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NEW HARDWARE ALGORITHMS AND DESIGNS 
FOR MONTGOMERY MODULAR INVERSE COMPUTATION  

IN GALOIS FIELDS GF(p) AND GF(2n) 
 

 

1 INTRODUCTION 
 

 

Information security nowadays is a very important subject [32,40,41].  Governments, 

commercial businesses, and individuals are all demanding secure information in electronic 

documents, which is becoming preferred over traditional documents (paper and microfilm, 

for example). Documents in electronic form require less storage space, its transfer is almost 

instantaneous, and it is accessible via simplified databases. The ability to make use of 

information more efficiently has resulted in a rapid increase in the value of information. 

Businesses in a number of commercial arenas recognize information as their most valuable 

asset [34]. 

However, information in electronic form faces potentially more damaging security 

threats. Unlike information printed on paper, information in electronic form can virtually 

be stolen from a remote location. It is much easier to alter and intercept electronic 

communication than its paper-based predecessors. 

Information security is described as the set of measures taken to prevent unauthorized 

use of electronic data, whether this unauthorized use takes the form of disclosure, 

alteration, substitution, or destruction of the data. The requirements to securely maintain 

electronic information are classified as the following three services:  

• Confidentiality - hiding data from unauthorized parties.  
• Integrity - assurance that data is genuine. 
• Availability - the system still functions efficiently after security provisions are in place. 
 

Several measures have been considered to provide these services but no single measure 

can ensure complete security [32]. Of the various proposed measures, the use of 

cryptographic systems offers the highest level of security, together with maximum 

flexibility [40,41]. A cryptographic system transforms electronic data into a modified form. 

The owner of the information in modified form is now assured of its security features. 

Depending on the security services required, the assurance may be that the data cannot be 
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altered without detection, or it may be that the data is unintelligible to all but authorized 

parties. 

In the past, cryptographic systems have provided only confidentiality. Preparing a 

message for a secure, private transference involves the process of encryption. Encryption 

transforms data from user readable form, called plaintext, to an illegible translation, called 

ciphertext. The conversion of plaintext to ciphertext is controlled by an electronic key E. 

The key is simply a binary number, which determines the effect of the encryption function. 

The reverse process of retrieving the plaintext back from the ciphertext is called 

decryption, and is controlled by a related key D. 

Depending on the encryption/decryption key, cryptographic systems can be classified 

into two main categories: secret key cryptosystems and public key cryptosystems. The 

secret key cryptosystems use one key (E=D) for both encryption and decryption, as 

illustrated in Figure 1.1. Since the keys are the same, two users wishing to communicate in 

confidence must agree and maintain a common secret key. Each entity must trust the other 

to keep the key as a secret. 

 

 

 
 

Figure 1.1 Secret key cryptosystem 

 

 

Public key cryptosystems, however, use two different keys, one for encryption (E) and 

the other for decryption (D), where D≠E. Public key cryptosystems were introduced in 

1976 by Whitfield Diffie and Martin Hellman [5]. In a public-key cryptosystem, the 

abilities to perform encryption and decryption are separated. The encryption needs a public 
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key (E) different but mathematically related to the decryption private key (D). Knowledge 

of the public key allows encryption of plaintext but does not allow decryption of the 

ciphertext. If somebody selects and publishes his public key, then everyone can use that 

public key to encrypt messages for that person. The private key is kept secret so that only 

the intended individual can decrypt the ciphertext. Figure 1.2 shows a public key 

cryptosystem methodology. One of the most promising public key cryptographic methods 

to be used is named the elliptic curve cryptography (ECC), which provides the best 

performance security of any public key cryptosystem known today [32,40,41]. ECC is 

based on the Discrete Logarithm problem over the points on an elliptic curve. In order to 

use ECC, an elliptic curve must be defined over a specific finite field. A finite field is a set 

of elements that have a finite order (number of elements). The order of a Galois Field (GF) 

is normally a prime number or a power of a prime number.  The most popular finite fields 

used in ECC are Galois Fields, GF(p) and GF(2n) [9-12,28,29]. 

 

 

 
 

Figure 1.2 Public key cryptosystem 

 

 

ECC is heavily based on modular multiplication, which involves division by the 

modulus in its computations. Division, however, is a very expensive operation [13,14]. 

This characteristic of modular operations made researchers seek out methods to reduce the 

division impact and make modulo multiplication less time consuming. In 1985, P. 

Montgomery proposed an algorithm to perform modular multiplication without trial 

division [15]. The algorithm replaces the complex division with simple divisions by two, 
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which is effortlessly achieved in the binary representation of numbers (shifting the binary 

number one bit to the right). The penalty in using Montgomery�s technique is paid with 

some extra computations to represent the multiplication operands into Montgomery 

domain and transform them back to integer domain [1,6,11,15]. The reader is referred to 

[15] for detailed information about Montgomery�s method. A brief description of the 

Montgomery concept is provided in Chapter 3. 

The ECC computation consists of different modular arithmetic operations where 

inversion is an essential one, with the slowest speed [1,2,9-12,20-25]. Since the use of 

Montgomery�s method requires that the numbers are in Montgomery�s domain, it is clear 

that having procedures dedicated to compute the modular inverse in the Montgomery 

domain [1,2] would be extremely beneficial. These dedicated modular inverse methods are 

named the Montgomery modular inverse algorithms. 

Montgomery inverse (MonInv) computation can be performed in software or 

hardware for either GF(p) or GF(2n). In this thesis, one of our goals is to design an efficient 

scalable MonInv hardware to operate in both finite fields GF(p) and GF(2n). Scalability is 

the feature that allows the hardware to fit into restricted areas and operate with high clock 

frequency, which together are rarely possible for the fully parallel designs. 

We start by considering the inverse computation in GF(p). It is well known that 

algorithms dedicated for GF(p) computation may be adjusted for GF(2n). However, it is 

very difficult to modify a GF(2n) algorithm for GF(p) [11,35]. The standard modular 

inverse over GF(p) can be defined by the following example. Assume a is an integer in the 

range [1,p-1]. Integer x is called the modular inverse, or modulo inverse, of integer a if-

and-only-if: ax ≡ 1 (mod p); where x ∈ [1,p-1]. It is normally represented as x = a-1 mod p 

[1]. The MonInv algorithm suitable for our research is portrayed in [1]. The algorithm 

requires two main operations: an almost Montgomery inverse (AlmMonInv) and a 

correction phase (Montgomery product) operation. Our study modifies this algorithm for 

hardware and introduces a new faster correction phase. A similar GF(2n) MonInv algorithm 

is also proposed, where both GF(p) and GF(2n) MonInv algorithms are designed as a 

unified MonInv hardware for GF(p) and GF(2n). 

The motivation to focus our research on the design of inversion in hardware is 

explained in Section 1.1. Section 1.2 presents a brief review of the previous attempts to 

perform inversion in hardware. Section 1.3 details the thesis outline. 
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1.1 Motivation 
 

  Modular inverse arithmetic is a fundamental arithmetic operation in public-key 

cryptography. It is used in the Diffie-Hellman key exchange method [5], and to calculate 

private decryption key for RSA [4]. Modular inversion is considered an essential operation 

in the elliptic curve cryptography (ECC) [1,2,9-12,20-25]. This research is targeted mainly 

toward the ECC utilization because of its promise to replace several older cryptographic 

systems [9-12,20]. ECC arithmetic consists mainly in modular computations of addition, 

subtraction, multiplication, and inversion. 

Inversion is well known to be the slowest operation among all other arithmetic 

operations in ECC [1,2,11,16-18]. Many researchers propose minimizing the use of 

modular inversion by adopting elliptic curves defined for projective coordinates, which 

substitute the inverse by several multiplication operations [9-12]. Projective coordinates 

are one of two coordinate systems used for the ECC arithmetic point operations; the other 

one is known as affine [11] coordinate system (detailed in Chapter 2). Inversion, in the 

projective coordinate systems, is required only once, to convert the projective coordinate 

points to affine coordinates at the end of the ECC point computation. However, if this one 

use of inversion takes too long, it will affect the performance of the whole ECC system.  

To have a fast modular inverse calculation is one of the main reasons to do inversion 

in hardware instead of software [16-18]. If it is possible to compute the inverse faster than 

nine multiplication operations, then it is more efficient to use the affine coordinate system 

instead of going to the projective coordinate systems, as discussed in Chapter 2. Even if the 

speed to compute the inverse is not that good to justify the use of affine coordinates, the 

computation with hardware is still faster than software [6,16-18,20-25], which will provide 

better performance for the overall cryptographic system based on projective coordinates. 

The other main reason to implement the modular inverse operation in hardware is 

security [32]. For cryptographic applications, it is more secure to have all the computations 

handled in hardware, inside an IC-chip for example, instead of mixing some computations 

performed in software with others processed in hardware. Software implementations are 

supported by operating systems, which can be interrupted and trespassed by intruders and 

this way compromise the application security. Such a security threat is not so easily 

attained in hardware implementations [32]. 
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1.2 Previous Work 
 

Modular inversion is often performed based on modifying, or directly using, the 

extended Euclidean algorithm [11]. Several inversion hardware attempts are described in 

the literature [16-18,20-25,35]. Most of the research [17,18,20-25] proposed hardware 

models specifically designed for inversion in GF(2n). Among them, the large architectures 

in [23,24] suffer from the problem of signal broadcasting. The signal broadcasting problem 

should be avoided when implementing high-speed VLSI circuits [17,39]. 

In contrast, the designs in [17,18,21,22,25] are based on the concept of parallel 

systolic array structures. A systolic array [39] consists of a set of interconnected logic cells, 

each capable of performing the same simple operation. They work together and 

synchronously to perform a task. Within a systolic array or tree, information and data flow 

between the cells in a pipelined regular mode. Although systolic arrays are well suited for 

VLSI implementations due to its modular identical cells and simple and regular 

communications and control structures, it normally consumes a huge amount of hardware 

area in order to gain computation speed [17]. The area and time complexities of the designs 

in [17,18,21,22,25] are listed in Table 1.1.  

 

 

Hardware Design Area Complexity Time Complexity 
Guo & Wang [17] O(n2) O(1) 
Choudhury & Barua [18] O(n) O(n2) 
Guo & Wang [21] O(n2) O(1) 
Fenn, Benaissa & Tayler [22] O(n2) O(n) 
Kovac, Ranganathan & Varanasi [25] O(n. n2) O(1) 

 

Table 1.1 Area and time complexity of different inversion hardware designs  

 

 

Hasan in [20] proposed a hardware design for the GF(2n) inversion algorithm in a 

non-systolic structure consuming smaller hardware area and still operating with reasonable 

speed. The large operands are divided into words. The hardware performs the computation 

on a word-by-word serial manner, instead of computing all the words in parallel. GF(2n) 

arithmetic requires simpler modular operations than GF(p) [11] because the carry 
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propagation delays in addition or subtractions are completely eliminated. Since we focus 

first on GF(p) and then extend it to GF(2n), the designs proposed for GF(2n) in [17,18,21-

25] were not beneficial to this work. As said before, extending a design done for GF(2n) to 

GF(p) is not practical [11]. 

Naofumi Takagi in [16], proposed an inverse algorithm for hardware with a redundant 

binary representation. Redundant representation is used to reduce the carry propagation 

delay problem in additions. However, the redundant binary representation requires more 

area, because redundant digits require more bits to be coded and stored. Furthermore, 

redundant representation needs data transformation, which results in considerable extra 

cost. 

Goodman and Chandrakasan in [35] presented a general cryptographic processor that 

computes modular algorithms coded in microcode, which can be modified with minimal 

effort.  The processor can perform inversion in both GF(p) and GF(2n) finite fields. Its 

datapath is reconfigurable and parameterized for numbers ranging in size from 8 to 1024 

bits, controlled by a shut-down unit. This unit is responsible for disabling unused portions 

of the data path in order to minimize any unnecessary power consumption. The processor 

hardware is designed carefully to be energy efficient and faster than software-based 

implementations. The main disadvantage of this processor is its huge area, with a core 

containing 880,000 devices. 

 

 

1.3 Thesis Outline 
 

In the following chapter (Chapter 2), more detail is given to the ECC theory, which is 

the main scope of our research. The ECC arithmetic operations over the two finite fields 

GF(p) and GF(2n) are compared. Then, some ECC based cryptographic applications are 

presented to give a practical flavor to the ECC theory. 

A suitable GF(p) Montgomery inverse algorithm for hardware implementation was 

proposed in [1]. It requires two types of different routines, almost Montgomery inverse and 

Montgomery product. We present the design of the almost Montgomery inverse routine in 

Chapter 3. Two implementations are described there. The first one is a fixed precision 

(fully parallel) hardware, which has some inherent problems such as large (impractical) 
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area and very low clock frequency. To solve this problem, it is proposed to use a scalable 

hardware design that performs the same function operating with higher clock frequency. 

The scalable hardware is also a module that can handle operands of any size. Based on the 

hardware area and performance requirements, the word-size, on which the module 

operates, is selected. The upper limit on the operand precision is dictated only by the 

available memory to store the operands and internal results. The scalable module is in 

principle capable of performing infinite-precision Montgomery inverse computation of an 

integer, modulo a prime number. This scalable hardware is compared with the fixed 

precision design showing very attractive results. 

The longest path of the hardware designs passes through adders and subtractors. 

Chapter 4 contains the analysis of the impact of faster adders and subtractors in the 

hardware. Experimental performance results for the designs (fixed precision and scalable) 

using carry-look-ahead adders instead of carry-ripple adders are presented. 

In Chapter 5, we propose a complete GF(p) Montgomery inversion (MonInv) 

procedure (almost Montgomery inverse plus correction phase). We modify the original 

procedure presented in [1] by replacing the Montgomery product used in its correction 

phase by a new straightforward correction phase. The advantage of the new correction 

phase is that it is implemented with roughly the same scalable hardware of the almost 

Montgomery inverse algorithm described in Chapter 3. The concept of multiple-bit shifting 

is also introduced in the proposed MonInv design. 

Chapter 6 proposes a scalable and unified architecture for a Montgomery inverse 

hardware that operates in both GF(p) and GF(2n) fields. We present a GF(2n) Montgomery 

inverse algorithm that accommodates multi-bit shifting making it very similar to the GF(p) 

algorithm of Chapter 5.  

The conclusion chapter (Chapter 7) summarizes the results of this thesis work and 

provides some future work in this area.  
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2 ELLIPTIC CURVE CRYPTOGRAPHY 
 

 

2.1 Introduction 
 

In 1985 Niel Koblitz and Victor Miller proposed the Elliptic Curve Cryptosystem 

(ECC) [9-11,28-33], a method based on the Discrete Logarithm problem over the points on 

an elliptic curve (EC). Since that time, ECC has received considerable attention from 

mathematicians around the world, and no significant breakthroughs have been made in 

determining weaknesses in the algorithm [32,40,41]. Although critics are still skeptical as 

to the reliability of this method, several ECC encryption techniques have been developed 

recently. The fact that the problem appears so difficult to crack means that key sizes can be 

reduced in size considerably, even exponentially [29,33], especially when compared to the 

key size used by other cryptosystems. ECC became an alternative to RSA, one of the most 

popular public key methods. ECC offers the same level of security as RSA but with much 

smaller key size [29].  

In order to use ECC, an elliptic curve must be defined over a specific finite field. The 

EC arithmetic can be optimized depending on the type of finite field. The most popular 

finite fields used in ECC are Galois Fields, GF(p) and GF(2n) [9,12,28,29]. The following 

section will give some background on the EC theory followed by a comparison between 

ECC arithmetic performed in GF(p) and GF(2n). Then, some ECC applications will be 

introduced to give an idea of how ECC can be used.  

 

 

2.2 Elliptic Curve Theory 
 

Elliptic curves are described by cubic equations, similar to those used in ellipsis 

calculations. The general form for an elliptic curve equation is:  

y2+axy+by=x3+cx2+dx+e. 

There is also a single element named the point at infinity or the zero point denoted �ϕ�. The 

point at infinity is computed as the sum of any three points on an EC that lie on a straight 

line. If a point on the EC is added to another point on the curve or to itself, some special 



 10

addition rules are applied depending on the finite field being used and also on the type of 

coordinate system (affine or projective) its applied to. 

As mentioned earlier, a finite field is a set of elements that have a finite order (number 

of elements). There are many ways of representing the elements of the finite field. Some 

representations may lead to more efficient implementations of the field arithmetic in 

hardware or in software. The EC arithmetic is more or less complex depending on the 

finite field where the EC is applied and in which coordinate system the computation is 

performed. GF(p) and GF(2n), in affine and projective coordinates are considered in this 

research because they are the most used in ECC [9,11,28,29].  

 

 

2.2.1 Elliptic Curves over Finite Field GF(p) 

 

GF(p) is comprised of the set of integers: {0, 1, 2, . . . . . ., p-2, p-1}. In this field, the 

basic arithmetic operations are: 

• Addition: a+b= r; where: r,a,b ∈ GF(p), r is the remainder of (a+b) divided by p. This 
is known as addition modulo p. 

• Multiplication: a . b=s; where a,b,s ∈ GF(p), s is the remainder of ab divided by p. 
This is known as multiplication modulo p. 

• Squaring:  a2 = a . a = s; where a,s ∈ GF(p), s is the remainder of a2 divided by p. 
Squaring can be assumed as multiplication modulo p.  

• Inversion: Assume a is a non-zero element in GF(p), the inverse of a modulo p, 
denoted a-1, is the unique integer c ∈  GF(p),  for which  a . c = 1.  

 

The EC arithmetic over GF(p) is the usual mod p arithmetic. The EC equation in GF(p) 

is: y2 = x3 + ax + b; where p > 3, 4a3 + 27b2≠ 0, and x, y, a, b ∈  GF(p).  

