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Abstract

We employ two iterative heuristics for the optimiza-
tion of VLSI standard cell placement. These heuris-
tics are based on Genetic Algorithms (GAs) and Tabu
Search (TS) [1] respectively. We address a multiobjec-
tive version of the problem in which, power dissipation,
timing performance, and interconnect wire length are
optimized while layout width is taken as a constraint.
Fuzzy rules are incorporated in order to design a multi-
objective cost function that integrates the costs of three
objectives in a single overall cost value. A series of ex-
periments is performed to study the effect of important
algorithmic parameters of GA and TS. Both the tech-
nigues are applied to ISCAS-85/89 benchmark circuits

and experimental results are reported and compared.

1 Introduction

Until the beginning of this decade, two objectives
namely the optimization of interconnect wire length
and performance were focused. A large number of ef-
forts targeting either one or both of above two objec-
tives are reported in the literature [2, 3, 4]. There
has been some work for optimizing power consump-
tion while considering the wire length and performance
as constraints [5, 6], but, to our knowledge, no effort
has been reported that targets the optimization of the
three objectives simultaneously. This fact provides a

significant motivation for the present work.

VLSI design is a complex process and is carried out at
certain abstraction levels [7] as illustrated in figure 1.
The problem of power optimization can be addressed
at a higher level as well as at a lower level e.g., phys-
ical level [8, 9]. In this work, we address the above
problem in the placement step at the physical level.
Two iterative approaches based on genetic algorithm
(GA) and tabu search (TS) respectively, are presented

for the multiobjective optimization of the placement.
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Placement is an important step in VLSI physical de-
sign responsible for arrangement of cells on a layout
surface for optimizing certain objectives while satis-
fying some constraints. Standard cell placement is a
special case where all the cells to be placed have equal

height [7].
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Figure 1: Various steps in VLSI design process.

This paper is organized as follows: In the next section,
we formulate our problem and cost function. Section 3
presents our approaches, and then experimental results
are reported and discussed in section 4.

2 Problem and Cost Function Modeling

In this section, we formulate our problem and the cost
function used in our optimization process.

2.1 Problem Formulation

We are addressing the problem of VLSI standard cell
placement with the objectives of optimizing power con-
sumption, timing performance (delay), and wire length
while considering layout width as a constraint. For-
mally, the problem can be stated as follows:

A sét of cells or modules M = {my,m2,...,m,} and a
set of signals S = {s1, 82, ..., Sk} is given. Moreover,
a set of signals Sp,,, where S, C S, is associated
with each module m; € M. Similarly, a set of modules

2224


Administrator
Text Box
Iterative Heuristics for Multiobjective VLSI Cell Placement 
Sadiq M. Sait, H. Youssef Aiman El-Maleh and M. Minhas


M, , where M, = {my|s; € Sy} is called a signal
net, is associated with each signal s; € 5. Also, a
set of locations L = {L1,Ls,...,L,}, where p > n is
given. The problem is to assign each m; € M to a
unique location L;, such that all of our objectives are
optimized subject to our constraints.

2.2 Cost Functions

Now we formulate cost functions for our three said
objectives and for the width constraint.

Wire length Cost: Interconnect Wire length of
each net in the circuit is estimated and then total wire
length is computed by adding all these individual es-

timates:
Costoyire = E l; (1)
ieM
where [; is the wire length estimation for net ¢ and M
denotes total number of nets in circuit.

Power Cost: Power consumption p; of a net i in a
circuit can be given as:

1
pi:‘z"ci'vl%D'f'Si'ﬂ (2)

where C; is total capacitance of net i, Vpp is the sup-
ply voltage, f is the clock frequency, S; is the switching
probability of net i, ’and S8 is a technology dependent
constant.

Assuming a fix supply voltage and clock frequency, the
above equation reduces to the following:

pi = C,' . Si (3)
The capacitance C; of cell i is given as:

Ci=Cr+ Y CY (4)
JEM;
where Cf is the input capacitance of gate j and C]
is the interconnect capacitance at the output node of
cell 4.

At the placeinent phase, only the interconnect capac-
itance C7 can be manipulated while C{ comes from
the properties of the cell library used and is thus inde-
pendent of placement. Moreover, C! depends on wire
length of net ¢, so equation 3 can be written as:

pPi = l,' . S,' (5)

The cost function for total power consumption in the
circuit can be given as:

COStpower = Epi = Z(ll . Sl) (6)

iEM tEM

Delay Cost: Delay cost is determined by the delay
along the longest path in a circuit. The delay T, of a
path m consisting of nets {v;,vs,...,vx}, is expressed

as:
k-1

T =) (CD; +1Dy) (7
=1
where CD; is the switching delay of the cell driving
net v¢ and I D; is the interconnect delay of net vi. The
placement phase affects ID; because CD; is technol-
ogy dependent parameter and is independent of place-
ment.

