
 1

Fast 160-Bits GF(p) Elliptic Curve Crypto

 Hardware of High-Radix Scalable Multipliers

Adnan Abdul-Aziz Gutub
Computer Engineering Department

King Fahd University of Petroleum & Minerals
Dhahran 31261, Saudi Arabia
Email: gutub@kfupm.edu.sa

Abstract

In this paper, a fast hardware architecture for elliptic curve cryptography computation in Galois Field GF(p) is

proposed. The architecture is implemented for 160-bits, as its data size to handle. The design adopts projective coordinates
to eliminate most of the required GF(p) inversion calculations replacing them with several multiplication operations. The
hardware is intended to be scalable, which allows the hardware to compute long precision numbers in a repetitive way.
The design involves four parallel scalable multipliers to gain the best speed. This scalable design was implemented in
different versions depending on the area and speed. All scalable implementations were compared with an available FPGA
design. The proposed scalable hardware showed interesting results in both area and speed. It also showed some area-time
flexibility to accommodate the variation needed by different crypto applications.

Keywords: Modulo multipliers, Elliptic curve cryptography, Scalable hardware designs

1. INTRODUCTION

Public Key Cryptography (PKC) is becoming very

important for today’s computer applications security.
Most of the systems that use PKC for data encryption
and digital signature involve RSA [19]. By time, the
number of bits (key size) used in RSA is increasing
making the computation process very lengthy and
unpractical which motivated for the use of Elliptic curve
cryptography (ECC) as a promising substitute [20].

ECC has been proposed independently by Koblitz [7]
and Miller [10]. ECC is based on the discrete logarithm
problem providing equal security to RSA for a far
shorter key size. “A typical example of the size in bits of
the keys used in different public key systems, with a
comparable level of security (against known attacks), is
that a 160-bit ECC key is equivalent to RSA with a
modulus of 1024-bits” [15]. This advantage of ECC is
being recognized in many standards [18]. The Elliptic
Curve Digital Signature Algorithm is now included in
the ISO/IEC 15946 draft standards. Other standards that
include Elliptic Curves as part of their specifications are
the IEEE P1363 (http://grouper.ieee.org/groups/1363),
the ATM Forum (http://www.atmforum.com/meetings/
rich_bios.html), and the Internet Engineering Task
Force (http://www.ietf.cnri.reston.va.us).

ECC systems can be implemented in software as well
as hardware. Hardware is preferred due to its better
speed and security [14-17]. Software on the other hand,
provides flexibility in the choice of the key size [6],
which will be gained by our hardware using special
multipliers named scalable multipliers as will be
clarified later. Hardware processes provides more
security. For crypto applications, the security improves
when the computations is handled in hardware instead
of software. Software-based systems can be terminated
and/or trespassed by intruders easier than hardware,
which risk the entire security of the application [9].

ECC computations complexity depends on the
efficiency and speed of elliptic curve scalar
multiplications and finite field it is defined over. ECC is
normally defined in one of Galois Fields GF(p) or
GF(2m) [2]. The focus in this paper is on GF(p) since it
is more complex and lengthy than GF(2m) due to its
carry propagation problem [3].

It is well-known that GF(p) ECC involve point adding
operations over an elliptic curve which require a
division (or inversion) operation. This inversion
operation is the most expensive and complex calculation
over GF(p) [3]. We avoid most of the inversion
computations by a substitution of several
multiplications, replacing the elliptic curve points as

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by King Fahd University of Petroleum and Minerals

https://core.ac.uk/display/266084767?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

projective coordinate points similar to the research work
presented in [2,11,14,15]. There are several projective
coordinate systems candidates. The choice thus far has
been based on selecting the system that has the least
number of parallel multiplication steps, since
multiplication over GF(p) is a common operation and
the next most time consuming process - after inversion -
in ECC. We choose the projective coordinates system
depending on its inherent parallelism to four parallel
multipliers as proven in [5].

