
A STATIC TEST COMPACTION TECHNIQUE FOR COMBINATIONAL
CIRCUITS BASED ON INDEPENDENT FAULT CLUSTERING

Yahya E. Osais and Aiman H. El-Maleh

King Fahd University of Petroleum & Minerals, Computer Engineering Department,
Dhahran 31261, Saudi Arabia

{yosais,aimane}@ccse.kfupm.edu.sa

ABSTRACT

Testing system-on-chip involves applying huge amounts
of test data, which is stored in the tester memory and then
transferred to the circuit under test during test application.
Therefore, practical techniques, such as test compression
and compaction, are required to reduce the amount of test
data in order to reduce both the total testing time and the
memory requirements for the tester. In this paper, a new
static compaction algorithm for combinational circuits is
presented. The algorithm is referred to asindependent
fault clustering. It is based on a new concept calledtest
vector decomposition. Experimental results for benchmark
circuits demonstrate the effectiveness of the new static com-
paction algorithm.

1. INTRODUCTION

Advances in the semi-conductor process and design tech-
nology paved the way for System-on-Chip (SoC). Tradi-
tional IC design, in which every circuit is designed from
scratch and reuse is limited only to standard cell libraries,
is more and more replaced by the SoC design methodol-
ogy. However, this new design methodology has its own
challenges. A major challenge is how to reduce the in-
creasing volume of test data. Basically, there are two ap-
proaches:compressionand compaction. In the first ap-
proach, test data is kept compressed while it is stored in
the tester memory and transferred to the SoC. Then, it is
decompressed on the chip under test. This reduces the
memory and transfer time requirements. In the second ap-
proach, however, the objective is to reduce the size of a
test set while maintaining the same fault coverage.

Test compaction techniques are classified into two cat-
egories. The first category includes algorithms that can
be integrated into the test generation process. Such algo-
rithms are referred to asdynamiccompaction algorithms,
e.g. [1]. On the other hand, the second category includes
algorithms that are applied after the test sets are generated.
Such algorithms are referred to asstaticcompaction algo-
rithms. Static compaction has advantages over dynamic
compaction. Generating smaller test sets using dynamic
compaction is time consuming because many attempts to

modify partially specified test vectors to detect additional
faults often fail. In addition, dynamic compaction does not
take advantage of random test pattern generation. Further-
more, static compaction is independent of ATPG.

Several static compaction algorithms based on differ-
ent heuristics exist in the literature. One approach to static
compaction is to drop from the test set redundant test vec-
tors. A redundant test vector is a vector whose faults are
all detectable by other test vectors. Redundant test vectors
can be identified using set covering, e.g. [2], or test vector
reordering with fault simulation, e.g. [3]. A second ap-
proach is to reduce the test set size by merging compatible
test cubes. A test cube is a relaxed test vector. Test vectors
can be relaxed using an ATPG or a stand-alone algorithm,
such as [4]. Examples of this approach can be found in
[4, 5].

Another approach to static compaction is to reduce the
test set size by pruning the essential faults of some test
vectors to make them redundant. A test vector becomes
redundant if it detects no essential faults. A fault is es-
sential if it is detected only by a single test vector. Static
compaction algorithms based on essential fault pruning
fall into two categories. In the first category, the essen-
tial faults of the test vector to be eliminated are pruned by
modifying other test vectors in the test set in such away
that they detect their already detected faults in addition to
the pruned essential faults. Examples of such static com-
paction algorithms can be found in [5, 6]. On the other
hand, in the second category, a set ofN test vectors is re-
placed by a set ofM < N new test vectors. The basic
idea is to determine the faults that are detected only by
one or more test vectors among theN test vectors to be
replaced and findM < N test vectors that detect all these
faults. Examples of such static compaction algorithms can
be found in [7].

