
An Efficient Test Relaxation Technique for Combinational Circuits Based on
Critical Path Tracing

Aiman El-Maleh and Ali Al-Suwaiyan
King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

emails:faimane, abosalehg@ccse.kfupm.edu.sa

Abstract

Reducing test data size is one of the major challenges
in testing systems-on-a-chip. This can be achieved by test
compaction and/or compression techniques. Having a par-
tially specified or relaxed test set increases the effectiveness
of compaction and compression techniques. In this paper,
we propose a novel and efficient test relaxation technique
for combinational circuits. It is based on critical path trac-
ing and hence it may result in a reduction in the fault cov-
erage. However, based on experimental results on ISCAS
benchmark circuits, the drop in the fault coverage (if any)
after relaxation is small for most of the circuits. The tech-
nique is faster than the brute-force test relaxation method
by several orders of magnitude.

1 Introduction

With today’s VLSI technology, it is possible to build very
large systems containing millions of transistors on a single
chip. One of the challenges in testing a System-on-a-Chip
(SOC) is dealing with the large volume of test data that must
be stored in the tester memory, and transferred between the
tester and the chip [10].

To reduce test storage requirements, test compaction and
test compression can be used. The goal of test compaction
is to reduce (or compact) the number of test vectors into a
smaller number that achieves the same fault coverage. Ex-
amples of compaction algorithms can be found in [9] [7]
[6]. The objective of test set compression is to reduce the
number of bits needed to represent the test set. For test data
compression, it is essential that the compression is loss-
less. Several test compression techniques have been pro-
posed [1][3] [4] [2].

Compaction and compression techniques can achieve
better results if the test set is composed of test cubes, i.e.,
if the test set is partially specified or relaxed. In fact, most
compression techniques in the literature assume a relaxed

test set. Furthermore, without the dynamic compaction op-
tion, ATPGs generally generate fully specified test sets. The
problem of test set relaxation, i.e. extracting a partially
specified test set from a fuly-specified one, has not been
solved effectively in the literature. One obvious way to
solve this problem is to use a brute-force technique, where
we test for every bit of the test set whether changing it to
anx reduces the fault coverage or not. This technique has a
complexity ifO(nm) fault simulation runs, wheren is the
width of one test vector,m is the number of test vectors.
Only the newly detected faults by a vector are fault sim-
ulated. Obviously, this technique is impractical for large
circuits.

In this paper, we propose a novel and efficient test re-
laxation technique for combinational circuits. This tech-
nique is based on the critical path tracing (CRIPT) algo-
rithm [8]. A very important characteristic of this algorithm
is that when a fault is detected by a given test vector, there
exists (at least) one continuous critical path to a primary
output. This property simplifies identifying the required
values needed for propagating a fault effect to a primary
output, and it is the main reason why we adopted CRIPT in
our technique. As with CRIPT, the proposed technique is
not exact in the sense that the fault coverage might be re-
duced after relaxation. However, as will be shown from ex-
perimental results, the drop in the fault coverage is small for
most of the circuits. Compared to the brute-force method,
our technique is faster by several orders of magnitude.

This paper is organized as follows. The next section il-
lustrates our idea by an example. Section 3 formally de-
scribes our test relaxation algorithm. Experimental results
are given in section 4. Finally, the paper ends by a conclu-
sion.

2 An Illustrative Example

In this section, we demonstrate our proposed test re-
laxation technique by an example. Section 4 formally de-
scribes our algorithm. The following conventions are as-
sumed. To indicate that a linel is stuck at valuev, we use



0

0

1

0 1

1

A

B
B1

B2

G1

G6

G5

0

G2

G3
C

D

E

0

0

0

0

G4

Figure 1. Circuit of Example 1.

the notation l=v. When we say that line l is required, we
mean that the value on line l is required.

Definition 1 A line l has a critical value v under the test
vector t iff t detects the fault l stuck-at-�v. A line with a
critical value in t is said to be critical in t [8].