The special addition rules in this field are the following: 

ϕ =  -ϕ 
( x, y ) + ϕ = ( x, y ) 
( x, y ) + ( x, -y) = ϕ 

 

 

2.2.1.1 Affine Coordinates 
 

The addition of two different points on the EC in affine coordinates is computed as: 
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(x1 , y1) + (x2 , y2) = (x3 , y3) ; where x1 ≠ x2 

λ = (y2 � y1)/(x2 � x1) 
x3 = λ2 � x1 � x2 

y3 = λ(x1 � x3) � y1 
 

The addition of a point to itself (doubling a point) is computed as: 

(x1 , y1) + (x1 , y1) = (x3 , y3) ; where x1 ≠ 0 

λ = (3(x1)2 + a) /(2y1) 
x3 = λ2 � 2x1 

y3 = λ(x1 � x3) � y1 
 

We assume in this work that the squaring calculation is equivalent to a multiplication. 

Thus, to add two different points in GF(p) we need: six additions, one inversion, and three 

multiplication operations. To double a point we require: four additions, one inversion, and 

four multiplications. 

 

 

2.2.1.2 Projective Coordinates 
 

The projective coordinates are used to almost eliminate the need for performing 

inversion [11,28]. For elliptic curve defined over GF(p), the normal elliptic point (x,y) is 

projected to (X,Y,Z), where x=X/Z2,and y=Y/Z3 [11]. This transformation between affine 

and projective coordinates is performed only twice: at the beginning and at the end.   

The point addition of P+Q in projective coordinates is computed as: 

     P = (X1,Y1,Z1); Q = (X2,Y2,Z2); P+Q = (X3,Y3,Z3); where P ≠ ±Q  
     (x, y) = (X/Z2,Y/Z3) ! (X,Y,Z)    

λ1 = X1Z2
2         

λ2 = X2Z1
2         

λ3 = λ1 - λ2       
λ4 = Y1Z2

3        
λ5 = Y2Z1

3        
λ6 = λ4 - λ5      
λ7 = λ1 + λ2      
λ8 = λ4 + λ5      
Z3 = Z1Z2λ3       
X3 = λ6

2 - λ7λ3
2      

λ9 = λ7λ3
2 � 2X3      

Y3 = (λ9λ6 - λ8λ3
3)/2   
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The doubling of a point (P+P) in projective coordinates is computed as: 

P = (X1,Y1,Z1); P+P = (X3,Y3,Z3)  
(x, y) = (X/Z2,Y/Z3) ! (X,Y,Z)    
λ1 = 3X1

2 + aZ1
4        

Z3 = 2Y1Z1        
λ2 = 4X1 Y1

2          
X3 = λ1

2
 - 2λ2        

λ3 = 8Y1
4        

λ4 = λ2 - X3   

Y3 = λ1 λ4 � X3    
            

The squaring calculation in GF(p) is very similar to the multiplication computation. The 

number of multiplication processes for adding two points is found to be sixteen, while the 

number of operations for doubling a point is found to be only ten.  

 

 

2.2.2 Elliptic Curves over Finite Field GF(2n) 
 

GF(2n) is called a characteristic two field or a binary finite field. It can be viewed as a 

vector space of dimension n over the field GF(2) that consists of the elements 0 and 1. That 

is, there exist n elements x0 , x1 , x2 . . . , xn-1 in GF(2n) such that each element x ∈  GF(2n) 

can be uniquely written in the form: x = a0 x0 + a1x1 . . . + an-1xn-1 ; where ai∈ GF(2). Such 

a set {x0 , x1 , x2 . . . , xn-1} is called the basis of GF(2n) over GF(2). Given such a basis, a 

field element x can be represented as the bit string (a0 a1 . . . an-1). Addition of field 

elements is performed by bit-wise XOR-ing their vector representations. The complexity of 

multiplication depends on the selected basis. There are many different basis of GF(2n) over 

GF(2). Some basis lead to more efficient software or hardware implementations of the 

arithmetic in GF(2n) than others. The most popular basis are the polynomial (or standard) 

and the normal basis.  

The EC equation over GF(2n) is: y2+xy = x3+ax2+b ; where x, y, a, b ∈  GF(2n) and b≠0.  

The addition rules in this field are as the following: 

ϕ + ϕ =  ϕ 
( x, y ) + ϕ = ( x, y ) 
( x, y ) + ( x, x+y) = ϕ 
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2.2.2.1 Affine Coordinates 
 

The affine coordinates addition of two different points on the EC is computed as: 

(x1 , y1) + (x2 , y2) = (x3 , y3) ; where x1 ≠ x2 

λ = (y2 + y1)/(x2 + x1) 
x3 = λ2 + λ + x1 + x2 + a 
y3 = λ(x1 + x3) +  x3 + y1 

 

The affine coordinates addition of a point to itself (doubling a point) is computed as: 

(x1 , y1) + (x1 , y1) = (x3 , y3) ; where x1 ≠ 0 

λ = x1
 + (y1)/(x1) 

x3 = λ2 + λ + a  
y3 = (x1)2 + (λ + 1) x3 

 

To add two different points in GF(2n) we need: nine additions, one inversion, one 

squaring, and two multiplication operations. To double a point we require: five additions, 

one inversion, two squarings, and two multiplications. 

 

 

2.2.2.2 Projective Coordinates 
 

Calculating the inverse is the most expensive operation. Designs replace the inversion 

by several multiplication operations by representing the elliptic curve points as projective 

coordinate points [11,28,30,32]. To almost eliminate the need for performing inversion in 

GF(2k), its coordinates (x,y) are to be projected to (X,Y,Z), where x=X/Z2, and y=Y/Z3. The 

elliptic curve equation in this system is:  Y2 + XYZ = X 3 + a X2Z2+ b Z6 [11]. 

The point doubling of an elliptic curve point (P+P) in projective coordinates is computed 

as: 

P = (X1,Y1,Z1); P+P = (X3,Y3,Z3) 
Z3 = X1 Z1

2   
X3 = (X1 + bZ1

2)4   
λ  = Z3 + X1

2 + Y1
 Z1  

Y3 = X1
4 Z3 + λ  X3   
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The point addition of two elliptic curve points (P+Q) is computed as: 

P = (X1,Y1,Z1); Q = (X2,Y2,Z2); P+Q = (X3,Y3,Z3); where P ≠ ±Q  
(x, y) = (X/Z2,Y/Z3) ! (X,Y,Z) 
λ1 = X1 Z2

2    
λ2 = X2 Z1

2    
λ3 = λ1 + λ2   
λ4 = Y1 Z2

3    
λ5 = Y2 Z1

3    
λ6 = λ4 + λ5 

λ7 = Z1 λ3     
λ8 = λ6 X2 + λ7Y2   
Z3 = λ7 Z2    
λ9 = λ6  + Z3 

X3 = a Z3
2 + λ6 λ9 + λ3

3  
Y3 = λ9 X3 + λ8 λ7

2   
 

The number of multiplication processes for adding two points is found to be twenty, while 

it is found to be ten for doubling a point. 

 

 

2.2.3 Comparing Arithmetic Complexity on GF(p) and GF(2n) 

 

The number of operations for affine coordinates addition of two different points is 

found to be basically the same (in GF(p) and GF(2n)), as shown in Table 2.1. The 

computation of �λ� requires one inversion and one multiplication. Computing �x3� needs 

only one squaring. The value of �y3� is obtained with one multiplication. The number of 

operations in both fields is identical: one inversion, one squaring, and two multiplications, 

neglecting the addition, subtraction, and multiplication by small numbers [11,28].  

 

 

Point operations Operations in GF(p) Operations in GF(2n) 
Point addition 1 Inversion  

3 Multiplications 
1 Inversion 
3 Multiplications 

Point doubling 1 Inversion  
4 Multiplications 

1 Inversion 
4 Multiplications 

 

Table 2.1 Comparing GF(p) and GF(2n) number of lengthy point operations  
in affine coordinates  
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Point doubling on affine coordinates requires the computation of �λ�, which in GF(p) 

requires an inversion, a multiplication, and a squaring of x1, while it needs an inversion and 

a multiplication in GF(2n). Calculating �x3� in both fields requires the same operation of 

squaring lambda. Computing �y3� in GF(p) requires only one multiplication, while it needs 

a multiplication and a squaring in GF(2n). The number of operations is found to be the 

same in both fields: one inversion, two squarings, and two multiplications [11,28]. 

Considering projective coordinates (Table 2.2), the number of multiplication 

processes for adding two points in GF(p) is found to be sixteen, while it is found to be 

twenty in GF(2n). The number of multiplication calculations for doubling a point is found 

to be ten in both GF(p) and GF(2n). This shows that GF(p) projective coordinates 

consumes four less number of multiplications than GF(2n), however, comparison of the 

number of operations is not accurate because operations in GF(p) require different time 

than GF(2n). Computations in GF(p) require lengthy time due to the delay of propagating 

the carry, which GF(2n) does not have. 

 

 

Point operations Operations in GF(p) Operations in GF(2n) 
Point addition 16 Multiplications 20 Multiplications 
Point doubling 10 Multiplications 10 Multiplications 

 

Table 2.2 Comparing GF(p) and GF(2n) number of lengthy point operations  
in projective coordinates  

 

 

2.2.4 The Elliptic Curve Discrete Logarithm Problem 
 

The elliptic curve discrete logarithm problem is the fundamental mathematical 

property that supports elliptic curves cryptography. The problem can be clarified by 

considering E as an elliptic curve and P and Q as points on E; the discrete logarithm 

problem consists in finding an integer k such that kP=Q, if such an integer exists. Figuring 

the integer k is considered a very hard problem especially if the numbers are large [11]. On 

the other hand, if integer k and the EC point P are known, computing the other EC point Q 

is possible. The ECC algorithm used for calculating kP (scalar multiplication of k by P, 
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which is equivalent to add P to itself k times) from P is the binary method, since it is 

known to be efficient and practical to implement [11,12,29,32]. The binary method 

algorithm is: 

Define n: number of bits in k;  
ki: the ith bit of k  

Input:  P (a point on the elliptic curve). 
Output: Q = kP (another point on the elliptic curve). 
1.  if kn-1 = 1, then Q:=P else Q:=0; 
2.  for i = n-2 down to 0; 
3.   Q := Q+Q ; 
4.   if ki = 1 then Q:= Q+P ;  
5.  return Q; 

 

The binary method algorithm scans the binary representation of k and doubles the point Q 

n-times. Whenever, a particular bit of k is found to be one, an extra operation is needed. 

This extra operation is Q+P. 

 

 

2.2.5 Comparing Arithmetic Complexity of Affine and Projective Coordinates 
 

The basic ECC operation consists in computing the point kP from P. Lets use the 

binary algorithm presented in Section 2.2.4. The number of binary bits of integer k is n, 

which indicates the exact number of point doublings but not point additions. Assume that 

the bits of k are half ones and half zeros (an average estimation for comparison reasons). 

The EC arithmetic operations required are n point doublings and n/2 point additions. The 

total number of multiplications and inversions for both GF(p) and GF(2n) are listed in 

Table 2.3. If the time to compute 1.5n inversions and 5.5n multiplications is less than 18n 

GF(p) multiplications or 20n GF(2n) multiplications, then the system based affine 

coordinates is faster than the one based on projective coordinates. In other words, if one 

inversion is calculated in less than approximately nine multiplications, then the affine 

coordinate arithmetic is more appropriate to use than the projective coordinates. 

In any case, even with projective coordinates, the inverse computation is still needed 

at the end of the computation to convert back to affine coordinates and cannot be 

eliminated completely [1,2,11], which justifies the need to research the alternatives for the 

design of inverse operation in hardware. 
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Finite Affine Coordinates Operations Projective Coordinates operations 
Field n doublings & n/2 point additions 
GF(p) 18n Multiplications 
GF(2n) 

1.5n Inversions &  
5.5n Multiplications 20n Multiplications 

 

Table 2.3 Comparing the affine and projective coordinates  
  

 

2.3 Elliptic Curve Cryptography Applications 
 

As described earlier (Section 2.2.4), it is easy to calculate the point kP from P. 

However, it is very hard to determine the value of k knowing the two points: kP and P. 

This property leads to several algorithms for cryptography [29,32]. Some of these 

techniques will be introduced in the following subsections. 

 

 

2.3.1 Elliptic Curve Diffie-Hellman Key Exchange Method 
 

Secret key cryptosystems are normally used for encryption/decryption purposes, 

because it is faster than public key cryptosystems. Secret key cryptosystems require a 

secret key to be agreed upon before the cryptographic process starts. This agreement can be 

performed by the elliptic curve Diffie-Hellman [29] key exchange method as described by 

the following example. 

Suppose that users A and B want to agree upon a secret key, which will be used for 

secret key cryptography. Users A and B choose a finite field, GF(p) for example, and an 

elliptic curve �E� defined over this field. They also take a randomly chosen point P=(x,y) 

lying on the elliptic curve E; we refer to P as the base point of the cryptosystem. The finite 

field, the elliptic curve, and the base point are all publicly known. 

User A then randomly chooses a large integer a∈ GF(p) and keeps a secret. User A 

now computes the point aP which will lie on E. User B does the same: B randomly 

chooses a large integer b and computes bP. Both A and B make aP and bP publicly known. 

These are their public keys. The secret key that A and B use to encrypt messages sent to 

each other is abP, which both A and B can compute. User A knows a and bP, and so can 
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find abP. Whereas, B knows b and aP, and so can find abP. The security of this system 

lies in the fact that a third party C, for example, knows only aP and bP, and unless C can 

solve the elliptic curve discrete logarithm problem there is no efficient way to break the 

encryption. 

  

 

2.3.2 Elliptic Curve Encryption/Decryption 
 

There are many ways to apply elliptic curves for encryption/decryption purposes [29]. 

A simple method is presented here to give the flavor of elliptic curve encryption/ 

decryption techniques. Assume working with GF(p) finite field and an elliptic curve E. The 

users randomly chose a base point Pbase, lying on the elliptic curve E. The plaintext (the 

original message to be encrypted) is coded into an elliptic curve point Pm. Each user selects 

a private key �n� and compute his public key P = nPbase. For example, user A�s private key 

is nA and his public key is PA = nAPbase. 

For any one to encrypt and send the message point Pm to user A, he/she needs to 

choose a random integer k and generate the ciphertext Cm = {kPbase , Pm+kPA }. The 

ciphertext pair of points uses A�s public key, where only user A can decrypt the plaintext 

using his private key. 

To decrypt the ciphertext Cm, the first point in the pair of Cm, kPbase, is multiplied by 

A�s private key to get the point: nA(kPbase). Then this point is subtracted from the second 

point of Cm, the result will be the plaintext point Pm. The decryption  operations are:  

(Pm + kPA) - nA(kPbase) = Pm + k(nAPbase) - nA(kPbase) = Pm 

 

 

2.3.3 Elliptic Curve Digital Signature Algorithm (ECDSA) 

 

The process of ECDSA [29] is composed of three main steps: key generation, 

signature generation and signature verification. Each step is described as follows: 
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2.3.3.1 ECDSA key generation 
 
Each user of the scheme does the following: 

1. Select an elliptic curve E over a finite field, say GF(p). The number of points on E 
should be divisible by a large prime n. 

2. Select a point P = (x,y) ∈  GF(p) of order n. 
3. Select a random integer d in the range [1, n-1]. 
4. Compute dP = Q. 
5. The user's public key is (Q, n, P, E); the user's private key is d. 
 

 
2.3.3.2 ECDSA signature generation 
 
To sign a message, m, the user does the following: 

1. Select a random integer k in the range [1, n-1]. 
2. Compute kP=(x1, y1), and set x1 mod n = r. If r is zero then go back to step 1. In other 

words, if r=0 then the signing equation will not involve the private key d. 
3. Compute k-1mod n. 
4. Compute s = k-1(h(m) + dr) mod n, where h is the hash value obtained from a suitable 

hash function. 
5. If s=0 go to step 1. This because if s is zero then s-1 mod n does not exist and we would 

not be able to verify the signature.  
6. The signature to be included in the message m is the pair of integers (s, r). 
 

 
2.3.3.3 ECDSA signature verification 
 
To verify the signature (r, s) on the message m, the following should be done: 

1. Obtain an authentic copy of the public key (Q, n, P, E). 
2. Verify that r and s are integers in the range [1, n-1]. 
3. Compute w = s-1 mod n  and h(m). 
4. Compute u1= h(m).w mod n and u2 = r.w mod n. 
5. Compute u2Q + u1P = (x0 , y0) and v = x0 mod n. 
6. Accept the signature if and only if r= v. 
 

 

In the above ECDSA algorithms, each user generates their own elliptic curve E, along 

with a base point P. However, this means that the public key sizes become quite large. If, 

instead, the users agree upon a fixed curve E and base point P, as system parameters, then 

each user needs only to define the point Q, which is then all that is included in the public 

key. 
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3 SCALABLE HARDWARE ARCHITECTURE FOR GF(p) ALMOST 
MONTGOMERY MODULAR INVERSE COMPUTATION 

 

 

3.1 Introduction 
 

Modular inversion is often performed by algorithms based on the Extended Euclidean 

algorithm [11]. Several inversion hardware attempts are described in the literature [16-

18,20-25]. Most of the research [17,18,20-25] proposed hardware designs for inversion in 

Galois Fields GF(2n). Several [17,18,21-25] are based upon parallelism of data flow in an 

array structure. The inversion in GF(2n) is fast due to the elimination of the carry 

propagation delay in GF(2n) calculations. However, the area used in parallel organizations 

are very large, of order O(n2). Hasan in [20] proposed a design of the inversion algorithm 

that is smaller in area and still keeps a fair speed. He performed a word-by-word 

computation of the numbers instead of computing the whole numbers in parallel. Since we 

focus on GF(p), the designs proposed in [17,18, 21-25] have no direct link to this work. 