This paper is structured as follows. First, we introduce
and motivate the new concept oftest vector decomposi-
tion. Then, we describe the new static compaction algo-
rithm based on independent fault clustering. Besides, we
describe the iterative version of the algorithm. After that,
we discuss the experimental results. Finally, we conclude
by summarizing the results of the paper and their signifi-
cance.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by King Fahd University of Petroleum and Minerals

https://core.ac.uk/display/266084481?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. TEST VECTOR DECOMPOSITION

Test Vector Decomposition (TVD) is the process of de-
composing a test vector into its atomic components. An
atomic component is a child test vector that is generated
by relaxing its parent test vector for a single faultf . That
is, the child test vector contains the assignments necessary
for the detection off . Besides, the child test vector may
detect other faults in addition tof . For example, consider
the test vectortp = 010110 that detects the set of faultsFp

= {f1,f2,f3}. Using the relaxation algorithm in [4],tp can
be decomposed into three atomic components, which are
(f1,01xxxx), (f2,0x01xx), and (f3,x1xx10).

Static compaction based on merging is a very sim-
ple and efficient technique. However, it has the following
problems. First, for a highly incompatible test set, merg-
ing achieves little reduction. Secondly, raising test vec-
tors to make them compatible is a very costly operation
[5]. Thirdly, a test vector must be processed as a whole.
Therefore, we propose that a test vector be decomposed
into its atomic components before it is processed. In this
way, a test vector that is originally incompatible with all
other test vectors in a given test set can be eliminated if its
components can be merged with other test vectors.

The problem of static compaction based on TVD can
be modeled as a graph coloring problem, which is NP-hard
[8]. Basically, given a test setT with single stuck-at fault
coverageFCT , the set of atomic componentsCT is first
obtained. Then, a graphG is built. In G, every node cor-
responds to a component and an edge exists between two
nodes if their corresponding components are incompati-
ble. Now, our objective is to partitionCT into k subsets
such thatk is as small as possible and no adjacent nodes
belong to the same subset. The fault coverage of the new
test setT ∗ whose size isk should be greater than or equal
to FCT .

3. INDEPENDENT FAULT CLUSTERING

Independent faults were defined in [9]. Basically, given a
combinational circuit, letTi be the set of all possible test
vectors that detectfi andTj be the set of all possible test
vectors that detectfj . Then, two faultsfi andfj are inde-
pendent if and only ifTi ∩ Tj = φ. Independence among
faults can also be defined with respect to a test setT . Let
T ′

i be the set of test vectors inT that detectfi andT ′
j be

the set of test vectors inT that detectfj . Then, two faults
fi andfj are independent with respect toT if and only if
T ′

i ∩ T ′
j = φ. In this paper, we use the term independent

faults to mean independent faults with respect to a test set.
A fault set is called an Independent Fault Set (IFS)

if all the faults in this set are pairwise independent. The
problem of computing a maximum size IFS is NP-hard
[10]. Therefore, onlymaximal IFSs can be practically
computed.

In Independent Fault Clustering (IFC), IFSs are first
derived. Then, a fault matching procedure is used to find
sets of compatible faults, i.e. faults that can be detected

by a single test vector. In the IFS derivation phase, in-
dependent faults are identified with respect to a test set.
In the fault matching phase, compatible components, cor-
responding to compatible faults, are mapped to the same
compatibility set. Whenever a component is mapped to a
compatibility set, it is merged with the partial test vector
of that compatibility set. At the end, every compatibility
set represents a single test vector.

Algorithm 1 IFC(T)
1. Fault simulateT without fault dropping.
2. For every essential faultf that is detected by a test
vectort:

2.1. Extract the atomic componentcf from t.
2.2. If the number of compatibility sets is zero, create
a new compatibility set, mapcf to it, and then go to
Step 2.
2.3. Mapcf to an existing compatibility set, if
possible, and then go Step 2.
2.4. Create a new compatibility set and mapcf to it.

