

New Hardware Algorithms and Designs
for

Montgomery Modular Inverse Computation
in

Galois Fields GF(p) and GF(2n)

by

Adnan Abdul-Aziz Gutub

PhD Thesis

Electrical and Computer Engineering
Oregon State University
Corvallis, Oregon, USA

June 11, 2002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by King Fahd University of Petroleum and Minerals

https://core.ac.uk/display/266084766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Adnan Abdul-Aziz Gutub

Computer Engineering prese

Title: New Hardware Al

Computation in Galois Field

Abstract approved:

The computation of th

GF(p) or GF(2n), is one o

applications. In this work, w

the design of efficient hard

inverse. We suggest a new c

inverse algorithm to calcula

a fast hardware algorithm

proposed designs have the h

on constrained areas and sti

calculations, the module w

module operates, can be se

upper limit on the operand

operands and internal resul

infinite-precision Montgome

We also propose a s

hardware that operates in b

Montgomery inverse algorit

it very similar to the propose

We compare all scalab

inversion algorithm. All sca

performance than the fully

solution for computing the l

AN ABSTRACT OF THE THESIS OF
for the degree of Doctor of Philosophy in Electrical and

nted on June 11, 2002.

gorithms and Designs for Montgomery Modular Inverse

s GF(p) and GF(2n).

 Alexandre Ferreira Tenca

e inverse of a number in finite fields, namely Galois Fields

f the most complex arithmetic operations in cryptographic

e investigate the GF(p) inversion and present several phases in

ware implementations to compute the Montgomery modular

orrection phase for a previously proposed almost Montgomery

te the inversion in hardware. It is also presented how to obtain

to compute the inverse by multi-bit shifting method. The

ardware scalability feature, which means that the design can fit

ll handle operands of any size. In order to have long-precision

orks on small precision words. The word-size, on which the

lected based on the area and performance requirements. The

precision is dictated only by the available memory to store the

ts. The scalable module is in principle capable of performing

ry inverse computation of an integer, modulo a prime number.

calable and unified architecture for a Montgomery inverse

oth GF(p) and GF(2n) fields. We adjust and modify a GF(2n)

hm to benefit from multi-bit shifting hardware features making

d best design of GF(p) inversion hardware.

le designs with fully parallel ones based on the same basic

lable designs consumed less area and in general showed better

parallel ones, which makes the scalable design a very efficient

ong precision Montgomery inverse.

©Copyright by Adnan Abdul-Aziz Gutub

June 11, 2002

All Rights Reserved

New Hardware Algorithms and Designs for Montgomery Modular Inverse Computation in
Galois Fields GF(p) and GF(2n)

by

Adnan Abdul-Aziz Gutub

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Presented June 11, 2002

Commencement June 2003

Doctor of Philosophy thesis of Adnan Abdul-Aziz Gutub presented on June 11, 2002

APPROVED:

Major Professor, representing Electrical and Computer Engineering

Chair of the Department of Electrical and Computer Engineering

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon State

University libraries. My signature below authorizes release of my thesis to any reader upon

request.

Adnan Abdul-Aziz Gutub, Author

i

ACKNOWLEDGMENTS

I am grateful to my advisor Alexandre Ferreira Tenca for his reviews, help, guidance

and encouragement in conducting this research and producing the papers that formed a

basis for this thesis. I also thank Çetin Kaya Koç for his assistance in proposing my

research topic, and his valuable directions toward this accomplishment. I also thank the

other members of my graduate committee for their valuable input.

A number of people have given me invaluable technical help, recommendations and

comments at various stages in the writing of these papers. In this regard I am thankful to

the Information Security Laboratory researchers of Oregon State University. In particular, I

acknowledge Roger Traylor, Erkay Savas, Tugrul Yanik, Budiyoso Kurniawan, Serdar

Erdem, Don Heer, and Colin Van Dyke, for providing valuable support and feedback

during different research phases.

I acknowledge financial support for my PhD education from KFUPM-Saudi Arabia

and NSF under the CAREER grant CCR-0093434-�Computer Arithmetic Algorithms and

Scalable Hardware Designs for Cryptographic Applications�.

Finally, I owe a debt of gratitude to the rosy part in my life my great parents

(Amnah Sait and Abdul-Aziz Kutub), my wonderful wife (Manal Fattani), and my lovely

children (Muna, Alaa, and Omar), without them being patient, this achievement could not

have been achieved.

Adnan Abdul-Aziz Gutub

Corvallis, Oregon, USA

June 11, 2002

ii

TABLE OF CONTENTS

Page
1 INTRODUCTION.. 1

1.1 Motivation.. 5

1.2 Previous Work ... 6

1.3 Thesis Outline .. 7

2 ELLIPTIC CURVE CRYPTOGRAPHY... 9

2.1 Introduction.. 9

2.2 Elliptic Curve Theory... 9

2.3 Elliptic Curve Cryptography Applications... 17

3 SCALABLE HARDWARE ARCHITECTURE FOR GF(p) ALMOST
MONTGOMERY MODULAR INVERSE COMPUTATION... 20

3.1 Introduction.. 20

3.2 Montgomery Inverse Algorithms... 21

3.3 The Fixed Precision Design ... 24

3.4 The Scalable Design .. 27

3.5 Modeling and Analysis .. 32

3.6 Summary .. 40

4 REDUCING THE CLOCK PERIOD OF THE ALMOST MONTGOMERY
INVERSE HARDWARE DESIGNS.. 41

4.1 Introduction.. 41

4.2 Shortening the Critical Path ... 41

4.3 Area & Delay Comparison... 42

iii

TABLE OF CONTENTS (Continued)

Page
5 A SCALABLE HARDWARE ARCHITECTURE FOR MONTGOMERY
INVERSION IN GF(p) ... 45

5.1 Introduction.. 45

5.2 Montgomery Inverse Algorithm and Proposed Modifications 45

5.3 Multi-Bit Shifting... 48

5.4 The Scalable Design .. 54

5.5 Modeling and Analysis .. 58

6 SCALABLE AND UNIFIED HARDWARE TO COMPUTE MONTGOMERY
INVERSE IN GF(p) AND GF(2n) .. 65

6.1 Introduction.. 65

6.2 Montgomery Inverse Hardware Procedures For GF(p) and GF(2n) 66

6.3 Unified and Scalable Inverter Architecture.. 71

6.4 Modeling and Analysis .. 75

6.5 Summary .. 79

7 CONCLUSIONS AND FUTURE WORK... 81

7.1 Conclusions.. 81

7.2 Future Work... 82

BIBLIOGRAPHY... 84

APPENDICES .. 84

A THE EXTENDED EUCLIDEAN ALGORITHM ... 89

B GF(2n) NUMERICAL EXAMPLE VERIFICATION ... 93

iv

LIST OF FIGURES

 Figure Page

 1.1 Secret key cryptosystem.. 2

 1.2 Public key cryptosystem ... 3

 3.1 Types of input/output numbers for Kaliski algorithm... 21

 3.2 The complete Montgomery modular inverse hardware .. 23

 3.3 The block diagram of implementing the FHW-Alg.. 26

 3.4 The fixed precision hardware data path .. 26

 3.5 The scalable hardware overall block diagram... 29

 3.6 The scalable add/subtract unit... 30

 3.7 The scalable hardware shifter.. 31

 3.8 The data router configurations .. 31

 3.9 The area comparison ... 34

 3.10 Delay comparison of designs with nmax = 256 bits.. 37

 3.11 Delay comparison of designs with nmax = 512 bits.. 38

 3.12 Technology independent speed comparison for designs with nmax=512 bits........... 39

 4.1 The carry-ripple adder... 42

 4.2 A four bit carry-look-ahead adder... 42

 5.1 Different ways to compute the Montgomery inversion .. 48

 5.2 Description of i for the case of x = 3 .. 51

 5.3 Montgomery inverse scalable hardware block diagram.. 55

 5.4 Add/subtract unit... 57

 5.5 Multi-bit shifter (max distance = 3) .. 57

 5.6 Data router configurations... 58

v

LIST OF FIGURES (Continued)

 Figure Page

 5.7 Area comparison ... 60

 5.8 Delay comparison of designs with nmax = 512 bits.. 63

 5.9 Technology independent speed comparison for all designs with nmax=512 bits...... 64

 6.1 Montgomery inverse hardware algorithm for GF(p)... 67

 6.2 GF(2n) Montgomery inverse algorithm in its binary representation 69

 6.3 GF(2n) MonInv computation numerical example ... 70

 6.4 Montgomery inverse hardware algorithm for GF(2n) ... 71

 6.5 Scalable and unified inverter hardware... 73

 6.6 Add/Subtract unit of the scalable and unified hardware ... 74

 6.7 Data router configurations... 75

 6.8 Area comparison ... 76

 6.9 Delay comparison of designs with nmax = 512 bits.. 78

vi

LIST OF TABLES

 Table Page

 1.1 Area and time complexity of different inversion hardware designs 6

 2.1 Comparing GF(p) and GF(2n) number of lengthy point operations in
 affine coordinates.. 14

 2.2 Comparing GF(p) and GF(2n) number of lengthy point operations in
 projective coordinates ... 15

 2.3 Comparing the affine and projective coordinates ... 17

 3.1 Area of the standard logic gates .. 33

 3.2 Area of the modules building the memory unit of the scalable design 33

 3.3 Clock cycle period for all designs (nsec) .. 36

 3.4 Adders δ delay estimation depending on the number of bits 38

 4.1 Area and delay optimizations of the AlmMonInv scalable design 43

 4.2 Area and delay optimizations of the AlmMonInv fixed precision design 44

 5.1 Delay of different ways to compute the Montgomery inverse................................ 48

 5.2 Average number of iterations (i) ... 50

 5.3 Speed and hardware changes due to multi-bit shifting the CorPh algorithm.......... 53

 5.4 Clock cycle period for scalable designs (nsec) ... 60

 5.5 Clock cycle period for fixed designs (nsec) .. 60

NEW HARDWARE ALGORITHMS AND DESIGNS
FOR MONTGOMERY MODULAR INVERSE COMPUTATION

IN GALOIS FIELDS GF(p) AND GF(2n)

1 INTRODUCTION

Information security nowadays is a very important subject [32,40,41]. Governments,

commercial businesses, and individuals are all demanding secure information in electronic

documents, which is becoming preferred over traditional documents (paper and microfilm,

for example). Documents in electronic form require less storage space, its transfer is almost

instantaneous, and it is accessible via simplified databases. The ability to make use of

information more efficiently has resulted in a rapid increase in the value of information.

Businesses in a number of commercial arenas recognize information as their most valuable

asset [34].

However, information in electronic form faces potentially more damaging security

threats. Unlike information printed on paper, information in electronic form can virtually

be stolen from a remote location. It is much easier to alter and intercept electronic

communication than its paper-based predecessors.

Information security is described as the set of measures taken to prevent unauthorized

use of electronic data, whether this unauthorized use takes the form of disclosure,

alteration, substitution, or destruction of the data. The requirements to securely maintain

electronic information are classified as the following three services:

• Confidentiality - hiding data from unauthorized parties.
• Integrity - assurance that data is genuine.
• Availability - the system still functions efficiently after security provisions are in place.

Several measures have been considered to provide these services but no single measure

can ensure complete security [32]. Of the various proposed measures, the use of

cryptographic systems offers the highest level of security, together with maximum

flexibility [40,41]. A cryptographic system transforms electronic data into a modified form.

The owner of the information in modified form is now assured of its security features.

Depending on the security services required, the assurance may be that the data cannot be

 2

altered without detection, or it may be that the data is unintelligible to all but authorized

parties.

In the past, cryptographic systems have provided only confidentiality. Preparing a

message for a secure, private transference involves the process of encryption. Encryption

transforms data from user readable form, called plaintext, to an illegible translation, called

ciphertext. The conversion of plaintext to ciphertext is controlled by an electronic key E.

The key is simply a binary number, which determines the effect of the encryption function.

The reverse process of retrieving the plaintext back from the ciphertext is called

decryption, and is controlled by a related key D.

Depending on the encryption/decryption key, cryptographic systems can be classified

into two main categories: secret key cryptosystems and public key cryptosystems. The

secret key cryptosystems use one key (E=D) for both encryption and decryption, as

illustrated in Figure 1.1. Since the keys are the same, two users wishing to communicate in

confidence must agree and maintain a common secret key. Each entity must trust the other

to keep the key as a secret.

Figure 1.1 Secret key cryptosystem

Public key cryptosystems, however, use two different keys, one for encryption (E) and

the other for decryption (D), where D≠E. Public key cryptosystems were introduced in

1976 by Whitfield Diffie and Martin Hellman [5]. In a public-key cryptosystem, the

abilities to perform encryption and decryption are separated. The encryption needs a public

 3

key (E) different but mathematically related to the decryption private key (D). Knowledge

of the public key allows encryption of plaintext but does not allow decryption of the

ciphertext. If somebody selects and publishes his public key, then everyone can use that

public key to encrypt messages for that person. The private key is kept secret so that only

the intended individual can decrypt the ciphertext. Figure 1.2 shows a public key

cryptosystem methodology. One of the most promising public key cryptographic methods

to be used is named the elliptic curve cryptography (ECC), which provides the best

performance security of any public key cryptosystem known today [32,40,41]. ECC is

based on the Discrete Logarithm problem over the points on an elliptic curve. In order to

use ECC, an elliptic curve must be defined over a specific finite field. A finite field is a set

of elements that have a finite order (number of elements). The order of a Galois Field (GF)

is normally a prime number or a power of a prime number. The most popular finite fields

used in ECC are Galois Fields, GF(p) and GF(2n) [9-12,28,29].

Figure 1.2 Public key cryptosystem

ECC is heavily based on modular multiplication, which involves division by the

modulus in its computations. Division, however, is a very expensive operation [13,14].

This characteristic of modular operations made researchers seek out methods to reduce the

division impact and make modulo multiplication less time consuming. In 1985, P.

Montgomery proposed an algorithm to perform modular multiplication without trial

division [15]. The algorithm replaces the complex division with simple divisions by two,

 4

which is effortlessly achieved in the binary representation of numbers (shifting the binary

number one bit to the right). The penalty in using Montgomery�s technique is paid with

some extra computations to represent the multiplication operands into Montgomery

domain and transform them back to integer domain [1,6,11,15]. The reader is referred to

[15] for detailed information about Montgomery�s method. A brief description of the

Montgomery concept is provided in Chapter 3.

The ECC computation consists of different modular arithmetic operations where

inversion is an essential one, with the slowest speed [1,2,9-12,20-25]. Since the use of

Montgomery�s method requires that the numbers are in Montgomery�s domain, it is clear

that having procedures dedicated to compute the modular inverse in the Montgomery

domain [1,2] would be extremely beneficial. These dedicated modular inverse methods are

named the Montgomery modular inverse algorithms.

Montgomery inverse (MonInv) computation can be performed in software or

hardware for either GF(p) or GF(2n). In this thesis, one of our goals is to design an efficient

scalable MonInv hardware to operate in both finite fields GF(p) and GF(2n). Scalability is

the feature that allows the hardware to fit into restricted areas and operate with high clock

frequency, which together are rarely possible for the fully parallel designs.

We start by considering the inverse computation in GF(p). It is well known that

algorithms dedicated for GF(p) computation may be adjusted for GF(2n). However, it is

very difficult to modify a GF(2n) algorithm for GF(p) [11,35]. The standard modular

inverse over GF(p) can be defined by the following example. Assume a is an integer in the

range [1,p-1]. Integer x is called the modular inverse, or modulo inverse, of integer a if-

and-only-if: ax ≡ 1 (mod p); where x ∈ [1,p-1]. It is normally represented as x = a-1 mod p

[1]. The MonInv algorithm suitable for our research is portrayed in [1]. The algorithm

requires two main operations: an almost Montgomery inverse (AlmMonInv) and a

correction phase (Montgomery product) operation. Our study modifies this algorithm for

hardware and introduces a new faster correction phase. A similar GF(2n) MonInv algorithm

is also proposed, where both GF(p) and GF(2n) MonInv algorithms are designed as a

unified MonInv hardware for GF(p) and GF(2n).

The motivation to focus our research on the design of inversion in hardware is

explained in Section 1.1. Section 1.2 presents a brief review of the previous attempts to

perform inversion in hardware. Section 1.3 details the thesis outline.

 5

1.1 Motivation

 Modular inverse arithmetic is a fundamental arithmetic operation in public-key

cryptography. It is used in the Diffie-Hellman key exchange method [5], and to calculate

private decryption key for RSA [4]. Modular inversion is considered an essential operation

in the elliptic curve cryptography (ECC) [1,2,9-12,20-25]. This research is targeted mainly

toward the ECC utilization because of its promise to replace several older cryptographic

systems [9-12,20]. ECC arithmetic consists mainly in modular computations of addition,

subtraction, multiplication, and inversion.

Inversion is well known to be the slowest operation among all other arithmetic

operations in ECC [1,2,11,16-18]. Many researchers propose minimizing the use of

modular inversion by adopting elliptic curves defined for projective coordinates, which

substitute the inverse by several multiplication operations [9-12]. Projective coordinates

are one of two coordinate systems used for the ECC arithmetic point operations; the other

one is known as affine [11] coordinate system (detailed in Chapter 2). Inversion, in the

projective coordinate systems, is required only once, to convert the projective coordinate

points to affine coordinates at the end of the ECC point computation. However, if this one

use of inversion takes too long, it will affect the performance of the whole ECC system.

To have a fast modular inverse calculation is one of the main reasons to do inversion

in hardware instead of software [16-18]. If it is possible to compute the inverse faster than

nine multiplication operations, then it is more efficient to use the affine coordinate system

instead of going to the projective coordinate systems, as discussed in Chapter 2. Even if the

speed to compute the inverse is not that good to justify the use of affine coordinates, the

computation with hardware is still faster than software [6,16-18,20-25], which will provide

better performance for the overall cryptographic system based on projective coordinates.

The other main reason to implement the modular inverse operation in hardware is

security [32]. For cryptographic applications, it is more secure to have all the computations

handled in hardware, inside an IC-chip for example, instead of mixing some computations

performed in software with others processed in hardware. Software implementations are

supported by operating systems, which can be interrupted and trespassed by intruders and

this way compromise the application security. Such a security threat is not so easily

attained in hardware implementations [32].

 6

1.2 Previous Work

Modular inversion is often performed based on modifying, or directly using, the

extended Euclidean algorithm [11]. Several inversion hardware attempts are described in

the literature [16-18,20-25,35]. Most of the research [17,18,20-25] proposed hardware

models specifically designed for inversion in GF(2n). Among them, the large architectures

in [23,24] suffer from the problem of signal broadcasting. The signal broadcasting problem

should be avoided when implementing high-speed VLSI circuits [17,39].

In contrast, the designs in [17,18,21,22,25] are based on the concept of parallel

systolic array structures. A systolic array [39] consists of a set of interconnected logic cells,

each capable of performing the same simple operation. They work together and

synchronously to perform a task. Within a systolic array or tree, information and data flow

between the cells in a pipelined regular mode. Although systolic arrays are well suited for

VLSI implementations due to its modular identical cells and simple and regular

communications and control structures, it normally consumes a huge amount of hardware

area in order to gain computation speed [17]. The area and time complexities of the designs

in [17,18,21,22,25] are listed in Table 1.1.

