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Abstract 
In this paper, we discuss a parallel tabu search 

algorithm with implementation in a heterogeneous 
environment. Two parallelization strategies are 
integrated: functional decomposition and multi-search 
threads. In addition, domain decomposition strategy is 
implemented probabilistically. The performance of each 
strategy is observed and analyzed in terms of speeding up 
the search and finding better quality solutions. 
Experiments were conducted for the VLSI cell placement. 
The objective was to achieve the best possible solution in 
terms of interconnection length, timing performance 
circuit speed, and area. The multiobjective nature of this 
problem is addressed using a fuzzy goal-based cost 
computation. 

 
 

1. Introduction  
 
Tabu Search (TS) belongs to the class of general 

iterative heuristics that are used for solving hard 
combinatorial optimization problems. It is a 
generalization of local search that searches for the best 
move in the neighborhood of the current solution. 
However, unlike local search, TS does not get trapped in 
local optima because it also accepts bad moves if they are 
expected to lead to unvisited solutions [1]. 

Among the iterative stochastic heuristics applied to 
combinatorial optimization problems are Simulated 
Annealing (SA) [2, 3], Genetic Algorithm (GA) [4] and 
Simulated Evolution (SE) [5]. A common feature of these 
stochastic iterative heuristics is that they are memoryless. 
They do not have memory or use any memory structure to 
keep track of previously visited solutions. On the other 
hand, Tabu Search (TS) utilizes some memory to make 
decisions at various stages of the search process [6]. 
Memory structures are used to prevent reverses of recent 

moves by keeping their attributes in a tabu list (also 
known as short-term memory) in order to prevent cycling 
back to already visited solutions. Memory structures are 
also used to (1) force new solutions to have different 
features from previously visited ones (diversification); (2) 
force the new solution to have some features that have 
been seen in recent good solutions (intensification). 

Because of its search strategy, the parallelization of TS 
can result in improved solution quality and reduced 
execution time. Encouraging results are obtained for 
computationally intensive tasks even with a small number 
of workstations in a local area network LAN. However, 
most LANs today consist of a set of heterogeneous 
workstations. Therefore, in order to use LANs efficiently, 
parallel algorithms have to be designed such that the 
heterogeneity of system is taken into account. In this 
paper, we discuss the parallelization of the tabu search 
algorithm in a heterogeneous environment. We implement 
different parallelization strategies on a cluster of 
workstations using the PVM tool [7]. Experiments were 
conducted for the VLSI cell placement, an NP-hard 
problem. 

 
2. VLSI Cell Placement 

 
Cell placement consists of finding suitable locations 

for all cells on the final layout of a VLSI circuit. It is a 
hard combinatorial optimization problem with a number 
of noisy objective functions. A solution is evaluated with 
respect to three main objectives: wire length, critical path 
delay, and area, which is a function of cell delays and 
interconnection delays. Prior to final layout, these criteria 
cannot be accurately measured. Further, it is unlikely that 
a placement that optimizes all three objectives exists. 
Designers usually have to make tradeoffs. To deal with 
such complex and imprecise objectives, a fuzzy goal-
directed search approach is applied [5].  

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by King Fahd University of Petroleum and Minerals

https://core.ac.uk/display/266084099?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

3. Tabu Search  
 

TS starts with an initial solution s selected randomly or 
using any constructive algorithm. It then defines a subset 
V*(s), called candidate list, of its neighborhood ℵ(s). The 
algorithm selects the best solution in V*(s) (in terms of an 
evaluation function), call it s*, to be considered as the 
next solution. If the short-term memory does not define 
the move leading to s* as tabu, it is accepted as the new 
solution even if it is worse than the current solution. 
However, if the move leading to s* is tabu, the solution is 
not accepted unless a certain criterion, aspiration criteria, 
is satisfied [8]. A move, in our problem, consists of 
swapping two cells on the layout of a VLSI circuit. m 
pairs of cells are trial swapped and the best swap among 
them is taken as the next move. A compound move can be 
made d times where each time m pairs are tested, where d 
is the desired move depth. The best move is taken each 
time. The basic description of TS is shown in Figure 1. 

 
 
 

 
Figure 1. Algorithmic description of TS. 