In this paper, we use Tenca’s high-radix scalable
GF(p) multiplier proposed in [22]. Scalable multipliers
benefits the trade-offs between area and time, compared
to conventional GF(p) multipliers, giving the hardware
designer the priority option between area and time as
required by the crypto-application. The scalable
multiplier calculation is based on Montgomery modular
multiplication method [12]. Normal GF(p)
multiplication involves division by the modulus.
Division, however, is a very expensive operation (more
complex than inversion) [4]. Montgomery in [12]
proposed an algorithm to perform modular
multiplication that replaces the usual complex division
with divisions by two, which is easily performed in the
binary representation of numbers. The cost behind using
Montgomery’s method is paid in some extra
computations to represent the numbers into
Montgomery domain and vice-versa. Once the numbers
are transformed into Montgomery domain, all operations
(addition, subtraction, multiplication, and inversion) are
performed in this domain. The result is then converted
back to the original integer values.

The scalable ECC design, in principal, can be
generalized to compute any number of key size bits.
However, it is modeled in this work for 160-bits. This
number of bits is specified to make the design
comparable to another similar hardware implemented on
FPGA by Ors [15], with the assumption that 160-bits
ECC give equivalent security to 1024-bits RSA.

In the coming section, Section 2, some elliptic curve
background is presented followed by a simple crypto
demonstration of encryption and decryption. Section 2
also outlines the elliptic curve scalar multiplications
algorithm giving some details on the elliptic curve
operations using projective coordinates. Section 3,
provides a description of the proposed ECC hardware
architecture with elaboration on the scalable multiplier
used. The section derives the formulae to estimate the
area and computation time of the ECC architecture.
Section 4 briefly introduces an FPGA implementation as
another available hardware to compare with in terms of
area and computation time (speed). Finally, the
conclusion of the paper is presented as Section 5.

2. ELLIPTIC CURVES OVER GF(P)

2.1 Elliptic Curve Theoretical Background

It will be assumed that the reader is familiar with the

arithmetic over elliptic curves. The reader is directed to
reference [2] for more details. In brief, the GF(p) elliptic
curve arithmetic is the usual mod p arithmetic. The
elliptic curve equation over GF(p) is:

y2 = x3 + ax + b

where p > 3, 4a3 + 27b2≠ 0, and x, y, a, b∈ GF(p).

There is also a single element named the point at infinity
or the zero point denoted ‘ϕ’. The point at infinity is
computed as the sum of any three points on an elliptic
curve that lie on a straight line. If a point on the elliptic
curve is to be added to another point on the curve or to
itself, some special elliptic curve addition rules are
applied as shown below:

(x1 , y1) + (x2 , y2) = (x3 , y3)
x3 = λ2 – x1 – x2

y3 = λ(x1 – x3) – y1

where λ is calculated as:

λ = (y2 – y1)/(x2 – x1); if x1 ≠ x2

or

λ = (3(x1)2 + a) /(2y1); if x1=x2 and x1 ≠ 0

Notes that if x1=x2 then y1=y2 and the elliptic curve
addition operation is known as point doubling [2].

Considering the squaring of a number as
multiplication, to add two different elliptic points in
GF(p) the operations required are: six additions, one
inversion, and three multiplication computations. To
double a point the operations needed are: four additions,
one inversion, and four multiplication computations.
Because the inversion operation is too lengthy, as
introduced earlier, the normal (x,y) affine coordinate is
converted to projection coordinates (X,Y,Z) as will be
discussed later in Section 2.4.

2.2 Encryption and Decryption

Several ways can use elliptic curves for encryption

and decryption [2] where one method is given here as an
example. Users randomly chose a base point G=(x,y),
lying on the elliptic curve E. The plain text (the original
message to be encrypted) is coded into an elliptic curve
point Pm=(xm,ym). Each user selects a secret key ‘s’ and
generates his public key P = sG. For example, user A’s
private key is sA and his public key is PA = sAG.

 3

For any one to encrypt and send the message point Pm
to user A, the sender choose a random integer r and
generate the ciphertext:

Cm = {rG , Pm+ kPA }.

The ciphertext pair of points uses A’s public key, where
only user A can decrypt the plaintext using his private
key.

To decrypt the ciphertext Cm, the first point in the pair
of Cm, rG, is multiplied by A’s private key to get the
point: sA (rG). Then this point is subtracted from the
second point of Cm, the result will be the plaintext point
Pm. The complete decryption operations are:

(Pm+rPA) - sA(rG) = Pm+r(sAG)-sA(rG) = Pm

The most time consuming operation in the ECC
encryption and decryption procedure is finding the
multiples of the base point, G (the elliptic curve scalar
multiplications). The algorithm used to implement this
is discussed in the next subsection.