Takagi in [16], proposed an inverse algorithm for hardware with a redundant binary 

representation. Each number is represented by digits in the set {0,1,-1}. Redundant 

representation is used to reduce the carry propagation delay problem. However, it requires 

more area. It also needs data transformation that is usually expensive.  

The Montgomery modular inverse algorithm suitable for our research is presented in 

[1]. The algorithm requires two main operations: a Montgomery product and an almost 

Montgomery inverse (AlmMonInv) operation. This Chapter is directed towards the 

implementation of the AlmMonInv. The Montgomery product is beyond the scope of this 

work and scalable Montgomery multipliers, such as the ones proposed in [6-8] can 

generate it. 

Two AlmMonInv designs are presented in this Chapter, namely a fixed precision 

design and a scalable hardware design. The fixed precision design is fully parallel and 

processes full precision numbers at every clock cycle. The scalable hardware, however, 

divides the numbers in words where each word is processed in a clock cycle. We show that 

the scalable hardware is more appropriate for cryptographic applications. 
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3.2 Montgomery Inverse Algorithms  
 

Two Montgomery modular inverse studies are found in the literature [1,2]. Both 

modify a technique proposed by Kaliski in 1995 [3], to make it more suitable and faster for 

cryptography using Montgomery�s idea. Kaliski method, derived from the extended 

Euclidean algorithm [3], basically takes an integer a, and produces x, where x=a-12m mod p. 

If a is an integer, the algorithm will calculate the inverse of a, but represented in 

Montgomery domain, as shown in Figure 3.1. When the number a is already in 

Montgomery domain, the application of Kaliski�s routine will not give the needed 

Montgomery inverse result. Thus, some extra arithmetic operations are required to get it. 

Kaliski method is summarized next. It is followed by a brief explanation of two 

modifications to Kaliski�s work to make it compute the Montgomery inverse and to make 

it faster.  

 

 

 
 

Figure 3.1 Types of input/output numbers for Kaliski algorithm 

 

 

3.2.1 Kaliski Algorithm 
 

Kaliski algorithm [1,3] is shown below and it is divided in two phases. Phase one, also 

called almost Montgomery inverse (AlmMonInv) in this work, takes the inputs a and p and 

give outputs r and k; where r = a-12k mod p, and n < k<2n (n is the actual number of bits of 

the modulus p). Phase two takes the outputs of phase one as its inputs, and gives the final 

result of Kaliski algorithm: x = a-12m mod p. Note that in both phases the integers: a and x 

are within the range [1,p-1]. Kaliski�s two phases are outlined as follows:  
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Phase One: Almost Montgomery Inverse, AlmMonInv(a) 

Input:    a and p; where a is in the range [1,p-1]. 
Output: r and k; where r = a-12k mod p, n < k < 2n, n = number of bits of p 
1. u = p; v = a; r = 0; and s = 1  
2. k = 0 
3. while (v > 0)  
4.  if u is even then u = u/2; s = 2s 
5.  else if v is even then v = v/2; r = 2r 
6.  else if u > v then u = (u - v)/2; r = r+s; s = 2s 
7.  else v = (v - u)/2; s = s+r; r = 2r 
8.  k = k + 1 
9. if r ≥ p then  r = r - p 
10. return r = p - r 
 
Phase Two 
Input:    r,p,k & m; where r & k from phase one, & m≥ n (m=Montgomery constant) 
Output: x; where x = a-12m mod p  
11. for i = 1 to k - m do 
12.  if r is even then r = r/2 
13.  else r = (r + p)/2 
14. return x = r 

 

 

3.2.2 Modifications to Kaliski Algorithm 

 

T. Kobayashi and H. Morita in 1999 [2], proposed techniques for modular inversion to 

make it more than five times faster than the original Kaliski routine. They gained speed 

from the comparison of the values of u and v (step 6), they compare the most significant 

word only. Their way to achieve more speed consisted in combining the multiplication and 

the shifting operations. Long numbers were divided into words. They modified the 

AlmMonInv algorithm by performing several matrix multiplications, instead of the simple 

multiplications by two. The modification was targeted toward software implementations. 

In July 2000, Savas and Koç [1] proposed to replace phase two of Kaliski�s algorithm 

with a Montgomery multiplication, which resulted in a faster process. They also presented 

a complete Montgomery modular inverse algorithm by adding extra Montgomery 

multiplication operations. These extra multiplications are performed after the AlmMonInv. 

The Montgomery inverse computation algorithm in [1] is outlined below: 
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Montgomery Inverse Algorithm 
Input:    a2m (mod p), p, n, m, and R2mod p 
Output: x = a-12m mod p, where x is in the range [1,p-1]. 
1. (r,k) = AlmMonInv(a2m); where r = a-12-m2k mod p, and n ≤ k ≤ m+n 
2. If n ≤ k ≤ m then 
2.1  r = MonPro(r,R2) = (a-12-m2k)(a2m)(2-m) = a-1 2k  mod p   
2.2  k = k+m > m 
3. r = MonPro(r,R2) = (a-12-m2k)(22m)(2-m) = a-12k  mod p 
4. r = MonPro(r, 22m-k) = (a-12k)(a2m-k)(2-m) = a-12m mod p 
5. Return x = r; where x = a-12m mod p 

 

 

The input parameters are the integers aR mod p (residue representation of a), n, m 

and p (the modulus, a prime number of size n-bits, m ≥ n), and R2mod p (a pre-computed 

integer based on the Montgomery radix, R = 2m [1]). The two main procedures used in the 

Montgomery inverse algorithm are the Montgomery product (MonPro) and the almost 

Montgomery inverse (AlmMonInv) [1], modeled in hardware as shown in Figure 3.2. Our 

contribution consists in the implementation of the almost Montgomery inverse procedure 

in hardware. The MonPro is beyond the scope of this work. 

 

 

 
 

Figure 3.2 The complete Montgomery modular inverse hardware 
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3.3 The Fixed Precision Design 
 

This section discuses a fixed precision hardware design. We present some hardware 

issues applied to the algorithm to compute the almost Montgomery inverse (AlmMonInv) 

subroutine, which is basically phase-one of Kaliski�s algorithm.  

 

 

3.3.1 Hardware Issues Applied to the Algorithm 
 

When observed from hardware point-of-view, the AlmMonInv algorithm contains 

operations that are easily mapped to hardware features. For example, one-bit shifting the 

binary representation of number u to the right (ShiftR(u,1)) is equivalent to perform 

division by two, or one-bit shifting s to the left (ShiftL(s,1)) is equal to do multiplication 

by two. Checking for a number to be even or odd requires a test of the least significant bit 

(LSB). If it is found to be zero the number is even, otherwise the number is odd. The 

comparison of two numbers to see which one is bigger is performed after subtracting one 

from the other. If the subtraction result is positive (the borrow-bit is zero) the first number 

is bigger, or vice-versa. Such hardware mapping is shown in the hardware algorithm 

below: 

 

The Fixed Precision Hardware AlmMonInv Algorithm (FHW-Alg) 

Registers:  u, v, r, s, and p (all five registers are to hold n-bits). 
Input:  a ∈  [1, p -1], p = modulus.  
Output:  result ∈  [1, p -1] and k; where result = a-12k (mod p) and n<k<2n 
1.     u = p; v = a; r = 0; s = 1; k = 0 
2.     if (u0 = 0) then { u = ShiftR(u,1) ; s = ShiftL(s,1)}; go to step 7 
3.     if (v0 = 0) then: { v = ShiftR(v,1) ; r = ShiftL(r,1)}; go to step 7 
4.     S1 = Subtract (u, v); S2 = Subtract (v, u); A1 = Add (r, s)  
5.     if (S1borrow = 0) then {u = ShiftR(S1,1)); r = A1; s = ShiftL(s,1)}; go to step 7 
6.     s = A1; v = ShiftR(S2,1); r = ShiftL(r,1)  
7.     k = k + 1 
8.     if (v ≠ 0) go to step 2 
9.     S1 = Subtract (p, r), S2 = Subtract (2p, r)  
10.   if (S1borrow = 0) then {return result = S1}; else {return result = S2} 
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Consider step 6 of AlmMonInv, if u>v then the subtraction (u-v) takes place, 

otherwise, the subtraction (v-u) is calculated. In the worst case, two subtraction operations 

are performed, because the comparison of u and v may be accomplished through 

subtraction of u and v anyway. These two subtractions can be done in parallel (two 

subtraction modules) as shown in step 4 of FHW-Alg. The same case applies to step 9 and 

step 10 of AlmMonInv, both subtractions may be performed in parallel.  

All actual integers are represented by n-bit vectors, such as u = (un-1,un-2,�..,u2,u1,u0). 

The modulus is loaded into register u at step 1, then, register u is modified along with the 

algorithm. The modulus is essential at steps 9 and 10 (FHW-Alg) and for this reason, it is 

stored in a special register named p. The value of r cannot equal p except when a equals 

infinity. Thus, the result of AlmMonInv equals either 2p-r if r is greater than p, or p-r 

when r is less than p, as described in step 10 of FHW-Alg. 

 

 

3.3.2 The Fixed Precision Hardware Design 
 

The fixed precision design is made up of a memory unit, a controller, a k-counter, and 

a data path (arithmetic unit). The block diagram for this hardware design is shown in 

Figure 3.3. All data buses are nmax bits wide (nmax is the maximum number of bits the 

hardware can handle). The memory unit is made of five registers u, v, r, s and p to hold 

nmax bits each. The memory unit sends out all its content and loads new ones at every clock 

cycle, except for register p that does not change during the computation. The data path 

(DP) takes the memory unit outputs and gives back the computed data to be stored through 

buses: u_out, v_out, r_out, and s_out. For example, in step 3 of FHW-Alg, only v and r are 

modified. However, the DP provides the data to all four buses. Buses v_out and r_out are 

found to be modifications of v and r, while u_out and s_out are just the same u and s fed 

back. 

The DP performs the required computation depending on the LSBs of u and v, as 

clarified by FHW-Alg. It contains several multiplexers to route and shift the data buses to 

perform steps 2, 3, 5, 6 and 10, as shown in Figure 3.4. It consists of an adder and two 

subtractors to perform steps 4 and 9. The counter unit performs step 7 of FHW-Alg. All the 

components in the design are directed and synchronized by the controller. 
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Figure 3.3 The block diagram of implementing the FHW-Alg 

 

 

 
 

Figure 3.4 The fixed precision hardware data path 

u_out

v_out 

s_out

r_out 
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3.4 The Scalable Design  
 

 

3.4.1 Why scalable design? 

 

Application specific hardware architectures are usually designed to deal with a 

specific maximum number of bits, 512-bits for example. If this number of bits is to be 

increased, even by one, the complete hardware needs to be replaced. In addition to that, if 

the design is implemented for a large number of bits, the hardware is huge and its� longest 

path usually is impractical. It will cause the hardware to run at a very low clock frequency 

unless architectural changes are applied. These issues motivated the search for a scalable 

hardware similar to what is proposed by Tenca and Koç in their Scalable Architecture for 

Montgomery Multiplication [6]. 

The scalable architecture solves the previous problems with the following three 

hardware features. First, the design�s longest path should be short and independent of the 

operands� length. Second, it is designed in such a way that it fits in restricted hardware 

regions (flexible area). Finally, it can handle the computation of numbers in a repetitive 

way up to a certain limit usually imposed by the size of the memory in the design. If the 

number of bits in the data exceeds the memory size, the memory unit is replaced while the 

scalable computing unit is not changed.  

 

 

3.4.2 Scalable Hardware Issues Applied to the Algorithm 
 

Differently from what happens in the fixed precision hardware design, the scalable 

hardware has multi-precision operators for addition, subtraction and comparison. The 

subtraction used for comparison (u > v), is performed on a word-by-word basis until all the 

actual data words are processed, then, the subtractor borrow out bit is used to decide on the 

result. Also, depending on the subtraction completion, variable r or s has to be shifted. All 

variables, u, v, r and s, need to remain as is until the subtraction processes complete, and 

the borrow out bit appears. Such a constraint forced the use of three more variables: x, y 
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and z; where x= u-v, y= v-u and z= r+s. These variables are stored in extra registers as 

outlined in the scalable algorithm. 
 

The Scalable Hardware Algorithm (SHW-Alg) 

Registers: u, v, r, s, x, y, z & p (all eight registers are to hold nmax bits). 
Input:       a ∈  [1, p-1], p = modulus.  
Output:    result ∈  [1,p-1] & k; where result = a-12k(mod p) & n<k<2n, (n < nmax) 
1.      u = p; v = a; r = 0; s = 1; x = 0; y = 0;  z = 0; k = 0 
2.      if (u0 = 0) then { u = ShiftR(u,1) ; s = ShiftL(s,1) }; go to step 7 
3.      if (v0 = 0) then { v = ShiftR(v,1) ; r = ShiftL(r,1) }; go to step 7 
4.      x = Subtract (u, v); y = Subtract (v, u); z =Add (r, s)  
5.     if (xborrow=0)then{u= ShiftR(x,1); r = z; s = ShiftL(s,1)}; goto step7 
6.      s = z;  v = ShiftR(y,1); r = ShiftL(r,1) 
7.      k := k + 1 
8.      if (v ≠ 0) go to step 2 
9.      x = Subtract (p, r); y = Subtract (2p, r)  
10.    if (xborrow = 0) then {return result = x};  else {return result = y} 

 

All operations (addition, subtraction, and shifting) of the scalable hardware algorithm 

are multi-precision computations. In other words, the numbers are utilized in each 

operation on a word-by-word basis until the entire number is processed. 

 

 

3.4.3 The Scalable Hardware Design 

 

The scalable hardware design is built of two main parts, a memory unit and a 

computing unit. The memory unit is not scalable because it has a limited storage defined 

by the value nmax. The data values of a and p are first loaded in the memory unit. Then, the 

computing unit read/write (modify) the data using a word size of w bits. The computing 

unit is completely scalable. It is designed to handle w bits every clock cycle. The 

computing unit does not know the total number of bits, nmax, the memory is holding. It 

computes until the controller indicates that all operands words were processed. Note that 

the actual numbers used may have much less than nmax bits. 

The block diagram for the scalable hardware is shown in Figure 3.5. The memory unit 

is connected to the computing unit components. The computing unit is made of four 

hardware blocks, add/subtract block, shifter block, data router block, and the controller. All 

these computing unit blocks are briefly clarified after describing the non-scalable memory 
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unit. The memory unit contains a counter to compute k (step 7 of SHW-Alg) and eight 

first-in-first-out (FIFO) registers used to store the algorithm�s variables. All registers, u, v, 

r, s, x, y, z and p, are limited to hold at most nmax bits. Each FIFO register has its own reset 

signal generated by the controller. They have counters (ncounter bits each) to keep track of n 

(the number of bits actually used by the application). 

 

 

 
 

Figure 3.5 The scalable hardware overall block diagram 

  

 

The add/subtract unit is built of an adder, two subtractors, four flip-flops, three 

multiplexers, a comparator, and logic gates, connected as shown in Figure 3.6. This unit 

performs one of two operations, either to calculate step 4 of SHW-Alg: x = u-v, y = v-u, 

and z = r+s, or to calculate step 9: x = p-r and y = 2p-r. Three flip-flops are used to hold 

the intermediate carry-bit of the adder and borrow-bits of the two subtractors to implement 

the multi-precision operations. The fourth flip-flop is used to store a flag that keeps track 

of the comparison between u and v. This flag is used to perform step 8 of SHW-Alg. The 
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first subtractor borrow out bit is connected to the controller through a signal that is useful 

only at the end of the each multi-precision addition/subtraction operation. It will affect the 

flow of the operation to choose either step 5 or step 6 of SHW-Alg. It is also essential in 

choosing the final result observed in step 10 of SHW-Alg. 

 

 

 
 

Figure 3.6 The scalable add/subtract unit 

 

 

The shifter is made of two registers with special mapping of some data bits, as shown 

in Figure 3.7. Two types of shifting are needed in the hardware algorithm, shifting an 

operand (u or v) through the uv bus one bit to the right, and shifting another operand 

(r or s) through the rs bus one bit to the left. The input buses uv and rs are w bits noted in 

figure 3.7 as vectors uv[w-1:0] and rs[w-1:0], respectively. Shifting u or v is performed through 

Register1, which is of size w-1 bits. For each word, all the bits of uv are stored in Register1 

except the least significant bit (uv[0]), it is read out immediately as the most significant bit 

(MSB) of the output bus uv_out (uv_out[w-1]). The MSB of the output of Register2 (vector 

rs_out[w:0], bit rs_out[w]) is mapped as least significant bit (LSB) of the input of Regester2, 

to perform the shifting to the left. 
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Figure 3.7 The scalable hardware shifter 

 

 

The data router is made of ten multiplexers to connect the data going out of the 

memory unit to the inputs of the add/subtract unit or shifter. It also directs the shifted data 

values to go to their required locations in the memory unit. The possible configurations of 

the data router are shown in Figure 3.8. 

 

 

 
 

Figure 3.8 The data router configurations 
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The controller is the unit that coordinates the flow of data to guide the hardware 

computation. Its made of a state machine easily derived from SHW-Alg. The controller 

does not include counters to avoid any dependency on the number of bits that the system 

can handle. Such modules are left into the memory block. 

 

 

3.5 Modeling and Analysis 
 

Both designs were modeled and simulated in VHDL. The developed VHDL 

implementation of the scalable hardware has two main parameters, namely nmax and w. The 

fixed precision hardware, however, is parameterized by nmax only. Their area and speed are 

presented in this section. We didn�t define a specific architecture for the adders and 

subtractors used in the design. Thus, the synthesis tool chooses the best option in terms of 

area from its library of standard cells. The impact of the use of different adders is described 

in Chapter 4. 

 

 

3.5.1 Area Comparison 
 

The exact area of any design depends on the technology and minimum feature size. 