Hardware Design Area Complexity Time Complexity
Guo & Wang [17] O(n2) O(1)
Choudhury & Barua [18] O(n) O(n2)
Guo & Wang [21] O(n2) O(1)
Fenn, Benaissa & Tayler [22] O(n2) O(n)
Kovac, Ranganathan & Varanasi [25] O(n. n2) O(1)

Table 1.1 Area and time complexity of different inversion hardware designs

Hasan in [20] proposed a hardware design for the GF(2n) inversion algorithm in a

non-systolic structure consuming smaller hardware area and still operating with reasonable

speed. The large operands are divided into words. The hardware performs the computation

on a word-by-word serial manner, instead of computing all the words in parallel. GF(2n)

arithmetic requires simpler modular operations than GF(p) [11] because the carry

 7

propagation delays in addition or subtractions are completely eliminated. Since we focus

first on GF(p) and then extend it to GF(2n), the designs proposed for GF(2n) in [17,18,21-

25] were not beneficial to this work. As said before, extending a design done for GF(2n) to

GF(p) is not practical [11].

Naofumi Takagi in [16], proposed an inverse algorithm for hardware with a redundant

binary representation. Redundant representation is used to reduce the carry propagation

delay problem in additions. However, the redundant binary representation requires more

area, because redundant digits require more bits to be coded and stored. Furthermore,

redundant representation needs data transformation, which results in considerable extra

cost.

Goodman and Chandrakasan in [35] presented a general cryptographic processor that

computes modular algorithms coded in microcode, which can be modified with minimal

effort. The processor can perform inversion in both GF(p) and GF(2n) finite fields. Its

datapath is reconfigurable and parameterized for numbers ranging in size from 8 to 1024

bits, controlled by a shut-down unit. This unit is responsible for disabling unused portions

of the data path in order to minimize any unnecessary power consumption. The processor

hardware is designed carefully to be energy efficient and faster than software-based

implementations. The main disadvantage of this processor is its huge area, with a core

containing 880,000 devices.

1.3 Thesis Outline

In the following chapter (Chapter 2), more detail is given to the ECC theory, which is

the main scope of our research. The ECC arithmetic operations over the two finite fields

GF(p) and GF(2n) are compared. Then, some ECC based cryptographic applications are

presented to give a practical flavor to the ECC theory.

A suitable GF(p) Montgomery inverse algorithm for hardware implementation was

proposed in [1]. It requires two types of different routines, almost Montgomery inverse and

Montgomery product. We present the design of the almost Montgomery inverse routine in

Chapter 3. Two implementations are described there. The first one is a fixed precision

(fully parallel) hardware, which has some inherent problems such as large (impractical)

 8

area and very low clock frequency. To solve this problem, it is proposed to use a scalable

hardware design that performs the same function operating with higher clock frequency.

The scalable hardware is also a module that can handle operands of any size. Based on the

hardware area and performance requirements, the word-size, on which the module

operates, is selected. The upper limit on the operand precision is dictated only by the

available memory to store the operands and internal results. The scalable module is in

principle capable of performing infinite-precision Montgomery inverse computation of an

integer, modulo a prime number. This scalable hardware is compared with the fixed

precision design showing very attractive results.

The longest path of the hardware designs passes through adders and subtractors.

Chapter 4 contains the analysis of the impact of faster adders and subtractors in the

hardware. Experimental performance results for the designs (fixed precision and scalable)

using carry-look-ahead adders instead of carry-ripple adders are presented.

In Chapter 5, we propose a complete GF(p) Montgomery inversion (MonInv)

procedure (almost Montgomery inverse plus correction phase). We modify the original

procedure presented in [1] by replacing the Montgomery product used in its correction

phase by a new straightforward correction phase. The advantage of the new correction

phase is that it is implemented with roughly the same scalable hardware of the almost

Montgomery inverse algorithm described in Chapter 3. The concept of multiple-bit shifting

is also introduced in the proposed MonInv design.

Chapter 6 proposes a scalable and unified architecture for a Montgomery inverse

hardware that operates in both GF(p) and GF(2n) fields. We present a GF(2n) Montgomery

inverse algorithm that accommodates multi-bit shifting making it very similar to the GF(p)

algorithm of Chapter 5.

The conclusion chapter (Chapter 7) summarizes the results of this thesis work and

provides some future work in this area.

 9

2 ELLIPTIC CURVE CRYPTOGRAPHY

2.1 Introduction

In 1985 Niel Koblitz and Victor Miller proposed the Elliptic Curve Cryptosystem

(ECC) [9-11,28-33], a method based on the Discrete Logarithm problem over the points on

an elliptic curve (EC). Since that time, ECC has received considerable attention from

mathematicians around the world, and no significant breakthroughs have been made in

determining weaknesses in the algorithm [32,40,41]. Although critics are still skeptical as

to the reliability of this method, several ECC encryption techniques have been developed

recently. The fact that the problem appears so difficult to crack means that key sizes can be

reduced in size considerably, even exponentially [29,33], especially when compared to the

key size used by other cryptosystems. ECC became an alternative to RSA, one of the most

popular public key methods. ECC offers the same level of security as RSA but with much

smaller key size [29].

In order to use ECC, an elliptic curve must be defined over a specific finite field. The

EC arithmetic can be optimized depending on the type of finite field. The most popular

finite fields used in ECC are Galois Fields, GF(p) and GF(2n) [9,12,28,29]. The following

section will give some background on the EC theory followed by a comparison between

ECC arithmetic performed in GF(p) and GF(2n). Then, some ECC applications will be

introduced to give an idea of how ECC can be used.

2.2 Elliptic Curve Theory

Elliptic curves are described by cubic equations, similar to those used in ellipsis

calculations. The general form for an elliptic curve equation is:

y2+axy+by=x3+cx2+dx+e.

There is also a single element named the point at infinity or the zero point denoted �ϕ�. The

point at infinity is computed as the sum of any three points on an EC that lie on a straight

line. If a point on the EC is added to another point on the curve or to itself, some special

 10

addition rules are applied depending on the finite field being used and also on the type of

coordinate system (affine or projective) its applied to.

As mentioned earlier, a finite field is a set of elements that have a finite order (number

of elements). There are many ways of representing the elements of the finite field. Some

representations may lead to more efficient implementations of the field arithmetic in

hardware or in software. The EC arithmetic is more or less complex depending on the

finite field where the EC is applied and in which coordinate system the computation is

performed. GF(p) and GF(2n), in affine and projective coordinates are considered in this

research because they are the most used in ECC [9,11,28,29].

2.2.1 Elliptic Curves over Finite Field GF(p)

GF(p) is comprised of the set of integers: {0, 1, 2,, p-2, p-1}. In this field, the

basic arithmetic operations are:

• Addition: a+b= r; where: r,a,b ∈ GF(p), r is the remainder of (a+b) divided by p. This
is known as addition modulo p.

• Multiplication: a . b=s; where a,b,s ∈ GF(p), s is the remainder of ab divided by p.
This is known as multiplication modulo p.

• Squaring: a2 = a . a = s; where a,s ∈ GF(p), s is the remainder of a2 divided by p.
Squaring can be assumed as multiplication modulo p.

• Inversion: Assume a is a non-zero element in GF(p), the inverse of a modulo p,
denoted a-1, is the unique integer c ∈ GF(p), for which a . c = 1.

The EC arithmetic over GF(p) is the usual mod p arithmetic. The EC equation in GF(p)

is: y2 = x3 + ax + b; where p > 3, 4a3 + 27b2≠ 0, and x, y, a, b ∈ GF(p).

The special addition rules in this field are the following:

ϕ = -ϕ
(x, y) + ϕ = (x, y)
(x, y) + (x, -y) = ϕ

2.2.1.1 Affine Coordinates

The addition of two different points on the EC in affine coordinates is computed as:

 11

(x1 , y1) + (x2 , y2) = (x3 , y3) ; where x1 ≠ x2

λ = (y2 � y1)/(x2 � x1)
x3 = λ2 � x1 � x2

y3 = λ(x1 � x3) � y1

The addition of a point to itself (doubling a point) is computed as:

(x1 , y1) + (x1 , y1) = (x3 , y3) ; where x1 ≠ 0

λ = (3(x1)2 + a) /(2y1)
x3 = λ2 � 2x1

y3 = λ(x1 � x3) � y1

We assume in this work that the squaring calculation is equivalent to a multiplication.

Thus, to add two different points in GF(p) we need: six additions, one inversion, and three

multiplication operations. To double a point we require: four additions, one inversion, and

four multiplications.

2.2.1.2 Projective Coordinates

The projective coordinates are used to almost eliminate the need for performing

inversion [11,28]. For elliptic curve defined over GF(p), the normal elliptic point (x,y) is

projected to (X,Y,Z), where x=X/Z2,and y=Y/Z3 [11]. This transformation between affine

and projective coordinates is performed only twice: at the beginning and at the end.

The point addition of P+Q in projective coordinates is computed as:

 P = (X1,Y1,Z1); Q = (X2,Y2,Z2); P+Q = (X3,Y3,Z3); where P ≠ ±Q
 (x, y) = (X/Z2,Y/Z3) ! (X,Y,Z)

λ1 = X1Z2
2

λ2 = X2Z1
2

λ3 = λ1 - λ2
λ4 = Y1Z2

3
λ5 = Y2Z1

3
λ6 = λ4 - λ5
λ7 = λ1 + λ2
λ8 = λ4 + λ5
Z3 = Z1Z2λ3
X3 = λ6

2 - λ7λ3
2

λ9 = λ7λ3
2 � 2X3

Y3 = (λ9λ6 - λ8λ3
3)/2

 12

The doubling of a point (P+P) in projective coordinates is computed as:

P = (X1,Y1,Z1); P+P = (X3,Y3,Z3)
(x, y) = (X/Z2,Y/Z3) ! (X,Y,Z)
λ1 = 3X1

2 + aZ1
4

Z3 = 2Y1Z1
λ2 = 4X1 Y1

2
X3 = λ1

2
 - 2λ2

λ3 = 8Y1
4

λ4 = λ2 - X3

Y3 = λ1 λ4 � X3

The squaring calculation in GF(p) is very similar to the multiplication computation. The

number of multiplication processes for adding two points is found to be sixteen, while the

number of operations for doubling a point is found to be only ten.

2.2.2 Elliptic Curves over Finite Field GF(2n)

GF(2n) is called a characteristic two field or a binary finite field. It can be viewed as a

vector space of dimension n over the field GF(2) that consists of the elements 0 and 1. That

is, there exist n elements x0 , x1 , x2 . . . , xn-1 in GF(2n) such that each element x ∈ GF(2n)

can be uniquely written in the form: x = a0 x0 + a1x1 . . . + an-1xn-1 ; where ai∈ GF(2). Such

a set {x0 , x1 , x2 . . . , xn-1} is called the basis of GF(2n) over GF(2). Given such a basis, a

field element x can be represented as the bit string (a0 a1 . . . an-1). Addition of field

elements is performed by bit-wise XOR-ing their vector representations. The complexity of

multiplication depends on the selected basis. There are many different basis of GF(2n) over

GF(2). Some basis lead to more efficient software or hardware implementations of the

arithmetic in GF(2n) than others. The most popular basis are the polynomial (or standard)

and the normal basis.

The EC equation over GF(2n) is: y2+xy = x3+ax2+b ; where x, y, a, b ∈ GF(2n) and b≠0.

The addition rules in this field are as the following:

ϕ + ϕ = ϕ
(x, y) + ϕ = (x, y)
(x, y) + (x, x+y) = ϕ

 13

2.2.2.1 Affine Coordinates

The affine coordinates addition of two different points on the EC is computed as:

(x1 , y1) + (x2 , y2) = (x3 , y3) ; where x1 ≠ x2

λ = (y2 + y1)/(x2 + x1)
x3 = λ2 + λ + x1 + x2 + a
y3 = λ(x1 + x3) + x3 + y1

The affine coordinates addition of a point to itself (doubling a point) is computed as:

(x1 , y1) + (x1 , y1) = (x3 , y3) ; where x1 ≠ 0

λ = x1
 + (y1)/(x1)

x3 = λ2 + λ + a
y3 = (x1)2 + (λ + 1) x3

To add two different points in GF(2n) we need: nine additions, one inversion, one

squaring, and two multiplication operations. To double a point we require: five additions,

one inversion, two squarings, and two multiplications.

2.2.2.2 Projective Coordinates

Calculating the inverse is the most expensive operation. Designs replace the inversion

by several multiplication operations by representing the elliptic curve points as projective

coordinate points [11,28,30,32]. To almost eliminate the need for performing inversion in

GF(2k), its coordinates (x,y) are to be projected to (X,Y,Z), where x=X/Z2, and y=Y/Z3. The

elliptic curve equation in this system is: Y2 + XYZ = X 3 + a X2Z2+ b Z6 [11].

The point doubling of an elliptic curve point (P+P) in projective coordinates is computed

as:

P = (X1,Y1,Z1); P+P = (X3,Y3,Z3)
Z3 = X1 Z1

2
X3 = (X1 + bZ1

2)4
λ = Z3 + X1

2 + Y1
 Z1

Y3 = X1
4 Z3 + λ X3

 14

The point addition of two elliptic curve points (P+Q) is computed as:

P = (X1,Y1,Z1); Q = (X2,Y2,Z2); P+Q = (X3,Y3,Z3); where P ≠ ±Q
(x, y) = (X/Z2,Y/Z3) ! (X,Y,Z)
λ1 = X1 Z2

2
λ2 = X2 Z1

2
λ3 = λ1 + λ2
λ4 = Y1 Z2

3
λ5 = Y2 Z1

3
λ6 = λ4 + λ5

λ7 = Z1 λ3
λ8 = λ6 X2 + λ7Y2
Z3 = λ7 Z2
λ9 = λ6 + Z3

X3 = a Z3
2 + λ6 λ9 + λ3

3
Y3 = λ9 X3 + λ8 λ7

2

The number of multiplication processes for adding two points is found to be twenty, while

it is found to be ten for doubling a point.

2.2.3 Comparing Arithmetic Complexity on GF(p) and GF(2n)

The number of operations for affine coordinates addition of two different points is

found to be basically the same (in GF(p) and GF(2n)), as shown in Table 2.1. The

computation of �λ� requires one inversion and one multiplication. Computing �x3� needs

only one squaring. The value of �y3� is obtained with one multiplication. The number of

operations in both fields is identical: one inversion, one squaring, and two multiplications,

neglecting the addition, subtraction, and multiplication by small numbers [11,28].

Point operations Operations in GF(p) Operations in GF(2n)
Point addition 1 Inversion

3 Multiplications
1 Inversion
3 Multiplications

Point doubling 1 Inversion
4 Multiplications

1 Inversion
4 Multiplications

Table 2.1 Comparing GF(p) and GF(2n) number of lengthy point operations
in affine coordinates

 15

Point doubling on affine coordinates requires the computation of �λ�, which in GF(p)

requires an inversion, a multiplication, and a squaring of x1, while it needs an inversion and

a multiplication in GF(2n). Calculating �x3� in both fields requires the same operation of

squaring lambda. Computing �y3� in GF(p) requires only one multiplication, while it needs

a multiplication and a squaring in GF(2n). The number of operations is found to be the

same in both fields: one inversion, two squarings, and two multiplications [11,28].

Considering projective coordinates (Table 2.2), the number of multiplication

processes for adding two points in GF(p) is found to be sixteen, while it is found to be

twenty in GF(2n). The number of multiplication calculations for doubling a point is found

to be ten in both GF(p) and GF(2n). This shows that GF(p) projective coordinates

consumes four less number of multiplications than GF(2n), however, comparison of the

number of operations is not accurate because operations in GF(p) require different time

than GF(2n). Computations in GF(p) require lengthy time due to the delay of propagating

the carry, which GF(2n) does not have.

Point operations Operations in GF(p) Operations in GF(2n)
Point addition 16 Multiplications 20 Multiplications
Point doubling 10 Multiplications 10 Multiplications

Table 2.2 Comparing GF(p) and GF(2n) number of lengthy point operations
in projective coordinates

2.2.4 The Elliptic Curve Discrete Logarithm Problem

The elliptic curve discrete logarithm problem is the fundamental mathematical

property that supports elliptic curves cryptography. The problem can be clarified by

considering E as an elliptic curve and P and Q as points on E; the discrete logarithm

problem consists in finding an integer k such that kP=Q, if such an integer exists. Figuring

the integer k is considered a very hard problem especially if the numbers are large [11]. On

the other hand, if integer k and the EC point P are known, computing the other EC point Q

is possible. The ECC algorithm used for calculating kP (scalar multiplication of k by P,

 16

which is equivalent to add P to itself k times) from P is the binary method, since it is

known to be efficient and practical to implement [11,12,29,32]. The binary method

algorithm is:

Define n: number of bits in k;
ki: the ith bit of k

Input: P (a point on the elliptic curve).
Output: Q = kP (another point on the elliptic curve).
1. if kn-1 = 1, then Q:=P else Q:=0;
2. for i = n-2 down to 0;
3. Q := Q+Q ;
4. if ki = 1 then Q:= Q+P ;
5. return Q;

The binary method algorithm scans the binary representation of k and doubles the point Q

n-times. Whenever, a particular bit of k is found to be one, an extra operation is needed.

This extra operation is Q+P.

2.2.5 Comparing Arithmetic Complexity of Affine and Projective Coordinates

The basic ECC operation consists in computing the point kP from P. Lets use the

binary algorithm presented in Section 2.2.4. The number of binary bits of integer k is n,

which indicates the exact number of point doublings but not point additions. Assume that

the bits of k are half ones and half zeros (an average estimation for comparison reasons).

The EC arithmetic operations required are n point doublings and n/2 point additions. The

total number of multiplications and inversions for both GF(p) and GF(2n) are listed in

Table 2.3. If the time to compute 1.5n inversions and 5.5n multiplications is less than 18n

GF(p) multiplications or 20n GF(2n) multiplications, then the system based affine

coordinates is faster than the one based on projective coordinates. In other words, if one

inversion is calculated in less than approximately nine multiplications, then the affine

coordinate arithmetic is more appropriate to use than the projective coordinates.

In any case, even with projective coordinates, the inverse computation is still needed

at the end of the computation to convert back to affine coordinates and cannot be

eliminated completely [1,2,11], which justifies the need to research the alternatives for the

design of inverse operation in hardware.

 17

Finite Affine Coordinates Operations Projective Coordinates operations
Field n doublings & n/2 point additions
GF(p) 18n Multiplications
GF(2n)

1.5n Inversions &
5.5n Multiplications 20n Multiplications

Table 2.3 Comparing the affine and projective coordinates

2.3 Elliptic Curve Cryptography Applications

As described earlier (Section 2.2.4), it is easy to calculate the point kP from P.

However, it is very hard to determine the value of k knowing the two points: kP and P.

This property leads to several algorithms for cryptography [29,32]. Some of these

techniques will be introduced in the following subsections.

2.3.1 Elliptic Curve Diffie-Hellman Key Exchange Method

Secret key cryptosystems are normally used for encryption/decryption purposes,

because it is faster than public key cryptosystems. Secret key cryptosystems require a

secret key to be agreed upon before the cryptographic process starts. This agreement can be

performed by the elliptic curve Diffie-Hellman [29] key exchange method as described by

the following example.

Suppose that users A and B want to agree upon a secret key, which will be used for

secret key cryptography. Users A and B choose a finite field, GF(p) for example, and an

elliptic curve �E� defined over this field. They also take a randomly chosen point P=(x,y)

lying on the elliptic curve E; we refer to P as the base point of the cryptosystem. The finite

field, the elliptic curve, and the base point are all publicly known.

User A then randomly chooses a large integer a∈ GF(p) and keeps a secret. User A

now computes the point aP which will lie on E. User B does the same: B randomly

chooses a large integer b and computes bP. Both A and B make aP and bP publicly known.