2.3 Scalar Multiplication Algorithm

The ECC scalar multiplication algorithm used for

calculating the multiples of an elliptic point, can be
expressed by finding nP from P. This operation is based
on a binary scalar multiplication method, known to be
efficient and practical to implement in hardware
[2,3,6,20,21]. This binary method algorithm is shown
below:

Binary Algorithm
Define k : number of bits in n; and ni : ith bit of n
Input: P (a point on the elliptic curve).
Output: Q = nP (another point on the elliptic curve).

1. if nk-1 = 1, then Q:=P else Q:=0;
2. for i = k-2 down to 0;
3. { Q := Q +Q ;
4. if ni = 1 then Q:= Q +P ; }
5. return Q;

Basically, the binary algorithm scans the bits of n and

doubles the point Q k-times. Whenever, a particular bit
of n is found to be one, an extra operation of point
addition (Q+P) is needed. Every point addition or point
doubling requires the three modulo operations of
multiplication, inversion, and addition/subtraction as
clarified earlier in Section 2.1.

2.4 Projective Coordinates

The projective coordinates are used to eliminate the

need for performing the lengthy inversion similar to the

crypto processor idea presented in [2,11,14,15]. For
elliptic curve defined over GF(p), two different forms of
formulas are found [2,11] for point addition and
doubling. One form projects (x,y)=(X/Z2,Y/Z3) [2], while
the second projects (x,y)=(X/Z,Y/Z) [11]. Both
projection methods were visualized and studied in [5].
The dependency within all formulae showed that both
projective coordinate forms can be parallelized to the
maximum possibility when using four multipliers, but
with different critical path stages (different number of
multiplication cycles steps). The results in [5] showed
that projective coordinate (x,y) = (X/Z,Y/Z) is faster than
(x,y) = (X/Z2,Y/Z3) with the same hardware. The parallel
data flow graph of the projection (x,y) = (X/Z,Y/Z) that
is suitable for our design is shown in Figure 1 and 2, for
elliptic curve point addition and doubling, respectively.

The number of computations of point additions and
point doubling depend on the binary value of n and its
number of bits k (see the Binary Algorithm in section
2.3). In fact, the number of point doubling is always
equal to k, while the point additions depend on the
number of bits that are one. Using the average
assumption that half the bits of n are ones, the number

Y1Z2 Y2Z1 X2Z1 X1Z2

λ2 λ1

Z2

Y1 Z2 Y2 Z1 X2 Z1 X1 Z2

λ5-λ4 λ1+λ2 λ1-λ2

λ4 λ5

λ6 λ3

Z2λ3 λ6
2

 Z1Z2 λ3
2

Z1
Z2

λ3

λ7

λ1λ3
2
 Z2λ3

3
 Z1Z2λ6

2 λ7λ3
2

λ1 λ7

λ6
2Z1Z2-λ7λ3

2

λ3
2X1Z2 -λ8

λ8

Y1Z2λ3
3

 Z1Z2λ3
3
 λ9λ6 λ3λ8

Y1 Z1 λ6 λ9 λ8

λ3

λ6λ9-λ3
3λ1Z2

Z3 Y3 X3

Figure 1 Projecting (x,y) to (X/Z,Y/Z)
adding two points dataflow

 4

of point additions is half the number of bits, k/2.
Projection (x,y) = (X/Z2,Y/Z3) has on the average 6.5k
multiplication cycles, whereas the (x,y) = (X/Z,Y/Z) has
on the average 5k multiplications [5].

Obviously, projection (x,y) = (X/Z,Y/Z) would be the
projection of choice for our implementation. Remark a
further benefit to implement the projective coordinate
(x,y) = (X/Z,Y/Z) is the 100% utilization of the four
multipliers in all multiplication cycles, as seen in
Figures 1 and 2, which is not the case of the projection
(x,y) = (X/Z2,Y/Z3) [5].