The delay cost function can be written as:

Costgetay = maz{Ty} (8)

Width Cost: Width cost is given by the maximum
of all the row widths in the layout. We have con-
strained layout width not to exceed a certain positive
ratio a to the average row width wayg, Where wgyg
is the minimum possible layout width obtained by di-
viding the total width of all the cells in the layout by
the number of rows in the layout. Formally, we can
express width constraint as below:

Width < (1+ a) X Wau, (9)

Overall Fuzzy Cost Functjon: Since, we are op-
timizing three objectives simultaneously, we need to
have a cost function that represents the effect of all
three objectives in form of a single quantity. We pro-
pose the use of fuzzy logic to integrate these multiple,
possibly conflicting objectives into a scalar cost func-
tion. Fuzzy logic allows us to describe the objectives
in terms of linguistic variables. Then, fuzzy rules are
used to find the overall cost of a placement solution.
In this work, we have used following fuzzy rule:

IF a solution has

SMALL wire length AND
LOW power consumption AND
SHORT delay

THEN it is a GOOD solution.

The above rule is translated to and-like OWA fuzzy
operator [10] and the membership p(z) of a solution x
in fuzzy set GOOD solution is given as:

Bmin {u;(@)}+(1-8)-3 ¥ ni=);
ulz) = if Width — Wayy < @ Wayg,

0; otherwise.

(10)
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Figure 2: Membership functions

Here p;j(z) for j = p,d,l, width are the membership
values in the fuzzy sets LOW power consumption,
SHORT delay, and SMALL wire length respectively.
B is the constant in the range [0, 1]. The solution that
results in maximum value of u(z) is reported as the
best solution found by the search heuristic.

The membership functions for fuzzy sets LOW power
consumption, SHORT delay, and SMALL wire length
are shown in figure 2. We can vary the preference of an
objective j in overall membership function by changing
the value of g; . The lower bounds O; for different
objectives are computed as given in Equations 11-14:

n
O = Zl; Vu; € {v1,v2,...,un} (11)

=1

n
Op =) Sili Vui € {v1,v,..,va}  (12)

=1
k
O4 = ZCDJ-+ID;‘ Yv; € {v1,v,..., 0} in path 7,
j=1
(13)
" Width;
Ouiatn = =L} (14)

# of rows in layout
where O; for j € {l,p,d, width} are the optimal costs
for wire-length, power, delay and layout width respec-
tively, n is the number of nets in layout, I} is the opti-
mal wire-length of net v;, CD; is the switching delay
of the cell ¢ driving net v;, ID; is the optimal inter-
connect delay of net v; calculated with the help of [;,
S; is the switching probability of net v;, 7. is the most
critical path with respect to optimal interconnect de-
lays, k is the number of nets in 7. and Width; is the
width of the individual cell driving net v;.

3 Proposed Approaches

In this section, we describe the implementation de-
tails of the proposed approaches. First, we discuss the
details of Genetic Algorithm for Multiobjective Place-
ment and then, we briefly describe the implementation
of Tabu Search (TS).

3.1 GA for Multiobjective Placement (GA)

A significant modification in our GA implementation
is the application of mutation after selection step as
will be described in the corresponding sections below.

Chromosome Encoding and Initial Solution:
For a solution to be processed by GA, it is required
to be represented in the form of a chromosome. A
placement solution is an arrangement of cells in two
dimensional layout surface. So we decided to repre-
sent a solution in the form of a 2-D grid. As we have
discussed above that due to varying widths of the cells
in a circuit, all the rows can not have equal number of
cells. This fact disturbs our two dimensional represen-
tation. For instance consider a circuit comprising of
11 cells 1,2,3,...,11. A possible layout is as follows:

3 5 8 6
9 10
711 1
4 2

The above layout is made after computing the average
row width as explained above in section 2.2. Then we
divide average row width by the smallest cell width
to compute the maximum number of locations in a

- row. Assume we have 4 locations and it is known from

the information obtained from the min-cut placer that
there are 4 rows in the layout. Then, we start con-
structing the initial solution by randomly selecting a
cell from 11 cells and placing it in the first row. Be-
fore placing a cell, it is checked whether adding it will
violate the width constraint, and if it does, then it is
placed at the start of next row. Similarly, all the cells
were placed on the layout. As a result, we have five
empty locations: two in the second row, one in the
third row, and two in the last row. In order to make it
a perfect grid, we fill the empty locations by dummy
cells represented by distinct negative integers as show

below: :

3 5 8 6
9 10 -1 -2
71 1 -3
4 2 -4-5

These negative numbers are used for encoding pur-
poses as well as for the appropriate application of ge-
netic operators like crossover, and these do not play
any role in cost computation of the solution.