 
 
 

4.  Classification of Parallel Tabu Search 
 

According to Crainic et. al taxonomy [9], a possible 
parallelization strategy of tabu search is to distribute the 
computation that requires the most CPU time on available 
machines (functional decomposition). Another strategy is 
to perform many independent searches (multi-search 
threads). A third strategy is to decompose the search 
space among processes (domain decomposition). Using a 
different taxonomy, Crainic et. al., classify TS along three 
dimensions. The first dimension is control cardinality 
where the algorithm is either 1-control or p-control. In a 
1-control algorithm, one processor executes the search 
and distributes numerically intensive tasks on other 
processors. In a p-control algorithm, each processor is 
responsible for its own search and the communication 
with other processors. The second dimension is control 
and communication type where the algorithm can follow a 
rigid synchronization (RS), a knowledge synchronization 
(KS), a collegial (C), or a knowledge collegial (KC) 
strategy. RS and KS correspond to synchronous operation 
mode where the process is forced to exchange information 
at specific points; C and KC correspond to asynchronous 
operation modes where communication occurs at regular 
intervals. Collegial approaches exchange more 
information than non-collegial ones. The third dimension 
is search differentiation where the algorithm can be single 
point single strategy (SPSS), single point different 
strategies (SPDS), multiple points single strategy (MPSS), 
or multiple points different strategies (MPDS). 

 
4.1 Proposed Algorithm for Cell Placement  

 
The proposed parallel Tabu search algorithm (PTS) 

consists of three types of processes: (i) a master process, 
(ii) Tabu Search Workers (TSWs), and (iii) Candidate list 
Workers (CLWs). The algorithm is parallelized on two 
levels simultaneously. The upper one is at the TS process 
level where a master starts a number of TSWs and 
provides each with the same initial solution. The lower 
level is the Candidate List construction level (local 
neighborhood search) where each TSW starts a number of 
CLWs. 

The parallel search proceeds as follows. The master 
initiates a number of TSWs to perform TS starting from 
the given initial solution. A TSW gets all parameters and 
the initial solution from the master. It then performs a 
diversification step where each TSW diversifies with 
respect to a different subset of cells so as to enforce that 
TSWs don't search in overlapping areas. Diversification is 
performed by moves done within the TSW range to a 
specific depth such that a different initial solution is used 
at each TSW. Then each TSW starts a number of CLWs 
to investigate the neighborhood of the current solution 
initial solution after diversification. It sends the 
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parameters and the initial solution to each CLW. It also 
gives each CLW a range of cells to search the 
neighborhood with respect to those cells. For every move 
it makes, the CLW has to choose one of the cells from its 
range and the other cell from anywhere in the whole cell 
space. Therefore, the probability that two CLWs perform 

the same move is equal to 
2)1(

1
−n

 where n is the number 

of cells. The probability that more than 2 CLWs select the 
same two cells is 0. This means that the probability that k 
CLWs make the same move is eliminated completely if k 
> 2.  

Each CLW makes a compound move of a 
predetermined depth and keeps computing the gain. If the 
current cost is improved before reaching the maximum 
depth, the move is accepted without further investigation. 
After finding the compound move that improves the cost 
the most or degrades it the least, the CLW sends its best 
solution to its parent TSW. The TSW selects the best 
solution from the CLW that achieves the maximum cost 
improvement or the least cost degradation. It then checks 
if the move is tabu. If it is not, it accepts it. Otherwise, the 
cost of the new solution is checked against the aspiration 
criterion and the process continues for a number of local 
iterations. At the end of the local iteration count, each 
TSW sends its best cost to the master process. The master 
gets the overall best solution and broadcasts it to all 
TSWs and the process continues for a fixed number of 
global iterations. The completion of all iterations by the 
TSWs and selection of new current solution by the TS 
master is considered one global iteration. The TS 
iterations executed by each TS worker are called local 
iterations. 

The processes described in Figures 2, 3, and 4, work 
together to get a high quality solution with minimum 
communication between them. A TSW process and a 
CLW process exchange only the best solution between 
them while the master and TSW exchange the best 
solution as well as the associated tabu list. 

