to adopt serial computations 
at both the algorithmic level by using a single multiplier, 
as well as at the arithmetic level by using a serial 
multiplier. The reason behind serial multiplier and 
sequential operation is the thought that they provide the 
lowest area for large word lengths as needed for secure 
cryptography (i.e. 160 bits [2]). This classical approach 
show the way to the reduction of area but with very slow 
speed that is moreover fixed. The new architecture 
proposed in this paper has four parallel multipliers, an 
adder/subtractor, registers and a controller, as shown in 
Figure 3. The design is straight implementation to the 
dependency graphs shown in Figures 1 and 2. Its 

controller is constructed of a state machine to direct the 
flow of data to conduct the required projective point 
operation depending on the binary algorithm (described 
previously in Section 2.3).  

The improvement in our crypto-architecture, other 
than the multipliers architectural parallelism (seen in 
Figures 1 and 2), is in the basic GF(p) multiplier. The 
designs proposed in [14,16] use multiplier hardware that 
is limited by the number of bits they are meant to be for, 
if the number of bits are needed to be increased for any 
application reason the complete hardware is to be 
replaced. Furthermore, if the number of bits is much less 
than the intention of the VLSI design, the unneeded bits 
will be considered as zeros and they will be included in 
the computation casing the same delay exactly as if all 
bits are essential. These weaknesses made-up our choice 
of adopting special scalable multipliers instead of 
conventional ones. 

 
 
3.1 Scalable Multipliers 
 
An arithmetic unit is called scalable if it can be reused 

or replicated in order to generate long precision results 
independently of the data path precision for which the 
unit was originally designed. To speed up the 
multiplication operation, various dedicated multiplier 
modules were developed. These designs operate over 
fixed finite fields. For example, the multiplier designed 
for 155-bits [1] cannot be used for any other field of 
higher degree. When a need for multiplication of larger 
precision appears, a new multiplier must be designed.  

 

 
 

Figure 3 Proposed 160-bits scalable architecture 
 
 
Another way to avoid redesigning the module is to 

use software implementations and fixed precision 
multipliers. However, software implementations (other 
than its security problem) are inefficient in utilizing 
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inherent concurrency of the multiplication because of 
the inconvenient pipeline structure of the 
microprocessors being used. Furthermore, software 
implementations on fixed digit multipliers are more 
complex and require excessive effort in coding.  

Therefore, a scalable hardware module specifically 
tailored to take advantage of the concurrency of the 
multiplication algorithm becomes extremely attractive 
[22]. Also computation of elliptic point doubling, 
addition and the algorithm of computing multiples of the 
base point is such that the multiplication of one stage 
must be completed before starting the multiplication of 
the subsequent stage. Therefore pipelining the digits to 
further stages is not applicable, even if fast digit serial 
multipliers are used, the throughput of such multipliers 
can not be exploited since the next multiplication 
operation can not begin until the multiplication 
operations in the previous stage has fully completed. 

Another benefit of this scalable multiplier is the 
flexibility in its hardware modeling stage. It provides an 
area range that provides the capability to fit in very 
limited hardware areas such as smart cards [13], of 
course, with the price compensated from the number of 
clock cycles to complete the ECC computation. This 
trade-off between area and speed can be achieved by 
reducing the bits per word size and/or the number of 
stages that makes the scalable multipliers. The reader is 
to go through paper [22] for more information on the 
scalable multiplier used and its details. 
 
 

3.2 Proposed Hardware Area 
 

The exact area of any design depends on the 
technology and minimum feature size. For technology 
independence, we use the number of gates as an 
equivalent area measure [4].  

A modeling package from Mentor Graphic, Leonardo, 
takes the VHDL design code to generate the hardware 
gate count (area) and longest path delay (clock period) 
[22]. The target technology was set to AMI0.5 slow 
(0.5µm CMOS) provided in the ASIC Design Kit 
(ADK) from the same company [8]. Note that the ADK 
is generated for academic reasons and cannot be 
thoroughly compared to technologies developed for 
commercial ASICs. However, it provides contrast 
method to study the different hardware designs. 

