
An Enhanced Estimator to Multi-objective OSPF
Weight Setting Problem

Mohammed H. Sqalli, Sadiq M. Sait, and Mohammed Aijaz Mohiuddin

Computer Engineering Department
King Fahd University of Petroleum & Minerals

Dhahran 31261, Saudi Arabia
E-mail: {sqalli,sadiq,aijazm}@ccse.kfupm.edu.sa

Abstract— Open Shortest Path First (OSPF) is a routing
protocol which is widely used in the Industry. Its functionality
mainly depends on the weights assigned to the links. Given
the traffic demands on a network, setting weights such that
congestion can be avoided is an NP-hard problem. Optimizing
these link weights leads to efficient network utilization which is
the main goal of traffic engineering. In this paper, Simulated
Annealing iterative heuristic is applied to this problem. This will
provide close-to-optimal solutions that can be used for network
provisioning. For this problem, the cost function that has been
used in the literature depends solely on the links utilization and
therefore optimizes only the network utilization. In this paper,
our goal is to optimize the number of congested links in the
network in addition to the utilization. Therefore, we propose a
new cost function that depends on the utilization and the extra
load caused by congested links in the network. This provides
the network designer with more flexibility to optimize desired
parameters. Our results show less number of congested links
and comparable extra load in the network when compared to
results of using the existing cost function.

Index terms - Network provisioning, Configuration management, Traffic
engineering, OSPF weight setting problem, and Simulated Annealing.

I. INTRODUCTION

An internetwork is a combination of networks connected by
routers. When a packet goes from a source to a destination, it
passes through many routers until it reaches the router attached
to the destination network. The network layer is responsible
for carrying a packet from one router to another. In other words
it is responsible for host-to-host delivery. The network layer
uses services of the data link layer which is responsible for
node-to-node delivery.

A router consults its routing table when a packet is ready to
be forwarded. The routing table specifies the optimum path for
the packet. Routing protocols are responsible for populating
entries in these tables. If there is a change in the network
topology, the routing protocol updates the entries in the tables.
Open Shortest Path First (OSPF) [1] and Routing Information
Protocol (RIP) [2] are two well known intra-domain routing
protocols. These protocols are unicast routing protocols that
work within an autonomous system. An autonomous system
(AS) is a group of networks and routers under the authority
of a single administration.

In this paper, a problem related to OSPF routing protocol
is addressed, namely OSPF Weight Setting (OSPFWS). The

objective is to set the OSPF weights on the network links
such that, the network is utilized efficiently. OSPF routing
protocol works on the basis of the weights assigned on the
links of the network by the network operator. OSPF routing
protocol is based on Dijkstra’s algorithm [3], [4]. Based on
the assigned weights, Dijkstra’s algorithm finds the shortest
paths for each pair of source and destination. Once shortest
paths are found, they are stored in routing tables and routing
is then done accordingly. This routing influences the amount
of traffic that will flow on different links, and thus affects the
utilization on these links. Cisco recommends that the OSPF
metric (i.e., link’s weight) be calculated as ref-bw divided by
bandwidth (i.e., link’s capacity), with ref-bw equal to 108 by
default [5]. This states that the weights are set to the inverse
of the link’s capacity. However, this assumes that the flow is
negligeable compared to the capacity of the link [6], which
may not always be the case.

OSPF is commonly deployed by Internet Service Providers
(ISPs), and thus assigning appropriate weights to links will
allow ISPs to make better use of available resources. OSPFWS
is a network provisioning mechanism, to be used off-line,
for finding the optimal weights to be assigned to links, and
which will provide an efficient use of network resources.
The weights are then configured at the routers before the
OSPF routing protocol is initiated. This also assumes that the
network topology and the expected traffic demands are fixed.
In practice, it may not be desirable to use OSPFWS as an
online mechanism that reacts in real-time to changes in the
topology or traffic demands. This may frequently update the
weights of a large number of links, which will cause the OSPF
protocol to recompute the new shortest paths based on the new
weights every time a change occurs on the network. This may
not be practical and may make the network instable.