Example 1: Consider the circuit shown in Figure 1. Sup-
pose that we apply the test vector ABCDE = 00000. Un-
der this test, lines G6, G5, G1, G4, B2, and B are critical.
So, the faults G6=0, G5=0, G1=1, G4=0, B2=1, and B=1
are detected under this test. Assume that the newly detected
fault is only B=1. For this fault to be detected, it has to
be activated (excited) and propagated to the primary output
G6. The assignment B = 0 excites the fault. The assign-
ments G3 = 0 and G1 = 0 are required for fault propaga-
tion. The assignment B = 0 is already satisfied because B
is a primary input. The assignment G3 = 0 can be satisfied
by either one of the two assignments C = 0, or (D = 0 and
E = 0). If we choose to satisfy G3 = 0 by the assignment
C = 0, then the assignments D = 0 and E = 0 are no
longer necessary, and this implies that we can relax CDE
to 0xx. Similarly, if we choose to satisfy G3 = 0 by the as-
signments D = 0 and E = 0, then CDE = x00. So, there
might exist more than one relaxed version of a given fully
specified test vector, and some versions might have more
unspecified bits than others.

The other requirement for fault propagation, which is
G1 = 0, appears to be already satisfied because we already
have marked the assignment B = 0 as required, and this
assignment produces G1 = 0. This results in relaxing the
input A since it is no longer necessary. But this is incor-
rect. To show that this relaxation is not correct, assume that
stem B is faulty, i.e., B = 0=1 (i.e., the fault-free value
is 0 and the faulty value is 1). In this case, if line A is
relaxed, the fault on the stem will not propagate to the out-
put. It will be masked by the x value on line A, producing
the value 1=x on the output G6. The problem occurs be-
cause we justified the requirement on line G1 from line B1,
which is reachable from the critical stem B. Justifying a
required value from a reachable line, guarantees that the re-
quired value is satisfied in the fault-free machine but not in

Algorithm 1 Main Algorithm
1: for every test vector t do
2: for every output o do
3: Extend(o)
4: while StemsToCheck is not empty do
5: s highest level stem in StemsToCheck

6: Remove s from StemsToCheck

7: if Critical(s) then
8: if fault on s is newly detected then
9: add it to NDF

10: add s to CS
11: else
12: add s to CandidateStems

13: end if
14: Extend(s)
15: end if
16: end while
17: AddCandidateStems()
18: MarkReachableLines()
19: MarkRequiredLines()
20: Mark All the lines as non-critical & unreachable
21: end for
22: Output relaxed vector
23: Mark all Lines as non-required
24: end for

the faulty machine. This problem can be avoided by jus-
tifying the required value from an unreachable line. This
guarantees that the value will be satisfied for both the fault-
free and the faulty machine. For this example, the required
value on line G1 has to be satisfied by marking line A as
required, resulting in the test vector ABCDE = 100xx,
or ABCDE = 10x00. This example shows that we need
to identify reachable lines before justifying the requirement
list.

After this introductory example, we now formally de-
scribe our technique in the following section.

3 Proposed Technique

Algorithm 1 shows a general outline of the proposed
test relaxation technique. Initially, all the lines are marked
as non-critical, unreachable, non-required. For every pri-
mary output o under the test vector t, the algorithm per-
forms critical path tracing while storing the newly detected
faults in the NDF list, the critical stems whose faults
are newly detected in the CS list, and the critical stems
whose faults are previously detected (through a previous
output or vector) in the CandidateStems list. We have
chosen the name CandidateStems because any stem in
the CandidateStems list is a candidate to be added to
the list CS if it satisfies one condition: there is at least
one newly detected fault passing through it. The proce-
dure AddCandidateStems checks, for every stem s in the
CandidateStems list, whether s satisfies the condition or
not. If s satisfies the condition, it is inserted in the CS

list. Otherwise, it is ignored. One can observe that the CS

2



Algorithm 2 AddCandidateStems()
1: while CandidateStems is not empty do
2: let s be an element of CandidateStems

3: delete s from CandidateStems

4: if a newly detected fault passes through s then
5: add s to CS
6: end if
7: end while

list consists of two kinds of critical stems: the first kind is
a critical stem which has a newly detected fault on it, and
the other kind is a critical stem whose fault was previously
detected but there is a newly detected fault (coming from
another line) that passes through it. Both kinds are needed
in the reachability analysis.