The scalable multiplier is the unit to make the 
difference between our proposed design and any other. 
Thus the scalable multiplier is considered the main 
factor in calculating the speed and area. The high-radix 
scalable multiplier area depends on the number of stages 
(NS) and the bits per word size (BPW). Varying NS and 
BPW provide different scalable designs with different 
areas [22], the area of any scalable multiplier can be 
approximated as:  

AreaScalable-Multiplier ≈ 92*BPW*NS+269*NS-9.42*BPW-35.5 
 

This area of scalable multiplier is multiplied by four 
and summed to the areas of the adder/subtractor, the 
controller and the registers, to compute the total 
hardware area as shown below: 
 
Hardware Area = 

4* AreaScalable-Multiplier+ AreaAdder+ Areacontroller+ AreaRegisters

 
The areas of the adder/subtractor and registers depend 
on the design maximum number of bits used, nmax =160-
bits.  
 
 

3.3 Proposed Hardware Computation Time 
 

The total computation time is the product of three 
terms: the average number of multiplication steps, the 
number of clock cycles each multiplication takes, and 
the clock period of the VLSI hardware. The number of 
clock cycles each multiplication takes depends on the 
relation between two factors the number of words (NW) 
and the number of stages, NS. The high-radix scalable 
multiplier cycles is estimated in [22] as: 

Number-of-Clock-Cycles per Multiplication (NCC) =  

⎡ nmax/(3*NS)⎤ *(2*NS+1)+NW+1, if NW ≤ 2*NS 

or 

⎡ nmax/(3*NS)⎤ *(NW+1)+2*NS, if NW > 2*NS 

The clock period (tp) generated by the CAD tool 
(Leonardo) in [22] changes according to NS and BPW as 
listed in Table 1. Table 1 does not show tp for NS 
between 9 and 15 since they show insignificant 
difference unimportant to report. 
 

Bit Per Word (BPW)  
NS 8 16 32 64 128 
1 10.7 10.3 13.1 18.9 20.2 
2 10.8 12.1 14.4 20.5 30.4 
3 10.9 12.5 15.7 23  
4 11 12.9 17 25.4  
5 11.1 12.7 17.6   
6 11.1 13.5 18.2   
8 11.2 14.9 19.2   
9 11.2 15.1    

15 11.3 15.5    
20 11.4     
26 13     

 
Table 1 High-radix scalable multiplier clock cycle periods 

(nanoseconds) 
 
The average number of multiplication steps (MS) in 

our proposed design is estimated as: 
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MS = 5k = 5*nmaz,  

as clarified earlier in Section 2.4. This makes the total 
hardware computation time formulated as: 
 

Total Time = NCC * tp * MS 
 
 

3.4 Scalable Hardware Area-Time Tradeoff 
 

Depending on the importance of speed and area, the 
design considered necessary is chosen. In fact, as we 
pay in terms of area, we generally gain in speed. But is 
the speed gained worth the area paid. To estimate an 
evaluation standard that relates between area and time 
two figure of merit estimations are developed,  namely, 
AT (Area×Time), and AT2 (Area×Time2). The aim is to 
have the design with low AT or AT2. The value of AT 
assumes area and speed have the same priority weight, 
while AT2 gives speed the most priority. Figure 4, 
shows the AT values of several scalable hardware 
designs for 160-Bits data size. It is clear that the cost 
increase as the design NS increase, which indicates that 
choosing the smallest hardware with one stage (NS=1) 
is the best for all sizes of words. However, surprisingly 
observed, that the best design (cost-point-of-view) is 
with the word size of sixteen (BPW=16) and not 
smaller. 

 

 
 

Figure 4 AT of several versions of 160-bits scalable 
designs 

 
Figure 5 shows the AT2 values with respect to the 

number of bits per word (BPW) for all the designs built 
for nmax=160-bits. The best AT2 values changes 
extraordinarily with both BPW and NS parameters, i.e. 
not following a normal logical rule. The best AT2 
scalable designs according to BPW are listed in Table 2.  
If the designer had the scalable multiplier stage designed 
for BPW of 8 bits, the best number of stages is 9, 
assuming area is not important compared to speed as 
AT2. If the design is intended to handle 16-bits at a time 
(BPW=16) the number of stages should be 20.  