3. MODELLING THE PROPOSED ARCHITECTURE

Many interesting crypto architectures have been

proposed in the literature, such as [14,15]. The usual
method in these designs is to adopt serial computations
at both the algorithmic level by using a single multiplier,
as well as at the arithmetic level by using a serial
multiplier. The reason behind serial multiplier and
sequential operation is the thought that they provide the
lowest area for large word lengths as needed for secure
cryptography (i.e. 160 bits [2]). This classical approach
show the way to the reduction of area but with very slow
speed that is moreover fixed. The new architecture
proposed in this paper has four parallel multipliers, an
adder/subtractor, registers and a controller, as shown in
Figure 3. The design is straight implementation to the
dependency graphs shown in Figures 1 and 2. Its

controller is constructed of a state machine to direct the
flow of data to conduct the required projective point
operation depending on the binary algorithm (described
previously in Section 2.3).

The improvement in our crypto-architecture, other
than the multipliers architectural parallelism (seen in
Figures 1 and 2), is in the basic GF(p) multiplier. The
designs proposed in [14,16] use multiplier hardware that
is limited by the number of bits they are meant to be for,
if the number of bits are needed to be increased for any
application reason the complete hardware is to be
replaced. Furthermore, if the number of bits is much less
than the intention of the VLSI design, the unneeded bits
will be considered as zeros and they will be included in
the computation casing the same delay exactly as if all
bits are essential. These weaknesses made-up our choice
of adopting special scalable multipliers instead of
conventional ones.

3.1 Scalable Multipliers

An arithmetic unit is called scalable if it can be reused

or replicated in order to generate long precision results
independently of the data path precision for which the
unit was originally designed. To speed up the
multiplication operation, various dedicated multiplier
modules were developed. These designs operate over
fixed finite fields. For example, the multiplier designed
for 155-bits [1] cannot be used for any other field of
higher degree. When a need for multiplication of larger
precision appears, a new multiplier must be designed.

Figure 3 Proposed 160-bits scalable architecture

Another way to avoid redesigning the module is to

use software implementations and fixed precision
multipliers. However, software implementations (other
than its security problem) are inefficient in utilizing

Y1 X1 Y1 Z1 X1 3X1 Z1 aZ1

Y1X1 Y1Z1 3X1
2 aZ1

2

3X1
2 + aZ1

2

λ2

λ1 Y1

Y1X1λ2 Y1λ2 λ2
2 λ1

2

λ1
2-8λ3

λ4

λ3

4λ3-λ4

λ4

λ5λ1 (Y1λ2)2 8λ2
3 2λ4λ2

8λ3

λ1 8λ2

λ5

2λ2

λ5λ1-8(Y1λ2)2

Y3 Z3 X3

Figure 2 Projecting (x,y) to (X/Z,Y/Z)
doubling a point dataflow

 5

inherent concurrency of the multiplication because of
the inconvenient pipeline structure of the
microprocessors being used. Furthermore, software
implementations on fixed digit multipliers are more
complex and require excessive effort in coding.

Therefore, a scalable hardware module specifically
tailored to take advantage of the concurrency of the
multiplication algorithm becomes extremely attractive
[22]. Also computation of elliptic point doubling,
addition and the algorithm of computing multiples of the
base point is such that the multiplication of one stage
must be completed before starting the multiplication of
the subsequent stage. Therefore pipelining the digits to
further stages is not applicable, even if fast digit serial
multipliers are used, the throughput of such multipliers
can not be exploited since the next multiplication
operation can not begin until the multiplication
operations in the previous stage has fully completed.

Another benefit of this scalable multiplier is the
flexibility in its hardware modeling stage. It provides an
area range that provides the capability to fit in very
limited hardware areas such as smart cards [13], of
course, with the price compensated from the number of
clock cycles to complete the ECC computation. This
trade-off between area and speed can be achieved by
reducing the bits per word size and/or the number of
stages that makes the scalable multipliers. The reader is
to go through paper [22] for more information on the
scalable multiplier used and its details.

3.2 Proposed Hardware Area

The exact area of any design depends on the
technology and minimum feature size. For technology
independence, we use the number of gates as an
equivalent area measure [4].

A modeling package from Mentor Graphic, Leonardo,
takes the VHDL design code to generate the hardware
gate count (area) and longest path delay (clock period)
[22]. The target technology was set to AMI0.5 slow
(0.5µm CMOS) provided in the ASIC Design Kit
(ADK) from the same company [8]. Note that the ADK
is generated for academic reasons and cannot be
thoroughly compared to technologies developed for
commercial ASICs. However, it provides contrast
method to study the different hardware designs.