These are their public keys. The secret key that A and B use to encrypt messages sent to

each other is abP, which both A and B can compute. User A knows a and bP, and so can

 18

find abP. Whereas, B knows b and aP, and so can find abP. The security of this system

lies in the fact that a third party C, for example, knows only aP and bP, and unless C can

solve the elliptic curve discrete logarithm problem there is no efficient way to break the

encryption.

2.3.2 Elliptic Curve Encryption/Decryption

There are many ways to apply elliptic curves for encryption/decryption purposes [29].

A simple method is presented here to give the flavor of elliptic curve encryption/

decryption techniques. Assume working with GF(p) finite field and an elliptic curve E. The

users randomly chose a base point Pbase, lying on the elliptic curve E. The plaintext (the

original message to be encrypted) is coded into an elliptic curve point Pm. Each user selects

a private key �n� and compute his public key P = nPbase. For example, user A�s private key

is nA and his public key is PA = nAPbase.

For any one to encrypt and send the message point Pm to user A, he/she needs to

choose a random integer k and generate the ciphertext Cm = {kPbase , Pm+kPA }. The

ciphertext pair of points uses A�s public key, where only user A can decrypt the plaintext

using his private key.

To decrypt the ciphertext Cm, the first point in the pair of Cm, kPbase, is multiplied by

A�s private key to get the point: nA(kPbase). Then this point is subtracted from the second

point of Cm, the result will be the plaintext point Pm. The decryption operations are:

(Pm + kPA) - nA(kPbase) = Pm + k(nAPbase) - nA(kPbase) = Pm

2.3.3 Elliptic Curve Digital Signature Algorithm (ECDSA)

The process of ECDSA [29] is composed of three main steps: key generation,

signature generation and signature verification. Each step is described as follows:

 19

2.3.3.1 ECDSA key generation

Each user of the scheme does the following:

1. Select an elliptic curve E over a finite field, say GF(p). The number of points on E
should be divisible by a large prime n.

2. Select a point P = (x,y) ∈ GF(p) of order n.
3. Select a random integer d in the range [1, n-1].
4. Compute dP = Q.
5. The user's public key is (Q, n, P, E); the user's private key is d.

2.3.3.2 ECDSA signature generation

To sign a message, m, the user does the following:

1. Select a random integer k in the range [1, n-1].
2. Compute kP=(x1, y1), and set x1 mod n = r. If r is zero then go back to step 1. In other

words, if r=0 then the signing equation will not involve the private key d.
3. Compute k-1mod n.
4. Compute s = k-1(h(m) + dr) mod n, where h is the hash value obtained from a suitable

hash function.
5. If s=0 go to step 1. This because if s is zero then s-1 mod n does not exist and we would

not be able to verify the signature.
6. The signature to be included in the message m is the pair of integers (s, r).

2.3.3.3 ECDSA signature verification

To verify the signature (r, s) on the message m, the following should be done:

1. Obtain an authentic copy of the public key (Q, n, P, E).
2. Verify that r and s are integers in the range [1, n-1].
3. Compute w = s-1 mod n and h(m).
4. Compute u1= h(m).w mod n and u2 = r.w mod n.
5. Compute u2Q + u1P = (x0 , y0) and v = x0 mod n.
6. Accept the signature if and only if r= v.

In the above ECDSA algorithms, each user generates their own elliptic curve E, along

with a base point P. However, this means that the public key sizes become quite large. If,

instead, the users agree upon a fixed curve E and base point P, as system parameters, then

each user needs only to define the point Q, which is then all that is included in the public

key.

 20

3 SCALABLE HARDWARE ARCHITECTURE FOR GF(p) ALMOST
MONTGOMERY MODULAR INVERSE COMPUTATION

3.1 Introduction

Modular inversion is often performed by algorithms based on the Extended Euclidean

algorithm [11]. Several inversion hardware attempts are described in the literature [16-

18,20-25]. Most of the research [17,18,20-25] proposed hardware designs for inversion in

Galois Fields GF(2n). Several [17,18,21-25] are based upon parallelism of data flow in an

array structure. The inversion in GF(2n) is fast due to the elimination of the carry

propagation delay in GF(2n) calculations. However, the area used in parallel organizations

are very large, of order O(n2). Hasan in [20] proposed a design of the inversion algorithm

that is smaller in area and still keeps a fair speed. He performed a word-by-word

computation of the numbers instead of computing the whole numbers in parallel. Since we

focus on GF(p), the designs proposed in [17,18, 21-25] have no direct link to this work.

Takagi in [16], proposed an inverse algorithm for hardware with a redundant binary

representation. Each number is represented by digits in the set {0,1,-1}. Redundant

representation is used to reduce the carry propagation delay problem. However, it requires

more area. It also needs data transformation that is usually expensive.

The Montgomery modular inverse algorithm suitable for our research is presented in

[1]. The algorithm requires two main operations: a Montgomery product and an almost

Montgomery inverse (AlmMonInv) operation. This Chapter is directed towards the

implementation of the AlmMonInv. The Montgomery product is beyond the scope of this

work and scalable Montgomery multipliers, such as the ones proposed in [6-8] can

generate it.

Two AlmMonInv designs are presented in this Chapter, namely a fixed precision

design and a scalable hardware design. The fixed precision design is fully parallel and

processes full precision numbers at every clock cycle. The scalable hardware, however,

divides the numbers in words where each word is processed in a clock cycle. We show that

the scalable hardware is more appropriate for cryptographic applications.

 21

3.2 Montgomery Inverse Algorithms

Two Montgomery modular inverse studies are found in the literature [1,2]. Both

modify a technique proposed by Kaliski in 1995 [3], to make it more suitable and faster for

cryptography using Montgomery�s idea. Kaliski method, derived from the extended

Euclidean algorithm [3], basically takes an integer a, and produces x, where x=a-12m mod p.

If a is an integer, the algorithm will calculate the inverse of a, but represented in

Montgomery domain, as shown in Figure 3.1. When the number a is already in

Montgomery domain, the application of Kaliski�s routine will not give the needed

Montgomery inverse result. Thus, some extra arithmetic operations are required to get it.

Kaliski method is summarized next. It is followed by a brief explanation of two

modifications to Kaliski�s work to make it compute the Montgomery inverse and to make

it faster.

Figure 3.1 Types of input/output numbers for Kaliski algorithm

3.2.1 Kaliski Algorithm

Kaliski algorithm [1,3] is shown below and it is divided in two phases. Phase one, also

called almost Montgomery inverse (AlmMonInv) in this work, takes the inputs a and p and

give outputs r and k; where r = a-12k mod p, and n < k<2n (n is the actual number of bits of

the modulus p). Phase two takes the outputs of phase one as its inputs, and gives the final

result of Kaliski algorithm: x = a-12m mod p. Note that in both phases the integers: a and x

are within the range [1,p-1]. Kaliski�s two phases are outlined as follows:

 22

Phase One: Almost Montgomery Inverse, AlmMonInv(a)

Input: a and p; where a is in the range [1,p-1].
Output: r and k; where r = a-12k mod p, n < k < 2n, n = number of bits of p
1. u = p; v = a; r = 0; and s = 1
2. k = 0
3. while (v > 0)
4. if u is even then u = u/2; s = 2s
5. else if v is even then v = v/2; r = 2r
6. else if u > v then u = (u - v)/2; r = r+s; s = 2s
7. else v = (v - u)/2; s = s+r; r = 2r
8. k = k + 1
9. if r ≥ p then r = r - p
10. return r = p - r

Phase Two
Input: r,p,k & m; where r & k from phase one, & m≥ n (m=Montgomery constant)
Output: x; where x = a-12m mod p
11. for i = 1 to k - m do
12. if r is even then r = r/2
13. else r = (r + p)/2
14. return x = r

3.2.2 Modifications to Kaliski Algorithm

T. Kobayashi and H. Morita in 1999 [2], proposed techniques for modular inversion to

make it more than five times faster than the original Kaliski routine. They gained speed

from the comparison of the values of u and v (step 6), they compare the most significant

word only. Their way to achieve more speed consisted in combining the multiplication and

the shifting operations. Long numbers were divided into words. They modified the

AlmMonInv algorithm by performing several matrix multiplications, instead of the simple

multiplications by two. The modification was targeted toward software implementations.

In July 2000, Savas and Koç [1] proposed to replace phase two of Kaliski�s algorithm

with a Montgomery multiplication, which resulted in a faster process. They also presented

a complete Montgomery modular inverse algorithm by adding extra Montgomery

multiplication operations. These extra multiplications are performed after the AlmMonInv.

The Montgomery inverse computation algorithm in [1] is outlined below:

 23

Montgomery Inverse Algorithm
Input: a2m (mod p), p, n, m, and R2mod p
Output: x = a-12m mod p, where x is in the range [1,p-1].
1. (r,k) = AlmMonInv(a2m); where r = a-12-m2k mod p, and n ≤ k ≤ m+n
2. If n ≤ k ≤ m then
2.1 r = MonPro(r,R2) = (a-12-m2k)(a2m)(2-m) = a-1 2k mod p
2.2 k = k+m > m
3. r = MonPro(r,R2) = (a-12-m2k)(22m)(2-m) = a-12k mod p
4. r = MonPro(r, 22m-k) = (a-12k)(a2m-k)(2-m) = a-12m mod p
5. Return x = r; where x = a-12m mod p

The input parameters are the integers aR mod p (residue representation of a), n, m

and p (the modulus, a prime number of size n-bits, m ≥ n), and R2mod p (a pre-computed

integer based on the Montgomery radix, R = 2m [1]). The two main procedures used in the

Montgomery inverse algorithm are the Montgomery product (MonPro) and the almost

Montgomery inverse (AlmMonInv) [1], modeled in hardware as shown in Figure 3.2. Our

contribution consists in the implementation of the almost Montgomery inverse procedure

in hardware. The MonPro is beyond the scope of this work.

Figure 3.2 The complete Montgomery modular inverse hardware

 24

3.3 The Fixed Precision Design

This section discuses a fixed precision hardware design. We present some hardware

issues applied to the algorithm to compute the almost Montgomery inverse (AlmMonInv)

subroutine, which is basically phase-one of Kaliski�s algorithm.

3.3.1 Hardware Issues Applied to the Algorithm

When observed from hardware point-of-view, the AlmMonInv algorithm contains

operations that are easily mapped to hardware features. For example, one-bit shifting the

binary representation of number u to the right (ShiftR(u,1)) is equivalent to perform

division by two, or one-bit shifting s to the left (ShiftL(s,1)) is equal to do multiplication

by two. Checking for a number to be even or odd requires a test of the least significant bit

(LSB). If it is found to be zero the number is even, otherwise the number is odd. The

comparison of two numbers to see which one is bigger is performed after subtracting one

from the other. If the subtraction result is positive (the borrow-bit is zero) the first number

is bigger, or vice-versa. Such hardware mapping is shown in the hardware algorithm

below:

The Fixed Precision Hardware AlmMonInv Algorithm (FHW-Alg)

Registers: u, v, r, s, and p (all five registers are to hold n-bits).
Input: a ∈ [1, p -1], p = modulus.
Output: result ∈ [1, p -1] and k; where result = a-12k (mod p) and n<k<2n
1. u = p; v = a; r = 0; s = 1; k = 0
2. if (u0 = 0) then { u = ShiftR(u,1) ; s = ShiftL(s,1)}; go to step 7
3. if (v0 = 0) then: { v = ShiftR(v,1) ; r = ShiftL(r,1)}; go to step 7
4. S1 = Subtract (u, v); S2 = Subtract (v, u); A1 = Add (r, s)
5. if (S1borrow = 0) then {u = ShiftR(S1,1)); r = A1; s = ShiftL(s,1)}; go to step 7
6. s = A1; v = ShiftR(S2,1); r = ShiftL(r,1)
7. k = k + 1
8. if (v ≠ 0) go to step 2
9. S1 = Subtract (p, r), S2 = Subtract (2p, r)
10. if (S1borrow = 0) then {return result = S1}; else {return result = S2}

 25

Consider step 6 of AlmMonInv, if u>v then the subtraction (u-v) takes place,

otherwise, the subtraction (v-u) is calculated. In the worst case, two subtraction operations

are performed, because the comparison of u and v may be accomplished through

subtraction of u and v anyway. These two subtractions can be done in parallel (two

subtraction modules) as shown in step 4 of FHW-Alg. The same case applies to step 9 and

step 10 of AlmMonInv, both subtractions may be performed in parallel.

All actual integers are represented by n-bit vectors, such as u = (un-1,un-2,�..,u2,u1,u0).

The modulus is loaded into register u at step 1, then, register u is modified along with the

algorithm. The modulus is essential at steps 9 and 10 (FHW-Alg) and for this reason, it is

stored in a special register named p. The value of r cannot equal p except when a equals

infinity. Thus, the result of AlmMonInv equals either 2p-r if r is greater than p, or p-r

when r is less than p, as described in step 10 of FHW-Alg.

3.3.2 The Fixed Precision Hardware Design

The fixed precision design is made up of a memory unit, a controller, a k-counter, and

a data path (arithmetic unit). The block diagram for this hardware design is shown in

Figure 3.3. All data buses are nmax bits wide (nmax is the maximum number of bits the

hardware can handle). The memory unit is made of five registers u, v, r, s and p to hold

nmax bits each. The memory unit sends out all its content and loads new ones at every clock

cycle, except for register p that does not change during the computation. The data path

(DP) takes the memory unit outputs and gives back the computed data to be stored through

buses: u_out, v_out, r_out, and s_out. For example, in step 3 of FHW-Alg, only v and r are

modified. However, the DP provides the data to all four buses. Buses v_out and r_out are

found to be modifications of v and r, while u_out and s_out are just the same u and s fed

back.

The DP performs the required computation depending on the LSBs of u and v, as

clarified by FHW-Alg. It contains several multiplexers to route and shift the data buses to

perform steps 2, 3, 5, 6 and 10, as shown in Figure 3.4. It consists of an adder and two

subtractors to perform steps 4 and 9. The counter unit performs step 7 of FHW-Alg. All the

components in the design are directed and synchronized by the controller.

 26

Figure 3.3 The block diagram of implementing the FHW-Alg

Figure 3.4 The fixed precision hardware data path

u_out

v_out

s_out

r_out

 27

3.4 The Scalable Design

3.4.1 Why scalable design?

Application specific hardware architectures are usually designed to deal with a

specific maximum number of bits, 512-bits for example. If this number of bits is to be

increased, even by one, the complete hardware needs to be replaced. In addition to that, if

the design is implemented for a large number of bits, the hardware is huge and its� longest

path usually is impractical. It will cause the hardware to run at a very low clock frequency

unless architectural changes are applied. These issues motivated the search for a scalable

hardware similar to what is proposed by Tenca and Koç in their Scalable Architecture for

Montgomery Multiplication [6].

The scalable architecture solves the previous problems with the following three

hardware features. First, the design�s longest path should be short and independent of the

operands� length. Second, it is designed in such a way that it fits in restricted hardware

regions (flexible area). Finally, it can handle the computation of numbers in a repetitive

way up to a certain limit usually imposed by the size of the memory in the design. If the

number of bits in the data exceeds the memory size, the memory unit is replaced while the

scalable computing unit is not changed.

3.4.2 Scalable Hardware Issues Applied to the Algorithm

Differently from what happens in the fixed precision hardware design, the scalable

hardware has multi-precision operators for addition, subtraction and comparison. The

subtraction used for comparison (u > v), is performed on a word-by-word basis until all the

actual data words are processed, then, the subtractor borrow out bit is used to decide on the

result. Also, depending on the subtraction completion, variable r or s has to be shifted. All

variables, u, v, r and s, need to remain as is until the subtraction processes complete, and

the borrow out bit appears. Such a constraint forced the use of three more variables: x, y

 28

and z; where x= u-v, y= v-u and z= r+s. These variables are stored in extra registers as

outlined in the scalable algorithm.

The Scalable Hardware Algorithm (SHW-Alg)

Registers: u, v, r, s, x, y, z & p (all eight registers are to hold nmax bits).
Input: a ∈ [1, p-1], p = modulus.
Output: result ∈ [1,p-1] & k; where result = a-12k(mod p) & n<k<2n, (n < nmax)
1. u = p; v = a; r = 0; s = 1; x = 0; y = 0; z = 0; k = 0
2. if (u0 = 0) then { u = ShiftR(u,1) ; s = ShiftL(s,1) }; go to step 7
3. if (v0 = 0) then { v = ShiftR(v,1) ; r = ShiftL(r,1) }; go to step 7
4. x = Subtract (u, v); y = Subtract (v, u); z =Add (r, s)
5. if (xborrow=0)then{u= ShiftR(x,1); r = z; s = ShiftL(s,1)}; goto step7
6. s = z; v = ShiftR(y,1); r = ShiftL(r,1)
7. k := k + 1
8. if (v ≠ 0) go to step 2
9. x = Subtract (p, r); y = Subtract (2p, r)
10. if (xborrow = 0) then {return result = x}; else {return result = y}

All operations (addition, subtraction, and shifting) of the scalable hardware algorithm

are multi-precision computations. In other words, the numbers are utilized in each

operation on a word-by-word basis until the entire number is processed.

3.4.3 The Scalable Hardware Design

The scalable hardware design is built of two main parts, a memory unit and a

computing unit. The memory unit is not scalable because it has a limited storage defined

by the value nmax. The data values of a and p are first loaded in the memory unit. Then, the

computing unit read/write (modify) the data using a word size of w bits. The computing

unit is completely scalable. It is designed to handle w bits every clock cycle. The

computing unit does not know the total number of bits, nmax, the memory is holding. It

computes until the controller indicates that all operands words were processed. Note that

the actual numbers used may have much less than nmax bits.

The block diagram for the scalable hardware is shown in Figure 3.5. The memory unit

is connected to the computing unit components. The computing unit is made of four

hardware blocks, add/subtract block, shifter block, data router block, and the controller. All

these computing unit blocks are briefly clarified after describing the non-scalable memory

 29

unit. The memory unit contains a counter to compute k (step 7 of SHW-Alg) and eight

first-in-first-out (FIFO) registers used to store the algorithm�s variables. All registers, u, v,

r, s, x, y, z and p, are limited to hold at most nmax bits. Each FIFO register has its own reset

signal generated by the controller. They have counters (ncounter bits each) to keep track of n

(the number of bits actually used by the application).

Figure 3.5 The scalable hardware overall block diagram

The add/subtract unit is built of an adder, two subtractors, four flip-flops, three

multiplexers, a comparator, and logic gates, connected as shown in Figure 3.6. This unit

performs one of two operations, either to calculate step 4 of SHW-Alg: x = u-v, y = v-u,

and z = r+s, or to calculate step 9: x = p-r and y = 2p-r. Three flip-flops are used to hold

the intermediate carry-bit of the adder and borrow-bits of the two subtractors to implement

the multi-precision operations. The fourth flip-flop is used to store a flag that keeps track

of the comparison between u and v. This flag is used to perform step 8 of SHW-Alg. The

 30

first subtractor borrow out bit is connected to the controller through a signal that is useful

only at the end of the each multi-precision addition/subtraction operation. It will affect the

flow of the operation to choose either step 5 or step 6 of SHW-Alg. It is also essential in

choosing the final result observed in step 10 of SHW-Alg.

Figure 3.6 The scalable add/subtract unit

The shifter is made of two registers with special mapping of some data bits, as shown

in Figure 3.7. Two types of shifting are needed in the hardware algorithm, shifting an

operand (u or v) through the uv bus one bit to the right, and shifting another operand

(r or s) through the rs bus one bit to the left. The input buses uv and rs are w bits noted in

figure 3.7 as vectors uv[w-1:0] and rs[w-1:0], respectively. Shifting u or v is performed through

Register1, which is of size w-1 bits. For each word, all the bits of uv are stored in Register1

except the least significant bit (uv[0]), it is read out immediately as the most significant bit

(MSB) of the output bus uv_out (uv_out[w-1]). The MSB of the output of Register2 (vector

rs_out[w:0], bit rs_out[w]) is mapped as least significant bit (LSB) of the input of Regester2,

to perform the shifting to the left.