    

 

 
 

Figure 5 AT2 of versions of the 160-bits scalable designs 
 
 

BPW 8 16 32 64 128 
NS 9 20 3 3 1 

Table 2 best AT2 scalable designs according to BPW 

 
 
 
4. COMPARISON WITH AN AVAILABLE 160-BITS FPGA 

IMPLEMENTATION 
 
 The proposed scalable hardware is compared with 
another published hardware implementation presented 
by Ors in 2003 [15]. Ors designed an FPGA hardware to 
perform ECC in GF(p) for data size of 160-bits. The 
FPGA hardware consists of special operational blocks 
for memory, Montgomery multiplication, modular 
addition/subtraction, and a controller of finite state 
machines to organize the ECC flow operations. The 
FPGA design uses projective coordinate arithmetic, 
similar to our scalable hardware, to avoid inversion 
complexity. The critical path of the FPGA design is 
determined by the multiplier, which is based on a 
systolic array structure built specifically for crypto 
applications. It has been reported that the FPGA 
implementation have been built in an area equivalent to 
115,520 gates with longest path delay of 10.952 
nanoseconds. Its average computation time has been 
estimated to 14.414 milliseconds using our same 
average computation time method (number of point 
additions half the number of doubling) [15]. 
 
 

4.1 Area Comparison 
 
 The areas of different scalable designs and the FPGA 
one are compared in Figure 6. The area of the FPGA 
hardware does not relate to the BPW value, however, it 
is shown as a constant line in Figure 6 to complete the 
area comparison study. Observe that most scalable 
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hardware designs are having area smaller than the 
FPGA one. The cases of the FPGA implementation to 
have better area is when the number of stages is large, 
i.e. NS > 20, and the BPW > 8, which is unrealistic to 
implement.  
 

 
 

Figure 6 Area comparison of different 160-bits designs 
 
 

4.2 Speed Comparison 
 

The computation time of several different scalable 
designs is shown in Figure 7 compared to the ECC 
FPGA design. All the designs are assumed to operate for 
nmax=160-bits. The FPGA single multiplier design is 
very slow compared to all parallel scalable ones. For 
example, the FPGA hardware needs almost double the 
time of the parallel designs with NS=1. It needs more 
than triple the time of all other scalable designs. In fact, 
the FPGA hardware needs about ten times the time of 
the scalable hardware with the large number of stages, 
such as when NS = 20. However, this large NS may be 
impractical to implement because of its large area, as 
mentioned earlier. 

Note also the affect of increasing the BPW number 
for each NS scalable design. As BPW goes high in most 
of the designs, the total computation time start 
increasing. This indicates that it is not necessarily by 
increasing the BPW, time reduces, in fact, the time may 
increase. This extra hardware will cause extra 
computation delay. 

 

 
 

Figure 7 Total time comparison of different 160-bits 
designs 

 
 
 

5. CONCLUSION 
 
This paper presents scalable hardware models of a 

procedure used in the computation of 160-bits elliptic 
curve cryptography. The models act as if the inverse 
operation is converted into consecutive multiplication 
steps using a method known as projective coordinates, 
projecting (x,y) to (X/Z,Y/Z). The proposed hardware 
architectures implement the ECC procedures into four 
parallel multipliers that enjoy 100% utilization.  

An important comment about the implementation of 
our proposed architecture is that we propose to use 
scalable multipliers which depend on digit serial 
multiplications. Digit serial computation is more 
suitable for the elliptic curve crypto algorithm discussed 
above since the computation of elliptic point doubling, 
addition and the algorithm of computing multiples of the 
base point is such that the multiplication of one stage 
must be completed before starting the multiplication of 
the subsequent stage. Therefore even if a pipelined bit-
parallel multipliers is used, the throughput of such a 
multiplier can not be exploited since the next 
multiplication operation can not commence until the 
multiplication operations in the previous stage has 
completed. The scalable multiplier used is flexible to 
give different hardware versions of the same basic 
multiplier depending on the number of stages (NS) and 
the number of bits per word (BPW) each stage is 
handling. 
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The proposed design is compared to an available 
FPGA implementation showing interesting area and 
speed results.
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