The scalable multiplier is the unit to make the
difference between our proposed design and any other.
Thus the scalable multiplier is considered the main
factor in calculating the speed and area. The high-radix
scalable multiplier area depends on the number of stages
(NS) and the bits per word size (BPW). Varying NS and
BPW provide different scalable designs with different
areas [22], the area of any scalable multiplier can be
approximated as:

AreaScalable-Multiplier ≈ 92*BPW*NS+269*NS-9.42*BPW-35.5

This area of scalable multiplier is multiplied by four
and summed to the areas of the adder/subtractor, the
controller and the registers, to compute the total
hardware area as shown below:

Hardware Area =

4* AreaScalable-Multiplier+ AreaAdder+ Areacontroller+ AreaRegisters

The areas of the adder/subtractor and registers depend
on the design maximum number of bits used, nmax =160-
bits.

3.3 Proposed Hardware Computation Time

The total computation time is the product of three
terms: the average number of multiplication steps, the
number of clock cycles each multiplication takes, and
the clock period of the VLSI hardware. The number of
clock cycles each multiplication takes depends on the
relation between two factors the number of words (NW)
and the number of stages, NS. The high-radix scalable
multiplier cycles is estimated in [22] as:

Number-of-Clock-Cycles per Multiplication (NCC) =

⎡ nmax/(3*NS)⎤ *(2*NS+1)+NW+1, if NW ≤ 2*NS

or

⎡ nmax/(3*NS)⎤ *(NW+1)+2*NS, if NW > 2*NS

The clock period (tp) generated by the CAD tool
(Leonardo) in [22] changes according to NS and BPW as
listed in Table 1. Table 1 does not show tp for NS
between 9 and 15 since they show insignificant
difference unimportant to report.

Bit Per Word (BPW)
NS 8 16 32 64 128
1 10.7 10.3 13.1 18.9 20.2
2 10.8 12.1 14.4 20.5 30.4
3 10.9 12.5 15.7 23
4 11 12.9 17 25.4
5 11.1 12.7 17.6
6 11.1 13.5 18.2
8 11.2 14.9 19.2
9 11.2 15.1

15 11.3 15.5
20 11.4
26 13

Table 1 High-radix scalable multiplier clock cycle periods

(nanoseconds)

The average number of multiplication steps (MS) in

our proposed design is estimated as:

 6

MS = 5k = 5*nmaz,

as clarified earlier in Section 2.4. This makes the total
hardware computation time formulated as:

Total Time = NCC * tp * MS

3.4 Scalable Hardware Area-Time Tradeoff

Depending on the importance of speed and area, the
design considered necessary is chosen. In fact, as we
pay in terms of area, we generally gain in speed. But is
the speed gained worth the area paid. To estimate an
evaluation standard that relates between area and time
two figure of merit estimations are developed, namely,
AT (Area×Time), and AT2 (Area×Time2). The aim is to
have the design with low AT or AT2. The value of AT
assumes area and speed have the same priority weight,
while AT2 gives speed the most priority. Figure 4,
shows the AT values of several scalable hardware
designs for 160-Bits data size. It is clear that the cost
increase as the design NS increase, which indicates that
choosing the smallest hardware with one stage (NS=1)
is the best for all sizes of words. However, surprisingly
observed, that the best design (cost-point-of-view) is
with the word size of sixteen (BPW=16) and not
smaller.

Figure 4 AT of several versions of 160-bits scalable
designs

Figure 5 shows the AT2 values with respect to the

number of bits per word (BPW) for all the designs built
for nmax=160-bits. The best AT2 values changes
extraordinarily with both BPW and NS parameters, i.e.
not following a normal logical rule. The best AT2
scalable designs according to BPW are listed in Table 2.
If the designer had the scalable multiplier stage designed
for BPW of 8 bits, the best number of stages is 9,
assuming area is not important compared to speed as
AT2. If the design is intended to handle 16-bits at a time
(BPW=16) the number of stages should be 20.