For technology independence, we use the number of NOT-gates as an area measure [14]. A 

CAD tool from Mentor Graphics (Leonardo) was used. Leonardo takes the VHDL design 

code and provides a synthesized model with its area and longest path delay. The target 

technology is a 0.5µm CMOS defined by the �AMI0.5 fast� library provided in the ASIC 

Design Kit (ADK) from the same Mentor Graphics Company [19]. It has to be mentioned 

here that the ADK is developed for educational purposes and cannot be thoroughly 

compared to technologies adopted for marketable ASICs. It however, provides a 

framework to contrast the scalable hardware with the fixed precision one.  

The only problem we faced with our VHDL code is that Leonardo cannot synthesize 

the scalable design memory unit because of its behavioral parametrizable feature. So we 

present an area function to calculate the scalable design memory. In Table 3.1, the number 

of NOT gates comparable to several standard logic gates is listed [14]. Other logic 
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modules, needed in the memory unit of the scalable design, are constructed from these 

basic gates. These modules and their area are listed in Table 3.2 [13,14]. The modules in 

Table 3.2 are related to nmax and ncounter bits, which are related to each other by the formula: 

ncounter = log2(2nmax+1). 

Thus, nmax is the only parameter controlling the area of the memory unit of the scalable 

design. The memory unit is made of eight registers that hold nmax bits and seventeen 

ncounter bit counters, which totally corresponds to [170 log2(2nmax+1) + 48nmax] gates. 

 

     

Standard gate type Fan-in Number of equivalent NOT gates 
NOT 1 1 

NAND, NOR 2 1 
NAND, NOR 3 2 

NAND 4 2 
NOR 4,5 4 

NAND 5 4 
NAND, NOR 6 5 
NAND, NOR 8 6 
XOR, XNOR 2 3 
XOR, XNOR 3 6 

AND, OR 2,3 2 
AND, OR 4 3 

 

Table 3.1 Area of the standard logic gates 

   

 

Memory Components Building Logic Area (number of NOT gates) 
nmax bit register nmax DFF 6nmax 

ncounter bit counter ncounter DFF +  
ncounter AND +  

ncounter OR 

 
6ncounter+2ncounter+2ncounter 

=10 ncounter 
 

Table 3.2 Area of the modules building the memory unit of the scalable design 

 

 

Using the estimate of the memory block and Leonardo�s results, it is possible to 

compare the sizes of the two designs in Figure 3.9. Observe that the fixed design has a 
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better area if the maximum number of bits used (nmax) is less than 32. However, this is not 

used in cryptography, as small numbers are useless [11]. In fact, the advantage of the 

scalable hardware is found to make the size of the design as small as possible. For 

example, if nmax=512 bits, the scalable hardware can be designed in less than half the area 

necessary for the fixed precision hardware. 

 

 

 
                    nmax (bits) 

 

Figure 3.9 The area comparison 

 

 

3.5.2 Speed Comparison 
 

The total computation time is a product of the number of clock cycles the algorithm 

takes and the clock period of the VLSI implementation. This number of clock cycles 

depends completely on the data and its computation. For the fixed precision design, the 

number of clock cycles is k+4, where k is the number of iterations counted through the 



 35

loop, step 2 to step 7 of FHW-Alg. The value of k (FHW-Alg) is within the range [n,2n] 

[1], which justify the use of its average of 3n/2, for comparison purposes. This assumption 

makes the number of clock cycles required for the fixed precision design to complete a 

computation equal to  

Cf = (3n/2) + 4. 

The number of clock cycles in the scalable design is a function of three parameters: k, 

w and n. The number of cycles to compute any scalable addition and/or subtraction is 

calculated as n/w, which makes the actual number of clock cycles depend on the real data 

used and its size. However, after several experiments, we concluded that approximately 

half the time step 2 or 3 of SHW-Alg is needed and the other half step 4 is required. But 

the loop iteration time to execute step 2 or 3 is different than step 4. Step 4 needs extra 

cycles for the shifting operation after it. The number of cycles to perform each loop 

iteration (step 2 to step 7 of SHW-Alg) is calculated as  

CPLI = [(n/w +1)/2]+n/w+3, 

(CPLI stands for the clock cycles per loop iteration). The number of loop iterations of the 

algorithm is exactly equal to k. The overall number of cycles equals the CPLI × k (the 

number of loop iterations), plus the final operation of steps 9 and 10 (SHW-Alg). The total 

number of clock cycles of the scalable hardware equals to  

Cs = 7+(7/2)k+[(4+(3/2)k)(n/w)], 

which was verified by VHDL simulation. If k is approximated to its average of 3n/2 

(similar to the fixed precision design), the function of the clock cycles would be  

Cs = 7+[(21/4) n] + [(4+(9/4) n)(n/w )]. 

The clock period of the hardware designs changes with the value of w in the scalable 

hardware, and changes with the value of nmax in the fixed precision hardware. This is 

because w = nmax in the fixed precision hardware. Two speed comparison studies are 

carried out, one using the synthesize tool clock period for each design (technology 

dependent) and the other uses a technology independent estimation. 

 

 

 



 36

3.5.2.1 Technology dependent speed comparison 
 

The real time clock period depends on the technology and the efficiency of the CAD 

tool used [13]. Table 3.3 lists the real time clock period for each design generated by 

Leonardo. We excluded the memory unit from all designs when synthesizing for the 

longest path delay assuming its effect will be the same for both scalable and fixed precision 

design, because the scalable design memory unit couldn�t be synthesized (Section 3.5.1). 

 

 

Scalable Hardware where w = Fixed Precision  
nmax 4 8 16 32 64 Hardware 

4 9.62 12.39 19.48 30.66 54.93 11.41 
8 9.62 12.39 19.48 30.66 54.93 15.96 

16 9.62 12.39 19.48 30.66 54.93 26.5 
32 9.62 12.39 19.48 30.66 54.93 48 
64 9.62 12.39 19.48 30.66 54.93 92 

128 9.62 12.39 19.48 30.66 54.93 178 
256 9.62 12.39 19.48 30.66 54.93 350 
512 9.62 12.39 19.48 30.66 54.93 694 

1024 9.62 12.39 19.48 30.66 54.93 1382 
 

Table 3.3 Clock cycle period for all designs (nsec) 

 

 

The scalable hardware can have several designs for each nmax depending on w. For 

example, Figure 3.10 shows the delay of five designs of the scalable hardware compared to 

the fixed precision hardware, all modeled for nmax = 256 bits. Observe how the actual data 

size (n) plays a big role on the speed of the designs. In other words, as n reduces for small 

w, the number of clock cycles decrease significantly, which considerably reduces the 

overall computing time of the scalable design. This is a major advantage of the scalable 

hardware over the fixed precision one.  

The number of clock cycles of the fixed precision model depends on the actual size of 

the data used. However, its period always operate on nmax bits. For example, if we are using 

n = 64 bits, and the design is made for nmax = 256 bits, as of Figure 3.10, the fixed 

precision design will assume the operands are using all 256 bits by placing zeros for the 
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unused bits. All nmax bits are processed into the computation causing the fixed precision 

design to have more delay than all different scalable ones. This fact is shown again in 

Figure 3.11 which presents the delay of the designs made for nmax = 512 bits. 

 

 

 
 

Figure 3.10 Delay comparison of designs with nmax = 256 bits 

 

 

Another observation from Figures 3.10 and 3.11 is that the delay of all the scalable 

designs are better than the fixed precision one when n ≤ nmax/2, except for w = 4 bits that is 

better when n ≤ 3nmax/8. Suppose our design is target to handle 512 bits maximum, as the 

case of Figure 3.11, which is a practical number for future ECC applications [11]. The 

scalable designs with w = 8, 16, 32, and 64 bits are faster than the fixed precision one as 

long as n≤ 256 bits (n ≤ nmax/2). However, for the scalable design with w = 4, it is faster 

than the fixed precision one while n ≤ 192 bits (n ≤ 3nmax/8). In fact, as w gets bigger the 

delay decreases, which is a normal speed area trade-off. 
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Figure 3.11 Delay comparison of designs with nmax = 512 bits 

 

 

3.5.2.2 Technology independent speed comparison 
 

 To have a technology independent speed comparison we use the fact that the designs 

longest path passes through the adders (carry-ripple) and we are going to evaluate the clock 

period as a function of δ (the delay of each full adder). The delays of carry-ripple adders 

depend linearly on the number of bits they are built for, as listed in Table 3.4.  

 

 

Adder number of bits 4 8 16 32 64 128 256 512 
Estimated delay in δδδδ units 4δ 8δ 16δ 32δ 64δ 128δ 256δ 512δ 

 

Table 3.4 Adders δ delay estimation depending on the number of bits   
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The total time for each design is computed in δ units. For simplicity, consider δ=1 

which results in an estimated total time as a figure of merit. The technology independent 

speed comparison of all designs for nmax=512 bits is shown in Figure 3.12. Observe how 

the graph shows roughly similar behavior to the technology dependent speed comparison 

(Figures 3.10 and 3.11). Another observation from Figure 3.12 is that the scalable designs 

are faster than the fixed precision one as long as: 

n < nmax / 2.5 and w < nmax/4. 

 

 

 

 
 

Figure 3.12 Technology independent speed comparison for designs with nmax=512 bits 

 

 

 



 40

3.6 Summary 
 

This Chapter presents two hardware designs of an algorithm used in the computation 

of Montgomery modular inverse arithmetic. The two designs are the fixed precision 

hardware and the scalable hardware. The scalable architecture makes the design�s longest-

path shorter, compared to the fixed precision hardware, with a corresponding higher clock 

frequency. The scalable hardware is also designed to fit in a small area with the 

computation of numbers performed in a repetitive way. The maximum number of bits 

(nmax) the scalable hardware can handle depends only on the memory. If the number of bits 

exceeds the memory size, the memory unit is the only part that needs to be modified, while 

the scalable computing unit does not change. On the other hand, all the fixed precision 

hardware components need to be changed completely if any extra bit is to be added beyond 

the memory limit. 

The scalable design shows area flexibility, depending on the number of bits used at 

each clock cycle (w). For example, if w = 4 bits and the design can handle up to 512 bits, 

the area of the scalable design is 60% less and faster in general than the fixed precision 

hardware. The comparisons show that this scalable structure is very attractive for 

cryptographic systems, particularly for ECC because of its need for modular inversion of 

large numbers, which differ in size repetitively depending on the application usage. 
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4 REDUCING THE CLOCK PERIOD OF THE ALMOST MONTGOMERY 
INVERSE HARDWARE DESIGNS  

 

 

4.1 Introduction 
 

The total computation time of the almost Montgomery inverse (AlmMonInv) 

hardware is a product of the number of clock cycles it takes and the clock period. The 

number of clock cycles depends on the input data. The clock cycle period depends on the 

design�s critical path, which is dominated by the adders used in the design. In the previous 

chapter, the longest path delay of the proposed designs was put to its maximum due to the 

area optimization option selected for the synthesis phase.  The synthesizer, Leonardo, 

optimized the design for the smallest area, and used the slow but small carry-ripple (CR) 

adders. In this chapter, a delay optimization option is applied that forces the synthesis tool 

to use one-level carry-look-ahead (CLA) adders. This is done to verify the impact of faster 

adders on the system performance and provide a clear idea of the area/time tradeoffs. 

 

 

4.2 Shortening the Critical Path  
 

As mentioned earlier, the critical path of the hardware is through the adders. The CR 

adders are the smallest and slowest adders [13,14]. A four bit CR adder, for w=4, is shown 

in Figure 4.1. This adder is made of 8 XOR gates and 12 NAND gates, which is equivalent 

to 36 NOT gates (or equivalent gates [14]). Observe the longest path involves the carry 

chain through all the four full adders. The longest path passes by 2 XOR gates and 

6 NAND gates [14].  

In order to reduce the critical path in the hardware, a faster adder should be used. 

When delay optimization is requested to the synthesis tool, it uses a CLA adder. This adder 

is faster than the CR adder but uses more area. A four bit CLA adder is shown in 

Figure 4.2. It is constructed of: 4 NAND, 4 XOR, 5 NOT, 7 NOR and 14 AND gates, 

which is equivalent to 56 NOT gates [14]. The longest path of this adder, however, passes 

through the following gates: NAND, AND, NOR and XOR, as shown in Figure 4.2. 
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Figure 4.1 The carry-ripple adder 

 

 

 
 

Figure 4.2 A four bit carry-look-ahead adder 

 

 

4.3 Area & Delay Comparison  
 

The four bits CR adder�s area is equivalent to 36 gates while the CLA adder is 

equivalent to 56 gates, which corresponds to 55.5% area increase. On the other hand, the 
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delay of the CR adder is through 2 XOR and 6 NAND gates while it�s through a NAND, 

AND, NOR, and XOR gates for the CLA adder, which is shorter (the delay of an XOR 

gate is much more than AND, OR, and NAND) [14]. When the adders are used in the 

design, the speed and area impact on the complete hardware differs, because of the speed 

and area contributions of the other system components. A study of the impact of different 

optimizations (changing the adders) on the synthesis of the AlmMonInv scalable design is 

listed in Table 4.1. The results of the same experimentation performed on the AlmMonInv 

fixed precision hardware is shown in Table 4.2. 

 

 

Area Optimization Delay Optimization  
nmax 
(bits) 

 
w 

(bits) 
Period 
(nsec) 

Area 
(gates) 

Period 
(nsec) 

Area 
(gates) 

Area 
loss 

Percentage 

Delay 
Improvement 
Percentage 

128 4 9.62 9032 9.5 10364 14.75 % 1.20 % 
128 8 12.39 9313 10.74 10568 13.47 % 13.3 % 
128 16 19.48 9887 15.4 11357 14.87 % 21.0 % 
128 32 30.66 11177 25.72 13148 17.63 % 16.1 % 
128 64 54.93 13602 43.91 17028 25.19 % 20.0 % 
128 128 102. 2 24453 79.53 31112 27.23 % 22.1 % 
256 4 9.62 15346 9.5 17610 14.75 % 1.20 % 
256 8 12.39 15627 10.74 17814 14.02 % 13.3 % 
256 16 19.48 16201 15.4 18603 14.83 % 21.0 % 
256 32 30.66 17491 25.72 20394 16.61 % 16.1 % 
256 64 54.93 19916 43.91 24274 21.89 % 20.0 % 
256 128 102. 2 30767 79.53 38358 24.67 % 22.1 % 
512 4 9.62 27804 9.5 31906 14.75 % 1.20 % 
512 8 12.39 28085 10.74 32110 14.33 % 13.3 % 
512 16 19.48 28659 15.4 32899 14.8 % 21.0 % 
512 32 30.66 29949 25.72 34690 15.83 % 16.1 % 
512 64 54.93 32374 43.91 38570 19.14 % 20.0 % 
512 128 102. 2 43225 79.53 52654 21.81 % 22.1 % 
 

Table 4.1 Area and delay optimizations of the AlmMonInv scalable design 

 

 

Consider Table 4.1 of the scalable design, the average area loss percentage is 

calculated to be 17.81%, which gains in the delay an average of 15.62%. Whereas, from 

Table 4.2, the fixed precision design�s average area loss is calculated to be 21.23% to raise 

the average speed by 5.5%. This study clearly shows that changing the adders to fast ones 
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benefits the scalable hardware in a much better way than the fixed precision one. The extra 

area needed to reduce the clock cycle period is much less for the scalable hardware than it 

is for the fixed precision design.  

 

 

Area Optimization Delay Optimization  
nmax 

(bits) 
Period 
(nsec) 

Area 
(gates) 

Period 
(nsec) 

Area 
(gates) 

Area 
loss 

Percentage 

Delay 
improvement 
Percentage 

4 11.41 796 11 925 16.20 % 3.59 % 
8 15.96 1501 15 1817 21.05 % 6.01 % 

16 26.5 2911 26 3576 22.84 % 1.88 % 
32 48 6395 47 7496 17.21 % 2.08 % 
64 92 12672 89 14944 17.92 % 3.26 % 

128 178 23952 165 29001 21.07 % 7.30 % 
256 350 46512 317 57010 22.57 % 9.42 % 
512 694 69327 621 90907 31.12 % 10.5 % 

 

Table 4.2 Area and delay optimizations of the AlmMonInv fixed precision design 
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5 A SCALABLE HARDWARE ARCHITECTURE FOR MONTGOMERY 
INVERSION IN GF(p) 

 

 

5.1 Introduction 
 

The starting point for the research of a complete Montgomery modular inverse 

hardware implementation is presented in [1]. The algorithm in [1] requires two main 

operations and in this Chapter we suggest replacing one of them by a simpler operation. A 

further modification to the inversion algorithm to use multi-bit shifting instead of single-bit 

shifting is also proposed. These two improvements reduce the number of clock cycles 

without significantly increasing the clock period, which results in an overall speedup of the 

inverse computation.  

The improved algorithm is mapped to hardware when the scalability feature presented 

in Chapter 3 is also incorporated. In this hardware design, the long-precision numbers are 

divided into words and each word is processed in a clock cycle. It is shown that this 

hardware is appropriate for cryptographic applications. This work shows the area and 

speed of several scalable hardware configurations compared with a fixed precision design 

presented in [27]. 

Section 5.2 presents the Montgomery inverse algorithm including the new correction 

phase proposed in this work. Section 5.3 explains the multi-bit shifting strategy and 

corresponding modifications to the hardware algorithm. In Section 5.4 the scalable 

hardware design is described in some detail. The comparison between different hardware 

configurations is given in Section 5.5.  

 

 

5.2 Montgomery Inverse Algorithm and Proposed Modifications 
 

 

5.2.1 New Approaches for Montgomery Inverse 
 
Let�s consider the main Montgomery inverse problem again (introduced before in 

Section 3.2). An approach to calculate x=a-12nmod p from a2n can be to compute a first and 
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then calculate the AlmMonInv (Kaliski Phase one (Section 3.2.1)) followed by Kaliski 

Phase two to get the desired inverse result. The first computation of a from a2n is 

performed by a modular division by 2n named Preparation Phase as shown below.  