The Extend procedure is the same as the one given
in [8], but it does one extra job, namely adding newly de-
tected faults to the NDF list. The Critical function is
exactly the same as the one given in [8].

Once the CS and NDF lists are constructed,
the algorithm marks reachable lines by the procedure
MarkReachableLines. This is discussed in section 3.1.
Then, the algorithm justifies the requirements by the pro-
cedure MarkRequiredLines, which is the topic of sec-
tion 3.2. The last statement in the inner loop is a re-
initialization of the criticality status and reachability status
of the lines. After the inner loop is finished, the relaxed
vector is ready and is printed out. For the next vector, we
re-initialize the requirement status of all the lines.

3.1 Reachability Analysis

This phase takes the list CS as an input. The purpose
of this phase is to mark the lines that are reachable from at
least one element of the list CS as reachable. Let us have
the following definition.

Definition 2 A line l is said to be reachable from a stem s

if the fault effect in stem s reaches the line l.

Definition 3 A gate input is said to be sensitive in a test
vector t if complementing its value changes the value of the
gate output from v to �v where v 2 f0; 1g [8].

Algorithm 3 is an event driven algorithm for marking
reachable lines. The function Reachable(l; s) in the algo-
rithm returns true only if the fault effect in stem s reaches
the line l. The following two lemmas provide the rules used
by the function Reachable(l; s).

Lemma 1 Let l be the output of an AND, NAND, OR, or
NOR gate. Then l is reachable from stem s iff one of the
following conditions is satisfied:

1. Only sensitive inputs of l are reachable from stem s.

Algorithm 3 MarkReacahbleLines()
1: initialize the event list E
2: for every element s in CS do
3: mark fanouts of s as reachable from s

4: add fanouts of s to E
5: while E is not empty do
6: l element in E with minimal level
7: remove l from E

8: if Reachable(l; s) then
9: mark fanouts of l as reachable from s

10: add fanouts of l to E
11: end if
12: end while
13: end for

Algorithm 4 MarkRequiredLines()
1: Initialize the requirement list L
2: for every fault f in NDF do
3: Let f be the fault on line l
4: ForwardTrace(l)
5: end for
6: for every line l in L do
7: justify(l)
8: end for

2. Only the non-sensitive inputs of l having controlling
value are reachable from stem s, and none of the other
gate inputs has an x value.

Lemma 2 Let l be the output of a 2-input XOR/XNOR gate.
Then l is reachable from stem s iff only one input is reach-
able from stem s, and the other input does not have an x

value.

3.2 Requirement Analysis

Algorithm 4 is a general outline of the requirement anal-
ysis phase. Initially, all the lines in the circuit are marked
as non-required. After that, we perform a forward tracing
step for every element in the list NDF . The purpose of this
step is to identify paths through which the faults belonging
to NDF propagate to an output. This is done by tracing the
critical path from the line that has the newly detected fault
until we reach a primary output, adding the side inputs of
every sensitive input in that path to the requirement list, and
marking the lines along that path and its side inputs as re-
quired. This step is outlined in Algorithm 5. After this step
is over, we will have a requirement list L to be justified.

Algorithm 6 is the value justification algorithm used. As-
sume that line l is to be justified. If l is a PI, the algorithm
marks it as required and returns. If l is a single-input, XOR
or XNOR gate, all the values on l’s inputs have to be jus-
tified. Similarly, all the values on the inputs of l have to
be justified if l has a non-controlling value (assuming 0-
inversion). However, if l has a controlling value, then we

3



Algorithm 5 ForwardTrace(l)
1: if l is not an output of the circuit then
2: if l is a stem then
3: for every critical fanout branch b of l do
4: Add side inputs of b to L
5: Let j be the output of b
6: ForwardTrace(j)
7: end for
8: else
9: Add side inputs of l to L

10: Let j be the output of l
11: ForwardTrace(j)
12: end if
13: end if

Algorithm 6 justify(l)
1: if if l is a PI then
2: mark l as required
3: else if l is an output of a single-input, XOR, or XNOR gate then
4: for every input j of l do
5: justify(j)
6: end for
7: else if l has a non-controlling value then
8: for every input j of l do
9: justify(j)