 31

Figure 3.7 The scalable hardware shifter

The data router is made of ten multiplexers to connect the data going out of the

memory unit to the inputs of the add/subtract unit or shifter. It also directs the shifted data

values to go to their required locations in the memory unit. The possible configurations of

the data router are shown in Figure 3.8.

Figure 3.8 The data router configurations

 32

The controller is the unit that coordinates the flow of data to guide the hardware

computation. Its made of a state machine easily derived from SHW-Alg. The controller

does not include counters to avoid any dependency on the number of bits that the system

can handle. Such modules are left into the memory block.

3.5 Modeling and Analysis

Both designs were modeled and simulated in VHDL. The developed VHDL

implementation of the scalable hardware has two main parameters, namely nmax and w. The

fixed precision hardware, however, is parameterized by nmax only. Their area and speed are

presented in this section. We didn�t define a specific architecture for the adders and

subtractors used in the design. Thus, the synthesis tool chooses the best option in terms of

area from its library of standard cells. The impact of the use of different adders is described

in Chapter 4.

3.5.1 Area Comparison

The exact area of any design depends on the technology and minimum feature size.

For technology independence, we use the number of NOT-gates as an area measure [14]. A

CAD tool from Mentor Graphics (Leonardo) was used. Leonardo takes the VHDL design

code and provides a synthesized model with its area and longest path delay. The target

technology is a 0.5µm CMOS defined by the �AMI0.5 fast� library provided in the ASIC

Design Kit (ADK) from the same Mentor Graphics Company [19]. It has to be mentioned

here that the ADK is developed for educational purposes and cannot be thoroughly

compared to technologies adopted for marketable ASICs. It however, provides a

framework to contrast the scalable hardware with the fixed precision one.

The only problem we faced with our VHDL code is that Leonardo cannot synthesize

the scalable design memory unit because of its behavioral parametrizable feature. So we

present an area function to calculate the scalable design memory. In Table 3.1, the number

of NOT gates comparable to several standard logic gates is listed [14]. Other logic

 33

modules, needed in the memory unit of the scalable design, are constructed from these

basic gates. These modules and their area are listed in Table 3.2 [13,14]. The modules in

Table 3.2 are related to nmax and ncounter bits, which are related to each other by the formula:

ncounter = log2(2nmax+1).

Thus, nmax is the only parameter controlling the area of the memory unit of the scalable

design. The memory unit is made of eight registers that hold nmax bits and seventeen

ncounter bit counters, which totally corresponds to [170 log2(2nmax+1) + 48nmax] gates.

Standard gate type Fan-in Number of equivalent NOT gates
NOT 1 1

NAND, NOR 2 1
NAND, NOR 3 2

NAND 4 2
NOR 4,5 4

NAND 5 4
NAND, NOR 6 5
NAND, NOR 8 6
XOR, XNOR 2 3
XOR, XNOR 3 6

AND, OR 2,3 2
AND, OR 4 3

Table 3.1 Area of the standard logic gates

Memory Components Building Logic Area (number of NOT gates)
nmax bit register nmax DFF 6nmax

ncounter bit counter ncounter DFF +
ncounter AND +

ncounter OR

6ncounter+2ncounter+2ncounter

=10 ncounter

Table 3.2 Area of the modules building the memory unit of the scalable design

Using the estimate of the memory block and Leonardo�s results, it is possible to

compare the sizes of the two designs in Figure 3.9. Observe that the fixed design has a

 34

better area if the maximum number of bits used (nmax) is less than 32. However, this is not

used in cryptography, as small numbers are useless [11]. In fact, the advantage of the

scalable hardware is found to make the size of the design as small as possible. For

example, if nmax=512 bits, the scalable hardware can be designed in less than half the area

necessary for the fixed precision hardware.

 nmax (bits)

Figure 3.9 The area comparison

3.5.2 Speed Comparison

The total computation time is a product of the number of clock cycles the algorithm

takes and the clock period of the VLSI implementation. This number of clock cycles

depends completely on the data and its computation. For the fixed precision design, the

number of clock cycles is k+4, where k is the number of iterations counted through the

 35

loop, step 2 to step 7 of FHW-Alg. The value of k (FHW-Alg) is within the range [n,2n]

[1], which justify the use of its average of 3n/2, for comparison purposes. This assumption

makes the number of clock cycles required for the fixed precision design to complete a

computation equal to

Cf = (3n/2) + 4.

The number of clock cycles in the scalable design is a function of three parameters: k,

w and n. The number of cycles to compute any scalable addition and/or subtraction is

calculated as n/w, which makes the actual number of clock cycles depend on the real data

used and its size. However, after several experiments, we concluded that approximately

half the time step 2 or 3 of SHW-Alg is needed and the other half step 4 is required. But

the loop iteration time to execute step 2 or 3 is different than step 4. Step 4 needs extra

cycles for the shifting operation after it. The number of cycles to perform each loop

iteration (step 2 to step 7 of SHW-Alg) is calculated as

CPLI = [(n/w +1)/2]+n/w+3,

(CPLI stands for the clock cycles per loop iteration). The number of loop iterations of the

algorithm is exactly equal to k. The overall number of cycles equals the CPLI × k (the

number of loop iterations), plus the final operation of steps 9 and 10 (SHW-Alg). The total

number of clock cycles of the scalable hardware equals to

Cs = 7+(7/2)k+[(4+(3/2)k)(n/w)],

which was verified by VHDL simulation. If k is approximated to its average of 3n/2

(similar to the fixed precision design), the function of the clock cycles would be

Cs = 7+[(21/4) n] + [(4+(9/4) n)(n/w)].

The clock period of the hardware designs changes with the value of w in the scalable

hardware, and changes with the value of nmax in the fixed precision hardware. This is

because w = nmax in the fixed precision hardware. Two speed comparison studies are

carried out, one using the synthesize tool clock period for each design (technology

dependent) and the other uses a technology independent estimation.

 36

3.5.2.1 Technology dependent speed comparison

The real time clock period depends on the technology and the efficiency of the CAD

tool used [13]. Table 3.3 lists the real time clock period for each design generated by

Leonardo. We excluded the memory unit from all designs when synthesizing for the

longest path delay assuming its effect will be the same for both scalable and fixed precision

design, because the scalable design memory unit couldn�t be synthesized (Section 3.5.1).

Scalable Hardware where w = Fixed Precision
nmax 4 8 16 32 64 Hardware

4 9.62 12.39 19.48 30.66 54.93 11.41
8 9.62 12.39 19.48 30.66 54.93 15.96

16 9.62 12.39 19.48 30.66 54.93 26.5
32 9.62 12.39 19.48 30.66 54.93 48
64 9.62 12.39 19.48 30.66 54.93 92

128 9.62 12.39 19.48 30.66 54.93 178
256 9.62 12.39 19.48 30.66 54.93 350
512 9.62 12.39 19.48 30.66 54.93 694

1024 9.62 12.39 19.48 30.66 54.93 1382

Table 3.3 Clock cycle period for all designs (nsec)

The scalable hardware can have several designs for each nmax depending on w. For

example, Figure 3.10 shows the delay of five designs of the scalable hardware compared to

the fixed precision hardware, all modeled for nmax = 256 bits. Observe how the actual data

size (n) plays a big role on the speed of the designs. In other words, as n reduces for small

w, the number of clock cycles decrease significantly, which considerably reduces the

overall computing time of the scalable design. This is a major advantage of the scalable

hardware over the fixed precision one.

The number of clock cycles of the fixed precision model depends on the actual size of

the data used. However, its period always operate on nmax bits. For example, if we are using

n = 64 bits, and the design is made for nmax = 256 bits, as of Figure 3.10, the fixed

precision design will assume the operands are using all 256 bits by placing zeros for the

 37

unused bits. All nmax bits are processed into the computation causing the fixed precision

design to have more delay than all different scalable ones. This fact is shown again in

Figure 3.11 which presents the delay of the designs made for nmax = 512 bits.

Figure 3.10 Delay comparison of designs with nmax = 256 bits

Another observation from Figures 3.10 and 3.11 is that the delay of all the scalable

designs are better than the fixed precision one when n ≤ nmax/2, except for w = 4 bits that is

better when n ≤ 3nmax/8. Suppose our design is target to handle 512 bits maximum, as the

case of Figure 3.11, which is a practical number for future ECC applications [11]. The

scalable designs with w = 8, 16, 32, and 64 bits are faster than the fixed precision one as

long as n≤ 256 bits (n ≤ nmax/2). However, for the scalable design with w = 4, it is faster

than the fixed precision one while n ≤ 192 bits (n ≤ 3nmax/8). In fact, as w gets bigger the

delay decreases, which is a normal speed area trade-off.

 38

Figure 3.11 Delay comparison of designs with nmax = 512 bits

3.5.2.2 Technology independent speed comparison

 To have a technology independent speed comparison we use the fact that the designs

longest path passes through the adders (carry-ripple) and we are going to evaluate the clock

period as a function of δ (the delay of each full adder). The delays of carry-ripple adders

depend linearly on the number of bits they are built for, as listed in Table 3.4.

Adder number of bits 4 8 16 32 64 128 256 512
Estimated delay in δδδδ units 4δ 8δ 16δ 32δ 64δ 128δ 256δ 512δ

Table 3.4 Adders δ delay estimation depending on the number of bits

 39

The total time for each design is computed in δ units. For simplicity, consider δ=1

which results in an estimated total time as a figure of merit. The technology independent

speed comparison of all designs for nmax=512 bits is shown in Figure 3.12. Observe how

the graph shows roughly similar behavior to the technology dependent speed comparison

(Figures 3.10 and 3.11). Another observation from Figure 3.12 is that the scalable designs

are faster than the fixed precision one as long as:

n < nmax / 2.5 and w < nmax/4.

Figure 3.12 Technology independent speed comparison for designs with nmax=512 bits

 40

3.6 Summary

This Chapter presents two hardware designs of an algorithm used in the computation

of Montgomery modular inverse arithmetic. The two designs are the fixed precision

hardware and the scalable hardware. The scalable architecture makes the design�s longest-

path shorter, compared to the fixed precision hardware, with a corresponding higher clock

frequency. The scalable hardware is also designed to fit in a small area with the

computation of numbers performed in a repetitive way. The maximum number of bits

(nmax) the scalable hardware can handle depends only on the memory. If the number of bits

exceeds the memory size, the memory unit is the only part that needs to be modified, while

the scalable computing unit does not change. On the other hand, all the fixed precision

hardware components need to be changed completely if any extra bit is to be added beyond

the memory limit.

The scalable design shows area flexibility, depending on the number of bits used at

each clock cycle (w). For example, if w = 4 bits and the design can handle up to 512 bits,

the area of the scalable design is 60% less and faster in general than the fixed precision

hardware. The comparisons show that this scalable structure is very attractive for

cryptographic systems, particularly for ECC because of its need for modular inversion of

large numbers, which differ in size repetitively depending on the application usage.

 41

4 REDUCING THE CLOCK PERIOD OF THE ALMOST MONTGOMERY
INVERSE HARDWARE DESIGNS

4.1 Introduction

The total computation time of the almost Montgomery inverse (AlmMonInv)

hardware is a product of the number of clock cycles it takes and the clock period. The

number of clock cycles depends on the input data. The clock cycle period depends on the

design�s critical path, which is dominated by the adders used in the design. In the previous

chapter, the longest path delay of the proposed designs was put to its maximum due to the

area optimization option selected for the synthesis phase. The synthesizer, Leonardo,

optimized the design for the smallest area, and used the slow but small carry-ripple (CR)

adders. In this chapter, a delay optimization option is applied that forces the synthesis tool

to use one-level carry-look-ahead (CLA) adders. This is done to verify the impact of faster

adders on the system performance and provide a clear idea of the area/time tradeoffs.

4.2 Shortening the Critical Path

As mentioned earlier, the critical path of the hardware is through the adders. The CR

adders are the smallest and slowest adders [13,14]. A four bit CR adder, for w=4, is shown

in Figure 4.1. This adder is made of 8 XOR gates and 12 NAND gates, which is equivalent

to 36 NOT gates (or equivalent gates [14]). Observe the longest path involves the carry

chain through all the four full adders. The longest path passes by 2 XOR gates and

6 NAND gates [14].

In order to reduce the critical path in the hardware, a faster adder should be used.

When delay optimization is requested to the synthesis tool, it uses a CLA adder. This adder

is faster than the CR adder but uses more area. A four bit CLA adder is shown in

Figure 4.2. It is constructed of: 4 NAND, 4 XOR, 5 NOT, 7 NOR and 14 AND gates,

which is equivalent to 56 NOT gates [14]. The longest path of this adder, however, passes

through the following gates: NAND, AND, NOR and XOR, as shown in Figure 4.2.

 42

Figure 4.1 The carry-ripple adder

Figure 4.2 A four bit carry-look-ahead adder

4.3 Area & Delay Comparison

The four bits CR adder�s area is equivalent to 36 gates while the CLA adder is

equivalent to 56 gates, which corresponds to 55.5% area increase. On the other hand, the

 43

delay of the CR adder is through 2 XOR and 6 NAND gates while it�s through a NAND,

AND, NOR, and XOR gates for the CLA adder, which is shorter (the delay of an XOR

gate is much more than AND, OR, and NAND) [14]. When the adders are used in the

design, the speed and area impact on the complete hardware differs, because of the speed

and area contributions of the other system components. A study of the impact of different

optimizations (changing the adders) on the synthesis of the AlmMonInv scalable design is

listed in Table 4.1. The results of the same experimentation performed on the AlmMonInv

fixed precision hardware is shown in Table 4.2.

Area Optimization Delay Optimization
nmax
(bits)

w

(bits)
Period
(nsec)

Area
(gates)

Period
(nsec)

Area
(gates)

Area
loss

Percentage

Delay
Improvement
Percentage

128 4 9.62 9032 9.5 10364 14.75 % 1.20 %
128 8 12.39 9313 10.74 10568 13.47 % 13.3 %
128 16 19.48 9887 15.4 11357 14.87 % 21.0 %
128 32 30.66 11177 25.72 13148 17.63 % 16.1 %
128 64 54.93 13602 43.91 17028 25.19 % 20.0 %
128 128 102. 2 24453 79.53 31112 27.23 % 22.1 %
256 4 9.62 15346 9.5 17610 14.75 % 1.20 %
256 8 12.39 15627 10.74 17814 14.02 % 13.3 %
256 16 19.48 16201 15.4 18603 14.83 % 21.0 %
256 32 30.66 17491 25.72 20394 16.61 % 16.1 %
256 64 54.93 19916 43.91 24274 21.89 % 20.0 %
256 128 102. 2 30767 79.53 38358 24.67 % 22.1 %
512 4 9.62 27804 9.5 31906 14.75 % 1.20 %
512 8 12.39 28085 10.74 32110 14.33 % 13.3 %
512 16 19.48 28659 15.4 32899 14.8 % 21.0 %
512 32 30.66 29949 25.72 34690 15.83 % 16.1 %
512 64 54.93 32374 43.91 38570 19.14 % 20.0 %
512 128 102. 2 43225 79.53 52654 21.81 % 22.1 %

Table 4.1 Area and delay optimizations of the AlmMonInv scalable design

Consider Table 4.1 of the scalable design, the average area loss percentage is

calculated to be 17.81%, which gains in the delay an average of 15.62%. Whereas, from

Table 4.2, the fixed precision design�s average area loss is calculated to be 21.23% to raise

the average speed by 5.5%. This study clearly shows that changing the adders to fast ones

 44

benefits the scalable hardware in a much better way than the fixed precision one. The extra

area needed to reduce the clock cycle period is much less for the scalable hardware than it

is for the fixed precision design.

Area Optimization Delay Optimization
nmax

(bits)
Period
(nsec)

Area
(gates)

Period
(nsec)

Area
(gates)

Area
loss

Percentage

Delay
improvement
Percentage

4 11.41 796 11 925 16.20 % 3.59 %
8 15.96 1501 15 1817 21.05 % 6.01 %

16 26.5 2911 26 3576 22.84 % 1.88 %
32 48 6395 47 7496 17.21 % 2.08 %
64 92 12672 89 14944 17.92 % 3.26 %

128 178 23952 165 29001 21.07 % 7.30 %
256 350 46512 317 57010 22.57 % 9.42 %
512 694 69327 621 90907 31.12 % 10.5 %

Table 4.2 Area and delay optimizations of the AlmMonInv fixed precision design

 45

5 A SCALABLE HARDWARE ARCHITECTURE FOR MONTGOMERY
INVERSION IN GF(p)

5.1 Introduction

The starting point for the research of a complete Montgomery modular inverse

hardware implementation is presented in [1]. The algorithm in [1] requires two main

operations and in this Chapter we suggest replacing one of them by a simpler operation. A

further modification to the inversion algorithm to use multi-bit shifting instead of single-bit

shifting is also proposed. These two improvements reduce the number of clock cycles

without significantly increasing the clock period, which results in an overall speedup of the

inverse computation.

The improved algorithm is mapped to hardware when the scalability feature presented

in Chapter 3 is also incorporated. In this hardware design, the long-precision numbers are

divided into words and each word is processed in a clock cycle. It is shown that this

hardware is appropriate for cryptographic applications. This work shows the area and

speed of several scalable hardware configurations compared with a fixed precision design

presented in [27].

Section 5.2 presents the Montgomery inverse algorithm including the new correction

phase proposed in this work. Section 5.3 explains the multi-bit shifting strategy and

corresponding modifications to the hardware algorithm. In Section 5.4 the scalable

hardware design is described in some detail. The comparison between different hardware

configurations is given in Section 5.5.

5.2 Montgomery Inverse Algorithm and Proposed Modifications

5.2.1 New Approaches for Montgomery Inverse

Let�s consider the main Montgomery inverse problem again (introduced before in

Section 3.2). An approach to calculate x=a-12nmod p from a2n can be to compute a first and

 46

then calculate the AlmMonInv (Kaliski Phase one (Section 3.2.1)) followed by Kaliski

Phase two to get the desired inverse result. The first computation of a from a2n is

performed by a modular division by 2n named Preparation Phase as shown below.

Preparation Phase (Divide by 2n)

Input: r = a2n, n & p; where p=modulus & 2n-1 ≤ p < 2n
Output: x; where x = a mod p
1. for i = 1 to n do
2. if r is even then r = r/2
3. else r = (r + p)/2
4. return x = r

Note that calculating a from a2n may be also obtained by a Montgomery multiplication [1]

as follows:

MonPro(a2n,1) = a2n (2-n) mod p= a mod p.

However, the preparation phase is preferred in our case instead of MonPro, since it clearly

can be implemented using the same hardware components of the AlmMonInv already

proposed in Section 3.4.

Another new way to calculate the Montgomery inverse is by applying the AlmMonInv

on the input a2n to produce r and k according to the formula:

(r,k) = AlmMonInv (a2n)

where

r = (a2n)-12k mod p = a-12k-n mod p

Recall that Montgomery inverse of a2n is a-12nmod p, which implies that the AlmMonInv

result (a-12k-nmod p) must be corrected. It is possible to find a constant C such that:

C × (a-12k-n mod p) = a-12nmod p.