3. Find sets of independent faults.
4. Sort sets of independent faults in decreasing order of
their sizes.
5. For every fault in an IFS, sort the test vectors that de-
tect the fault in decreasing order of the number of faults
they detect.
6. For every faultf , wheref belongs to an IFS:

6.1. For every test vectort that detectsf :
6.1.1. Extract the atomic componentcf from t.
6.1.2. If the number of compatibility sets is zero,
create a new compatibility set, mapcf to it, and
then go to Step 6.
6.1.3. Mapcf to an existing compatibility set, if
possible, and then go to Step 6.

6.2. Create a new compatibility set and mapcf to it.
7. ReturnT ∗.

The IFC algorithm is shown as Algorithm 1 and pro-
ceeds as follows. First, the given test setT is fault sim-
ulated without fault dropping. This step is performed to
find the number and set of test vectors that detect every
fault. Secondly, essential faults are matched. In this step,
for every essential faultf detected byt, the atomic com-
ponentcf corresponding tof is extracted fromt. Then,
for every compatibility setCSi, if cf is compatible with
the partial test vector inCSi, cf is mapped toCSi. On
the other hand, if the number of compatibility sets is zero
or cf is incompatible with all partial test vectors in the ex-
isting compatibility sets, a new compatibility set is created
andcf is mapped to it.

It should be observed that an essential fault has a sin-
gle component while non-essential faults have more than
one. Therefore, if a component of a non-essential faultf is
incompatible with all the partial test vectors in the existing
compatibility sets, the other components off will be tried
before creating a new compatibility set. On the other hand,
if the component of an essential fault is incompatible with
all the partial test vectors in the existing compatibility sets,

a new compatibility set must be created. Hence, essential
faults should be matched first. Another advantage of first
matching essential faults is that the number of faults that
will be considered when deriving IFSs is reduced.

After essential faults are matched, IFSs are derived.
Faults in an IFS are pairwise independent. Therefore, a
fault fi can be added to an IFSS if and only if for every
fault fj in S, the intersection of the sets of test vectors
that detectfi andfj is empty. Next, IFSs are sorted in
decreasing order of their sizes and for every fault in an
IFS, the set of test vectors that detect the fault is sorted in
decreasing order of the number of faults they detect. This
is because a component that is extracted from a test vector
that detects a large number of faults has high compatibility
since it is compatible with all the components of the faults
detected by that test vector.

Now, for every faultf in an IFS, its atomic component
is extracted and then mapped to an appropriate compatibil-
ity set. For every component of a faultf , if it is incompati-
ble with all partial test vectors in the existing compatibility
sets, a new component will be tried. A new compatibility
set is created if the number of compatibility sets is zero
or all components of a faultf are incompatible with all
partial test vectors in the existing compatibility sets. At
the end, the algorithm returns the number of compatibility
sets as the size of the new test set.

It should be pointed out that any static compaction al-
gorithm can be used after our IFC algorithm. In fact, given
a test setT , the IFC algorithm will generate a new test
setT ∗ whose characteristics are different from the char-
acteristics ofT . Thus, a static compaction algorithm that
cannot compactT may manage to compactT ∗.

The procedureIFC() can be called on a test set many
times. Basically, the new test set generated by the pro-
cedureIFC() is treated as the test set to be compacted.
Therefore, IFC is carried out iteratively until the length of
the test set cannot be reduced any more. This process is
called iterative IFC and is shown as Algorithm 2. Un-
specified bits in the test setT are assigned random values
before every call to the procedureIFC().

Algorithm 2 Iter IFC(T)
1. Randomly fill the unspecified bits inT .
2. T ∗ = IFC(T)
3. If |T ∗| < |T |, copyT ∗ to T and go to Step 1.

Else If |T ∗| == |T |, returnT ∗.
Else returnT .