Figure 5 AT2 of versions of the 160-bits scalable designs

BPW 8 16 32 64 128
NS 9 20 3 3 1

Table 2 best AT2 scalable designs according to BPW

4. COMPARISON WITH AN AVAILABLE 160-BITS FPGA

IMPLEMENTATION

 The proposed scalable hardware is compared with
another published hardware implementation presented
by Ors in 2003 [15]. Ors designed an FPGA hardware to
perform ECC in GF(p) for data size of 160-bits. The
FPGA hardware consists of special operational blocks
for memory, Montgomery multiplication, modular
addition/subtraction, and a controller of finite state
machines to organize the ECC flow operations. The
FPGA design uses projective coordinate arithmetic,
similar to our scalable hardware, to avoid inversion
complexity. The critical path of the FPGA design is
determined by the multiplier, which is based on a
systolic array structure built specifically for crypto
applications. It has been reported that the FPGA
implementation have been built in an area equivalent to
115,520 gates with longest path delay of 10.952
nanoseconds. Its average computation time has been
estimated to 14.414 milliseconds using our same
average computation time method (number of point
additions half the number of doubling) [15].

4.1 Area Comparison

 The areas of different scalable designs and the FPGA
one are compared in Figure 6. The area of the FPGA
hardware does not relate to the BPW value, however, it
is shown as a constant line in Figure 6 to complete the
area comparison study. Observe that most scalable

 7

hardware designs are having area smaller than the
FPGA one. The cases of the FPGA implementation to
have better area is when the number of stages is large,
i.e. NS > 20, and the BPW > 8, which is unrealistic to
implement.

Figure 6 Area comparison of different 160-bits designs

4.2 Speed Comparison

The computation time of several different scalable
designs is shown in Figure 7 compared to the ECC
FPGA design. All the designs are assumed to operate for
nmax=160-bits. The FPGA single multiplier design is
very slow compared to all parallel scalable ones. For
example, the FPGA hardware needs almost double the
time of the parallel designs with NS=1. It needs more
than triple the time of all other scalable designs. In fact,
the FPGA hardware needs about ten times the time of
the scalable hardware with the large number of stages,
such as when NS = 20. However, this large NS may be
impractical to implement because of its large area, as
mentioned earlier.

Note also the affect of increasing the BPW number
for each NS scalable design. As BPW goes high in most
of the designs, the total computation time start
increasing. This indicates that it is not necessarily by
increasing the BPW, time reduces, in fact, the time may
increase. This extra hardware will cause extra
computation delay.

Figure 7 Total time comparison of different 160-bits
designs

5. CONCLUSION

This paper presents scalable hardware models of a

procedure used in the computation of 160-bits elliptic
curve cryptography. The models act as if the inverse
operation is converted into consecutive multiplication
steps using a method known as projective coordinates,
projecting (x,y) to (X/Z,Y/Z). The proposed hardware
architectures implement the ECC procedures into four
parallel multipliers that enjoy 100% utilization.

An important comment about the implementation of
our proposed architecture is that we propose to use
scalable multipliers which depend on digit serial
multiplications. Digit serial computation is more
suitable for the elliptic curve crypto algorithm discussed
above since the computation of elliptic point doubling,
addition and the algorithm of computing multiples of the
base point is such that the multiplication of one stage
must be completed before starting the multiplication of
the subsequent stage. Therefore even if a pipelined bit-
parallel multipliers is used, the throughput of such a
multiplier can not be exploited since the next
multiplication operation can not commence until the
multiplication operations in the previous stage has
completed. The scalable multiplier used is flexible to
give different hardware versions of the same basic
multiplier depending on the number of stages (NS) and
the number of bits per word (BPW) each stage is
handling.

 8

The proposed design is compared to an available
FPGA implementation showing interesting area and
speed results.

ACKNOWLEDGMENTS

Thanks to Professor M.K. Ibrahim for his valuable

suggestions. Thanks to King Fahd University of
Petroleum and Minerals, KFUPM-Dhahran, for its
support.

REFERENCES

[1] Agnew, Mullin, and Vanstone, “An
Implementation of Elliptic Curve Cryptosystems
Over F2155”, IEEE Journal on Selected Areas in
Communications, vol. 11, no.5, pp. 804–813,
June 1993.

[2] Blake, Seroussi, and Smart, Elliptic Curves in
Cryptography, Cambridge University Press: New
York, 1999.

[3] Crutchley, D. A., Cryptography and Elliptic
Curves, Master Thesis under Supervision of Prof.
Gareth Jones, submitted to the Faculty of
Mathematics at University of Southampton,
England, May 1999.