Applying some algebra we get:

C=(a-12nmod p)/(a-12k-nmod p)=(a-12n)/(a-12k-n)=(2n)/(2k-n)=2n-(k-n)=22n-k

The modular multiplication of (a-12k-nmod p) by (22n-k) can be performed as follows:

([((((a-12k-n).2).2).2)�����..2).2)] mod p) = a-12nmod p

2n-k times

 47

This arrangement of applying the modular operation after completing the multiplication is

very expensive because the result of the multiplication by 22n-k may be much greater than

the modulus and a large amount of hardware will be required to handle it [11]. However,

the operation can be simplified by introducing the modular reduction after each

multiplication by 2 as the following:

[(((((a-12k-n).2) mod p).2) � 2) mod p).2) mod p)]=a-12nmod p

The modular reduction operation is performed by a subtraction of p whenever the number

exceeds p. The proposed correction phase consists then in performing a multiplication of

a-12k-n by C = 22n-k as outlined below:

Correction Phase (Multiply by 22n-k)

Input: r, p, n & k; where r & k are AlmMonInv outputs
Output: x; where x = a-12n mod p
1. for i = 2n-k to 0 do
2. r = 2r
3. if r > p then r= (r � p)
4. return x = r

5.2.2 Evaluation of Alternatives

Several methods considered for hardware computation of the Montgomery inverse are

shown in Figure 5.1; including the procedures proposed by Savas and Koç in [1] using

MonPro. Each path in the graph has its own set of routines and its total computation time.

Figure 5.1 presents the approximate number of iterations for each routine. Note that the

number of iterations for multiplication is estimated considering serial-parallel multipliers,

because fully parallel multipliers are extremely large [6].

All approaches of Figure 5.1 lead to the same final result. However, the number of

iterations in each path proves that our two-phase method, the AlmMonInv followed by the

correction phase (path: 1-4-6), is the fastest. It requires only 2n iterations to complete the

inversion as shown in Table 5.1, the AlmMonInv needs 1.5n iterations, and the correction

phase (CorPh) needs 0.5n iterations, assuming an average value of k=1.5n [1].

Observe that the other approach proposed in Section 5.2.1 (path: 1-2-3-6) would

require 3n iterations in average to complete the inversion (Table 5.1); it is a slow

 48

alternative and for this reason will not receive further attention. For the previously

proposed methods using MonPro multipliers (path: 1-4-3-6 or 1-4-5-6) [1], even if the

multipliers are completely parallel (one iteration instead of n), they need more than 2n

iterations, which is still slower than using the path 1-4-6. The proposed method is the only

two-phase method in the graph (Figure 5.1).

Figure 5.1 Different ways to compute the Montgomery inversion

 MonInv computation path Delay (number of iterations)
 1-4-3-6 1.5n+n+0.5n = 3n
New 1-2-3-6 n+1.5n+0.5n = 3n
 1-4-5-6 1.5n+0.5n+n = 3n
New 1-4-6 1.5n +0.5n = 2n

Table 5.1 Delay of different ways to compute the Montgomery inverse

5.3 Multi-Bit Shifting

The AlmMonInv algorithm needs to finish its computation completely before the

CorPh algorithm begins processing. This data dependency allows the use of the same

hardware to execute both algorithms, i.e., both the AlmMonInv and CorPh. The following

 49

sections present an improvement of the AlmMonInv and CorPh algorithms based on a

multi-bit shifting method.

5.3.1 AlmMonInv Hardware Algorithm

The AlmMonInv algorithm, when observed from hardware point-of-view, contains

operations that are easily mapped to hardware as described in Section 3.3.1, which also

provides the fixed precision hardware AlmMonInv algorithm (FHW-Alg) used in this

section. Observe step 10 of the AlmMonInv algorithm (Section 3.2.1), the result of r=p

occurs if-and-only-if a=∞, which cannot happen since a∈ [1,p-1]. Thus, the result of

AlmMonInv algorithm equals either 2p-r when r>p, or p-r when r<p (as described in step

10 of the FHW-Alg).

5.3.2 Best Maximum Distance for Multi-bit Shifter

Consider the FHW-Alg (Section 3.3.1). The operation to shift numbers u and s (step

2), or v and r (step 3), are performed depending on u0 and v0. In fact, when u0 or v0 is zero,

only shift operation happens. Suppose that the four least significant (LS) bits of u are zeros.

The shifting process on u will consume four iterations to be completed.

The multi-bit shifting method can be applied to shift two, three, four, five or more bits

depending on the number of continuous zeros found at the LS bit positions of u and v.

However, this number of zeros depends on data that are modified during the process. Thus

a probabilistic analysis of the bit vectors u and v will give us an idea about maximum

number of bits to be shifted.

Let p be the probability of a bit to be zero and q=(1-p) be the probability of being one.

The probability function PF used to calculate the probability of having x consecutive LS

bits of u or v as zeros is: PF(x) = qpx; where x is the number of LS zeros [26]. Note that as

x gets larger PF(x) reduces tremendously. The PF(x) values show that multi-bit shifting

should be investigated only for x<6 bits.

 50

In the FHW-Alg presented in Section 3.3.1, the loop (steps 2 through 8) is executed

for k iterations. Based on experimental statistics collected with a software implementation

of the AlmMonInv algorithm, nearly half of the k algorithm iterations are used executing

step 4 (addition and subtraction) and the other half executing only steps 2 or 3 (shifting

process) [1]. Applying the multi-bit shifting approach will reduce the number of iterations

for the shifting process only. Reusing p=0.5 as the probability of performing a shift

operation, we estimate the average number of iterations based on a probabilistic model.

Table 5.2 shows probabilistic equations to compute the number of iterations when a multi-

bit shifter of up to x bits is available. The first polynomial term (as clarified in Figure 5.2

for the case of x=3) stands for the number of iterations used for addition and subtraction

(step 4 of FHW-Alg). This term is not affected at all by x (the maximum number of bits to

be shifted). The following terms consider the use of multi-bit shifting. The total number of

iterations (k) will be affected according to the number of bits shifted. Given the value p that

was defined before, the average number of iterations (i) is computed as listed in the last

column of Table 5.2.

x Probabilistic Equations i
1 (1-p)k + pk 1.00 k
2 (1-p)k + p[(1-p)k + p k/2] 0.88 k
3 (1-p)k + p[(1-p)k + p((1-p) k/2 + p k/3)] 0.85 k
4 (1-p)k + p[(1-p)k + p((1-p) k/2 + p [(1-p) k/3 + p k/4])] 0.849 k
5 (1-p)k + p[(1-p)k +p((1-p) k/2+p[(1-p)k/3+p((1-p)k/4+pk/5)])] 0.847 k

Table 5.2 Average number of iterations (i)

After comparing the different i values, the notable improvement is found for the case

with x=3 (shifting up to three bits), which gives the average of 15% reduction in the

number of iterations (k). Note that there is not a significant improvement when x>3.

 51

Figure 5.2 Description of i for the case of x = 3

5.3.3 Adjustments to FHW-Alg

The new capability to shift up to three bits requires a modification in the FHW-Alg,

which is reflected in some units of the AlmMonInv hardware. The modified algorithm is

shown below as the multi-bit shifting AlmMonInv hardware algorithm.

Multi-Bit Shifting HW-Alg (MHW-Alg)

Registers: u, v, r, s, & p (all five registers hold n bits)
Input: a ∈ [1, p -1], p = modulus.
Output: result∈ [1, p -1] & k; where result=a-12kmod p & n≤k≤2n
1. u = p, v = a, r = 0, s = 1, k = 0
2. if(u2u1u0=000)then{u=ShiftR(u,3);s=ShiftL(s,3);k=k+3};goto 8
2.1. if(u2u1u0=100)then{u=ShiftR(u,2);s=ShiftL(s,2);k=k+2};goto 8
2.2. if(u2u1u0=110)then{u=ShiftR(u,1);s=ShiftL(s,1)};goto 7
3. if(v2v1v0=000)then{v=ShiftR(v,3);r=ShiftL(r,3);k=k+3};goto 8
3.1. if(v2v1v0=100)then{v=ShiftR(v,2);r=ShiftL(r,2);k=k+2};goto 8
3.2. if(v2v1v0=110)then{v=ShiftR(v,1);r=ShiftL(r,1)};goto 8
4. S1 = Subtract (u, v); S2 = Subtract (v, u); A1 = Add (r, s)
5. if(S1borrow=0)then{u=ShiftR(S1,1);r=A1;s=ShiftL(s,1)};goto 7
6. s = A1; v = ShiftR(S2,1); r = ShiftL(r,1)
7. k = k + 1
8. if (v ≠ 0) go to step 2
9. S1 = Subtract (p, r); S2 = Subtract (2p, r)
10. if(S1borrow=0)then{return result=S1}; else{return result = S2}

 52

The MHW-Alg when implemented in hardware requires: two subtractors (used in

steps 4 and 9), an adder (step 4), a k-counter (that variably increments up to three), two

multi-bit shifters (to shift u and s or v and r up to three bits, steps 2 to 3.2), and five n-bit

registers (to store all the variables: u, v, r, s and p).

5.3.4 Suitable Multi-Bit Shifting the CorPh

The CorPh algorithm contains operations that are easily mapped to hardware

components as shown in the CorPh hardware algorithm (HW-Alg2) below:

CorPh Hardware Algorithm (HW-Alg2)

Registers: r & p (two registers to hold n bits).
Input: r,p,n,k; where r (r= a-12k-nmod p)& k from AlmMonInv
Output: result; where result = a-12n (mod p).
11. j= 2n-k-1
12. While j>0
13. r = ShiftL(r,1); j = j-1
14. S1 = Subtract(r, p)
15. if (S1borrow = 0) then {r = S1}
16. return result = r

To implement the HW-Alg2 in fixed precision hardware we need: two n-bit registers

(to store r and p), a subtractor (step 14), a shifter, and a counter (step 13). The one-bit

shifter (step 13) can be easily modified to perform multi-bit shifting and clearly reduce the

number of iterations. The ideal situation is to implement HW-Alg2 utilizing the same

MHW-Alg (Section 5.3.3) hardware components. Since the shift operation in the HW-Alg2

is followed by a subtraction, applying the multi-bit shifting technique to the algorithm

demands extra subtractors to perform these operations in parallel and fully speedup the

process. The total number of iterations and the corresponding number of subtractors for

some shifting distances are listed in Table 5.3.

The practical choice of the maximum shifting distance in the CorPh implementation is

two. This decision is due to the need of three subtractors when shifting two bits, which are

already found in the AlmMonInv hardware (assuming two�s complement subtraction). If

 53

the maximum distance is three, seven subtractors are required, which is far beyond the

AlmMonInv hardware capability. To clarify this issue and how Table 5.3 is generated, let

us start by assuming single-bit shifting. Observe that r<p, and 2r cannot reach 2p, at most

one subtraction will be needed when 2r>p. When the distance is two, we need to shift r

two bits to obtain 4r, where 4r<4p. This time, 4r must be reduced by subtractions of 3p,

2p, or p if necessary. The CorPh algorithm is modified to accommodate the two-bit shifting

as shown in the multi-bit shifting CorPh hardware algorithm below (MHW-Alg2).

Multi-Bit Shifting HW-Alg2 (MHW-Alg2)

Registers: r, u, v & p (all four registers are to hold n bits).
Input: r,p,n,k; where r (r=a-12k-nmod p)&k from AlmMonInv
Output: result; where result = a-12n (mod p).
11. j = 2n-k-1
12. v = 2p; u = 3p
13. While j > 0
14. if j =1 then {r = ShiftL(r,1); j=j-1}
15. else {r = ShiftL(r,2); j=j-2}
16. S1=Subtract(r,p);S2=Subtract(r,v);S3=Subtract(r,u)
17. if (S3borrow = 0) then {r = S3}
18. else if (S2borrow = 0) then {r = S2}
19. else if (S1borrow = 0) then {r = S1}
20. return result = r

Number of bits to be
shifted per iteration

CorPh hardware
number of subtractors

CorPh execution number
of iterations

1 1 (2n-k)
2 3 (2n-k)/2
3 7 (2n-k)/3
4 15 (2n-k)/4

Table 5.3 Speed and hardware changes due to multi-bit shifting the CorPh algorithm

The three subtraction operations are performed in parallel, as step 16 of MHW-Alg2.

Four registers are needed to hold the variables r, u, v and p. The value of p is already

available in register p, however, the values of 2p and 3p have to be computed once at the

 54

beginning of the CorPh and stored in registers v and u respectively (step 12). The counter,

j, is set to 2n-k-1 at step 11 (using the value k from AlmMonInv); it is used to keep track of

the number of iterations in the algorithm.

5.4 The Scalable Design

5.4.1 Scalable Hardware Issues Applied to the Algorithms

Differently from what normally happens in the full-precision hardware design, the

scalable hardware, as in [27], has multi-precision operators for shifting, addition,

subtraction and comparison. Consider the MHW-Alg shown in Section 5.3.3, for example,

the subtraction used for comparison (u>v) is performed on a word-by-word (w-bit slices)

basis until all the data words (all n bits) are processed, as outlined below:

for i = 1 to n/w

(xborrow , xiw-1 : iw-w) = Subtract (uiw-1 : iw-w , viw-1 : iw-w , xborrow)
(yborrow , yiw-1 : iw-w) = Subtract (viw-1 : iw-w , uiw-1 : iw-w , yborrow)
(zcarry , ziw-1 : iw-w) = Add (riw-1 : iw-w , siw-1 : iw-w , zcarry)

Then, the final word borrow out bit is used to decide on the result. Also, depending on the

subtraction completion, variable r or s has to be shifted. All variables, u, v, r and s, cannot

change until the subtraction processes complete, and the borrow-out bit appears. This

forces the use of three more variables: x, y and z; where x=u-v, y=v-u and z=r+s. These

variables are stored in extra registers increasing the number of hardware registers to eight.

All the registers hold nmax bits even though the actual number of bits in the numbers are

n≤nmax bits. This nmax limit defines the memory capability and does not degrade the total

computation time of the inversion process; i.e., the total delay of the computation depends

on the actual number of bits (n) and not on nmax.

 55

5.4.2 Scalable Hardware Design

The scalable hardware design is built of two main parts, a memory unit and a

computing unit, as shown in Figure 5.3. It is very similar, in principle, to the scalable

hardware presented in [27]. The memory unit is not scalable because it has a limited

storage defined by the value of nmax. The data values of a and p are first loaded in the

memory unit. Then, the computing unit read/write (modify) the data using a word size of w

bits. The computing unit is completely scalable. It is designed to handle w bits every clock

cycle. The computing unit does not know the total number of bits, nmax, the memory is

holding. It computes until the controller indicates that all operands� words were processed.

Note that the actual numbers used may be way smaller than nmax bits.

Figure 5.3 Montgomery inverse scalable hardware block diagram

The memory unit contains a counter to compute variable k and eight first-in-first-out

(FIFO) registers used to store the inversion algorithm�s variables. All registers, u, v, r, s, x,

y, z and p, are limited to hold at most nmax bits. Each FIFO register has its own reset signal

 56

generated by the controller. They have counters to keep track of n (the number of bits

actually used by the application).

The computing unit is made of four hardware blocks, the add/subtract, shifter, data

router, and controller block. The add/subtract unit is built of two subtractors, an

adder/subtractor, four flip-flops, one multiplexer, a comparator, and logic gates, connected

as shown in Figure 5.4. This unit performs one of two operations, either two subtractions

and one addition for the MHW-Alg (Section 5.3.3), or three subtractions for the MHW-

Alg2 (Section 5.3.4). To execute MHW-Alg the Adder/Subtractor3 is controlled to work as

an adder (step 4 of MHW-Alg). The same Adder/Subtractor3 is used as subtractor to

execute step 16 of the MHW-Alg2. Three flip-flops are used to hold the intermediate

borrow-bits of the subtractors and the carry-bit of the adder to implement the multi-

precision operations. The fourth flip-flop is used to store a flag that keeps track of the

comparison between u and v, which is used to perform step 8 of MHW-Alg. The borrow-

out bits from the subtractors are connected to the controller used only at the end of the each

multi-precision addition/subtraction operation. Subtractor 1 borrow-out bit is used to test

the condition in step 5 of MHW-Alg. It is also essential in electing the result observed in

step 10 of MHW-Alg. The three subtractors borrow-out bits (S1borrow, S2borrow, S3borrow) are

likewise necessary to select the correct �if� condition to be used in steps 17, 18, or 19, of

the MHW-Alg2 algorithm.

The multi-bit shifter is made of two multiplexers and two registers with special

mapping of some data bits, as shown in Figure 5.5. The two multiplexers are used to select

the correct set to be used in the multi-bit shifter. Depending on the controller signal

Distance, the shifter acts as a one, two, or three-bit shifter. Two types of shifting are

needed in the MHW-Alg algorithm, right shifting an operand (u or v) through the uv bus

(one, two, or three bits) and left shifting another operand (r or s) through the rs bus (by

similar number of bits). Right shifting u or v is performed through Register1, which is of

size w-1 bits. For each word, w-1 bits of uv are stored in Register1. The LS bit(s) of each

word is (are) read out immediately as the most significant bit(s) of the output bus uv_out.

Left shifting r or s is performed via Register2, which is of size w+3 bits, in a similar

fashion. When executing the MHW-Alg2, the left shifting is performed to a distance of

either one or two bits using the rs path only.

 57

Figure 5.4 Add/subtract unit

Figure 5.5 Multi-bit shifter (max distance = 3)

 58

The data router shown in the complete hardware (Figure 5.3) is made of twelve

multiplexers to connect the data going out of the memory unit to the inputs of the

add/subtract unit or shifter and also transfers the shifted data values to their destination

locations in the memory unit. The possible configurations of the data router are shown in

Figure 5.6.

Figure 5.6 Data router configurations

The controller is the unit that coordinates the flow of data. It consists in a state

machine easily derived from both MHW-Alg and MHW-Alg2. The controller does not

include counters to avoid any dependency on the number of bits (nmax) that the system can

handle. Such counters are located in the memory block, which is the non-scalable

component in the system.

5.5 Modeling and Analysis

The proposed Montgomery inverse scalable design was modeled and simulated in

VHDL similar to Section 3.5. It has two main parameters, namely nmax and w, which define

several hardware configurations. These design configurations are compared in this work

 59

with other fixed precision designs previously described in [27] only parameterized by nmax

because w=nmax in their case.

For both area and speed comparisons, we show the fixed precision design in [27]

modified to execute both MHW-Alg and MHW-Alg2, to be realistic and functionally

similar to the scalable hardware of this work. Note that the area presented in [27] is the

same given here because modifying the AlmMonInv hardware to process both AlmMonInv

and CorPh will increase the area with a negligible amount due to modification in the

controller. However, the time of [27] is different than what is here since it considers the

execution of the complete Montgomery inverse computation. We didn�t define a specific

architecture for the adders and subtractors used in the designs. Thus, the synthesis tool

chooses the best option from its library of standard cells.

5.5.1 Area Comparison

The area of the scalable designs and the fixed precision one are compared in

Figure 5.7. As nmax increases the difference between the fixed precision hardware and

scalable ones increases, which is expected because of the increasing burden of the

computing unit of the fixed precision design. Observe that the fixed precision design has

larger area than all scalable ones except for the configuration with w=128 and nmax<160

bits. As w approaches nmax, the scalable design�s benefit reduces and the extra hardware

used for multi-precision computation shows up. In other words, the scalable design with

w=nmax has the same size of adder and subtractors as the fixed one with extra hardware for

scalability features, making it more expensive.

5.5.2 Speed Comparison

The total computation time is the product of the number of clock cycles the algorithm

takes and the clock period of the final implementation. This clock period changes with the

value of w in the scalable hardware (Table 5.4), and changes with the value of nmax in the

 60

fixed precision hardware (Table 5.5). Tables 5.4 and 5.5 lists the clock period for each

design obtained from synthesis of the VHDL models.