The OSPFWS problem is proven to be NP-hard [7], and
therefore belongs to a class of combinatorial optimization
problems. In this paper, we use a well known iterative heuris-
tic, namely Simulated Annealing (SA) [8], to address the
OSPFWS problem. We have implemented a classical simulated
annealing-based algorithm using two cost functions for solving
this problem. The first cost function was proposed by Fortz
and Thorup [7], and is based on the utilization ranges. In their
work, they have used Tabu Search (TS) to solve the OSPFWS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by King Fahd University of Petroleum and Minerals

https://core.ac.uk/display/266083886?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

problem.
The second cost function is a new estimator to this problem

which also addresses the issue of optimizing the number of
congested links. Our objective is to provide a more flexible
metric to the network designer to decide about which weight
setting is best for a specific network. For instance, a designer
may wish to minimize the number of congested links. Our new
cost function provides such possibility. The intuition behind
using this metric is to minimize the number of congested
links, and thus the cost of upgrading the network. We have
also implemented a dynamic shortest path algorithm to find
multiple equidistance shortest paths to evenly split the traffic.

The results obtained are compared with existing results of
TS and Genetic Algorithm (GA) for the same problem. Com-
parable results were found with some exceptions. The new
cost function, however, provided better results with respect to
the number of congested links in most test cases.

The rest of the paper is organized as follows; first we
will discuss the current related work. Then, we will state
the OSPFWS problem and formulate the cost functions. The
simulated annealing algorithm and related parameters used for
OSPFWS problem will then be presented. The section that
follows will include the experimental results and a discussion
including a comparison with previous related work. The paper
ends with a conclusion.

II. RELATED WORK

Much research has been done on optimizing OSPF
weights. In [7] a cost function based on the utilization ranges
is formulated and Tabu search [8] is applied. Dynamic short-
est path algorithm given in [9], [10], [11] was applied to
find multiple equidistance shortest paths between source and
destination nodes. Ericsson, Resende and Pardalos applied
genetic algorithm to the same problem [12]. Other papers on
optimizing OSPF weights [13], [14], [15] have either chosen
weights so as to avoid multiple shortest paths from source to
destination, or applied a protocol for breaking ties, thus se-
lecting a unique shortest path for each source-destination pair.
Rodrigues and Ramakrishnan [15] presented a local search
procedure similar to that of Fortz and Thorup. The input to the
algorithm for this problem is a network topology, capacity of
links and a demand matrix. The demand matrix represents the
traffic between each pair of nodes present in the topology. The
methodology for deriving traffic demands from operational
networks is described in [16].

Srivastava et al [6] considered three objectives: minimiza-
tion of total link flow, minimization of maximum link uti-
lization, and a composition of both. They presented an ap-
proach based on the Lagrangian relaxation-based dual method
to determine the optimal weight system. They defined five
performance measures to show the impact of the different
objective functions on these measures.

Sridharan et al [17] used a different approach by defining
a set of allowable next hops, which is a subset of the set of
next hops corresponding to the shortest paths computed by the
routing algorithm. This provides a mechanism to control how

!

Fig. 1. Representation of a topology with assigned weights.

traffic is distributed without modifying the routing protocols,
such as OSPF.

III. PROBLEM STATEMENT

The OSPF weight setting (OSPFWS) problem can be stated
as follows: Given a network topology and predicted traffic
demands, find a set of OSPF weights that optimize network
performance. More precisely, given a directed network G =
(N,A), a demand matrix D, and capacity Ca for each arc
a ∈ A, we want to determine a positive integer weight
wa ∈ [1, wmax] for each arc a ∈ A such that the objective
function or cost function Φ is minimized. wmax is a user-
defined upper limit. The chosen arc weights determine the
shortest paths, which in turn completely determine the routing
of traffic flow, the loads on the arcs, and the value of the cost
function Φ. The quality of OSPF routing depends highly on the
choice of weights. Figure 1 depicts a topology with assigned
weights in the range [1, 20]. A solution for this topology can
be (18, 1, 7, 15, 3, 17, 14, 19, 13, 18, 4, 16, 16). These elements
(i.e., weights) are arranged in a specific order for simplicity.
The elements are ordered in the following manner: the outgo-
ing links from node A listed first (i.e., AB, AF), followed by
the outgoing links from node B (i.e., BC, BD), and so on.