10: end for
11: else if there is an unreachable input line j of l with controlling value

then
12: justify(j)
13: else if l is unreachable then
14: for every reachable input j do
15: justify(j)
16: end for
17: else
18: for every input j of l do
19: justify(j)
20: end for
21: end if

need to check if it has an unreachable input with a control-
ling value. If it has, then it is sufficient to justify the value
using that unreachable input. Otherwise, we check whether
l is reachable or not. If it is not reachable, then we justify
only the reachable lines. Otherwise, all the values on the in-
puts will be justified. The last two situations appear when l
can only be justified from a reachable line. Note that in jus-
tifying a required controlling value, there could be several
unreachable inputs with controlling value. In this case, pri-
ority is given to an input that is already marked as required.
Otherwise, cost functions are used to guide the selection.

3.3 Selection Criteria

As has been illustrated in the previous sections, there
could be several choices for justifying a required value. Our
objective is to justify the required values by the smallest
number of assignments on the primary inputs. This will re-
sult in increasing the number of x’s extracted from relaxing
a test vector. To achieve this objective, we use cost func-

tions that provide a relative measure on the selection that
reduces the number of required assignments on the PIs.

The well-known recursive controllability cost func-
tions [8] can be used for this purpose as they give a rela-
tive measure of the number of PI assignments required to
justify a required value. These cost functions are accurate
for fanout- free circuits. However, due to the existence of
fanout, they do not take advantage of the fact that a stem
can justify several required values. To take advantage of
that, we propose new cost functions called fanout-based
cost functions. These functions are computed for an AND
gate as follows. Let l be the output of an AND gate with i in-
puts. Let F (l) denote the fanout (i.e., the number of fanout
branches) of line l. Then, the fanout-based cost functions
are computed as:

C0(l) =
mini C0(i)

F (l)

C1(l) =

P
i
C1(i)

F (l)

These cost functions can be computed similarly for other
gates.

4 Experimental Results

In order to demonstrate the effectiveness of our proposed
test relaxation technique, we have performed experiments
on a number of the largest ISCAS85 and full-scanned ver-
sions of ISCAS89 benchmark circuits. The experiments
were run on a SUN Ultra60 (UltraSparc II-450 MHZ) with
a RAM of 512 MB. We have used the test sets generated
by MinTest [6], which are highly compacted test sets that
achieve 100% fault coverage of the detectable faults in each
circuit.

In Table 1, we compare the proposed test set relaxation
technique with the brute-force relaxation method. The first,
second, and the third columns in the table indicate the cir-
cuit name, the number of primary inputs, and the number
of test vectors in each circuit, respectively. We compare the
two techniques in terms of the fault coverage, the percent-
age of x’s extracted, and the CPU time taken for relaxation.
We have used the fault simulator HOPE [5] to determine the
fault coverage of the used test sets. It is important to point
out here that the fault coverage of the relaxed test set based
on the brute-force method is the same as the fault coverage
of the original test set, i.e. exact test set relaxation and no
drop in the fault coverage. However, the fault coverage of
the relaxed test set based on our technique may be reduced.
This is due to the approximate nature of the CRIPT algo-
rithm on which our technique is based. The fault coverage
of the relaxed test set based on our technique is equivalent
to the fault coverage of the original test set as measured by

4



Table 1. Test relaxation comparison between the proposed technique and the brute-force method.

Brute Force Proposed
Test Relaxation Test Relaxation

Selection Criteria No Selection Criteria
Circuit No. No. FC %x CPU FC %x CPU FC %x CPU

Inp Vec Exact/CRIPT (sec) Exact/CRIPT (sec) Exact/CRIPT (sec)
c5315 178 37 98.90/98.90 54.37 1192 98.90/98.90 51.99 3 98.90/98.90 48.89 2
c7552 207 73 98.26/98.12 55.45 6645 98.21/98.12 52.17 6 98.21/98.12 48.23 6
c2670 233 44 95.74/95.70 69.63 2757 95.74/95.70 68.36 1 95.74/95.70 66.03 1
s5378 214 97 99.13/99.02 74.14 7451 99.04/99.02 70.21 3 99.04/99.02 67.64 4

s9234.1 247 105 93.47/89.53 70.29 19837 90.00/89.53 68.57 5 90.07/89.53 66.69 5
s15850.1 611 94 96.68/96.46 80.96 87120 96.49/96.46 78.87 20 96.49/96.46 77.68 21
s13207.1 700 233 98.46/97.52 93.36 629100 97.66/97.52 93.51 32 97.66/97.52 93.11 31
s35932 1763 12 89.81/89.81 36.68 20358 89.81/89.81 27.44 19 89.81/89.81 23.06 19