4. EXPERIMENTAL RESULTS

In order to demonstrate the effectiveness of the IFC and
Iter IFC algorithms, we have performed experiments on a
number of the ISCAS85 and full-scanned versions of IS-
CAS89 benchmark circuits. The experiments were run on
a SUN Ultra60 (UltraSparc II-450 MHz) with a RAM of
512 MB. We have used test sets generated by HITEC [11].
In addition, we have used the fault simulator HOPE [12]

for fault simulation purposes and the test relaxation algo-
rithm in [4] for component generation.

In Table 1, we report the results of applying the Ran-
dom Merging (RM), Graph Coloring (GC), IFC, and Iter
IFC algorithms on the test sets after they are compacted
using Reverse-Order Fault simulation (ROF). The GC al-
gorithm is called the Brelaz Color-Degree algorithm and
is explained in [13]. In the table, the first, second, and
third columns indicate the circuit name, test set size, and
fault coverage, respectively. The fourth and fifth columns
give test set sizes after applying ROF and RM, respec-
tively. Columns six through eight give the results of the
GC algorithm. The number of components obtained after
dropping redundant ones is given under the column headed
#Comp. Test set sizes are given under the column headed
#TV s. The total time required by the GC algorithm is
given under the column headedTime. Columns nine and
ten give the results of the IFC algorithm. Test set sizes are
given under the column headed#TV s and the total time
required by the IFC algorithm is given under the column
headedTime. Finally, the last three columns give the re-
sults of the iterative IFC algorithm. Column eleven gives
the test set sizes after applying IFC iteratively until no im-
provement is noticed. Columns twelve and thirteen give
the number of iterations that were run and the time taken
by the iterative IFC algorithm, respectively.

As can be seen from Table 1, for most of the circuits,
the GC algorithm is able to compute test sets whose sizes
are smaller than the sizes of the test sets obtained by RM.
This observation reveals the potential of the TVD tech-
nique. Test sets computed by the GC algorithm are as
much as 11.9% smaller than those computed by RM, e.g.
1% smaller for c2670, 9.5% smaller for s38584f, and 11.9%
smaller for s4863f.

It can be seen that the results obtained by the IFC al-
gorithm are better than those obtained by the RM and GC
algorithms. The percentage improvement over the RM al-
gorithm varies between 3.6% for s13207.1f and 37.5% for
s38584f. On the other hand, the percentage improvement
over the GC algorithm varies between 1.4% for s3384f and
31% for s38584f. The runtime of the IFC algorithm is bet-
ter than that of the GC algorithm.

It can be seen that IterIFC improves over both RM and
IFC. The percentage improvement over RM varies from
4% to 46.6%, e.g. 4% for s3384f, 35.8% for s38417f, and
46.6% for s38584f. On the other hand, the percentage im-
provement over IFC varies from 1.6% to 17.2%, e.g. 1.6%
for s3271f, 14.5% for s38584f, and 17.2% for s38417f.

5. CONCLUSIONS

In this paper, we have proposed a new static compaction
algorithm, referred to as Independent Fault Clustering (IFC).
In IFC, independent faults are found and then compatible
faults are matched together. Two independent faults can
be mapped to the same compatibility set if their compo-
nents are compatible. We have also considered the itera-
tive version of IFC to further reduce the length of the com-

Cct # FC ROF RM GC IFC Iter IFC
TVs # # Time # Time # # Time

Comp TVs (sec.) TVs (sec.) TVs Iterations (sec.)