A. Mathematical Model and Cost Function
Using the above notations, the problem can be formulated

as multi-commodity flow problem [12], [18]:

minimize Φ =
∑

a∈A

Φa(la) (1)

subject to these constraints:

la =
∑

(s,t)∈NXN

f (s,t)
a a ∈ A, (2)

f (s,t)
a ≥ 0 (3)

In the experiments, Φa are piecewise linear functions, with
Φa(0) = 0 and a derivative, Φ

′

a(la) given by:

Φ
′

a(l) =

1 for 0 ≤ l/ca < 1/3,
3 for 1/3 ≤ l/ca < 2/3,
10 for 2/3 ≤ l/ca < 9/10,
70 for 9/10 ≤ l/ca < 1,
500 for 1 ≤ l/ca < 11/10,
5000 for 11/10 ≤ l/ca < infinity

(4)

B. Formulation of Cost Function

In this section, we enumerate the steps to compute the cost
function Φ for a given weight setting {wa}a∈A and a given
graph G = (N,A) with capacities {ca}a∈A and demands
dst ∈ D. This procedure is also described in [18].

A given weight setting will completely determine the short-
est paths, which in turn determine the OSPF routing, and how
much of the demand is sent over each arc. The load on each
arc gives us the link utilization on this arc, which in turn gives
us a cost given in the equation 1.

The basic problem is to compute the arc loads la resulting
from the given weight setting {wa}a∈A. The arc loads are
computed in five steps. For all demand pairs dst ∈ D, one
destination t at a time is considered and partial arc loads
lta ∀ t ∈ N̄ ⊆ N , are computed. N̄ represents the set of
destination nodes.

1) Compute the shortest distances dt
u to t from each node

u ∈ N , using Dijkstra’s shortest path algorithm [19]. Di-
jkstra’s alogrithm usually computes the distances away
from source s, but since we want to compute the distance
to the sink node t, the algorithm will be applied on the
graph obtained by reversing all arcs in G.

2) Compute the set At of arcs on shortest paths to t as,
At = {(u, v) ∈ A : dt

u − dt
v = w(u,v)}.

3) For each node u, let δt
u denote its out degree in Gt =

(N,At), i.e.,
δt
u =| {v ∈ N : (u, v) ∈ At} |

If δt
u > 1, then the traffic flow is split at node u to

balance the load.
4) The partial loads lta are computed as follows:

(a) Nodes v ∈ N are visited in the order of
decreasing distance dt

v to t.
(b) When visiting a node v, for all (v, w) ∈ At, set

lt(v,w) = 1/δt
v(dvt +

∑
(u,v)∈At lt(u,v))

5) The arc load la is now summed from the partial loads
as:

la =
∑

t∈N̄ lta
The evaluated costs are normalized to allow us to compare

costs across different sizes and topologies of networks. We

applied the same normalizing scaling factor as introduced by
Fortz and Thorup [18], [12].

Let Ψ be the cost when all the flow was sent along the
hop-count shortest paths and the capacities matched the loads.
Let ∆(s, t) be the hop-count distance between s and t. Ψ is
calculated as,

Ψ =
∑

(s,t)∈NXN

(D[s, t] . ∆(s, t)) (5)

The normalized cost function is,

Φ∗ = Φ/Ψ (6)

C. Formulation of a new cost function
The cost function given in [7] is based on the range of

utilization present on each link. Through experimentation
it was found that this cost function does not address the
optimization of number of congested links. In our work, a
new cost function is proposed. The following equation shows
the proposed cost function:

Φ = MU +
∑

a∈SetCA (la − ca)
E

(7)

This function contains two terms. The first term is the max-
imum utilization (MU) in the network. The second term
represents the extra load on the network divided by the number
of edges present in the network to normalize the entire cost
function. The motivation for the use of this function is to
reduce the number of congested links if any in the network.
Consequently, the network designer will need to upgrade fewer
links in the network to avoid congestion. This in turn means a
less expensive upgrade. Our goal is not to change the cost
function used in [7] but rather to give more flexibility to
the designer to choose the cost function that will fulfill the
desired objectives. The choice of using one or the other will
depend ultimately on the target to be achieved. We discuss
the results related to this function in more details in a later
section. Results show that this function reduces the number of
congested links when the traffic demand is high, with some
tradeoff on the maximum utilization. The results of the final
solutions with respect to this function are compared with those
of the cost function given in [7].