 

Preparation Phase (Divide by 2n) 

Input:  r = a2n, n & p; where p=modulus & 2n-1 ≤ p < 2n 
Output:  x; where x = a mod p  
1. for i = 1 to n do 
2.  if r is even then r = r/2 
3.  else r = (r + p)/2 
4. return x = r 

 
Note that calculating a from a2n may be also obtained by a Montgomery multiplication [1] 

as follows: 

MonPro(a2n,1) = a2n (2-n) mod p= a mod p. 

 

However, the preparation phase is preferred in our case instead of MonPro, since it clearly 

can be implemented using the same hardware components of the AlmMonInv already 

proposed in Section 3.4.  

Another new way to calculate the Montgomery inverse is by applying the AlmMonInv 

on the input a2n to produce r and k according to the formula:   

(r,k) = AlmMonInv (a2n) 

where 

r = (a2n)-12k mod p = a-12k-n mod p 

Recall that Montgomery inverse of a2n is a-12nmod p, which implies that the AlmMonInv 

result (a-12k-nmod p) must be corrected. It is possible to find a constant C such that:  

C × (a-12k-n mod p) = a-12nmod p. 

Applying some algebra we get:  

C=(a-12nmod p)/(a-12k-nmod p)=(a-12n)/(a-12k-n)=(2n)/(2k-n)=2n-(k-n)=22n-k 

The modular multiplication of (a-12k-nmod p) by (22n-k) can be performed as follows:  

([((((a-12k-n).2).2).2)�����..2).2)] mod p) = a-12nmod p 
 

2n-k times    
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This arrangement of applying the modular operation after completing the multiplication is 

very expensive because the result of the multiplication by 22n-k may be much greater than 

the modulus and a large amount of hardware will be required to handle it [11]. However, 

the operation can be simplified by introducing the modular reduction after each 

multiplication by 2 as the following: 

[(((((a-12k-n).2) mod p).2) � 2) mod p).2) mod p)]=a-12nmod p 

The modular reduction operation is performed by a subtraction of p whenever the number 

exceeds p. The proposed correction phase consists then in performing a multiplication of  

a-12k-n by C = 22n-k as outlined below: 
 

Correction Phase (Multiply by 22n-k) 

Input:    r, p, n & k; where r & k are AlmMonInv outputs 
Output: x; where x = a-12n mod p  
1. for i = 2n-k to 0 do 
2.  r = 2r 
3.  if r > p then r= (r � p) 
4. return x = r 

 

 

5.2.2 Evaluation of Alternatives 
 

Several methods considered for hardware computation of the Montgomery inverse are 

shown in Figure 5.1; including the procedures proposed by Savas and Koç in [1] using 

MonPro. Each path in the graph has its own set of routines and its total computation time. 

Figure 5.1 presents the approximate number of iterations for each routine. Note that the 

number of iterations for multiplication is estimated considering serial-parallel multipliers, 

because fully parallel multipliers are extremely large [6]. 

All approaches of Figure 5.1 lead to the same final result. However, the number of 

iterations in each path proves that our two-phase method, the AlmMonInv followed by the 

correction phase (path: 1-4-6), is the fastest. It requires only 2n iterations to complete the 

inversion as shown in Table 5.1, the AlmMonInv needs 1.5n iterations, and the correction 

phase (CorPh) needs 0.5n iterations, assuming an average value of k=1.5n [1]. 

Observe that the other approach proposed in Section 5.2.1 (path: 1-2-3-6) would 

require 3n iterations in average to complete the inversion (Table 5.1); it is a slow 
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alternative and for this reason will not receive further attention. For the previously 

proposed methods using MonPro multipliers (path: 1-4-3-6 or 1-4-5-6) [1], even if the 

multipliers are completely parallel (one iteration instead of n), they need more than 2n 

iterations, which is still slower than using the path 1-4-6. The proposed method is the only 

two-phase method in the graph (Figure 5.1). 

 

 

 
 

Figure 5.1 Different ways to compute the Montgomery inversion 

 

 

 MonInv computation path Delay (number of iterations) 
 1-4-3-6 1.5n+n+0.5n = 3n 
New 1-2-3-6 n+1.5n+0.5n = 3n 
 1-4-5-6 1.5n+0.5n+n = 3n 
New 1-4-6 1.5n +0.5n     = 2n 

 

Table 5.1 Delay of different ways to compute the Montgomery inverse 

 

 

5.3 Multi-Bit Shifting 
 

The AlmMonInv algorithm needs to finish its computation completely before the 

CorPh algorithm begins processing. This data dependency allows the use of the same 

hardware to execute both algorithms, i.e., both the AlmMonInv and CorPh. The following 



 49

sections present an improvement of the AlmMonInv and CorPh algorithms based on a 

multi-bit shifting method. 

 

 

5.3.1 AlmMonInv Hardware Algorithm 

 

The AlmMonInv algorithm, when observed from hardware point-of-view, contains 

operations that are easily mapped to hardware as described in Section 3.3.1, which also 

provides the fixed precision hardware AlmMonInv algorithm (FHW-Alg) used in this 

section. Observe step 10 of the AlmMonInv algorithm (Section 3.2.1), the result of r=p 

occurs if-and-only-if a=∞, which cannot happen since a∈ [1,p-1]. Thus, the result of 

AlmMonInv algorithm equals either 2p-r when r>p, or p-r when r<p (as described in step 

10 of the FHW-Alg). 

 

 

5.3.2 Best Maximum Distance for Multi-bit Shifter 

 

Consider the FHW-Alg (Section 3.3.1). The operation to shift numbers u and s (step 

2), or v and r (step 3), are performed depending on u0 and v0. In fact, when u0 or v0 is zero, 

only shift operation happens. Suppose that the four least significant (LS) bits of u are zeros. 

The shifting process on u will consume four iterations to be completed.  

The multi-bit shifting method can be applied to shift two, three, four, five or more bits 

depending on the number of continuous zeros found at the LS bit positions of u and v. 

However, this number of zeros depends on data that are modified during the process. Thus 

a probabilistic analysis of the bit vectors u and v will give us an idea about maximum 

number of bits to be shifted.  

Let p be the probability of a bit to be zero and q=(1-p) be the probability of being one. 

The probability function PF used to calculate the probability of having x consecutive LS 

bits of u or v as zeros is: PF(x) = qpx; where x is the number of LS zeros [26]. Note that as 

x gets larger PF(x) reduces tremendously. The PF(x) values show that multi-bit shifting 

should be investigated only for x<6 bits. 
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In the FHW-Alg presented in Section 3.3.1, the loop (steps 2 through 8) is executed 

for k iterations. Based on experimental statistics collected with a software implementation 

of the AlmMonInv algorithm, nearly half of the k algorithm iterations are used executing 

step 4 (addition and subtraction) and the other half executing only steps 2 or 3 (shifting 

process) [1]. Applying the multi-bit shifting approach will reduce the number of iterations 

for the shifting process only. Reusing p=0.5 as the probability of performing a shift 

operation, we estimate the average number of iterations based on a probabilistic model. 

Table 5.2 shows probabilistic equations to compute the number of iterations when a multi-

bit shifter of up to x bits is available. The first polynomial term (as clarified in Figure 5.2 

for the case of x=3) stands for the number of iterations used for addition and subtraction 

(step 4 of FHW-Alg). This term is not affected at all by x (the maximum number of bits to 

be shifted). The following terms consider the use of multi-bit shifting. The total number of 

iterations (k) will be affected according to the number of bits shifted. Given the value p that 

was defined before, the average number of iterations (i) is computed as listed in the last 

column of Table 5.2. 

 

 

x  Probabilistic Equations i  
1 (1-p)k + pk 1.00 k 
2 (1-p)k + p[(1-p)k + p k/2] 0.88 k 
3 (1-p)k + p[(1-p)k + p((1-p) k/2 + p k/3)] 0.85 k 
4 (1-p)k + p[(1-p)k + p((1-p) k/2 + p [(1-p) k/3 + p k/4])] 0.849 k 
5 (1-p)k + p[(1-p)k +p((1-p) k/2+p[(1-p)k/3+p((1-p)k/4+pk/5)])] 0.847 k 

 

Table 5.2 Average number of iterations (i) 

 

 

After comparing the different i values, the notable improvement is found for the case 

with x=3 (shifting up to three bits), which gives the average of 15% reduction in the 

number of iterations (k). Note that there is not a significant improvement when x>3. 

 

 



 51

 
 

Figure 5.2 Description of i for the case of x = 3 

 

 

5.3.3 Adjustments to FHW-Alg 

 

The new capability to shift up to three bits requires a modification in the FHW-Alg, 

which is reflected in some units of the AlmMonInv hardware. The modified algorithm is 

shown below as the multi-bit shifting AlmMonInv hardware algorithm. 

 

Multi-Bit Shifting HW-Alg (MHW-Alg) 

Registers: u, v, r, s, & p (all five registers hold n bits) 
Input:  a ∈  [1, p -1], p = modulus.  
Output:  result∈ [1, p -1] & k; where result=a-12kmod p & n≤k≤2n 
1.    u = p, v = a, r = 0, s = 1, k = 0 
2.    if(u2u1u0=000)then{u=ShiftR(u,3);s=ShiftL(s,3);k=k+3};goto 8 
2.1. if(u2u1u0=100)then{u=ShiftR(u,2);s=ShiftL(s,2);k=k+2};goto 8 
2.2. if(u2u1u0=110)then{u=ShiftR(u,1);s=ShiftL(s,1)};goto 7 
3.    if(v2v1v0=000)then{v=ShiftR(v,3);r=ShiftL(r,3);k=k+3};goto 8 
3.1. if(v2v1v0=100)then{v=ShiftR(v,2);r=ShiftL(r,2);k=k+2};goto 8 
3.2. if(v2v1v0=110)then{v=ShiftR(v,1);r=ShiftL(r,1)};goto 8 
4.    S1 = Subtract (u, v); S2 = Subtract (v, u); A1 = Add (r, s) 
5.    if(S1borrow=0)then{u=ShiftR(S1,1);r=A1;s=ShiftL(s,1)};goto 7 
6.    s = A1; v = ShiftR(S2,1); r = ShiftL(r,1)  
7.    k = k + 1 
8.    if (v ≠ 0) go to step 2 
9.    S1 = Subtract (p, r); S2 = Subtract (2p, r)  
10.  if(S1borrow=0)then{return result=S1}; else{return result = S2} 
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The MHW-Alg when implemented in hardware requires: two subtractors (used in 

steps 4 and 9), an adder (step 4), a k-counter (that variably increments up to three), two 

multi-bit shifters (to shift u and s or v and r up to three bits, steps 2 to 3.2), and five n-bit 

registers (to store all the variables: u, v, r, s and p). 

 

 

5.3.4 Suitable Multi-Bit Shifting the CorPh 
 

The CorPh algorithm contains operations that are easily mapped to hardware 

components as shown in the CorPh hardware algorithm (HW-Alg2) below: 

 

CorPh Hardware Algorithm (HW-Alg2) 

Registers:  r & p (two registers to hold n bits). 
Input:  r,p,n,k; where r (r= a-12k-nmod p)& k from AlmMonInv 
Output:  result; where result = a-12n (mod p). 
11. j= 2n-k-1 
12.  While j>0   
13.  r = ShiftL(r,1); j = j-1 
14.  S1 = Subtract(r, p) 
15.  if (S1borrow = 0) then {r = S1}  
16. return result = r 

 

To implement the HW-Alg2 in fixed precision hardware we need: two n-bit registers 

(to store r and p), a subtractor (step 14), a shifter, and a counter (step 13). The one-bit 

shifter (step 13) can be easily modified to perform multi-bit shifting and clearly reduce the 

number of iterations. The ideal situation is to implement HW-Alg2 utilizing the same 

MHW-Alg (Section 5.3.3) hardware components. Since the shift operation in the HW-Alg2 

is followed by a subtraction, applying the multi-bit shifting technique to the algorithm 

demands extra subtractors to perform these operations in parallel and fully speedup the 

process. The total number of iterations and the corresponding number of subtractors for 

some shifting distances are listed in Table 5.3. 

The practical choice of the maximum shifting distance in the CorPh implementation is 

two. This decision is due to the need of three subtractors when shifting two bits, which are 

already found in the AlmMonInv hardware (assuming two�s complement subtraction). If 
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the maximum distance is three, seven subtractors are required, which is far beyond the 

AlmMonInv hardware capability. To clarify this issue and how Table 5.3 is generated, let 

us start by assuming single-bit shifting. Observe that r<p, and 2r cannot reach 2p, at most 

one subtraction will be needed when 2r>p. When the distance is two, we need to shift r 

two bits to obtain 4r, where 4r<4p. This time, 4r must be reduced by subtractions of 3p, 

2p, or p if necessary. The CorPh algorithm is modified to accommodate the two-bit shifting 

as shown in the multi-bit shifting CorPh hardware algorithm below (MHW-Alg2). 

 

Multi-Bit Shifting HW-Alg2 (MHW-Alg2) 

Registers: r, u, v & p (all four registers are to hold n bits). 
Input:  r,p,n,k; where r (r=a-12k-nmod p)&k from AlmMonInv 
Output: result; where result = a-12n (mod p). 
11. j = 2n-k-1 
12.  v = 2p; u = 3p  
13. While j > 0  
14.  if j =1 then {r = ShiftL(r,1); j=j-1}  
15.  else {r = ShiftL(r,2); j=j-2} 
16.  S1=Subtract(r,p);S2=Subtract(r,v);S3=Subtract(r,u)  
17.  if (S3borrow = 0) then  {r = S3}  
18.  else if (S2borrow = 0) then {r = S2} 
19.  else if (S1borrow = 0) then  {r = S1} 
20. return result = r 
 

 

 

Number of bits to be 
shifted per iteration 

CorPh hardware 
number of subtractors 

CorPh execution number 
of iterations 

1 1 (2n-k) 
2 3 (2n-k)/2 
3 7 (2n-k)/3 
4 15 (2n-k)/4 

 

Table 5.3 Speed and hardware changes due to multi-bit shifting the CorPh algorithm 

 

 

The three subtraction operations are performed in parallel, as step 16 of MHW-Alg2. 

Four registers are needed to hold the variables r, u, v and p. The value of p is already 

available in register p, however, the values of 2p and 3p have to be computed once at the 
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beginning of the CorPh and stored in registers v and u respectively (step 12). The counter, 

j, is set to 2n-k-1 at step 11 (using the value k from AlmMonInv); it is used to keep track of 

the number of iterations in the algorithm. 

 

 

5.4 The Scalable Design 
 

 

5.4.1 Scalable Hardware Issues Applied to the Algorithms 
 

Differently from what normally happens in the full-precision hardware design, the 

scalable hardware, as in [27], has multi-precision operators for shifting, addition, 

subtraction and comparison. Consider the MHW-Alg shown in Section 5.3.3, for example, 

the subtraction used for comparison (u>v) is performed on a word-by-word (w-bit slices) 

basis until all the data words (all n bits) are processed, as outlined below: 

 
for i = 1 to n/w 

(xborrow , xiw-1 : iw-w) = Subtract (uiw-1 : iw-w , viw-1 : iw-w , xborrow) 
(yborrow , yiw-1 : iw-w) = Subtract (viw-1 : iw-w , uiw-1 : iw-w , yborrow)  
(zcarry , ziw-1 : iw-w) = Add (riw-1 : iw-w , siw-1 : iw-w , zcarry) 

 

Then, the final word borrow out bit is used to decide on the result. Also, depending on the 

subtraction completion, variable r or s has to be shifted. All variables, u, v, r and s, cannot 

change until the subtraction processes complete, and the borrow-out bit appears. This 

forces the use of three more variables: x, y and z; where x=u-v, y=v-u and z=r+s. These 

variables are stored in extra registers increasing the number of hardware registers to eight. 

All the registers hold nmax bits even though the actual number of bits in the numbers are 

n≤nmax bits. This nmax limit defines the memory capability and does not degrade the total 

computation time of the inversion process; i.e., the total delay of the computation depends 

on the actual number of bits (n) and not on nmax. 

 

 

 



 55

5.4.2 Scalable Hardware Design 
 

The scalable hardware design is built of two main parts, a memory unit and a 

computing unit, as shown in Figure 5.3. It is very similar, in principle, to the scalable 

hardware presented in [27]. The memory unit is not scalable because it has a limited 

storage defined by the value of nmax. The data values of a and p are first loaded in the 

memory unit. Then, the computing unit read/write (modify) the data using a word size of w 

bits. The computing unit is completely scalable. It is designed to handle w bits every clock 

cycle. The computing unit does not know the total number of bits, nmax, the memory is 

holding. It computes until the controller indicates that all operands� words were processed. 

Note that the actual numbers used may be way smaller than nmax bits. 

 

 

 
 

Figure 5.3 Montgomery inverse scalable hardware block diagram 

 

 

The memory unit contains a counter to compute variable k and eight first-in-first-out 

(FIFO) registers used to store the inversion algorithm�s variables. All registers, u, v, r, s, x, 

y, z and p, are limited to hold at most nmax bits. Each FIFO register has its own reset signal 
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generated by the controller. They have counters to keep track of n (the number of bits 

actually used by the application). 