c2670 154 95.74 106 100 761 99 8.03 96 6.95 85 6 42
c5315 193 98.90 119 106 1491 117 34.95 103 31 86 4 88
s13207.1f 633 98.46 476 252 3516 248 339.93 243 169 238 2 473
s15850.1f 657 96.67 456 181 4135 169 463.95 144 249 129 1 375
s3271f 256 100 115 76 1212 69 14.97 61 7 60 2 19
s3330f 704 100 277 248 1263 233 11 208 9 196 3 30
s3384f 240 100 82 75 1048 73 15 72 7.97 72 1 7
s38417f 1472 99.44 822 187 12215 173 5327 145 2072 120 2 3775
s38584f 1174 95.85 819 232 16086 210 9250 145 2590 124 3 8217
s4863f 132 100 65 59 607 52 24 49 25.96 42 3 71
s5378f 359 99.13 252 145 1460 130 34.95 123 23 117 6 109
s6669f 138 100 52 42 1286 40 60 35 37.91 30 4 175
s9234.1f 620 93.48 375 202 2093 185 104 172 68 155 4 201

Table 1. Results by the RM, GC, IFC, and IterIFC algorithms.

pacted test set. Experimental results have been reported
to demonstrate the effectiveness of the two algorithms.
In general, the IFC algorithm has achieved an improve-
ment of as much as 37.5% over random merging. Besides,
the Iter IFC algorithm has achieved an improvement of as
much as 46.6% over random merging and 17.2% over IFC.

ACKNOWLEDGMENT

The authors would like to thank King Fahd University of
Petroleum & Minerals for support.

REFERENCES

[1] P. Goel and B. C. Rosales, “Test Generation and
Dynamic Compaction of Tests,” inDig. Papers Test
Conf., Oct. 1979, pp. 189–192.

[2] Kwame Osei Boateng, Hideaki Konishi, and Tsuneo
Nakata, “A Method of Static Compaction of Test
Stimuli,” in Proc. of the Asian Test Symposium, Nov.
2001, pp. 137–142.

[3] Irith Pomeranz and Sudhakar M. Reddy, “Forward-
Looking Fault Simulation for Improved Static Com-
paction,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 20,
no. 10, pp. 1262–1265, Oct. 2001.

[4] Aiman El-Maleh and Ali Al-Suwaiyan, “An Effi-
cient Test Relaxation Technique for Combinational
and Full-Scan Sequential Circuits,” inProc. of the
VLSI Test Symposium, 2002, pp. 53–59.

[5] Jau-Shien Chang and Chen-Shang Lin, “Test Set
Compaction for Combinational Circuits,” IEEE
Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 14, no. 11, pp.
1370–1378, Nov. 1995.

[6] Lakshmi N. Reddy, Irith Pomeranz, and Sudhakar M.
Reddy, “ROTCO: A Reverse Order Test Compaction
Technique,” inProc. of the EURO-ASIC Conference,
June 1992, pp. 189–194.

[7] Seiji Kajihara, Irith Pomranz, Kozo Kinoshita, and
Sudhakar M. Reddy, “On Compacting Test Sets by
Addition and Removal of Test Vectors,” inVLSI Test
Symposium, April 1994, pp. 25–28.

[8] Michael R. Garey and David S. Johnson,Comput-
ers and Intractability: A Guid to the Theory of NP-
Completeness, W.H. Freedman, 1979.

[9] Sheldon B. Akers and Balakrishnan Krishnamurthy,
“Test Counting: A Tool for VLSI Testing,” IEEE
Design and Test of Computers, vol. 6, no. 5, pp. 58–
73, Oct. 1989.

[10] B. Krishnamurthy and S. B. Akers, “On the Com-
plexity of Estimating the Size of a Test Set,”IEEE
Transactions on Computers, vol. C-33, no. 8, pp.
750–753, Aug. 1984.

[11] T. M. Niermann and J. H. Patel, “HITEC: A Test
Generation Package for Sequential Circuits,” in
Proc. of the European Conference on Design Au-
tomation, Feb. 1991, pp. 214–218.

[12] Hyung Ki Lee and Dong Sam Ha, “HOPE: An Ef-
ficient Parallel Fault Simulator for Synchronous Se-
quential Circuits,”IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol.
15, no. 9, pp. 1048–1058, Sept. 1996.

[13] James Mchugh,Algorithmic Graph Theory, Prentice
Hall, 1990.