Figure 5.7 Area comparison

w 4 8 16 32 64 128
Period 12 14 19 28 47 82

Table 5.4 Clock cycle period for scalable designs (nsec)

nmax 32 64 128 256 512 1024
Period 50 93 178 351 694 1382

Table 5.5 Clock cycle period for fixed designs (nsec)

 61

The number of clock cycles for all designs depends completely on the data and its

computation. For the scalable design, the number of cycles is a function of three

parameters: k, w and n. To compute any shifting, addition and/or subtraction, the number

of cycles is calculated as n/w. The total number of clock cycles to execute step 2 or 3 is

different than step 4. Step 4 needs extra n/w cycles for the shifting operation after it

(steps 5 or 6). The average number of clock cycles to perform each iteration of MHW-Alg

(step 2 through step 8) is calculated as

CPI1=(0.5n/w)+(0.5(2×n/w),

(CPI stands for the clock cycles per iteration within the loop: step 2 to 8). The number of

iterations of FHW-Alg is originally equal to k, but applying the multi-bit shifting of section

5.3.2, the average number of iterations reduces to 0.85k. An extra n/w cycles are needed

once after ending the loop of MHW-Alg (Section 5.3.3) to perform steps 9 and 10. The

overall average number of cycles to execute MHW-Alg equals

(CPI1×0.85k)+n/w.

Similarly, the average number of clock cycles of the scalable hardware to execute

MHW-Alg2 (Section 5.3.4) equals to

CPI2×(2n-k)/2;

where CPI2=2×n/w and (2n-k)/2 is the average number of iterations when shifting two

bits per iteration, as explained in section 5.3.4. The value of k (MHW-Alg and MHW-

Alg2) is within the range [n,2n] [1], which justify the use of its average of 3n/2, for

comparison purposes. The total number of clock cycles required by the scalable design to

complete Montgomery inverse computation is then calculated as

Cs=(2.4125n+1)n/w,

which was verified by several VHDL simulations.

For the fixed precision design to perform the CorPh after the AlmMonInv both using

multi-bit shifting algorithms as MHW-Alg and MHW-Alg2, the total average number of

clock cycles is n+0.35k; where 0.85*k cycles are used to execute MHW-Alg, and (2n-k)/2

cycles are allocated for MHW-Alg2. If k is approximated to its average of 3n/2 (similar to

the scalable design), the number of the clock cycles will be given by the function

Cf=1.525n.

 62

Several scalable hardware configurations are designed depending on different nmax and

w parameters. Each configuration can have different computation time depending on the

actual number of bits, n, used. For example, Figure 5.8 shows the delay of six scalable

hardware designs compared to the fixed precision hardware, all modeled for nmax=512 bits,

which is a practical number for future ECC applications [11]. Observe how the actual data

size (n) plays a big role on the speed of the designs. In other words, as n reduces and w is

small, the number of clock cycles decrease significantly, which considerably reduces the

overall computing time of the scalable design compared to the fixed precision one. This is

a major advantage of the scalable hardware.

Recall that the number of clock cycles of all designs depends on the actual size of the

data used and the actual data value. However, the fixed precision hardware clock period is

always assumed to have nmax bits to process. i.e., if the application needs only n=128 bits,

and all designs are made for nmax=512 bits, as the example of Figure 5.8, the fixed

precision design clock frequency is not affected by n and all nmax bits are treated in the

computation causing the fixed precision design to have a total time greater than all

configurations of the scalable designs. This observation was found valid for other nmax

values (designs for these cases we actually tested and synthesized). It was observed that all

scalable designs are faster than the fixed precision one while

In Figure 5.8, for example, as n<nmax/2 (n=256) the fixed precision hardware is faster than

the scalable one with w=4 bits and very similar to the design with w=8 bits. As n>3nmax/4

(n=384) the scalable design with w=16 has a speed that falls below the fixed precision one.

When n=nmax=512 the scalable design with w=32 bits has almost the same speed as the

fixed precision one, but the ones with w>nmax/16 bits remain faster. In fact, as w gets

bigger, the total time decreases, which is also true when comparing among the different

scalable designs as long as n≥w (Figure 5.8). Whenever n<w, considering the scalable

designs only, the advantage of the scalable designs reduces indicating that the number of

words to be processed reached its lower limit, but still the scalable designs are faster than

the fixed precision one.

 63

Figure 5.8 Delay comparison of designs with nmax = 512 bits

The previous speed comparison results depend on Leonardo�s clock periods

(technology dependent). If we use the technology independent method discussed in Section

3.5.2.2, the speed comparison is as shown in Figure 5.9. Note that all scalable hardware

designs are faster than the fixed precision designs while:

n < nmax / 1.5

Another observation from Figure 5.9 is that the scalable design configurations speeds

converge (tending to be very similar) when:

n > w.

This gives the general impression of disagreement with Leonardo�s speed comparison

results (Figure 5.8), which is due to the technology independent assumption

(Section 3.5.2.2) of considering the longest path of the designs only by the adders.

Although the adders dominate the longest paths of the designs, other components

(controller and data router) affects too.

 64

Figure 5.9 Technology independent speed comparison for all designs with nmax=512 bits

 65

6 SCALABLE AND UNIFIED HARDWARE TO COMPUTE MONTGOMERY
INVERSE IN GF(p) AND GF(2n)

6.1 Introduction

Cryptographic inverse calculations are normally defined over either prime or binary

extension fields [11], more specifically Galois Fields GF(p) or GF(2n). All available

application-specific integrated circuit (ASIC) implementations for inversion computation

[16-18,20-25] are created strictly for one finite field, either GF(p) or GF(2n). If the

hardware at hand is for GF(2n) calculations, such as [17,18,20-25], and the application

needs GF(p) computation, a completely different hardware is required [11]. It is inefficient

to have two hardware designs (one for GF(p) and another for GF(2n)) when only one is

needed each time. This issue motivated the search for a single unified hardware

architecture used to compute inversion in either finite field GF(p) or GF(2n), similar, in

principle, to the multiplier idea proposed in [7].

The GF(p) Montgomery inverse (MonInv) algorithm (presented in Chapter 5) is an

efficient method for doing inversion with an odd modulus. The algorithm is particularly

suitable for implementation on application specific integrated circuits (ASICs). For GF(2n)

inversion, the original inverse procedure (presented in [37]) has been extended to the finite

field GF(2n) in [35]. It replaces the modulus (p) by an irreducible polynomial (p(x)), and

adjusts the algorithm according to the properties of polynomials. We implemented the

inversion algorithms in hardware based on the observation that the Montgomery inverse

algorithm for both fields GF(p) and GF(2n) can be very similar. We show that a unified

architecture computing the Montgomery inversion in the fields GF(p) and GF(2n) is

designed at a price only slightly higher than the one for only the filed GF(p), providing

major savings when having both types of inverters is desirable or required.

A scalable Montgomery inverter design methodology for GF(p) was introduced in

Chapters 3 and 5. This methodology allows the use of a fixed-area Montgomery inverter

ASIC design to perform the inversion of unlimited precision operands. The design

tradeoffs for best performance in a limited chip area were also analyzed in Section 5.5. We

use the design approach as in [27] to obtain a scalable hardware module. Furthermore, the

scalable inverter described in this Chapter is capable of performing inversion in both finite

 66

fields GF(p) and GF(2n) and is for this reason called a scalable and unified Montgomery

inverter.

There are two main contributions of this Chapter. First, we show that a unified

architecture for inversion can be easily designed without compromising scalability and

without significantly affecting delay and area. Second, we investigate the effect of word

length (w) and the actual number of bits (n) on the hardware area, based on actual

implementation results obtained by synthesis tools. In Section 6.2, we propose the GF(2n)

extended Montgomery inverse procedure that has several features suitable for an efficient

hardware implementation. The unified architecture and its operation in both types of finite

fields, GF(p) and GF(2n), are described in Section 6.3. Section 6.4 presents the area/time

tradeoffs and appropriate choices for the word lengths of the scalable module. Finally, a

summary is discussed in Section 6.5.

6.2 Montgomery Inverse Hardware Procedures For GF(p) and GF(2n)

In order to design a unified Montgomery inverse architecture, the GF(p) and GF(2n)

algorithms need to be very similar and this way consume the least amount of extra

hardware. Extending the GF(p) Montgomery inverse algorithm to GF(2n) is practical due to

the removal of carry propagation required in the addition of GF(p) element and simple

adjustments of test conditions. In other words, the GF(2n) algorithm is like a simplification

of the GF(p) one. The converse (modifying GF(2n) algorithms for GF(p)), on the other

hand, is very difficult [7,11,35,36].

As explained before (Section 5.2), the scalable GF(p) Montgomery inverse (MonInv)

procedure proposed in this work consists in two phases: the almost Montgomery inverse

(AlmMonInv) and the correction phase (CorPh). Both GF(p) AlmMonInv and CorPh

algorithms were mapped to hardware features and further modified for multi-bit shifting, a

concept discussed in Section 5.3, which resulted in an efficient implementation of the

GF(p) Montgomery inverse. The GF(p) multi-bit shifting for both AlmMonInv and CorPh

hardware algorithms (MHW-Alg and MHW-Alg2, respectively), are outlined in Figure 6.1.

 67

MHW-Alg: GF(p) Multi-Bit Shifting AlmMonInv
Hardware Algorithm
Registers: u, v, r, s, x, y, z, and p (all registers hold nmax bits)
Input: a2m∈ [1, p-1]; Where p = modulus, and m≥n (2n-1≤p≤2n)
Output: result∈ [1, p-1] & k;
 Where result=a-12k-mmod p & n<k<2n
1. u = p; v = a2m; r = 0; s = 1; x = 0; y = 0; z = 0; k = 0
2. if(u2u1u0=000)then{u=ShiftR(u,3);s=ShiftL(s,3);k=k+3};goto 8
2.1. if(u2u1u0=100)then{u=ShiftR(u,2);s=ShiftL(s,2);k=k+2};goto 8
2.2. if(u2u1u0=110)then{u=ShiftR(u,1);s=ShiftL(s,1)};goto 7
3. if(v2v1v0=000)then{v=ShiftR(v,3);r=ShiftL(r,3);k=k+3};goto 8
3.1. if(v2v1v0=100)then{v=ShiftR(v,2);r=ShiftL(r,2);k=k+2};goto 8
3.2. if(v2v1v0=110)then{v=ShiftR(v,1);r=ShiftL(r,1)};goto 8
4. x = Subtract (u, v); y = Subtract (v, u); z = Add (r, s)
5. if(xborrow=0)then{u=ShiftR(x,1); r=z; s=ShiftL(s,1)};goto 7
6. s = z; v = ShiftR(y,1); r = ShiftL(r,1)
7. k = k + 1
8. if (v ≠ 0) go to step 2
9. x = Subtract (p, r); y = Subtract (2p, r)
10. if(xborrow = 0)then{result=x}; else{ result = y}

MHW-Alg2:GF(p) Multi-Bit Shifting CorPh
Hardware Algorithm
Registers: r, u, v, x, y, z, and p (all registers hold nmax bits)
Input: r, p, n, k;
 Where r (r=a-12k-mmod p)&k from MHW-Alg
Output: result; Where result = a-12m (mod p).
11. j = 2m-k; x = 0; y = 0; z = 0
12. v = 2p; u = 3p
13. While j > 0
14. if j =1 then {r = ShiftL(r,1); j=j-1}
15. else {r = ShiftL(r,2); j=j-2}
16. x=Subtract(r,p);y=Subtract(r,v);z=Subtract(r,u)
17. if (zborrow = 0) then {r = z}
18. else if (yborrow = 0) then {r = y}
19. else if (xborrow = 0) then {r = x}
20. result = r

Figure 6.1 Montgomery inverse hardware algorithm for GF(p)

Differently from what normally happens in a full-precision hardware design, the

scalable hardware, as in [6-8,27], has multi-precision operators for shifting, addition,

subtraction and comparison. Observe the AlmMonInv algorithm in Figure 6.1, for

example, the scalable subtraction (step 4) is also used for comparison (u>v), which is

performed on a word-by-word (w-bit words) basis until all the actual data words (all n bits)

are processed. Then, the final word borrow out bit is used to decide on the result. Also,

depending on the subtraction completion, variable r or s has to be shifted. All variables, u,

v, r and s, need to remain as is until the subtraction process is complete, and the borrow out

bit appears. For this reason, eight registers are required, as shown in Figure 6.1.

6.2.1 Representation and Manipulation of Elements in GF(2n)

The inversion algorithm for GF(2n) considered in this work was presented in [35].

Although prime and binary extension fields, GF(p) and GF(2n), have different properties,

the elements of either field are represented using similar data structures. The elements of

the field GF(2n) can be represented in several different ways [11]. The polynomial

representation, however, is a useful and appropriate form to the unified implementation, as

used for the unified multiplier in [7]. According to the GF(2n) polynomial representation,

 68

an element a(x) in GF(2n) is a polynomial of length n, i.e., of degree less than or equal to

n-1, written as

a(x)=an-1xn-1+an-2xn-2+ ... +a2x2+a1x+a0,

where ai is an element in GF(2). These coefficients ai are represented as bits in the

computer and the element a(x) is represented as a bit vector a=(an-1 an-2 ... a2 a1 a0).

The addition/subtraction of two elements a(x) and b(x) in GF(2n) is performed by

adding/subtracting the polynomials a(x) and b(x), where the coefficients are

added/subtracted in the field GF(2). As a consequence, both addition and subtraction

operations are exactly the same and equivalent to bit-wise XOR operations on the bit

vectors a and b (ai ⊕ bi). In order to compute the inverse of element a(x) in GF(2n), we

need an irreducible polynomial of degree n. Let the irreducible polynomial be

p(x)=xn+pn-1xn-1+pn-2xn-2+ ... +p2x2+p1x+p0 [11].

where pi is an element in GF(2). Whenever a polynomial degree, in the intermediate

inversion calculations, equals n, the polynomial should be reduced (XORed) by p(x). Lets

use the notation ||p(x)|| to represent the degree of a polynomial p(x). If, for example, ||r(x)||

= ||p(x)|| then r is replaced by p⊕ r. Note that in some cases ||r(x)|| = ||p(x)|| while r < p

(recall that r is the binary representation of r(x) as it is p for p(x)). These cases restrict the

comparison of r to 2n to indicate if r(x) needs to be reduced by p(x) (r=p⊕ r), which means

that r(x) is compared with xn (represented by 2n) and not p(x).

6.2.2 Montgomery Inverse in GF(2n)

The GF(2n) Montgomery inverse of a(x)xmmod p(x) is a(x)-1xmmod p(x) [11]. The

Montgomery factor 2m of GF(p) is replaced by xm in GF(2n), which is exactly equal to 2m in

a binary representation [7,11,35]. The restriction on m is the same as GF(p), it should not

be less than the number of bits (n), i.e., m≥n [1]. The elements of GF(p) and GF(2n) are

represented using similar binary data structure. Element a for both GF(p) and GF(2n) is

resembled by (an-1 an-2 ... a2 a1 a0) while p=(pn-1 pn-2 ... p2 p1 p0) for GF(p) and

p=(1 pn-1 pn-2 ... p2 p1 p0), polynomial p(x) for GF(2n) [11]. Our adjusted binary GF(2n)

 69

Montgomery inverse (MonInv) procedure consists in a GF(2n) AlmMonInv and a GF(2n)

CorPh routines as outlined in Figure 6.2.

GF(2n) AlmMonInv Algorithm

Input: a2m∈ GF(2n) & p; (p=irreducible polynomial & m≥n)
Output: result∈ [1, p-1] & k (result=a-12k-mmod p & n<k<2n)
1. u = p; v = a2m; r = 0; s = 1; k = 0
2. While (v > 0)
3. if u0 = 0 then {u = u/2; s = 2s}
4. else if v0 = 0 then {v = v/2; r = 2r}
5. else if u>v then {u = (u⊕ v)/2; r = r⊕ s; s = 2s}
6. else {v = (u⊕ v)/2; s = r⊕ s; r = 2r}
7. k=k+1
8. if r ≥ 2n+1 (||r|| > ||p||) then {result = 2p⊕ r}
9. else if r ≥ 2n (||r|| = ||p||) then {result = p⊕ r}
10. else result = r

GF(2n) CorPh Algorithm

Input: r, p, m, & cowherd r & k from AlmMonInv
Output: result; Where result = a-12m (mod p)
11. j = 2m-k
12. While j > 0
13. r = 2r
14. if r ≥ 2n (||r|| = ||p||) then {r = p⊕ r}
15. j = j-1
16. result = r

Figure 6.2 GF(2n) Montgomery inverse algorithm in its binary representation

For more clarification of the GF(2n) MonInv computation, see the numerical example

in Figure 6.3. It takes as inputs the polynomial a(x)=x3+1, represented into Montgomery

domain as a(x)x9mod p(x) = x4+x2 (m=9≥n=5), and p(x)=x5+x2+1 as the irreducible

polynomial. All the data are shown in its binary representation (a=1001, a2m=10100, and

p=100101). The example (Figure 3) follows the convention:

condition met ! affected registers with their updated values.

The AlmMonInv routine generates the results a-12k-m=1000, and k=(10)10 (k is a

normal decimal counter), which are used by the CorPh to provide the Montgomery inverse

result of 111 (x2+x+1 in the polynomial form). The reader is referred to Appendix B for

checking the result of this example.

Observe on Figure 6.2 the several hardware operations applied to compute the

MonInv in finite field GF(2n). For example, the division and multiplication by two are

equivalent to one bit shifting the binary representation of polynomials to the right and to

the left, respectively. Checking the condition of step 5, if u>v, is performed through

normal (borrow propagate) subtraction and test of the borrow-out bit. The subtraction

result is completely discarded, only the borrow bit is observed. If the borrow bit is zero,

then u(x) is greater than v(x). Similarly, the conditions of steps 8, 9, and 14 demands

 70

normal subtraction. However, the subtraction this time is used to check ||r(x)||, which

requires the availability of xn (2n in binary) saved in a register.

GF(2n) AlmMonInv Numerical Example

a = 1001 ∈ GF(25), p=100101, m= 9, n=5
a2m mod p = 10100 ∈ GF(26) (a in Montgomery domain)
u = p = 100101, v = a2m = 10100, s = 1, r = k = 0
v0 = 0 ! v = 1010, r = 0, k=1
v0 = 0 ! v = 101, r = 0, k=2
u > v ! u = 10000, r = 1, s = 10, k=3
u0 = 0 ! u = 1000, s = 100, k=4
u0 = 0 ! u = 100, s = 1000, k=5
u0 = 0 ! u = 10, s = 10000, k=6
u0 = 0 ! u = 1, s = 100000, k=7
v > u ! v = 10, s = 100001, r = 10, k=8
v0 = 0 ! v = 1, r = 100, k=9
u = v ! v = 0, r = 1000, s = 100101, k=10
||r||<||p|| ! result = r

GF(2n) CorPh Numerical Example

p=100101, m= 9, n= 5
r = 1000 ∈ GF(26), k=10 (from AlmMonInv)
j = 8
r = 10000, j = 7
r = 100000, ||r|| = ||p|| ! r = 101, j = 6
r = 1010, j = 5
r = 10100, j = 4
r = 101000, ||r|| = ||p|| ! r =1101, j = 3
r = 11010, j = 2
r = 110100, ||r|| = ||p|| ! r =10001, j = 1
r = 100010, ||r|| = ||p|| ! r = 111, j = 0

∴ GF(2n) MonInv of 10100 = 111 (a-12m);
 Where m=9 & n = 5

Figure 6.3 GF(2n) MonInv computation numerical example

6.2.3 Multi-Bit Shifting

A further improvement on the GF(2n) MonInv algorithm is performed based on a

multi-bit shifting method making it similar to the GF(p) algorithm in Figure 6.1. After

comparing different multi-bit shifting distances applied to reduce the number of iterations

of the GF(p) MonInv algorithm, the best maximum distance for multi-bit shifting was

found to be three, as clarified in Section 5.3. The GF(2n) inverse algorithm (Figure 6.2) is

mapped to hardware involving multi-bit shifting and making it very similar to the GF(p)

algorithm (Figure 6.1) as shown in Figure 6.4. Note that xn is required in the GF(2n)

algorithm as an extra variable that is needless in the GF(p) MonInv algorithm; xn (2n) is

saved in register y in MHW-Alg3 (used in step 9), and in register s in MHW-Alg4 (used in

step 16.1). These registers (y in MHW-Alg3 and s in MHW-Alg4) are not changed during

the algorithms execution.