CRIPT. As can be seen from the table, the drop in the fault
coverage is small for most of the circuits. In order to com-
pensate for the drop in the fault coverage, the test vectors
needed for detecting the undetected faults can be relaxed
based on the brute-force method and then merged with the
relaxed test set based on our technique.

It is very interesting to observe that the CPU time taken
by our proposed technique is several orders of magnitude
less than the brute-force method for most of the circuits.
The brute-force method requires astronomical CPU times
for large circuits and hence is impractical.

The percentage of x’s obtained by our technique is also
close to the percentage of x’s obtained by the brute-force
method for most of the circuits. The difference in the per-
centage of x’s obtained ranges between 1% and 9%. For
seven of the eight circuits, it is less than 4%.

The advantage of using our proposed fanout-based cost
functions is clearly illustrated in Table 1. For all the circuits,
using the selection criteria increases the percentage of x’s
from 0.5% to 4%.

5 Conclusion

In this paper, we have presented a novel and efficient test
relaxation technique for combinational circuits. The tech-
nique is faster than the brute-force relaxation technique by
several orders of magnitude. It is based on the critical path
tracing (CRIPT) algorithm, and hence may result in a small
drop in the fault coverage (if any) after relaxation. This is
due to the approximate nature of CRIPT. Based on experi-
mental results, a small drop in the fault coverage is observed
for most of the circuits. Furthermore, the percentage of x’s
extracted is close to the one obtained by the brute-force test
relaxation technique. Having a test relaxation technique is
crucial for effective test compaction and compression. The
applications of our test relaxation technique in improving
the quality of test compaction and compression will be in-
vestigated in future work.

Acknowledgment

The authors would like to thank King Fahd University of
Petroleum & Minerals for support.

References

[1] A. Chandra and K. Chakrabarty. Test Data Compression for
System-On-a-Chip using Golomb Codes. In Proc. of IEEE
VLSI Test Symposium, 2000.

[2] A. Chandra and K. Chakrabarty. Frequency-directed run-
length (FDR) codes with application to system-on-a-chip
test data compression . In 19th IEEE Proceedings on. VTS,
pages 42–47, 2001.

[3] A. El-Maleh, S. Zahir, and E. Khan. A Geometric-Primitive-
Based Compression Scheme for Testing Systems-on-a-Chip.
In Proc. IEEE VLSI Test Symposium, pages 54–59, Apr.
2001.

[4] A. Jas and N. Touba. Test Vector Decompression via Cycli-
cal Scan Chains and Its Application to Testing Core-Based
Designs. In Proc. International Test Conference, pages 458–
464, 1998.

[5] H. K. Lee and D. S. Ha. HOPE: An Effecient Parallel Fault
Simulator for Synchronous Sequential Circuits. IEEE Trans.
on Computer Aided Design, 15(9):1048–1058, Sep. 1996.

[6] I. Hamzaoglu and J. Patel. Test Set Compaction Algorithms
for Combinational Circuits. In International Conference on
Computer-Aided Design, Nov. 1998.

[7] J. Chang and C. Lin. Test Set Compaction for Combinational
Circuits. IEEE Trans. on Computer Aided Design, pages
1370–1378, Nov. 1995.

[8] M. Abramovici, M. Breuer and A. Friedman. Digital System
Testing and Testable Design. IEEE Press, 1990.

[9] M. Schulz, E. Trischhler, and T. Sarfert. SOCRATES: A
Highly Efficient Automatic Test Pattern Generation System.
IEEE Trans. on Computer-Aided Design, pages 126–137,
Jan. 1988.

[10] Y. Zorian, E. J. Marinissen and S. Dey. Testing Embedded-
Core Based System Chips. In Proc. International Test Con-
ference, pages 130–143.

5