The computing unit is made of four hardware blocks, the add/subtract, shifter, data 

router, and controller block. The add/subtract unit is built of two subtractors, an 

adder/subtractor, four flip-flops, one multiplexer, a comparator, and logic gates, connected 

as shown in Figure 5.4. This unit performs one of two operations, either two subtractions 

and one addition for the MHW-Alg (Section 5.3.3), or three subtractions for the MHW-

Alg2 (Section 5.3.4). To execute MHW-Alg the Adder/Subtractor3 is controlled to work as 

an adder (step 4 of MHW-Alg). The same Adder/Subtractor3 is used as subtractor to 

execute step 16 of the MHW-Alg2. Three flip-flops are used to hold the intermediate 

borrow-bits of the subtractors and the carry-bit of the adder to implement the multi-

precision operations. The fourth flip-flop is used to store a flag that keeps track of the 

comparison between u and v, which is used to perform step 8 of MHW-Alg. The borrow-

out bits from the subtractors are connected to the controller used only at the end of the each 

multi-precision addition/subtraction operation. Subtractor 1 borrow-out bit is used to test 

the condition in step 5 of MHW-Alg. It is also essential in electing the result observed in 

step 10 of MHW-Alg. The three subtractors borrow-out bits (S1borrow, S2borrow, S3borrow) are 

likewise necessary to select the correct �if� condition to be used in steps 17, 18, or 19, of 

the MHW-Alg2 algorithm. 

The multi-bit shifter is made of two multiplexers and two registers with special 

mapping of some data bits, as shown in Figure 5.5. The two multiplexers are used to select 

the correct set to be used in the multi-bit shifter. Depending on the controller signal 

Distance, the shifter acts as a one, two, or three-bit shifter. Two types of shifting are 

needed in the MHW-Alg algorithm, right shifting an operand (u or v) through the uv bus 

(one, two, or three bits) and left shifting another operand (r or s) through the rs bus (by 

similar number of bits). Right shifting u or v is performed through Register1, which is of 

size w-1 bits. For each word, w-1 bits of uv are stored in Register1. The LS bit(s) of each 

word is (are) read out immediately as the most significant bit(s) of the output bus uv_out. 

Left shifting r or s is performed via Register2, which is of size w+3 bits, in a similar 

fashion. When executing the MHW-Alg2, the left shifting is performed to a distance of 

either one or two bits using the rs path only. 
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Figure 5.4 Add/subtract unit 

 

 

 
 

Figure 5.5 Multi-bit shifter (max distance = 3) 
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The data router shown in the complete hardware (Figure 5.3) is made of twelve 

multiplexers to connect the data going out of the memory unit to the inputs of the 

add/subtract unit or shifter and also transfers the shifted data values to their destination 

locations in the memory unit. The possible configurations of the data router are shown in 

Figure 5.6. 

 

 

 
 

Figure 5.6 Data router configurations 

 

 

The controller is the unit that coordinates the flow of data. It consists in a state 

machine easily derived from both MHW-Alg and MHW-Alg2. The controller does not 

include counters to avoid any dependency on the number of bits (nmax) that the system can 

handle. Such counters are located in the memory block, which is the non-scalable 

component in the system. 

 

 

5.5 Modeling and Analysis 
 

The proposed Montgomery inverse scalable design was modeled and simulated in 

VHDL similar to Section 3.5. It has two main parameters, namely nmax and w, which define 

several hardware configurations. These design configurations are compared in this work 
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with other fixed precision designs previously described in [27] only parameterized by nmax 

because w=nmax in their case. 

For both area and speed comparisons, we show the fixed precision design in [27] 

modified to execute both MHW-Alg and MHW-Alg2, to be realistic and functionally 

similar to the scalable hardware of this work. Note that the area presented in [27] is the 

same given here because modifying the AlmMonInv hardware to process both AlmMonInv 

and CorPh will increase the area with a negligible amount due to modification in the 

controller. However, the time of [27] is different than what is here since it considers the 

execution of the complete Montgomery inverse computation. We didn�t define a specific 

architecture for the adders and subtractors used in the designs. Thus, the synthesis tool 

chooses the best option from its library of standard cells.  

 

 

5.5.1 Area Comparison 

 

The area of the scalable designs and the fixed precision one are compared in       

Figure 5.7. As nmax increases the difference between the fixed precision hardware and 

scalable ones increases, which is expected because of the increasing burden of the 

computing unit of the fixed precision design. Observe that the fixed precision design has 

larger area than all scalable ones except for the configuration with w=128 and nmax<160 

bits. As w approaches nmax, the scalable design�s benefit reduces and the extra hardware 

used for multi-precision computation shows up. In other words, the scalable design with 

w=nmax has the same size of adder and subtractors as the fixed one with extra hardware for 

scalability features, making it more expensive. 

 

 

5.5.2 Speed Comparison 

 

The total computation time is the product of the number of clock cycles the algorithm 

takes and the clock period of the final implementation. This clock period changes with the 

value of w in the scalable hardware (Table 5.4), and changes with the value of nmax in the 
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fixed precision hardware (Table 5.5). Tables 5.4 and 5.5 lists the clock period for each 

design obtained from synthesis of the VHDL models. 
 
 

 
 

Figure 5.7 Area comparison 

 

 

w   4 8 16 32 64 128 
Period 12 14 19 28 47 82 

 

Table 5.4 Clock cycle period for scalable designs (nsec) 

 

 

nmax 32 64 128 256 512 1024 
Period 50 93 178 351 694 1382 

 

Table 5.5 Clock cycle period for fixed designs (nsec) 
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The number of clock cycles for all designs depends completely on the data and its 

computation. For the scalable design, the number of cycles is a function of three 

parameters: k, w and n. To compute any shifting, addition and/or subtraction, the number 

of cycles is calculated as n/w. The total number of clock cycles to execute step 2 or 3 is 

different than step 4. Step 4 needs extra n/w cycles for the shifting operation after it 

(steps 5 or 6). The average number of clock cycles to perform each iteration of MHW-Alg 

(step 2 through step 8) is calculated as  

CPI1=(0.5n/w)+(0.5(2×n/w), 

(CPI stands for the clock cycles per iteration within the loop: step 2 to 8). The number of 

iterations of FHW-Alg is originally equal to k, but applying the multi-bit shifting of section 

5.3.2, the average number of iterations reduces to 0.85k. An extra n/w cycles are needed 

once after ending the loop of MHW-Alg (Section 5.3.3) to perform steps 9 and 10. The 

overall average number of cycles to execute MHW-Alg equals  

(CPI1×0.85k)+n/w. 

Similarly, the average number of clock cycles of the scalable hardware to execute 

MHW-Alg2 (Section 5.3.4) equals to  

CPI2×(2n-k)/2; 

where CPI2=2×n/w and (2n-k)/2 is the average number of iterations when shifting two 

bits per iteration, as explained in section 5.3.4. The value of k (MHW-Alg and MHW-

Alg2) is within the range [n,2n] [1], which justify the use of its average of 3n/2, for 

comparison purposes. The total number of clock cycles required by the scalable design to 

complete Montgomery inverse computation is then calculated as 

Cs=(2.4125n+1)n/w, 

which was verified by several VHDL simulations. 

For the fixed precision design to perform the CorPh after the AlmMonInv both using 

multi-bit shifting algorithms as MHW-Alg and MHW-Alg2, the total average number of 

clock cycles is n+0.35k; where 0.85*k cycles are used to execute MHW-Alg, and (2n-k)/2 

cycles are allocated for MHW-Alg2. If k is approximated to its average of 3n/2 (similar to 

the scalable design), the number of the clock cycles will be given by the function 

Cf=1.525n. 
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Several scalable hardware configurations are designed depending on different nmax and 

w parameters. Each configuration can have different computation time depending on the 

actual number of bits, n, used. For example, Figure 5.8 shows the delay of six scalable 

hardware designs compared to the fixed precision hardware, all modeled for nmax=512 bits, 

which is a practical number for future ECC applications [11]. Observe how the actual data 

size (n) plays a big role on the speed of the designs. In other words, as n reduces and w is 

small, the number of clock cycles decrease significantly, which considerably reduces the 

overall computing time of the scalable design compared to the fixed precision one. This is 

a major advantage of the scalable hardware. 

Recall that the number of clock cycles of all designs depends on the actual size of the 

data used and the actual data value. However, the fixed precision hardware clock period is 

always assumed to have nmax bits to process. i.e., if the application needs only n=128 bits, 

and all designs are made for nmax=512 bits, as the example of Figure 5.8, the fixed 

precision design clock frequency is not affected by n and all nmax bits are treated in the 

computation causing the fixed precision design to have a total time greater than all 

configurations of the scalable designs. This observation was found valid for other nmax 

values (designs for these cases we actually tested and synthesized). It was observed that all 

scalable designs are faster than the fixed precision one while 

 
 

In Figure 5.8, for example, as n<nmax/2 (n=256) the fixed precision hardware is faster than 

the scalable one with w=4 bits and very similar to the design with w=8 bits. As n>3nmax/4 

(n=384) the scalable design with w=16 has a speed that falls below the fixed precision one. 

When n=nmax=512 the scalable design with w=32 bits has almost the same speed as the 

fixed precision one, but the ones with w>nmax/16 bits remain faster. In fact, as w gets 

bigger, the total time decreases, which is also true when comparing among the different 

scalable designs as long as n≥w (Figure 5.8). Whenever n<w, considering the scalable 

designs only, the advantage of the scalable designs reduces indicating that the number of 

words to be processed reached its lower limit, but still the scalable designs are faster than 

the fixed precision one. 
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Figure 5.8 Delay comparison of designs with nmax = 512 bits 

 

 

The previous speed comparison results depend on Leonardo�s clock periods 

(technology dependent). If we use the technology independent method discussed in Section 

3.5.2.2, the speed comparison is as shown in Figure 5.9. Note that all scalable hardware 

designs are faster than the fixed precision designs while: 

n < nmax / 1.5 

Another observation from Figure 5.9 is that the scalable design configurations speeds 

converge (tending to be very similar) when: 

n > w. 

This gives the general impression of disagreement with Leonardo�s speed comparison 

results (Figure 5.8), which is due to the technology independent assumption            

(Section 3.5.2.2) of considering the longest path of the designs only by the adders. 

Although the adders dominate the longest paths of the designs, other components 

(controller and data router) affects too.  
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Figure 5.9 Technology independent speed comparison for all designs with nmax=512 bits 
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6 SCALABLE AND UNIFIED HARDWARE TO COMPUTE MONTGOMERY 
INVERSE IN GF(p) AND GF(2n) 

 
 

6.1 Introduction 
 

Cryptographic inverse calculations are normally defined over either prime or binary 

extension fields [11], more specifically Galois Fields GF(p) or GF(2n). All available 

application-specific integrated circuit (ASIC) implementations for inversion computation 

[16-18,20-25] are created strictly for one finite field, either GF(p) or GF(2n). If the 

hardware at hand is for GF(2n) calculations, such as [17,18,20-25], and the application 

needs GF(p) computation, a completely different hardware is required [11]. It is inefficient 

to have two hardware designs (one for GF(p) and another for GF(2n)) when only one is 

needed each time. This issue motivated the search for a single unified hardware 

architecture used to compute inversion in either finite field GF(p) or GF(2n), similar, in 

principle, to the multiplier idea proposed in [7]. 

The GF(p) Montgomery inverse (MonInv) algorithm (presented in Chapter 5) is an 

efficient method for doing inversion with an odd modulus. The algorithm is particularly 

suitable for implementation on application specific integrated circuits (ASICs). For GF(2n) 

inversion, the original inverse procedure (presented in [37]) has been extended to the finite 

field GF(2n) in [35]. It replaces the modulus (p) by an irreducible polynomial (p(x)), and 

adjusts the algorithm according to the properties of polynomials. We implemented the 

inversion algorithms in hardware based on the observation that the Montgomery inverse 

algorithm for both fields GF(p) and GF(2n) can be very similar. We show that a unified 

architecture computing the Montgomery inversion in the fields GF(p) and GF(2n) is 

designed at a price only slightly higher than the one for only the filed GF(p), providing 

major savings when having both types of inverters is desirable or required. 

A scalable Montgomery inverter design methodology for GF(p) was introduced in 

Chapters 3 and 5. This methodology allows the use of a fixed-area Montgomery inverter 

ASIC design to perform the inversion of unlimited precision operands. The design 

tradeoffs for best performance in a limited chip area were also analyzed in Section 5.5. We 

use the design approach as in [27] to obtain a scalable hardware module. Furthermore, the 

scalable inverter described in this Chapter is capable of performing inversion in both finite 
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fields GF(p) and GF(2n) and is for this reason called a scalable and unified Montgomery 

inverter. 

There are two main contributions of this Chapter. First, we show that a unified 

architecture for inversion can be easily designed without compromising scalability and 

without significantly affecting delay and area. Second, we investigate the effect of word 

length (w) and the actual number of bits (n) on the hardware area, based on actual 

implementation results obtained by synthesis tools. In Section 6.2, we propose the GF(2n) 

extended Montgomery inverse procedure that has several features suitable for an efficient 

hardware implementation. The unified architecture and its operation in both types of finite 

fields, GF(p) and GF(2n), are described in Section 6.3. Section 6.4 presents the area/time 

tradeoffs and appropriate choices for the word lengths of the scalable module. Finally, a 

summary is discussed in Section 6.5. 

 

 

6.2 Montgomery Inverse Hardware Procedures For GF(p) and GF(2n) 
 

In order to design a unified Montgomery inverse architecture, the GF(p) and GF(2n) 

algorithms need to be very similar and this way consume the least amount of extra 

hardware. Extending the GF(p) Montgomery inverse algorithm to GF(2n) is practical due to 

the removal of carry propagation required in the addition of GF(p) element and simple 

adjustments of test conditions. In other words, the GF(2n) algorithm is like a simplification 

of the GF(p) one. The converse (modifying GF(2n) algorithms for GF(p)), on the other 

hand, is very difficult [7,11,35,36]. 

As explained before (Section 5.2), the scalable GF(p) Montgomery inverse (MonInv) 

procedure proposed in this work consists in two phases: the almost Montgomery inverse 

(AlmMonInv) and the correction phase (CorPh). Both GF(p) AlmMonInv and CorPh 

algorithms were mapped to hardware features and further modified for multi-bit shifting, a 

concept discussed in Section 5.3, which resulted in an efficient implementation of the 

GF(p) Montgomery inverse. The GF(p) multi-bit shifting for both AlmMonInv and CorPh 

hardware algorithms (MHW-Alg and MHW-Alg2, respectively), are outlined in Figure 6.1. 
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MHW-Alg: GF(p) Multi-Bit Shifting AlmMonInv 
Hardware Algorithm 
Registers: u, v, r, s, x, y, z, and p (all registers hold nmax bits) 
Input:       a2m∈ [1, p-1]; Where p = modulus, and m≥n (2n-1≤p≤2n) 
Output:  result∈ [1, p-1] & k;  
                                             Where result=a-12k-mmod p & n<k<2n 
1.    u = p; v = a2m; r = 0; s = 1; x = 0; y = 0; z = 0; k = 0 
2.    if(u2u1u0=000)then{u=ShiftR(u,3);s=ShiftL(s,3);k=k+3};goto 8 
2.1. if(u2u1u0=100)then{u=ShiftR(u,2);s=ShiftL(s,2);k=k+2};goto 8 
2.2. if(u2u1u0=110)then{u=ShiftR(u,1);s=ShiftL(s,1)};goto 7 
3.    if(v2v1v0=000)then{v=ShiftR(v,3);r=ShiftL(r,3);k=k+3};goto 8 
3.1. if(v2v1v0=100)then{v=ShiftR(v,2);r=ShiftL(r,2);k=k+2};goto 8 
3.2. if(v2v1v0=110)then{v=ShiftR(v,1);r=ShiftL(r,1)};goto 8 
4.    x = Subtract (u, v); y = Subtract (v, u); z = Add (r, s) 
5.    if(xborrow=0)then{u=ShiftR(x,1); r=z; s=ShiftL(s,1)};goto 7 
6.    s = z; v = ShiftR(y,1); r = ShiftL(r,1) 
7.    k = k + 1 
8.    if (v ≠ 0) go to step 2 
9.    x = Subtract (p, r); y = Subtract (2p, r) 
10.  if(xborrow = 0)then{result=x}; else{ result = y} 

MHW-Alg2:GF(p) Multi-Bit Shifting CorPh 
Hardware Algorithm 
Registers: r, u, v, x, y, z, and p (all registers hold nmax bits) 
Input:       r, p, n, k;  
                        Where r (r=a-12k-mmod p)&k from MHW-Alg 
Output:    result; Where result = a-12m (mod p). 
11.       j = 2m-k; x = 0; y = 0; z = 0 
12.      v = 2p; u = 3p 
13.      While j > 0 
14.           if j =1 then {r = ShiftL(r,1); j=j-1} 
15.           else {r = ShiftL(r,2); j=j-2} 
16.           x=Subtract(r,p);y=Subtract(r,v);z=Subtract(r,u) 
17.           if (zborrow = 0) then  {r = z} 
18.           else if (yborrow = 0) then {r = y} 
19.           else if (xborrow = 0) then  {r = x} 
20.      result = r 

 

Figure 6.1 Montgomery inverse hardware algorithm for GF(p) 

 

 

Differently from what normally happens in a full-precision hardware design, the 

scalable hardware, as in [6-8,27], has multi-precision operators for shifting, addition, 

subtraction and comparison. Observe the AlmMonInv algorithm in Figure 6.1, for 

example, the scalable subtraction (step 4) is also used for comparison (u>v), which is 

performed on a word-by-word (w-bit words) basis until all the actual data words (all n bits) 

are processed. Then, the final word borrow out bit is used to decide on the result. Also, 

depending on the subtraction completion, variable r or s has to be shifted. All variables, u, 

v, r and s, need to remain as is until the subtraction process is complete, and the borrow out 

bit appears. For this reason, eight registers are required, as shown in Figure 6.1. 

 

 

6.2.1 Representation and Manipulation of Elements in GF(2n) 
 

The inversion algorithm for GF(2n) considered in this work was presented in [35]. 