For both GF(p) and GF(2n) MonInv hardware algorithms (Figure 6.1 and Figure 6.4,

respectively), the AlmMonInv algorithm needs to finish its computation completely before

the CorPh begins processing. This data dependency allows the use of the same hardware to

 71

execute both algorithms, i.e., both the AlmMonInv and CorPh. The algorithms are

implemented in the unified and scalable hardware architecture as described in the

following section.

MHW-Alg3:GF(2n) Multi-Bit Shifting AlmMonInv HW
Algorithm
Registers: u, v, r, s, x, y, z, & p (all registers hold nmax bits)
Input: a2m, 2n∈ [1,p-1] (p=irreducible polynomial & m≥n)
Output: result∈ [1, p-1] & k (result=a-12k-mmod p & n<k<2n)
1. u = p; v = a2m; r = 0; s = 1; x = 0; y = 2n; z = 0; k = 0
2. if(u2u1u0=000)then{u=ShiftR(u,3);s=ShiftL(s,3);k=k+3};goto 8
2.1. if(u2u1u0=100)then{u=ShiftR(u,2);s=ShiftL(s,2);k=k+2};goto 8
2.2. if(u2u1u0=110)then{u=ShiftR(u,1);s=ShiftL(s,1)};goto 7
3. if(v2v1v0=000)then{v=ShiftR(v,3);r=ShiftL(r,3);k=k+3};goto 8
3.1. if(v2v1v0=100)then{v=ShiftR(v,2);r=ShiftL(r,2);k=k+2};goto 8
3.2. if(v2v1v0=110)then{v=ShiftR(v,1);r=ShiftL(r,1)};goto 8
4. S1 = Subtract (u, v); x = v⊕ u; z = r⊕ s
5. if(S1borrow=0)then{u=ShiftR(x,1); r=z; s=ShiftL(s,1)};goto 7
6. s = z; v = ShiftR(x,1); r = ShiftL(r,1)
7. k = k + 1
8. if (v ≠ 0) go to step 2
9. x = p⊕ r ; z = 2p⊕ r ; S1 = Subtract (y,x); S2 = Subtract (y,z)
10. if(S1borrow=0)then{result=x}
10.1 else if(S2borrow=0)then{result=z}
10.2 else {result = r}

MHW-Alg4:GF(2n) Multi-Bit Shifting CorPh HW
Algorithm
Registers: r, u, v, s, x, y, z, & p (all registers hold nmax bits)
Input: r, p, m, 2n & k;
 Where r (r=a-12k-mmod p)& k from HW-Alg3
Output: result; Where result = a-12m (mod p).
11. j = 2m-k-1; x = 0; y = 0; z = 0
12. v = 2p; u = 3p; s = 2n
13. While j > 0
14. if j =1 then {r = ShiftL(r,1); j=j-1}
15. else {r = ShiftL(r,2); j=j-2}
16. x = p⊕ r ; y = u⊕ r ; z = u⊕ r
16.1 S1=Subtract(s,x);S2=Subtract(s,y);S3=Subtract(s,z)
17. if (S3borrow = 0) then {r = z}
18. else if (S2borrow = 0) then {r = y}
19. else if (S1borrow = 0) then {r = x}
20. result = r

Figure 6.4 Montgomery inverse hardware algorithm for GF(2n)

6.3 Unified and Scalable Inverter Architecture

Taking into account the amount of effort, time, and money that must be invested in

designing an inverter, a scalable and unified architecture which can perform arithmetic in

two commonly used algebraic finite fields, GF(p) and GF(2n) [11,35], is clearly

advantageous. In this section, we present the hardware design of a Montgomery inverse

architecture that can be used for both types of fields following the design methodology

presented in [27]. The proposed unified architecture is obtained from the scalable

architecture given in [27] but with some modifications, which slightly increased the longest

path propagation delay and area. The scalable GF(p) Montgomery inverse architecture

presented in [27] consisted in two main units, a non-scalable memory unit and a scalable

computing unit. The memory unit is not scalable because it has a limited storage defined

by the value of nmax. The data values of a and p are first loaded in the memory unit. Then,

the computing unit read/write (modify) the data using a word size of w bits. The computing

 72

unit is completely scalable. It is designed to handle w bits every clock cycle. The

computing unit does not know the total number of bits, nmax, the memory is holding. It

computes until the controller indicates that all operands� words were processed. Note that

the actual numbers used may be way smaller than nmax bits. The user needs to identify the

type of finite field his application needs at the beginning of the computation. An input

signal FSEL (field select) is dedicated to tell the architecture weather GF(p) or GF(2n) is

the arithmetic domain for this particular inversion calculation.

The block diagram for the Montgomery inverter hardware is shown in Figure 6.5. The

memory unit is connected to the computing unit components. The memory unit is not

changed from what is presented in [27]. It contains a counter to compute variable k and

eight first-in-first-out (FIFO) registers used to store the inversion algorithm�s variables. All

registers, u, v, r, s, x, y, z and p, are limited to hold at most nmax bits. Each FIFO register has

its own reset signal generated by the controller. They have counters to keep track of n (the

number of bits actually used by the application).

The computing unit is made of four hardware blocks, the add/subtract, shifter, data

router, and controller block. The GF(p) add/subtract unit and the data router are the only

components that need to be adjusted to make the inverter hardware unified for GF(p) and

GF(2n) finite fields.

The GF(p) add/subtract unit is originally built of two w-bit subtractors, a w-bit

adder/subtractor, four flip-flops, one multiplexer, a w-bit comparator, and logic gates, as

detailed in [27]. This unit is adjusted to operate for GF(2n) by adding a set of 3w parallel

XOR gates used for steps 4 and 9 of MHW-Alg3 and step 16 of MHW-Alg4. The new

add/subtract unit is shown in Figure 6.6. The signal Control lets the unit perform either two

subtractions and one addition (step 4 of MHW-Alg), or three subtractions (step 16 of

MHW-Alg2 and step 16.1 of MHW-Alg4). Three flip-flops are used to hold the

intermediate borrow-bits of the subtractors and the carry-bit of the adder to implement the

multi-precision operations. The fourth flip-flop is used to store a flag that keeps track of

the comparison between u and v, which is used to perform step 8 of MHW-Alg and MHW-

Alg3. The subtractors borrow-out bits are connected to the controller through signals that

are useful only at the end of each multi-precision addition/subtraction operation.

Subtractor1 borrow-out bit will affect the flow of the operation to choose either step 5 or

step 6 of both MHW-Alg and MHW-Alg3. It is also essential in electing the result

 73

observed in step 10 of MHW-Alg and of MHW-Alg2. The three subtractors borrow-out

bits (S1borrow, S2borrow, S3borrow) are likewise necessary for selecting the correct solution of

the �if� condition to be one of the steps 17, 18, or 19, from the MHW-Alg2 and from the

MHW-Alg4 algorithms.

Figure 6.5 Scalable and unified inverter hardware

The shifter is made of two multiplexers and two registers with special mapping of

some data bits, as shown in Figure 5.5. Depending on the controller signal Distance, the

shifter acts as a one, two, or three-bit shifter. Two types of shifting operations are needed

in the MHW-Alg and the MHW-Alg3 algorithms, shifting an operand (u or v) through the

uv bus one, two, or three bits to the right, and shifting another operand (r or s) through the

rs bus by a similar number of bits to the left. Shifting u or v is performed through

 74

Register1, which is of size w-1 bits. For each word, all the bits of uv are stored in Register1

except for the least significant bit(s) to be shifted, it is (or they are) read out immediately as

the most significant bit(s) of the output bus uv_out. Shifting r or s to the left is performed

via Register2, which is of size w+3 bits similar to shifting uv but to the other direction.

When executing the MHW-Alg2 or MHW-Alg4, the shifting is performed either to one or

two bits to the left only, which is via MUX2 and Register2 ignoring MUX1 and Register1.

Figure 6.6 Add/Subtract unit of the scalable and unified hardware

The data router capabilities are extended to satisfy the unified architecture

requirements. It interconnects the memory, add/subtract, and shifter units. The possible

configurations of the data router are shown in Figure 6.7.

 75

Figure 6.7 Data router configurations

6.4 Modeling and Analysis

The unified and scalable inverter was modeled and simulated in VHDL. Previously, a

GF(p) fixed precision and other scalable inverter designs were also implemented in VHDL.

All developed VHDL implementations of the scalable designs, including the new unified

ones, have two main parameters, namely nmax and w. The fixed precision hardware,

however, is parameterized by nmax only. Their area and speed are presented in this section.

Also a reconfigurable hardware [35] that can perform the inversion in both GF(p) and

GF(2n) is considered in the comparison. As in the previous Chapters, we didn�t define a

specific architecture for the adders and subtractors to be used in our VHDL

implementations. Thus, the synthesis tool chooses the best option in terms of area from its

library of standard cells.

 76

6.4.1 Area Comparison

The exact area of any design depends on the technology and minimum feature size.

For technology independence, we use the equivalent number of NOT-gates as an area

measure [14]. A CAD tool from Mentor Graphics (Leonardo) was used like Section 3.5. In

general, Leonardo takes the VHDL design code and provides a synthesized model with its

area and longest path delay. The target technology is a 0.5µm CMOS defined by the

�AMI0.5 fast� library provided in the ASIC Design Kit (ADK) from the same Mentor

Graphics Company [19]. It has to be mentioned here that the ADK is developed for

educational purposes and cannot be thoroughly compared to technologies adopted for

marketable ASICs. It however, provides a framework to contrast all scalable hardware

designs together and with the fixed precision one. The sizes of the designs are compared in

Figure 6.8. Observe that the fixed precision design has a better area if the maximum

number of bits used (nmax) is small which is useless in cryptographic applications [11]. The

unified designs are larger than the GF(p) ones with a calculated average of 8.4% more

hardware area.

Figure 6.8 Area comparison

 77

The areas of the unified designs were also compared with the reconfigurable hardware

[35], but not shown in Figure 6.8. The reconfigurable design core is built of 880,000

devices [35]. Assume a device is corresponding to a transistor and our NOT-gate is

equivalent to two transistors [14], so the reconfigurable hardware core is equivalent to

440,000 gates, which is greater eight times than the largest unified hardware.

6.4.2. Speed Comparison

The total computation time is a product of the number of clock cycles the algorithm

takes and the clock period of the final VLSI implementation. This clock period changes

with the value of w in the unified and scalable hardware, and changes with the value of nmax

in the fixed precision hardware. This is because w = nmax in the fixed precision hardware.

All VHDL coded designs clock cycle periods are generated automatically by Leonardo,

which determines the longest path delay of the hardware circuits. The clock period of the

reconfigurable design is set to 20 nanoseconds/cycle (it operates at 50MHz clock

frequency) [35].

The number of clock cycles depends completely on the data and the algorithm. A

probabilistic study described in Chapter 5 is used to estimate the average number of clock

cycles. For the fixed precision design, the average number of clock cycles equal to

Cf = 1.525n.

For all scalable designs, the function of the average number of clock cycles would be

Cs=(2.4125n+1)n/w,

which is exactly the same for the unified designs presented in this paper. Hence, adjusting

the scalable designs to be unified did not change the number of clock cycles of the inverse

computation. However, the clock cycle period of the unified designs increased slightly,

making the total computation time of the unified hardware worse than what was given in

Chapter 6. The number of clock cycles for the reconfigurable hardware [35] to complete

the inversion process is reported as

Cr=14.5n.

Similar to the GF(p) scalable hardware of Chapter 6, the unified and scalable

hardware can have several designs for each nmax depending on w. For example, Figure 6.9

 78

shows the delay of several designs of the unified and scalable hardware compared to the

reconfigurable, GF(p) scalable, and fixed precision hardware designs, all modeled for

nmax=512 bits. Observe how the actual data size (n) plays a big role on the speed of the

designs. In other words, as n reduces and w is small, the number of clock cycles decrease

significantly, which considerably reduces the overall computing time of all scalable

designs (including the unified ones) compared to the fixed precision and reconfigurable

ones. This is a major advantage of the scalable hardware over the fixed precision [27] and

reconfigurable ones.

Figure 6.9 Delay comparison of designs with nmax = 512 bits

 79

The new unified designs when compared to the GF(p) scalable ones have very similar

characteristics. Overall, it computes the inverse in an average of 19.8% more time than the

GF(p) desings (Chapter 5). Another observation from Figure 6.9 is that the unified designs

are faster than the fixed precision one as long as:

which is generalized for all different nmax designs after performing several experimental

tests, namely for nmax= 32, 64, 128, 512 and 1024 bits. Figure 6.9 also shows that the

unified designs are comparable to the reconfigurable one giving better performance while:

Consider the case when n=nmax=512 bits in Figure 6.9, the unified design with w=64

bits has almost the same speed as the fixed precision one, but the ones with w=128 bits

remain faster. In fact, as w gets bigger the total time decreases, which is also true when

comparing among the different unified designs while n≥w, as also proven before in

Chapter 5 for the GF(p) scalable designs. Whenever n<w considering the unified and

scalable designs, the scalability advantage of these designs is reduced since the number of

words to be processed reached its lower limit, but still the unified and scalable designs are

faster than the fixed precision one.

6.5 Summary

This Chapter presents a scalable inverter for both finite fields GF(p) and GF(2n) in a

unified hardware module that applies the design approach proposed in [27]. The primary

contribution of this research is to show that it is possible to design a unified hardware

without compromising scalability and area efficiency. The unified inverter hardware is

built of two main units, a memory unit and a computing unit. The memory unit defines the

upper bound of the number of bits that the hardware can handle. The computing unit is the

real scalable hardware, it is designed to fit in constrained areas and perform the

computation of numbers in a repetitive way. Our analysis shows that as the word size of

the scalable computing unit reduces, the hardware area decreases and the possible clock

frequency increases.

 80

The comparisons with other designs show that this unified and scalable structure is

very attractive for cryptographic systems, particularly for ECC because of its need for

modular inversion of large numbers in both finite fields GF(p) and GF(2n). The

experimental work shows that the scalable and unified design can be faster or competitve

with other alternatives using significantly less area.

 81

7 CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

 In this thesis, several contributions to the Montgomery modular inverse computation

in hardware have been achieved as summarized below:

• We considered the GF(p) Montgomery inverse algorithms and proposed

modifications that are applicable for hardware implementations.

• We proposed new scalable designs to compute the Montgomery inverse, which

consists in a hardware module that fits on constrained areas and still handle

operands of any size. In order to have long-precision calculations, the module

works on small precision words. The word-size, which the module operates, can be

selected based on the area and performance requirements. The upper limit on the

operand precision is dictated only by the available memory to store the operands

and internal results. The scalable module is in principle capable of performing

infinite-precision Montgomery inverse computation of an integer, modulo a prime

number.

• We adopted multi-bit shifting technique to the Montgomery inverse algorithms,

which reduced the number of iterations significantly and speeded up the entire

inversion process with small amount of extra hardware.

• We proposed a fast Montgomery inverse method by introducing a new correction

phase for a previously proposed almost Montgomery inverse algorithm. This

approach eliminated the need for a multiplier in the inversion process, using nearly

the same hardware designed for the almost Montgomery inverse algorithm.

• We proposed a scalable and unified architecture for a Montgomery inverse

hardware that operates in both GF(p) and GF(2n) fields. We adjust a GF(2n)

Montgomery inverse algorithm to accommodate the hardware features and benefit

from the multi-bit shifting method making it very similar to the proposed best

design of GF(p) inversion hardware. A comparison of our scalable and unified

design with a reconfigurable hardware [35] shows that the scalable design saves a

lot of area and operates in comparable speed. We also compared all scalable

 82

designs with fully parallel ones based on the same basic inversion algorithm. All

scalable designs consumed less area and in general showed better performance

than the fully parallel ones, which concluded that the scalable design a very

efficient solution for the long precision numbers Montgomery modular inverse

computation.

7.2 Future Work

Several future research works may be considered as a continuation on this study.

• The registers of the non-scalable part could be modified to incorporate the bit-

shifting operation. This way, the registers would have the capability to shift all

their bits at once inside the memory. This feature will reduce the shifting

operation delay from (n /w +1) clock cycles to one.

• The longest path of the inversion design is through the adders. Other adders,

besides carry-look-ahead, could be used in the designs and give a more definite

picture of its impact on the overall performance.

• The proposed Montgomery inverse algorithms are performing two main

operations (shifting and adding). These operations are performed separately in

different clock cycles. It would be interesting to investigate if the shifting

operation can be merged with addition and further speedup the inversion process.

• The non-scalable part (memory unit) is not synthesized, which needs its

components (registers and counters) to be modeled specifically for each w value.

In other words, the non-scalable part is built in a parametrizable manner to let it

be flexible for any w value. This flexibility prevented it from being synthesized.

This requests that this non-scalable part is to be redesigned in different modules

structures. Each module is built specifically for every w value such as w= 4, 8, 16,

32, 64, and 128 bits. Every specific non-scalable module will be connected to the

scalable part and synthesized together, which is promising to give more realistic

area and frequency values.

• The non-scalable part is the limiting part, which will limit the hardware capability.

If this limit is exceeded even by one bit the non-scalable part is to be replaced.

 83

Instead of replacing it, the non-scalable part could be implemented separately on a

programmable hardware, such as an FPGA, which is reprogrammed whenever any

change is to take place, while the scalable part remains the same.

 84

BIBLIOGRAPHY

[1] Savas, and Koç, �The Montgomery Modular Inverse � Revisited�, IEEE Trans. on
Computers, 49(7):763-766, July 2000.

[2] Kobayashi, and Morita, �Fast Modular Inversion Algorithm to Match Any Operation
Unit�, IEICE Trans. Fundamentals, E82-A(5):733-740, May 1999.

[3] Kaliski, �The Montgomery Inverse and its Applications�, IEEE Trans. on Computers,
44(8):1064-1065, August 1995.

[4] Rivest, Shamir, and Adleman, �A Method for Obtaining Digital Signature and Public-
Key Cryptosystems�, Comm. ACM, 21(2):120-126, February 1978.

[5] Diffie, and Hellman, �New Directions on Cryptography�, IEEE Trans. on Information
Theory, 22:644-654, November 1976.

[6] Tenca, and Koç, �A Scalable Architecture for Montgomery Multiplication�, In
Cryptographic Hardware and Embedded Systems, no. 1717 in Lecture notes in Computer
Science, Springer, Berlin, Germany, 1999.

[7] Savas, Tenca, and Koç, �A Scalable and Unified Multiplier Architecture for Finite
Fields GF(p) and GF(2k)�, In Cryptographic Hardware and Embedded Systems, Lecture
notes in Computer Science. Springer, Berlin, Germany, 2000.