Fitness Evaluation: As discussed in the previous
section that fuzzy logic is used for designing the overall
cost function. Each solution is assigned a fitness value
between 0 and 1 that is equal to the membership value
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in the fuzzy set of acceptable solution. This member-
ship value is computed using Equation 10. The fitness
of a solution is a measure of its proximity to the opti-
mal solution. The higher the fitness value of a solution,
the closer is it to the optimal solution. In our imple-
mentation, an initial solution is assigned a fitness value
of 0 whereas the optimal solution is assigned a fitness
value of 1. The purpose is to normalize the fitness
value of any solution in range [0,1].

Parent Choice: We have used roulette wheel
scheme [1]. An individual chromosome is selected with
a probability that is proportional to its fitness value.
This scheme allows the individuals having low fitness
values to be selected with a low probability.

Crossover: Crossover is the operator that causes
inheritance of characteristics from one generation to
the next. Various types of crossover operators in-
cluding one-point or two-point simple crossover, or-
der crossover, and partially mapped crossover (PMX)
are reported in the literature. In our case, each gene
in the chromosome representation is distinct and this
property must remain there from generation to gener-
ation for a chromosome to represent a valid solution.

Therefore, we can not use simple crossover as it may .

result in duplicate genes. In our work, we experiment
with different types of existing crossover operators like
order crossover, and PMX. In addition, we propose a
modified form of PMX application named Controlled
Dual PMX (CDX). CDX works as follows: We first

apply PMX between parent-1 and parent-2 and then

between parent-2 and parent-1. As a result, we get
two offsprings. We choose the better offspring with a
certain high probability P,4, and choose any one of
the two randomly with probability 1 — P.4,.

The crossover operation is performed with a high prob-
ability p.. We experiment with different high crossover
probabilities. Our implementation of crossover prob-
ability is as follows: after choosing two parents, we
generate a random number rand in the range [0, 1],
and if rand < p., we apply crossover; otherwise, we
choose another two parents and regenerate a random
number and so on. In this way, it is ensured that same
number of offsprings are generated in each iteration.
We generate offsprings equal in number to the popu-
lation size. Whenever a new offspring is generated, we
check whether the width cost of the circuit is violat-
ing the width constraint. If it is so, we discard that
offspring and perform another crossover after choosing
other parents. This process is repeated until we have
the desired number of offsprings.

Selection: We suggest a modification to simple GA

. by using selection before the mutation step. The mo-

tivation is to encourage the diversity in the popula-
tion by ensuring the transfer of mutation effect into
next generation. We have experimented with differ-
ent selection schemes including roulette (rit), elitist-
roulette (erlt), elitist-random (ernd), and eztended-
elitist-random (eernd) schemes. In eerlt selection, the
best half of the chromosomes are selected and the re-
maining half are selected using roulette wheel. Simi-
larly, in erlt selection, the best chromosome is selected
among parents and offsprings, and the remaining chro-
mosomes are selected using roulette wheel. In eernd
selection, the best half of the chromosomes are selected
and the remaining half are selected randomly. Simi-
larly, in ernd selection, the best one is selected from
parents and offsprings, then the remaining are selected
randomly.

Mutation: In this work, we propose to apply muta-
tion with a dynamic probability P"f which is a function
of the diversity of the population selected for the next
generation i.e (k + 1)th generation. The standard de-
viation of the population in (k+1)th generation (c%,,)
is used as a measure of the diversity. The idea is to in-
crease the mutation probability when population tends
to lose diversity. This is another effort to enhance di-
versity and thus GA search capability. The following
equation specifies how mutation probability is updated
dynamically.

0.05 if o, <0.02
P: = 0.03 if of,>005 (15)
0.05 - 2 (a;it —0.02) otherwise

We implement mutation as a series of random pair wise
interchanges. The number of interchanges is taken de-
pending on the size of circuit. A random fraction f
between 0.03 and 0.05 is generated and f x n inter-
changes are made, where n is the total number of cells
in the circuit.