[4] Ercegovac, M. D., Lang, T., and Moreno, J. H.,
Introduction to Digital System, John Wiley &
Sons, Inc., New York, 1999.

[5] Gutub, Adnan Abdul-Aziz, and Ibrahim,
Mohammad K., “High Radix Parallel
Architecture For GF(p) Elliptic Curve
Processor”, IEEE Conference on Acoustics,
Speech, and Signal Processing, ICASSP 2003,
pp. 625- 628, Hong Kong, April 2003.

[6] Hankerson, Hernandez, and Menezes, “Software
Implementation of Elliptic Curve Cryptography
Over Binary Fields”, Workshop on
Cryptographic Hardware and Embedded
Systems, CHES 2000, Massachusetts, August
2000.

[7] Koblitz, N., “Elliptic Curve Cryptosystems”,
Math. Computing, vol. 48, pp. 203–209, 1987.

[8] Mentor Graphics Co., ASIC Design Kit,
http://www.mentor.com/partners/hep/AsicDesign
Kit/dsheet/ami05databook.html

[9] Michener, J.R., and Mohan, S.D., “Internet
Watch: Clothing the E-Emperor”, Computer –
Innovative Technology for Computer
Professionals, IEEE Computer Society, vol. 34,
no. 9, pp. 116-118, September 2001.

[10] Miller, V., “Use of Elliptic Curves in
Cryptography”, Proceedings of Advances in
Cryptology (Crypto), pp. 417-426, 1986.

[11] Miyaji, A., “Elliptic Curves over FP Suitable for
Cryptosystems”, Advances in cryptology-
AUSCRUPT’92, Australia, December 1992.

[12] Montgomery, P.L., “Modular Multiplication
Without Trail Division”, Mathematics of
Computation, vol. 44, no. 170, pp. 519-521,
April 1985.

[13] Naccache, and MRaihi, “Cryptographic smart
cards”, IEEE Micro, vol. 16, no. 3, pp. 14-24,
June 1996.

[14] Orlando, and Paar, “A scalable GF(p) elliptic
curve processor architecture for programmable
hardware”, Cryptographic Hardware and
Embedded Systems, CHES 2001, Paris, France,
May 2001.

[15] Ors, S. B., Batina, L., Preneel, B., and
Vandewalle, J., “Hardware Implementation of an
Elliptic Curve Processor over GF(p)”,
Proceedings of the IEEE International
Conference on Application-Specific Systems,
Architectures, and Processors (ASAP’03), pp.
433 – 443, June 2003.

[16] Orton, Roy, Scott, Peppard, and Tavares, “VLSI
implementation of public-key encryption
algorithms”, Advances in Cryptology - CRYPTO
'86, vol. 263 of Lecture Notes in Computer
Science, pp. 277-301, August 1986.

[17] Paar, Fleischmann, and Soria-Rodriguez, “Fast
Arithmetic for Public-Key Algorithms in Galois
Fields with Composite Exponents”, IEEE
Transactions on Computers, vol. 48, no. 10,
October 1999.

[18] Raju, G.V.S., and Akbani, R., “Elliptic curve
cryptosystem and its applications”, IEEE
International Conference on Systems, Man and
Cybernetics, vol. 2, pp. 1540 - 1543, October
2003.

[19] Rivest, R.L., Shamir, A., and Adleman, L., “A
Method for Obtaining Digital Signatures and
Public-key Cryptosystems”, Communications of
the ACM, vol. 21, no. 2, pp. 120–126, 1978.

[20] Stallings, W., Cryptography and Network
Security: Principles and Practice, 2nd Ed.,
Prentice Hall, NJ, 1999.

[21] Stinson, D. R., Cryptography: Theory and
Practice, CRC Press, Boca Raton, Florida, 1995.

[22] Tenca, A.F., Todorov, G., and Koc, C.K.,
“High-radix design of a scalable modular
multiplier”, Cryptographic Hardware and
Embedded Systems - CHES 2001, Paris, France,
pp. 185-201, May 2001.

	Fast 160-Bits GF(p) Elliptic Curve Crypto
	Hardware of High-Radix Scalable Multipliers
	Adnan Abdul-Aziz Gutub