[8] Tenca, Todorov, and Koç, �High-Radix Design of a Scalable Modular Multiplier�,
Workshop on Cryptographic Hardware and Embedded Systems, CHES 2001, Paris,
France, May 14-16 2001.

[9] Chung, Sim, and Lee, �Fast Implementation of Elliptic Curve Defined over GF(pm) on
CalmRISC with MAC2424 Coprocessor�, Workshop on Cryptographic Hardware and
Embedded Systems, CHES 2000, Massachusetts, August 2000.

[10] Atsuko Miyaji, �Elliptic Curves over FP Suitable for Cryptosystems�, Advances in
cryptology- AUSCRUPT�92, Australia, December 1992.

[11] Blake, Seroussi, and Smart, Elliptic Curves in Cryptography, Cambridge University
Press: New York, 1999.

[12] Hankerson, Hernandez, and Menezes, �Software Implementation of Elliptic Curve
Cryptography Over Binary Fields�, Workshop on Cryptographic Hardware and Embedded
Systems, CHES 2000, Massachusetts, August 2000.

[13] Tocci, R. J. and Widmer, N. S., �Digital Systems: Principles and Applications�,
Eighth Edition, Prentice-Hall Inc., New Jersey, 2001.

 85

[14] Ercegovac, M. D., Lang, T., and Moreno, J. H., Introduction to Digital System, John
Wiley & Sons, Inc., New York, 1999.

[15] Montgomery, P.L., �Modular Multiplication Without Trail Division�, Mathematics of
Computation, 44(170): 519-521, April 1985.

[16] Naofumi Takagi, �Modular Inversion Hardware with a Redundant Binary
Representation�, IEICE Transactions on Information and Systems, E76-D(8): 863-869,
August 1993.

[17] Guo, J.-H., and Wang, C.-L., �Hardware-Efficient Systolic Architecture for Inversion
and Division in GF(2m)�, IEE Proceedings: Computers and Digital Techniques, 145(4):
272-278, July 1998.

[18] Choudhury, P. Pal., and Barua, R., �Cellular Automata Based VLSI Architecture for
Computing Multiplication and Inverses in GF(2m)�, Proceedings of the 7th IEEE
International Conference on VLSI Design, Calcutta, India, January 5-8 1994.

[19] Mentor Graphics Co., ASIC Design Kit, http://www.mentor.com/partners/hep/
AsicDesignKit/dsheet/ami05databook.html

[20] Hasan, M. A., �Efficient Computation of Multiplicative Inverse for Cryptographic
Applications�, Proceeding of the 15th IEEE Symposium on Computer Arithmetic, Vail,
Colorado, June 11-13 2001.

[21] Guo, J.-H., and Wang, C.-L., �Systolic Array Implementation of Euclid�s Algorithm
for Inversion and Division in GF(2m)�, IEEE Trans. on Computers, 47(10):1161-1167,
October 1998.

[22] Fenn, S. T. J., Benaissa, M., and Taylor, D., �GF(2m) Multiplication and Division
Over the Dual Basis�, IEEE Trans. on Computers, 45(3):319-327, March 1996.

[23] Wang, C. C., Truong, T. K., Shao, H. M., Deutsch, L. J., Omura, J. K., and Reed, I. S.,
�VLSI Architectures for Computing Multiplications and Inverses in GF(2m)�, IEEE Trans.
on Computers, C-34(8):709-717, August 1985.

[24] Feng, G.-L., �A VLSI Architecture for Fast Inversion in GF(2m)�, IEEE Trans. on
Computers, 38(10):1383-1386, October 1989.

[25] Kovac, M., Ranganathan, N. and Varanasi M., �SIGMA: A VLSI Systolic Array
Implementation of Galois Field GF(2m) Based Multiplication and Division Algorithm�,
IEEE Trans. on VLSI, 1(1):22-30, March 1993.

[26] Charles J. Stone, A course in probability and statistics, Duxbury Press, Belmont,
1996.

 86

[27] A. A. Gutub, A. F. Tenca, and C. K. Koç, �Scalable VLSI Architecture for GF(p)
Montgomery Modular Inverse Computation�, ISVLSI 2002 - IEEE Computer Society
Annual Symposium On VLSI, Pittsburgh, Pennsylvania, April 25-26 2002.

[28] Miyaji A., �Elliptic Curves over FP Suitable for Cryptosystems�, Advances in
cryptology- AUSCRUPT�92, Australia, December 1992.

[29] Stallings, W. Cryptography and Network Security: Principles and Practice, Second
Edition, Prentice Hall Inc., New Jersey, 1999.

[30] Okada, Torii, Itoh, and Takenaka, �Implementation of Elliptic Curve Cryptographic
Coprocessor over GF(2m) on an FPGA�, Workshop on Cryptographic Hardware and
Embedded Systems, CHES 2000, Massachusetts, August 2000.

[31] Orlando, and Paar, �A High-Performance Reconfigurable Elliptic Curve Processor for
GF(2m)�, Workshop on Cryptographic Hardware and Embedded Systems, CHES 2000,
Massachusetts, August 2000.

[32] Stinson, D. R., Cryptography: Theory and Practice, CRC Press, Boca Raton, Florida,
1995.

[33] Paar, Fleischmann, and Soria-Rodriguez, �Fast Arithmetic for Public-Key Algorithms
in Galois Fields with Composite Exponents�, IEEE Transactions on Computers, 48(10),
October 1999.

[34] Michener, J. R., and Mohan, S. D., �Internet Watch: Clothing the E-Emperor�,
Computer � Innovative Technology for Computer Professionals, IEEE Computer Society,
34(9):116-118, September 2001.

[35] Goodman, J. and Chandrakasan, A. P., �An Energy-Efficient Reconfigurable Public-
Key Cryptogrphy Processor�, IEEE Journal of solid-state circuits, 36(11):1808-1820,
November 2001.

[36] Koc and Acar, �Montgomery multiplication in GF(2k)�, Designs, Codes and
Cryptography, 14(1):57-69, April 1998.

[37] D.E. Knuth, The Art of Computer Programming � Seminumerical Algorithms, 2nd ed.
Vol. 2, Reading, MA : Addison-Wesley, 1981.

[38] Tudor Jebelean, �Systolic Algorithms for Long Integer GCD Computation�, CONPAR
94 - VAPP VI, Third Joint International Conference on Vector and Parallel Processing,
Linz, Austria, September 6-8, 1994, Proceedings. Lecture Notes in Computer Science 854,
pages 241-252, Springer, 1994.

[39] Kung, H. T., �Why Systolic Architectures?�, Computer, 15:37-46, 1982.

 87

[40] Menezes, A.J., P.C. van Oorschot, and S.A. Vanstone, Handbook of Applied
Cryptography, CRC Press, Boca Raton, Florida, 1996.

[41] Schneier, B., Applied Cryptography: Protocols, Algorithms, and Source Code in C,
John Wiley & Sons, New York, 2nd edition, 1996.

 88

APPENDICES

 89

A THE EXTENDED EUCLIDEAN ALGORITHM

When we divide one integer by another (nonzero) integer we get an integer quotient

(the "answer") plus a remainder (generally a rational number). For instance,

13/5 = 2 ("the quotient") + 3/5 ("the remainder").

We can rephrase this division, totally in terms of integers, without reference to the division

operation:

13 = 2 × 5 + 3

Note that this expression is obtained from the one above it by multiplying both sides of the

equation by the divisor 5.

If a and b are positive integers, there exist unique non-negative integers q and r such that :

a = q × b + r , where 0 ≤ r < b.

q is called the quotient and r the remainder.

The greatest common divisor of integers a and b, denoted by gcd(a,b), is the largest integer

that divides (remainder = 0) both a and b. So, for example:

gcd(15, 5) = 5, gcd(7, 9) = 1, gcd(12, 9) = 3, gcd(81, 57) = 3.

The gcd of two integers can be found by repeated application of the division algorithm, this

is known as the Euclidean Algorithm [11]. In this algorithm, the divisor is repeatedly

divided by the remainder until the remainder of this operation is 0. The gcd is the last non-

zero remainder in this algorithm.

The Euclidean Algorithm:

Inputs: integers a, b.
Output: gcd(a, b)
1. while b ≠ 0:
2. r = a mod b
3. a = b
4. b = r
5. return gcd(a, b) = a

The following example shows the algorithm. Finding gcd(81,57) by the Euclidean

Algorithm:

 90

81 =1 × 57 +24
57 =2 × 24 +9
24 =2 × 9 +6
9 =1 × 6 +3

6 = 2 × 3 + 0.

It is well known [11] that if the gcd(a, b) = r then there exist integers u and s such that:

u × a + s × b = r

By reversing the steps in the Euclidean Algorithm, it is possible to find these integers u and

s. We shall do this with the above example:

Starting with the next to last line, we have:

3 = 9 - 1× 6

From the line before that, we see that 6 = 24 - 2 × 9, so:

3 = 9 - 1 × (24 - 2 × 9) = 3 × 9 - 1 × 24

From the line before that, we have 9 = 57 - 2 × 24, so:

3 = 3 × (57 - 2 × 24) - 1 × 24 = 3 × 57 - 7 × 24

And, from the line before that 24 = 81 - 1 × 57, giving us:

3 = 3 × 57 - 7 × (81 - 1 × 57) = 10 × 57 - 7 × 81

So we have found u = -7 and s = 10.

The procedure we have followed above is a bit messy because of all the back

substitutions we have to make. It is possible to reduce the amount of computation involved

in finding u and s by doing some auxiliary computations as we go forward in the Euclidean

algorithm (and no back substitutions will be necessary). This is known as the Extended

Euclidean Algorithm.

The Extended Euclidean Algorithm:

Inputs: two non-negative integers a, b with a ≥ b
Outputs: d = gcd(a,b) and integers x,y such that ax+by=d
1. If b = 0 then set d ← a, x ← 1, y ← 0 and return (d,x,y)
2. Set x2 ← 1, x1 ← 0, y2 ← 0, y1 ← 1
3. While b > 0 do :

3.1 q ← a/b , r ← a � qb , x ← x2 - qx1 , y ← y2 - qy1
3.2 a ← b , b ← r, x2 ← x1 , x1 ← x , y2 ← y1 , y1← y

4. Set d ← a , x ← x2 , y ← y2 and return (d,x,y)

 91

A.1 The Extended Euclidean Algorithm to obtain the inverse of a number mod p

 Suppose we had to find the inverse of a number mod p. This turned out to be a

difficult task (and not always possible) [11]. A number x has an inverse mod p (i.e., a

number y so that x.y = 1 mod p) if and only if gcd(x,p) = 1, which implies that there exist

integers u and s such that

u.x + s.p = 1.

But this says that u.x = 1 + (-s)p, or in other words, u.x ≡ 1 (mod p). So, u (reduced

mod p if need be) is the inverse of x mod p. The Extended Euclidean algorithm will give us

a method for calculating u efficiently (note that in this application we do not care about the

value of s, so we will simply ignore it.)

Let�s take a numerical example to find the inverse of 15 mod 26. We will number the

steps of the extended Euclidean algorithm computation starting with step 0. The quotient

obtained at step i will be denoted by qi. As we carry out each step of the extended

Euclidean algorithm, we will also calculate an auxiliary number, ui. For the first two steps,

the value of this number is given: u0=0 and u1=1. For the remaining steps, we recursively

calculate ui = ui-2 - ui-1 qi-2 (mod p). Continue this calculation for one step beyond the last

step of the algorithm to find the inverse. The algorithm starts by "dividing" p by x. If the

last non-zero remainder occurs at step k, then if this remainder is 1, x has an inverse and it

is uk+2. (If the remainder is not 1, then x does not have an inverse.) Here are the steps of the

numerical example to find the inverse of 15 mod 26.

step 0: 26 = 1 × 15 + 11 u0 = 0
step 1: 15 = 1 × 11 + 4 u1 = 1
step 2: 11 = 2 × 4 + 3 u2 = 0 - 1 × 1 mod 26 = 25
step 3: 4 = 1 × 3 + 1 u3 = 1 - 25× 1 mod 26 = -24 mod 26 = 2
step 4: 3 = 3 × 1 + 0 u4 = 25 - 2 × 2 mod 26 = 21
 u5 = 2 - 21× 1 mod 26 = -19 mod 26 = 7

Notice that 15 × 7 = 105 = 1 + 4 × 26 ≡ 1 (mod 26).

 92

A.2 The Binary Euclidean Algorithm

The Euclidean algorithm can be rephrased to a division-free approach by applying the

following three observations:

1. If u and v are both even, gcd(u,v) = 2 gcd(u/2, v/2).

2. If u is even and v is odd, gcd(u,v) = gcd(u/2, v).

3. Otherwise both are odd, and gcd(u,v) = gcd(|u-v|/2, v). (Euclid's algorithm with a

division by 2 since the difference of two odd numbers is even).

Here is the algorithm. It is especially efficient for operations on binary representations.

The Binary Euclidean Algorithm

Inputs: integers u, v.
Output: gcd(u, v)
1. g = 1
2. while u is even and v is even

2.1 u = u/2 (right shift)
2.2 v = v/2
2.3 g = 2*g (left shift)

now u or v (or both) are odd
3. while u > 0

3.1 if u is even, u = u/2
3.2 else if v is even, v = v/2
3.3 else
3.4 t = |u-v|/2
3.5 if u < v, then v = t else u = t

4. return gcd(u, v)= g*v

This algorithm was extended as the binary extended Euclidean algorithm as presented

in [37], which was further studied by Kaliski [3] who proposed the Montgomery inverse

algorithm. Kaliski�s Montgomery inverse algorithm worked as the basic algorithm of our

research.

 93

B GF(2n) NUMERICAL EXAMPLE VERIFICATION

This Appendix details the computations and verifies the results used in the GF(2n)

MonInv numerical example shown in Figure 7.3. The example defines m=9 and n=5;

where n is the degree of the irreducible polynomial and m (of the Montgomery constant 2m)

is any number as long as m≥n. To simplify the arithmetic lets only use the binary

representation of polynomials. The MonInv takes the inputs a=1001 and p=100101.

However, a is represented into Montgomery domain as a2m, which is calculated as follows:

a=1001

a2m=a29=1001000000000

but since 1001000000000 needs to be reduced by p or a multiple of p until the number of

significant bits of a29 is less or equal to n (the degree of polynomial a(x)xmmod p(x) should

be less than the degree of the irreducible polynomial (p(x))), so

a29⊕ 27p=100100 0000000⊕ 100101 0000000=10000000

and 10000000 also needs reduction

10000000⊕ 22p =10000000⊕ 10010100 = 10100

So a2mmod p = a29mod p =1001000000000 mod p ≡ 10100

The GF(2n) MonInv of 10100 = 111 = a-12m, which can be verified similarly:

The MonInv numerical example (Figure 3) calculated that

a-129=111! a-1 = 111/29.

Any congruent polynomial can be XORed with the irreducible polynomial, such as:

a-129=111≡ 111⊕ 100101 =100010 ! a-128=10001

a-128=10001≡ 10001⊕ 100101=110100! a-126=1101

a-126=1101≡ 1101⊕ 100101=101000! a-123=101

a-123=101≡ 101⊕ 100101=100000! a-1=100

To confirm this result:

a . a-1mod p must equal to 1

a . a-1= 1001 . 100 = 100100

100100 mod p = 100100⊕ 100101=1

which confirms that the GF(2n) MonInv of 10100 is 111; where m=9 and n=5.

	Adnan Abdul-Aziz Gutub
	PhD Thesis

	1	INTRODUCTION
	1.1	Motivation
	1.2	Previous Work
	1.3	Thesis Outline

	2	ELLIPTIC CURVE CRYPTOGRAPHY
	2.1	Introduction
	2.2	Elliptic Curve Theory
	2.2.1 Elliptic Curves over Finite Field GF(p)
	2.2.1.1 Affine Coordinates
	2.2.1.2 Projective Coordinates

	2.2.2 Elliptic Curves over Finite Field GF(2n)
	2.2.2.1 Affine Coordinates
	2.2.2.2 Projective Coordinates

	2.2.3 Comparing Arithmetic Complexity on GF(p) and GF(2n)
	2.2.4 The Elliptic Curve Discrete Logarithm Problem
	2.2.5 Comparing Arithmetic Complexity of Affine and Projective Coordinates

	2.3	Elliptic Curve Cryptography Applications
	2.3.1 Elliptic Curve Diffie-Hellman Key Exchange Method
	2.3.2 Elliptic Curve Encryption/Decryption
	2.3.3 Elliptic Curve Digital Signature Algorithm (ECDSA)
	2.3.3.1 ECDSA key generation
	2.3.3.2 ECDSA signature generation
	2.3.3.3 ECDSA signature verification

	3	SCALABLE HARDWARE ARCHITECTURE FOR GF(p) ALMOST MONTGOMERY MODULAR INVERSE COMPUTATION
	3.1	Introduction
	3.2	Montgomery Inverse Algorithms
	3.2.1 Kaliski Algorithm
	3.2.2 Modifications to Kaliski Algorithm
	Montgomery Inverse Algorithm

	3.3	The Fixed Precision Design
	3.3.1 Hardware Issues Applied to the Algorithm
	3.3.2 The Fixed Precision Hardware Design

	3.4	The Scalable Design
	3.4.1 Why scalable design?
	3.4.2 Scalable Hardware Issues Applied to the Algorithm
	3.4.3 The Scalable Hardware Design

	3.5	Modeling and Analysis
	3.5.1 Area Comparison
	3.5.2 Speed Comparison
	3.5.2.1 Technology dependent speed comparison
	3.5.2.2 Technology independent speed comparison

	3.6	Summary

	4	REDUCING THE CLOCK PERIOD OF THE ALMOST MONTGOMERY INVERSE HARDWARE DESIGNS
	4.1	Introduction
	4.2	Shortening the Critical Path
	4.3	Area & Delay Comparison

	5	A SCALABLE HARDWARE ARCHITECTURE FOR MONTGOMERY INVERSION IN GF(p)
	5.1	Introduction
	5.2	Montgomery Inverse Algorithm and Proposed Modifications
	5.2.1 New Approaches for Montgomery Inverse
	5.2.2 Evaluation of Alternatives

	5.3	Multi-Bit Shifting
	5.3.1 AlmMonInv Hardware Algorithm
	5.3.2 Best Maximum Distance for Multi-bit Shifter
	5.3.3 Adjustments to FHW-Alg
	5.3.4 Suitable Multi-Bit Shifting the CorPh

	5.4	The Scalable Design
	5.4.1 Scalable Hardware Issues Applied to the Algorithms
	5.4.2 Scalable Hardware Design

	5.5	Modeling and Analysis
	5.5.1 Area Comparison
	5.5.2 Speed Comparison

	6	SCALABLE AND UNIFIED HARDWARE TO COMPUTE MONTGOMERY INVERSE IN GF(p) AND GF(2n)
	6.1	Introduction
	6.2	Montgomery Inverse Hardware Procedures For GF(p) and GF(2n)
	6.2.1 Representation and Manipulation of Elements in GF(2n)
	6.2.2 Montgomery Inverse in GF(2n)
	6.2.3 Multi-Bit Shifting

	6.3	Unified and Scalable Inverter Architecture
	6.4	Modeling and Analysis
	6.4.1 Area Comparison
	6.4.2. Speed Comparison

	6.5	Summary

	7	CONCLUSIONS AND FUTURE WORK
	7.1	Conclusions
	7.2	Future Work

	BIBLIOGRAPHY
	APPENDICES
	A	THE EXTENDED EUCLIDEAN ALGORITHM
	A.1	The Extended Euclidean Algorithm to obtain the inverse of a number mod p
	A.2	The Binary Euclidean Algorithm

	B	GF(2n) NUMERICAL EXAMPLE VERIFICATION