3.2 TS Approach

In this sub-section, we describe our TS implementation
very briefly. The solution encoding and initialization
steps are similar to those described above for GA. In
each iteration, we generate a number of neighbor so-
lutions by making perturbations as follows: two cells
are selected randomly with the condition that both of
them should not be dummy cells at the same time,
then their locations are interchanged. The number of
neighbor solutions generated is dependent on the cir-
cuit size i.e., it is varied from 24 for s2081 to 70 for
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Table 1: Comparison between costs of the best solutions generated by GA and TS

Circuit GA TS

Name | N [ L (um) P ID(ps) [ plz) | T() | L (pm) P D (ps) | plz) [ T(s)
s2081 | . 122 2426 388 113 | 0.785 2341 2323 379 111 | 0.823 298
5298 136 - 4062 838 130 | 0.775 2922 3579 635 127 | 0.821 212
s386 172 6824 1665 193 | 0.695 3945 6643 1595 190 | 0.709 524
5832 310 21015 4787 395 | 0.598 7206 18760 | 4311 349 | 0.658 981
5641 433 17812 4532 740 | 0.685 | 21982 12620 2868 656 | 0.800 1505
s953 440 31004 5027 235 | 0.606 | 11221 27287 4230 214 | 0.669 1036
51238 540 50387 15035 396 | 0.536 | 16208 39186 | 11594 353 | 0.656 1124
51196 561 48729 14755 372 | 0.543 | 16120 39054 | 11700 332 | 0.650 1138
51494 661 69223 17169 771 | 0.540 | 26032 54710 | 13533 674 | 0.650 2499
51488 667 69792 17346 784 | 0.518 | 21434 56888 | 13867 662 | 0.621 2256
¢3540 | 1753 | 310996 | 109850 924 | 0.425 | 57724 | 164581 [ 58143 699 [ 0.708 [ 19215

¢3540. The characteristic of the move which we keep

in tabu list is the indices of the cells involved in inter- Y

change. We have used short term memory element in % 08§ e

our TS implementation. The aspiration criterion used g 05 P

is as follows: if the best neighbor solution in the cur- 2 04 '

rent iteration is the best seen so far i.e. better than £ o/

the global best, then it is accepted and tabu restriction £ o2 ]

is overridden. £

2 o1
G0 2000 4000 6000 8000

4 Experimental Results and Discussion

We have experimented with GA and TS on different
ISCAS-85/89 benchmark circuits. Table 1 compares
the quality of the final solution generated by TS and
GA. The circuits are listed in the increasing order of
the number of cells N in them. Here “L”, “P” and “D”
represent the wire length, power and delay costs re-
spectively, y(x) represents fuzzy membership and “T”
represents execution time in seconds. Layout width
was constrained not to exceed more than 1.2 times the
average row width by fixing the value of a equal to
0.2. This constraint is satisfied in obtaining all the
results shown here. The shown results in case of GA
are obtained in 10,000 generations by taking a popu-
lation size equal to 32 chromosomes and using CDX
crossover with a probability equal to 0.9. The value of
parameter P4, is set equal to 0.95.

As we have discussed above, P,4, determines the prob-
ability with which the better of the two offsprings is
selected. The selection scheme used is extended-elitist-
random selection. These settings produced the best fi-
nal results. The settings for TS parameters like neigh-
borhood size and tabu list size, which produced the
shown results are the same as mentioned above in sec-
tion 3.2.

From the results, it is clear that TS performs better
than GA for all the circuits in terms of quality of so-
lution as well as run time. The significant observation

Figure 3: Membership of the best solution against run
time for GA and TS in case of circuit s832.

0.7

0.6}
0.5
0.4

0.3y’

0.2

Membership u(x) of the best solution

01

[} 2000 4000 000 8000 10000
Figure 4: A comparison between using dynamic and
fixed mutation probability in GA for circuit s832

is that in case of smaller circuits, the costs of final so-
lution obtained from GA are comparable with those
obtained from TS. As the size of the circuit increases,
TS performs better tan GA consistently. Also, the
execution time of GA increases significantly with the
increase in the circuit size. Figure 3 shows the trend of
best solution fuzzy membership against run time both
in case of GA and TS for circuit s832. It is clear from
the shown plot that TS achieves a membership in less
than 1000 seconds that is better than that reached by
GA in 8000 seconds.
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Figure 5: A comparison between PMX and CDX for
s832

Membership u(x) of the best solution

Figure 6: Effect of population size for s832

Figure 4 compares the trend of best solution cost in
case of fixed and dynamic mutation probability. It is
clear that using dynamic mutation probability results
in slightly better performance. Next, figure 5 shows

* the effect of employing CDX and PMX crossover. The
proposed CDX has clearly outperformed PMX. The
effect of population size on the performance of GA can
be seen in figure 6, where we have shown three plots
for population sizes of 16, 32, and 50 respectively. It
is observed that by increasing population size from 16
to 32, there is a reasonable performance improvement,
but further increase in population size does not offer
a significant improvement.

5 Conclusions

We have presented two iterative algorithms based on
GA and TS respectively, for the multiobjective opti-
mization of the VLSI standard cell placement. The
use of fuzzy logic is proposed to integrate the three
objectives namely power, delay, and wire length into
a scalar cost value. Experimental results on ISCAS
benchmark clearly indicate that TS outperforms GA
in terms of the quality of the final solution as well as
the execution time.
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