Although prime and binary extension fields, GF(p) and GF(2n), have different properties, 

the elements of either field are represented using similar data structures. The elements of 

the field GF(2n) can be represented in several different ways [11]. The polynomial 

representation, however, is a useful and appropriate form to the unified implementation, as 

used for the unified multiplier in [7]. According to the GF(2n) polynomial representation, 



 68

an element a(x) in GF(2n) is a polynomial of length n, i.e., of degree less than or equal to    

n-1, written as  

a(x)=an-1xn-1+an-2xn-2+ ... +a2x2+a1x+a0,  

where ai is an element in GF(2). These coefficients ai are represented as bits in the 

computer and the element a(x) is represented as a bit vector a=(an-1 an-2 ... a2 a1 a0). 

The addition/subtraction of two elements a(x) and b(x) in GF(2n) is performed by 

adding/subtracting the polynomials a(x) and b(x), where the coefficients are 

added/subtracted in the field GF(2). As a consequence, both addition and subtraction 

operations are exactly the same and equivalent to bit-wise XOR operations on the bit 

vectors a and b (ai ⊕  bi). In order to compute the inverse of element a(x) in GF(2n), we 

need an irreducible polynomial of degree n. Let the irreducible polynomial be       

p(x)=xn+pn-1xn-1+pn-2xn-2+ ... +p2x2+p1x+p0 [11]. 

where pi is an element in GF(2). Whenever a polynomial degree, in the intermediate 

inversion calculations, equals n, the polynomial should be reduced (XORed) by p(x). Lets 

use the notation ||p(x)|| to represent the degree of a polynomial p(x). If, for example, ||r(x)|| 

= ||p(x)|| then r is replaced by p⊕ r. Note that in some cases ||r(x)|| = ||p(x)|| while r < p 

(recall that r is the binary representation of r(x) as it is p for p(x)). These cases restrict the 

comparison of r to 2n to indicate if r(x) needs to be reduced by p(x) (r=p⊕ r), which means 

that r(x) is compared with xn (represented by 2n) and not p(x). 

 

 

6.2.2 Montgomery Inverse in GF(2n) 

 

The GF(2n) Montgomery inverse of a(x)xmmod p(x) is a(x)-1xmmod p(x) [11]. The 

Montgomery factor 2m of GF(p) is replaced by xm in GF(2n), which is exactly equal to 2m in 

a binary representation [7,11,35]. The restriction on m is the same as GF(p), it should not 

be less than the number of bits (n), i.e., m≥n [1]. The elements of GF(p) and GF(2n) are 

represented using similar binary data structure. Element a for both GF(p) and GF(2n) is 

resembled by (an-1 an-2  ... a2 a1 a0) while p=(pn-1 pn-2 ... p2 p1 p0) for GF(p) and              

p=(1 pn-1 pn-2 ... p2 p1 p0), polynomial p(x) for GF(2n) [11]. Our adjusted binary GF(2n) 
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Montgomery inverse (MonInv) procedure consists in a GF(2n) AlmMonInv and a GF(2n) 

CorPh routines as outlined in Figure 6.2. 

 

 

GF(2n) AlmMonInv Algorithm  

Input:   a2m∈ GF(2n) & p; (p=irreducible polynomial & m≥n) 
Output: result∈ [1, p-1] & k (result=a-12k-mmod p & n<k<2n) 
1.    u = p; v = a2m; r = 0; s = 1; k = 0 
2.    While (v > 0) 
3.          if u0 = 0 then {u = u/2; s = 2s}  
4.          else if v0 = 0 then {v = v/2; r = 2r} 
5.          else if u>v then {u = (u⊕ v)/2; r = r⊕ s; s = 2s} 
6.          else {v = (u⊕ v)/2; s = r⊕ s; r = 2r} 
7.          k=k+1 
8.    if r ≥ 2n+1 (||r|| > ||p||) then {result = 2p⊕ r} 
9.   else if r ≥ 2n (||r|| = ||p||) then {result = p⊕ r} 
10. else result = r  

GF(2n) CorPh Algorithm 

Input:       r, p, m, & cowherd r & k from AlmMonInv 
Output:    result; Where result = a-12m (mod p) 
11.     j = 2m-k 
12.    While j > 0  
13.        r = 2r 
14.        if r ≥ 2n (||r|| = ||p||) then {r = p⊕ r} 
15.        j = j-1  
16.    result = r 

 

Figure 6.2 GF(2n) Montgomery inverse algorithm in its binary representation 

 

 

For more clarification of the GF(2n) MonInv computation, see the numerical example 

in Figure 6.3. It takes as inputs the polynomial a(x)=x3+1, represented into Montgomery 

domain as a(x)x9mod p(x) = x4+x2 (m=9≥n=5), and p(x)=x5+x2+1 as the irreducible 

polynomial. All the data are shown in its binary representation (a=1001, a2m=10100, and 

p=100101). The example (Figure 3) follows the convention: 

condition met ! affected registers with their updated values. 

The AlmMonInv routine generates the results a-12k-m=1000, and k=(10)10 (k is a 

normal decimal counter), which are used by the CorPh to provide the Montgomery inverse 

result of 111 (x2+x+1 in the polynomial form). The reader is referred to Appendix B for 

checking the result of this example.  

Observe on Figure 6.2 the several hardware operations applied to compute the 

MonInv in finite field GF(2n). For example, the division and multiplication by two are 

equivalent to one bit shifting the binary representation of polynomials to the right and to 

the left, respectively. Checking the condition of step 5, if u>v, is performed through 

normal (borrow propagate) subtraction and test of the borrow-out bit. The subtraction 

result is completely discarded, only the borrow bit is observed. If the borrow bit is zero, 

then u(x) is greater than v(x). Similarly, the conditions of steps 8, 9, and 14 demands 
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normal subtraction. However, the subtraction this time is used to check ||r(x)||, which 

requires the availability of xn (2n in binary) saved in a register. 

 

 
GF(2n) AlmMonInv Numerical Example 

a = 1001 ∈  GF(25), p=100101, m= 9, n=5 
a2m mod p = 10100 ∈  GF(26) (a in Montgomery domain) 
u = p = 100101, v = a2m = 10100, s = 1, r = k = 0 
v0 = 0 ! v = 1010, r = 0, k=1 
v0 = 0 ! v = 101, r = 0, k=2 
u > v ! u = 10000, r = 1, s = 10, k=3 
u0 = 0 ! u = 1000, s = 100, k=4 
u0 = 0 ! u = 100, s = 1000, k=5 
u0 = 0 ! u = 10, s = 10000, k=6 
u0 = 0 ! u = 1, s = 100000, k=7 
v > u ! v = 10, s = 100001, r = 10, k=8 
v0 = 0 ! v = 1, r = 100, k=9 
u = v ! v = 0, r = 1000, s = 100101, k=10 
||r||<||p|| ! result = r  

GF(2n) CorPh Numerical Example 

p=100101, m= 9, n= 5 
r = 1000 ∈  GF(26), k=10 (from AlmMonInv) 
j = 8 
r = 10000,  j = 7 
r = 100000, ||r|| = ||p|| ! r  = 101,  j = 6 
r = 1010,  j = 5 
r = 10100,  j = 4 
r = 101000, ||r|| = ||p|| ! r  =1101,  j = 3  
r = 11010, j = 2 
r = 110100, ||r|| = ||p|| ! r  =10001,  j = 1 
r = 100010, ||r|| = ||p|| ! r  = 111,  j = 0 
 
∴ GF(2n) MonInv of 10100 = 111 (a-12m);   
                                        Where m=9 & n = 5 

 

Figure 6.3 GF(2n) MonInv computation numerical example 

 

 

6.2.3 Multi-Bit Shifting 

 

A further improvement on the GF(2n) MonInv algorithm is performed based on a 

multi-bit shifting method making it similar to the GF(p) algorithm in Figure 6.1. After 

comparing different multi-bit shifting distances applied to reduce the number of iterations 

of the GF(p) MonInv algorithm, the best maximum distance for multi-bit shifting was 

found to be three, as clarified in Section 5.3. The GF(2n) inverse algorithm (Figure 6.2) is 

mapped to hardware involving multi-bit shifting and making it very similar to the GF(p) 

algorithm (Figure 6.1) as shown in Figure 6.4. Note that xn is required in the GF(2n) 

algorithm as an extra variable that is needless in the GF(p) MonInv algorithm; xn (2n) is 

saved in register y in MHW-Alg3 (used in step 9), and in register s in MHW-Alg4 (used in 

step 16.1). These registers (y in MHW-Alg3 and s in MHW-Alg4) are not changed during 

the algorithms execution.  

For both GF(p) and GF(2n) MonInv hardware algorithms (Figure 6.1 and Figure 6.4, 

respectively), the AlmMonInv algorithm needs to finish its computation completely before 

the CorPh begins processing. This data dependency allows the use of the same hardware to 
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execute both algorithms, i.e., both the AlmMonInv and CorPh. The algorithms are 

implemented in the unified and scalable hardware architecture as described in the 

following section. 

 

 

MHW-Alg3:GF(2n) Multi-Bit Shifting AlmMonInv HW 
Algorithm  
Registers: u, v, r, s, x, y, z, & p (all registers hold nmax bits)  
Input:  a2m, 2n∈ [1,p-1] (p=irreducible polynomial & m≥n) 
Output:  result∈ [1, p-1] & k (result=a-12k-mmod p & n<k<2n) 
1.    u = p; v = a2m; r = 0; s = 1; x = 0; y = 2n; z = 0; k = 0 
2.    if(u2u1u0=000)then{u=ShiftR(u,3);s=ShiftL(s,3);k=k+3};goto 8 
2.1. if(u2u1u0=100)then{u=ShiftR(u,2);s=ShiftL(s,2);k=k+2};goto 8 
2.2. if(u2u1u0=110)then{u=ShiftR(u,1);s=ShiftL(s,1)};goto 7 
3.    if(v2v1v0=000)then{v=ShiftR(v,3);r=ShiftL(r,3);k=k+3};goto 8 
3.1. if(v2v1v0=100)then{v=ShiftR(v,2);r=ShiftL(r,2);k=k+2};goto 8 
3.2. if(v2v1v0=110)then{v=ShiftR(v,1);r=ShiftL(r,1)};goto 8 
4.    S1 = Subtract (u, v); x = v⊕ u; z = r⊕ s  
5.    if(S1borrow=0)then{u=ShiftR(x,1); r=z; s=ShiftL(s,1)};goto 7 
6.    s = z; v = ShiftR(x,1); r = ShiftL(r,1)  
7.    k = k + 1 
8.    if (v ≠ 0) go to step 2 
9.    x = p⊕ r ; z = 2p⊕ r ; S1 = Subtract (y,x); S2 = Subtract (y,z) 
10.    if(S1borrow=0)then{result=x} 
10.1  else if(S2borrow=0)then{result=z}  
10.2  else {result = r} 

MHW-Alg4:GF(2n) Multi-Bit Shifting CorPh HW 
Algorithm  
Registers: r, u, v, s, x, y, z, & p (all registers hold nmax bits) 
Input:       r, p, m, 2n & k; 
                        Where r (r=a-12k-mmod p)& k from HW-Alg3 
Output:    result; Where result = a-12m (mod p). 
11.   j = 2m-k-1; x = 0; y = 0; z = 0 
12.  v = 2p; u = 3p; s = 2n  
13.  While j > 0  
14.      if j =1 then {r = ShiftL(r,1); j=j-1}  
15.      else {r = ShiftL(r,2); j=j-2} 
16.      x = p⊕ r ; y = u⊕ r ; z = u⊕ r 
16.1    S1=Subtract(s,x);S2=Subtract(s,y);S3=Subtract(s,z)  
17.      if (S3borrow = 0) then  {r = z}  
18.      else if (S2borrow = 0) then {r = y} 
19.      else if (S1borrow = 0) then  {r = x} 
20.  result = r 

 

Figure 6.4 Montgomery inverse hardware algorithm for GF(2n) 

 

 

6.3 Unified and Scalable Inverter Architecture 
 

Taking into account the amount of effort, time, and money that must be invested in 

designing an inverter, a scalable and unified architecture which can perform arithmetic in 

two commonly used algebraic finite fields, GF(p) and GF(2n) [11,35], is clearly 

advantageous. In this section, we present the hardware design of a Montgomery inverse 

architecture that can be used for both types of fields following the design methodology 

presented in [27]. The proposed unified architecture is obtained from the scalable 

architecture given in [27] but with some modifications, which slightly increased the longest 

path propagation delay and area. The scalable GF(p) Montgomery inverse architecture 

presented in [27] consisted in two main units, a non-scalable memory unit and a scalable 

computing unit. The memory unit is not scalable because it has a limited storage defined 

by the value of nmax. The data values of a and p are first loaded in the memory unit. Then, 

the computing unit read/write (modify) the data using a word size of w bits. The computing 
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unit is completely scalable. It is designed to handle w bits every clock cycle. The 

computing unit does not know the total number of bits, nmax, the memory is holding. It 

computes until the controller indicates that all operands� words were processed. Note that 

the actual numbers used may be way smaller than nmax bits. The user needs to identify the 

type of finite field his application needs at the beginning of the computation. An input 

signal FSEL (field select) is dedicated to tell the architecture weather GF(p) or GF(2n) is 

the arithmetic domain for this particular inversion calculation. 

The block diagram for the Montgomery inverter hardware is shown in Figure 6.5. The 

memory unit is connected to the computing unit components. The memory unit is not 

changed from what is presented in [27]. It contains a counter to compute variable k and 

eight first-in-first-out (FIFO) registers used to store the inversion algorithm�s variables. All 

registers, u, v, r, s, x, y, z and p, are limited to hold at most nmax bits. Each FIFO register has 

its own reset signal generated by the controller. They have counters to keep track of n (the 

number of bits actually used by the application). 

The computing unit is made of four hardware blocks, the add/subtract, shifter, data 

router, and controller block. The GF(p) add/subtract unit and the data router are the only 

components that need to be adjusted to make the inverter hardware unified for GF(p) and 

GF(2n) finite fields. 

The GF(p) add/subtract unit is originally built of two w-bit subtractors, a w-bit 

adder/subtractor, four flip-flops, one multiplexer, a w-bit comparator, and logic gates, as 

detailed in [27]. This unit is adjusted to operate for GF(2n) by adding a set of 3w parallel 

XOR gates used for steps 4 and 9 of MHW-Alg3 and step 16 of MHW-Alg4. The new 

add/subtract unit is shown in Figure 6.6. The signal Control lets the unit perform either two 

subtractions and one addition (step 4 of MHW-Alg), or three subtractions (step 16 of 

MHW-Alg2 and step 16.1 of MHW-Alg4). Three flip-flops are used to hold the 

intermediate borrow-bits of the subtractors and the carry-bit of the adder to implement the 

multi-precision operations. The fourth flip-flop is used to store a flag that keeps track of 

the comparison between u and v, which is used to perform step 8 of MHW-Alg and MHW-

Alg3. The subtractors borrow-out bits are connected to the controller through signals that 

are useful only at the end of each multi-precision addition/subtraction operation. 

Subtractor1 borrow-out bit will affect the flow of the operation to choose either step 5 or 

step 6 of both MHW-Alg and MHW-Alg3. It is also essential in electing the result 
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observed in step 10 of MHW-Alg and of MHW-Alg2. The three subtractors borrow-out 

bits (S1borrow, S2borrow, S3borrow) are likewise necessary for selecting the correct solution of 

the �if� condition to be one of the steps 17, 18, or 19, from the MHW-Alg2 and from the 

MHW-Alg4 algorithms. 

 

 

 
 

Figure 6.5 Scalable and unified inverter hardware 

 

 

The shifter is made of two multiplexers and two registers with special mapping of 

some data bits, as shown in Figure 5.5. Depending on the controller signal Distance, the 

shifter acts as a one, two, or three-bit shifter. Two types of shifting operations are needed 

in the MHW-Alg and the MHW-Alg3 algorithms, shifting an operand (u or v) through the 

uv bus one, two, or three bits to the right, and shifting another operand (r or s) through the 

rs bus by a similar number of bits to the left. Shifting u or v is performed through 



 74

Register1, which is of size w-1 bits. For each word, all the bits of uv are stored in Register1 

except for the least significant bit(s) to be shifted, it is (or they are) read out immediately as 

the most significant bit(s) of the output bus uv_out. Shifting r or s to the left is performed 

via Register2, which is of size w+3 bits similar to shifting uv but to the other direction. 

When executing the MHW-Alg2 or MHW-Alg4, the shifting is performed either to one or 

two bits to the left only, which is via MUX2 and Register2 ignoring MUX1 and Register1. 

 

 

 
 

Figure 6.6 Add/Subtract unit of the scalable and unified hardware 

 

 

The data router capabilities are extended to satisfy the unified architecture 

requirements. It interconnects the memory, add/subtract, and shifter units. The possible 

configurations of the data router are shown in Figure 6.7. 
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Figure 6.7 Data router configurations 

 

 

6.4 Modeling and Analysis 
 

The unified and scalable inverter was modeled and simulated in VHDL. Previously, a 

GF(p) fixed precision and other scalable inverter designs were also implemented in VHDL. 

All developed VHDL implementations of the scalable designs, including the new unified 

ones, have two main parameters, namely nmax and w. The fixed precision hardware, 

however, is parameterized by nmax only. Their area and speed are presented in this section. 

Also a reconfigurable hardware [35] that can perform the inversion in both GF(p) and 

GF(2n) is considered in the comparison. As in the previous Chapters, we didn�t define a 

specific architecture for the adders and subtractors to be used in our VHDL 

implementations. Thus, the synthesis tool chooses the best option in terms of area from its 

library of standard cells.  
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6.4.1 Area Comparison 
 

The exact area of any design depends on the technology and minimum feature size. 