 
4.2 PTS in a Heterogeneous Environment  

 
We have implemented our proposed PTS algorithm on 

a network of heterogeneous workstations using the PVM 
tool. In our implementation, we account for speed and 
load heterogeneity by letting the master receive the best 
cost from any TSW that has finished the local iterations. 
Once the number of TSWs that gave their best cost to the 
master reaches half the total number of TSWs, the master 
sends a message to all other TSWs forcing them to report 
whatever best cost they have achieved. The same 
approach is followed in the communication between 
TSWs and their own CLWs. 

 

 
Figure 2. Master process of parallel TS 

 
 

 
Figure 3. TSW process. 

 

 
Figure 4. CLW process. 
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4.3 Classification of PTS 
 

As mentioned earlier, the algorithm is parallelized on 
two levels simultaneously. The upper one is at the tabu 
search process level where a master starts a number of 
TSWs and provides them with the same initial solution. 
This is a multi-search threads approach where each TSW 
performs its own search. The lower level is the Candidate 
List construction level where each TSW starts a number 
of CLWs. This level belongs to the strategy of functional 
decomposition because CLWs are spawned only to 
investigate the neighborhood of the current solution. The 
algorithm falls into p-control class at the higher 
parallelization level because the search control is 
distributed among all TSWs. The lower level 
parallelization belongs to the 1-control class because the 
TSW controls the search done by its CLWs. On the 
control and communication type dimension, the algorithm 
follows rigid synchronization because the master waits 
for its children or stops them. It is a multiple points single 
strategy (MPSS) search on the search differentiation 
dimension because TSWs diversify from the initial 
solution at each global iteration using the diversification 
scheme proposed by Kelly et. [10]. 
 
5. Experiments and Discussion 

 
We present and discuss various experiments that are 

performed using the proposed parallel tabu search 
algorithm for VLSI standard cell placement. Experiments 
were conducted on three different speed levels of 
machines and four different architectures. Four ISCAS-89 
benchmark circuits of different sizes were used in the 
experiments. These circuits are: highway (56 cells), c532 
(395 cells), c1355 (1451 cells), and c3540 (2243 cells). 

In the paper, we study the effect of the degree of low-
level and high-level parallelization on the algorithm 
performance, namely quality of best solution and 
speedup. We also study the effect of diversification 
performed by TSWs and the effect of heterogeneity of the 
environment. The definition of speedup for non-
deterministic algorithms such as TS is different from that 
used for deterministic constructive algorithms. For this 
category of algorithms, speedup is defined as: 

 
),(

),1(
),(

xn

x
xn t

t
Speedup =  

where t(1,x) is the time needed to hit an x-quality solution 
using one CLW (or TSW) and t(n,x) is the time needed to 
hit the same solution quality using n CLWs (or TSWs). 
 
5.1 Effect of Low-level Parallelization 

 
In this experiment, different number of CLWs is tried, 

from 1 to 4, for each circuit. The change in the best 

solution quality is monitored as the number of CLWs is 
changed. All other algorithm parameters are fixed. The 
number of TSWs is 4 in all experiments. Twelve 
machines are used as a parallel virtual machine. Figure 5 
shows the effect of changing the number of CLWs on the 
best solution quality for the four circuits. For most of the 
circuits, it is clear that increasing the degree of low level 
parallelization is beneficial. For highway, the circuit size 
is small. That makes adding CLWs beyond 2 not useful. 
Figure 6 shows the speedup achieved in reaching a 
specific solution quality for 2 of the circuits. It is clear 
from the figure that in most of the experiments, as the 
number of CLWs increases from 1 to 4, the speedup 
increases. The sharpness of the speedup increase depends 
on the circuit size and the goodness of the initial solution. 

 
5.2 Effect of High-level Parallelization 

 
In this experiment, different numbers of TSWs are 

tried, from 1 to 8, for each circuit. The change in the best 
solution quality is monitored as the number of TSWs is 
changed. The number of CLWs per TSW is fixed to 1 in 
all experiments. As mentioned earlier, 12 machines are 
used as a parallel virtual machine. Figure 7 shows the 
effect of changing the number of TSWs on the best 
solution quality for all circuits. It is clear that, for all 
circuits, adding TSWs beyond 4 is not useful. Figure 8 
shows the speedup achieved in reaching a specific 
solution quality for two of the circuits. For c532, and 
c3540 the critical point, occurred at 4 TSWs. Adding 
more TSWs degraded the speedup. 

 
5.3 Effect of Diversification 

 
In this experiment, we try to see the effect of the 

diversification step performed by the TSWs at the 
beginning of each global iteration. Figure 9 shows a 
comparison between two runs of four TSWs and one 
CLW per TSW. In one run, diversification is done while 
in the other run, no diversification is performed. It is clear 
from the figure, that the diversified run outperforms the 
non-diversified run significantly. 

The message conveyed in Figure 9 is that some 
diversification is always useful. However, it is known that 
too much diversification without enough local 
investigation might mislead the search by making it jump 
from place to another without enough investigation any 
where. Figure 10 shows the results of an experiment 
where the number of global iterations is decreased (less 
diversification) as the number of local iterations is 
increased (more local investigation) for all circuits. It is 
clear from the figure that no general conclusion can be 
made about the best number of global iterations versus 
local iterations. It all depends on the problem instance 
itself. This experiment is used as a guide for the most 
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suitable number of local and global iterations that should 
be used to continue searching for the best achievable 
solution and to achieve the highest speed. 

 

 

 

 
Fig. 5. Effect of number of CLWs on solution quality. 

 

 
Fig. 6. Speedup achieved in reaching solution of cost less 

than x for different number of CLWs. 
 

 

 
Fig. 7. Effect of number of TSWs on solution quality. 
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Fig. 7. Effect of number of TSWs on solution quality. 

 

 

 
Fig. 8. Speedup achieved in reaching a solution of cost 

less than x for different numbers of TSWs. 

 

 

 

 
 

Fig. 9. Effect of diversification. 
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Fig. 10. Local versus global iterations. 

 
 

5.4 Accounting for Heterogeneity 
 

In this experiment, we try to see the effect of 
accounting for speed and load differences of various 
machines by performing two runs. In the first one, 
heterogeneous run, we run the algorithm while accounting 
for heterogeneity by making the master ask for best 
solutions from all TSWs once half of them complete all 
assigned iterations, and report their best to their parent. 
TSWs do the same by asking their CLWs to submit their 
best solutions once half of them report their best to the 
parent. In the second run, homogeneous run, each parent 
waits for all its child processes to finish and return their 
new best. In all experiments we used twelve machines to 
make the parallel virtual machine. These machines 
include seven high-speed machines, 3 medium-speed 
machines, and 2 low-speed machines.  

In both runs, we use 4 TSWs and 4 CLWs per TSW. 
The run that does not account for heterogeneity is 
supposed to give better solutions because the parent waits 
for all of its children to give their best solutions. 
However, since the number of global iterations is 
maintained the same for both cases, the heterogeneous 
run-time is expected to be far less than the homogeneous 
runtime. Figure 11 shows the best quality of solution 
achieved versus runtime for the homogeneous and 
heterogeneous runs. For the three circuits shown here, we 
observed no noticeable differences in solution quality. 
Figure 11 shows that towards the end of experiment, the 
heterogeneous run is doing either better than or at least as 
good as the homogeneous run, but never performs worse. 

 

 
Fig. 11. Best cost versus runtime for heterogeneous and 

homogeneous runs 
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Fig. 11 (cont.).  Best cost versus runtime for 

heterogeneous and homogeneous runs. 
 
 

6. Summary of results 
 

The goal of parallelization is to speedup the search and 
to improve solution quality. Observations support that 
both parallelization strategies are beneficial, with 
functional decomposition producing slightly better results. 
Below, we summarize our observations from extensive 
experiments carried out on circuits of various sizes. 
• For most test circuits, increasing the degree of low-

level parallelization and the degree of high level 
parallelization was beneficial. However, in general the 
most effective strategy seems to be a mix of high and 
low level parallelization. Low level or high level alone 
is not as effective. 

• In order to achieve a specific solution quality, for all 
circuits, adding more CLWs or more TSWs to a 
certain limit resulted in reaching better solutions in 
less time. 

• Speed and load differences of machines are taken into 
account by making the master ask for best solutions 
from all TSWs once half of them have completed all 
iterations. This strategy resulted in higher speedup. 
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