For technology independence, we use the equivalent number of NOT-gates as an area 

measure [14]. A CAD tool from Mentor Graphics (Leonardo) was used like Section 3.5. In 

general, Leonardo takes the VHDL design code and provides a synthesized model with its 

area and longest path delay. The target technology is a 0.5µm CMOS defined by the 

�AMI0.5 fast� library provided in the ASIC Design Kit (ADK) from the same Mentor 

Graphics Company [19]. It has to be mentioned here that the ADK is developed for 

educational purposes and cannot be thoroughly compared to technologies adopted for 

marketable ASICs. It however, provides a framework to contrast all scalable hardware 

designs together and with the fixed precision one. The sizes of the designs are compared in 

Figure 6.8. Observe that the fixed precision design has a better area if the maximum 

number of bits used (nmax) is small which is useless in cryptographic applications [11]. The 

unified designs are larger than the GF(p) ones with a calculated average of 8.4% more 

hardware area.  

 

 

 

 

Figure 6.8 Area comparison 
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The areas of the unified designs were also compared with the reconfigurable hardware 

[35], but not shown in Figure 6.8. The reconfigurable design core is built of 880,000 

devices [35]. Assume a device is corresponding to a transistor and our NOT-gate is 

equivalent to two transistors [14], so the reconfigurable hardware core is equivalent to 

440,000 gates, which is greater eight times than the largest unified hardware. 

 

 

6.4.2. Speed Comparison 
 

The total computation time is a product of the number of clock cycles the algorithm 

takes and the clock period of the final VLSI implementation. This clock period changes 

with the value of w in the unified and scalable hardware, and changes with the value of nmax 

in the fixed precision hardware. This is because w = nmax in the fixed precision hardware. 

All VHDL coded designs clock cycle periods are generated automatically by Leonardo, 

which determines the longest path delay of the hardware circuits. The clock period of the 

reconfigurable design is set to 20 nanoseconds/cycle (it operates at 50MHz clock 

frequency) [35]. 

The number of clock cycles depends completely on the data and the algorithm. A 

probabilistic study described in Chapter 5 is used to estimate the average number of clock 

cycles. For the fixed precision design, the average number of clock cycles equal to 

Cf = 1.525n. 

For all scalable designs, the function of the average number of clock cycles would be 

Cs=(2.4125n+1)n/w, 

which is exactly the same for the unified designs presented in this paper. Hence, adjusting 

the scalable designs to be unified did not change the number of clock cycles of the inverse 

computation. However, the clock cycle period of the unified designs increased slightly, 

making the total computation time of the unified hardware worse than what was given in 

Chapter 6. The number of clock cycles for the reconfigurable hardware [35] to complete 

the inversion process is reported as 

Cr=14.5n. 

Similar to the GF(p) scalable hardware of Chapter 6, the unified and scalable 

hardware can have several designs for each nmax depending on w. For example, Figure 6.9 
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shows the delay of several designs of the unified and scalable hardware compared to the 

reconfigurable, GF(p) scalable, and fixed precision hardware designs, all modeled for 

nmax=512 bits. Observe how the actual data size (n) plays a big role on the speed of the 

designs. In other words, as n reduces and w is small, the number of clock cycles decrease 

significantly, which considerably reduces the overall computing time of all scalable 

designs (including the unified ones) compared to the fixed precision and reconfigurable 

ones. This is a major advantage of the scalable hardware over the fixed precision [27] and 

reconfigurable ones. 

 

 

 
 

Figure 6.9 Delay comparison of designs with nmax = 512 bits 
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The new unified designs when compared to the GF(p) scalable ones have very similar 

characteristics. Overall, it computes the inverse in an average of 19.8% more time than the 

GF(p) desings (Chapter 5). Another observation from Figure 6.9 is that the unified designs 

are faster than the fixed precision one as long as: 

 
which is generalized for all different nmax designs after performing several experimental 

tests, namely for nmax= 32, 64, 128, 512 and 1024 bits. Figure 6.9 also shows that the 

unified designs are comparable to the reconfigurable one giving better performance while: 

 
Consider the case when n=nmax=512 bits in Figure 6.9, the unified design with w=64 

bits has almost the same speed as the fixed precision one, but the ones with w=128 bits 

remain faster. In fact, as w gets bigger the total time decreases, which is also true when 

comparing among the different unified designs while n≥w, as also proven before in  

Chapter 5 for the GF(p) scalable designs. Whenever n<w considering the unified and 

scalable designs, the scalability advantage of these designs is reduced since the number of 

words to be processed reached its lower limit, but still the unified and scalable designs are 

faster than the fixed precision one. 

 

 

6.5 Summary 
 

This Chapter presents a scalable inverter for both finite fields GF(p) and GF(2n) in a 

unified hardware module that applies the design approach proposed in [27]. The primary 

contribution of this research is to show that it is possible to design a unified hardware 

without compromising scalability and area efficiency. The unified inverter hardware is 

built of two main units, a memory unit and a computing unit. The memory unit defines the 

upper bound of the number of bits that the hardware can handle. The computing unit is the 

real scalable hardware, it is designed to fit in constrained areas and perform the 

computation of numbers in a repetitive way. Our analysis shows that as the word size of 

the scalable computing unit reduces, the hardware area decreases and the possible clock 

frequency increases.  
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The comparisons with other designs show that this unified and scalable structure is 

very attractive for cryptographic systems, particularly for ECC because of its need for 

modular inversion of large numbers in both finite fields GF(p) and GF(2n). The 

experimental work shows that the scalable and unified design can be faster or competitve 

with other alternatives using significantly less area. 
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7 CONCLUSIONS AND FUTURE WORK 
 

 

7.1 Conclusions 
 

 In this thesis, several contributions to the Montgomery modular inverse computation 

in hardware have been achieved as summarized below: 

• We considered the GF(p) Montgomery inverse algorithms and proposed 

modifications that are applicable for hardware implementations. 

• We proposed new scalable designs to compute the Montgomery inverse, which 

consists in a hardware module that fits on constrained areas and still handle 

operands of any size. In order to have long-precision calculations, the module 

works on small precision words. The word-size, which the module operates, can be 

selected based on the area and performance requirements. The upper limit on the 

operand precision is dictated only by the available memory to store the operands 

and internal results. The scalable module is in principle capable of performing 

infinite-precision Montgomery inverse computation of an integer, modulo a prime 

number.  

• We adopted multi-bit shifting technique to the Montgomery inverse algorithms, 

which reduced the number of iterations significantly and speeded up the entire 

inversion process with small amount of extra hardware. 

• We proposed a fast Montgomery inverse method by introducing a new correction 

phase for a previously proposed almost Montgomery inverse algorithm. This 

approach eliminated the need for a multiplier in the inversion process, using nearly 

the same hardware designed for the almost Montgomery inverse algorithm. 

• We proposed a scalable and unified architecture for a Montgomery inverse 

hardware that operates in both GF(p) and GF(2n) fields. We adjust a GF(2n) 

Montgomery inverse algorithm to accommodate the hardware features and benefit 

from the multi-bit shifting method making it very similar to the proposed best 

design of GF(p) inversion hardware. A comparison of our scalable and unified 

design with a reconfigurable hardware [35] shows that the scalable design saves a 

lot of area and operates in comparable speed. We also compared all scalable 
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designs with fully parallel ones based on the same basic inversion algorithm. All 

scalable designs consumed less area and in general showed better performance 

than the fully parallel ones, which concluded that the scalable design a very 

efficient solution for the long precision numbers Montgomery modular inverse 

computation. 

 

 

7.2 Future Work 
 

Several future research works may be considered as a continuation on this study. 

• The registers of the non-scalable part could be modified to incorporate the bit-

shifting operation. This way, the registers would have the capability to shift all 

their bits at once inside the memory. This feature will reduce the shifting 

operation delay from (n /w +1) clock cycles to one. 

• The longest path of the inversion design is through the adders. Other adders, 

besides carry-look-ahead, could be used in the designs and give a more definite 

picture of its impact on the overall performance.  

• The proposed Montgomery inverse algorithms are performing two main 

operations (shifting and adding). These operations are performed separately in 

different clock cycles. It would be interesting to investigate if the shifting 

operation can be merged with addition and further speedup the inversion process. 

• The non-scalable part (memory unit) is not synthesized, which needs its 

components (registers and counters) to be modeled specifically for each w value. 

In other words, the non-scalable part is built in a parametrizable manner to let it 

be flexible for any w value. This flexibility prevented it from being synthesized. 

This requests that this non-scalable part is to be redesigned in different modules 

structures. Each module is built specifically for every w value such as w= 4, 8, 16, 

32, 64, and 128 bits. Every specific non-scalable module will be connected to the 

scalable part and synthesized together, which is promising to give more realistic 

area and frequency values. 

• The non-scalable part is the limiting part, which will limit the hardware capability. 

If this limit is exceeded even by one bit the non-scalable part is to be replaced. 
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Instead of replacing it, the non-scalable part could be implemented separately on a 

programmable hardware, such as an FPGA, which is reprogrammed whenever any 

change is to take place, while the scalable part remains the same. 
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A THE EXTENDED EUCLIDEAN ALGORITHM 
 

 

When we divide one integer by another (nonzero) integer we get an integer quotient 

(the "answer") plus a remainder (generally a rational number). For instance,  

13/5 = 2 ("the quotient") + 3/5 ("the remainder"). 

We can rephrase this division, totally in terms of integers, without reference to the division 

operation:  

13 = 2 × 5  + 3 

Note that this expression is obtained from the one above it by multiplying both sides of the 

equation by the divisor 5.  

If a and b are positive integers, there exist unique non-negative integers q and r such that : 

a = q × b  + r , where 0 ≤ r < b. 

q is called the quotient and r the remainder.  

The greatest common divisor of integers a and b, denoted by gcd(a,b), is the largest integer 

that divides (remainder = 0) both a and b. So, for example:  

gcd(15, 5) = 5, gcd(7, 9) = 1, gcd(12, 9) = 3, gcd(81, 57) = 3. 

The gcd of two integers can be found by repeated application of the division algorithm, this 

is known as the Euclidean Algorithm [11]. In this algorithm, the divisor is repeatedly 

divided by the remainder until the remainder of this operation is 0. The gcd is the last non-

zero remainder in this algorithm.  

   

The Euclidean Algorithm: 

Inputs: integers a, b. 
Output: gcd(a, b)  
1. while b ≠ 0: 
2. r = a mod b 
3. a = b  
4. b = r 
5. return gcd(a, b) = a 

 

The following example shows the algorithm. Finding gcd(81,57) by the Euclidean 

Algorithm:  
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81 =1 × 57 +24 
57 =2 × 24 +9 
24 =2 × 9 +6 
9 =1 × 6 +3 

6 = 2 × 3 + 0. 
 

It is well known [11] that if the gcd(a, b) = r then there exist integers u and s such that: 

u × a + s × b = r  

By reversing the steps in the Euclidean Algorithm, it is possible to find these integers u and 

s. We shall do this with the above example:  

Starting with the next to last line, we have:  

3 = 9 -  1× 6 

From the line before that, we see that 6 = 24 -  2 × 9, so:  

3 = 9 - 1 × (24 -  2 × 9) = 3 × 9   -  1 × 24 

From the line before that, we have 9 = 57 -  2 × 24, so:  

3 = 3 × (57 -  2 × 24) - 1 × 24 = 3 × 57  -  7 × 24 

And, from the line before that 24 = 81 -  1 × 57, giving us:  

3 = 3 × 57  -  7 × (81 -  1 × 57) = 10 × 57  -  7 × 81 

So we have found u = -7 and s = 10.  

 

The procedure we have followed above is a bit messy because of all the back 

substitutions we have to make. It is possible to reduce the amount of computation involved 

in finding u and s by doing some auxiliary computations as we go forward in the Euclidean 

algorithm (and no back substitutions will be necessary). This is known as the Extended 

Euclidean Algorithm.  

 

The Extended Euclidean Algorithm: 

Inputs:  two non-negative integers a, b with a ≥ b 
Outputs:  d = gcd(a,b) and integers x,y such that ax+by=d 
1.  If b = 0 then set d ← a, x ← 1, y ← 0 and return (d,x,y) 
2.  Set x2 ← 1, x1 ← 0, y2 ← 0, y1 ← 1 
3.  While b > 0 do : 

3.1  q ← a/b , r ← a � qb , x ← x2 - qx1 , y ← y2 - qy1 
3.2  a ← b , b ← r, x2 ← x1 , x1 ← x , y2 ← y1 , y1← y 

4.  Set d ← a , x ← x2 , y ← y2 and return (d,x,y) 
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A.1 The Extended Euclidean Algorithm to obtain the inverse of a number mod p 
 

 Suppose we had to find the inverse of a number mod p. This turned out to be a 

difficult task (and not always possible) [11]. A number x has an inverse mod p (i.e., a 

number y so that x.y = 1 mod p) if and only if gcd(x,p) = 1, which implies that there exist 

integers u and s such that 

u.x + s.p = 1. 

But this says that u.x = 1 + (-s)p, or in other words, u.x ≡ 1 (mod p). So, u (reduced 

mod p if need be) is the inverse of x mod p. The Extended Euclidean algorithm will give us 

a method for calculating u efficiently (note that in this application we do not care about the 

value of s, so we will simply ignore it.) 

Let�s take a numerical example to find the inverse of 15 mod 26. We will number the 

steps of the extended Euclidean algorithm computation starting with step 0. The quotient 

obtained at step i will be denoted by qi. As we carry out each step of the extended 

Euclidean algorithm, we will also calculate an auxiliary number, ui. For the first two steps, 

the value of this number is given: u0=0 and u1=1. For the remaining steps, we recursively 

calculate ui = ui-2 - ui-1 qi-2 (mod p). Continue this calculation for one step beyond the last 

step of the algorithm to find the inverse. The algorithm starts by "dividing" p by x. If the 

last non-zero remainder occurs at step k, then if this remainder is 1, x has an inverse and it 

is uk+2. (If the remainder is not 1, then x does not have an inverse.) Here are the steps of the 

numerical example to find the inverse of 15 mod 26. 

step 0:  26 = 1 × 15  + 11  u0 = 0 
step 1:  15 = 1 × 11  + 4  u1 = 1 
step 2:  11 = 2 × 4  + 3  u2 = 0 -   1 × 1 mod 26 = 25 
step 3:  4 = 1 × 3  + 1   u3 = 1 -   25× 1 mod 26 = -24 mod 26 = 2 
step 4:  3 = 3 × 1 + 0   u4 = 25 -  2 × 2 mod 26 = 21  
           u5 = 2 -  21× 1  mod 26 = -19 mod 26 = 7 

Notice that 15 × 7 = 105 = 1 + 4 × 26 ≡ 1 (mod 26).  
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A.2 The Binary Euclidean Algorithm 
 

The Euclidean algorithm can be rephrased to a division-free approach by applying the 

following three observations:  

1. If u and v are both even, gcd(u,v) = 2 gcd(u/2, v/2).  

2. If u is even and v is odd, gcd(u,v) = gcd(u/2, v).  

3. Otherwise both are odd, and gcd(u,v) = gcd(|u-v|/2, v). (Euclid's algorithm with a 

division by 2 since the difference of two odd numbers is even).  

 

Here is the algorithm. It is especially efficient for operations on binary representations.  
 

The Binary Euclidean Algorithm 

Inputs:  integers u, v. 
Output:  gcd(u, v) 
1.  g = 1  
2.    while u is even and v is even  

2.1  u = u/2 (right shift)  
2.2  v = v/2  
2.3  g = 2*g (left shift)  

now u or v (or both) are odd  
3.    while u > 0  

3.1  if u is even, u = u/2  
3.2   else if v is even, v = v/2  
3.3   else  
3.4     t = |u-v|/2  
3.5     if u < v, then v = t else u = t  

4.    return gcd(u, v)= g*v  
 

This algorithm was extended as the binary extended Euclidean algorithm as presented 

in [37], which was further studied by Kaliski [3] who proposed the Montgomery inverse 

algorithm. Kaliski�s Montgomery inverse algorithm worked as the basic algorithm of our 

research. 

 

 

 

 

 



 93

B GF(2n) NUMERICAL EXAMPLE VERIFICATION 
 

 

This Appendix details the computations and verifies the results used in the GF(2n) 

MonInv numerical example shown in Figure 7.3. The example defines m=9 and n=5; 

where n is the degree of the irreducible polynomial and m (of the Montgomery constant 2m) 

is any number as long as m≥n. To simplify the arithmetic lets only use the binary 

representation of polynomials. The MonInv takes the inputs a=1001 and p=100101. 

However, a is represented into Montgomery domain as a2m, which is calculated as follows: 

a=1001 

a2m=a29=1001000000000 

but since 1001000000000 needs to be reduced by p or a multiple of p until the number of 

significant bits of a29 is less or equal to n (the degree of polynomial a(x)xmmod p(x) should 

be less than the degree of the irreducible polynomial (p(x))), so 

a29⊕  27p=100100 0000000⊕ 100101 0000000=10000000 

and 10000000 also needs reduction 

10000000⊕  22p =10000000⊕  10010100 = 10100 

So a2mmod p = a29mod p =1001000000000 mod p ≡ 10100 

The GF(2n) MonInv of 10100 = 111 = a-12m, which can be verified similarly:  

The MonInv numerical example (Figure 3) calculated that  

a-129=111! a-1 = 111/29. 

Any congruent polynomial can be XORed with the irreducible polynomial, such as: 

a-129=111≡ 111⊕  100101 =100010 ! a-128=10001 

a-128=10001≡ 10001⊕  100101=110100! a-126=1101 

a-126=1101≡ 1101⊕  100101=101000! a-123=101 

a-123=101≡ 101⊕  100101=100000! a-1=100 

To confirm this result:  

a . a-1mod p must equal to 1 

a . a-1= 1001 . 100 = 100100 

100100 mod p = 100100⊕  100101=1 

which confirms that the GF(2n) MonInv of 10100 is 111; where m=9 and n=5. 
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