IV. SIMULATED ANNEALING

A. Simulated annealing Algorithm
Simulated annealing is a general adaptive heuristic and

belongs to the class of nondeterministic algorithms. It has been
applied to several combinatorial optimization problems from
various fields of science and engineering. One typical feature
of simulated annealing is that, besides accepting solutions
with improved costs, it also, to a limited extent, accept
solutions with deteriorated costs. It is this feature that gives the

Algorithm Simulated annealing(S0, T0, α, β, M, Maxtime);
(*S0 is the initial solution *)
(*BestS is the best solution *)
(*T0 is the initial temperature *)
(*α is the cooling rate *)
(*β a constant *)
(*Maxtime is the total allowed time for the annealing
process *)
(*M represents the time until the next parameter update *)

Begin
T = T0;
CurS=S0;
BestS=CurS; /* BestS is the best solution seen so far */
CurCost=Cost(CurS);
BestCost=Cost(BestS);
Time = 0;

Repeat
Metropolis(CurS, CurCost, BestS, BestCost, T , M);
Time = Time + M ;
T = αT ;
M = βM

Until (Time ≥ MaxTime);
Return (BestS)

End. (*of Simulated annealing*)

Fig. 2. Procedure for Simulated Annealing Algorithm [8].

Algorithm Metropolis(CurS, CurCost, BestS, BestCost, T , M);
Begin

Repeat
NewS= Neighbor(CurS);
NewCost=Cost(NewS);
∆Cost=(NewCost−CurCost);
If (∆Cost< 0) Then

CurS=NewS;
If NewCost< BestCost Then

BestS= NewS
EndIf

Else
If (RANDOM < e−∆Cost/T) Then

CurS=NewS;
EndIf

EndIf
M = M − 1

Until (M = 0)
End. (*of Metropolis*)

Fig. 3. The Metropolis procedure [8].

heuristic the hill climbing capability. Initially the probability
of accepting inferior solutions (those with largest costs) is
large; but as the search progresses, only smaller deteriorations
are accepted, and finally only good solutions are accepted.
A strong feature of the simulated annealing heuristic is that
it is both effective and robust. Regardless of the choice of
the initial configuration it produces high-quality solutions. The
detail description of the algorithm can be found in [8]. The
general outline of the algorithm is given in Figure 2 and 3.

B. Simulated annealing for OSPFWS
A move for OSPFWS in annealing algorithm is done by

changing the value of weight present on any one link of
the network. Consider the topology in Figure 1 and its so-
lution (18, 1, 7, 15, 3, 17, 5, 14, 19, 13, 18, 4, 16, 16). Simulated

!

"#$%#%&%#'%(%'%'%#)%#*%#(%*%)%#+%#+,

"#$%#%&%#'%(%'%'%#)%#*%#(%#$%)%#+%#+,

"#-%#%&%#'%(%'%'%#)%#*%#(%*%)%#+%#+,

"#-%#%+%#'%(%'%'%#)%#*%#(%*%)%#+%#+,

"#$%#%&%#'%(%#&%'%#)%#*%#(%#$%)%#+%#+,

.

.

.
!

Fig. 4. Sequence of moves in simulated annealing.

annealing is blind in making moves in the search space.
Changing any weight from the above solution will take us
to a different solution in the search space. Thus a new
solution can be (18, 1, 7, 15, 3, 5, 5, 14, 19, 13, 18, 4, 16, 16) by
changing the weight 17 to 5. Likewise, the algorithm proceeds
as shown in Figure 4. In simulated annealing, bad solutions are
accepted at higher temperatures based on a defined probability.
As the temperature decreases, the probability of accepting bad
solutions decreases and the algorithm becomes greedy.

In the proposed implementation, after each move the so-
lution is evaluated with respect to the cost function. Initially,
Dijkstra algorithm [19] is employed and subsequently we used
the dynamic shortest path algorithm described in [9], [10], [11]
to find multiple shortest paths between two nodes if they exist.

C. Simulated Annealing Parameters

Simulated annealing is basically associated with 4 different
parameters: the initial temperature (T0), alpha (α), beta (β) and
M . In simulated annealing each time the Metropolis loop is
called, T is reduced to αM and M is increased to βM . Initial
temperature values are set such that all the initial moves are
accepted. This process is repeated for all the test cases with
different scaled demand values. Table I shows the values of
initial temperature with r100N503a test case with different
scaled demand values. In this table, SumD stands for the sum
of all the demand values in demand matrix. Values of other
test cases are not included due to limited space.

Through experimentation it was found that α = 0.965,
β = 1.01 and M = 10 are suitable parameters for both
cost functions. Figures 5 and 6 show the trend of the current
cost versus the number of iterations for h100N280a test case
corresponding to two different cost functions. In these figures
IC stands for initial cost and BC stands for best cost. Each
figure includes 3 runs for each case. It is clear from these
figures that regardless of the initial solution with respect to
these parameters, costs of the final solutions are nearly equal
to each other. Similar trends were observed for other test cases,
but they are not reported here due to limited space.

TABLE I
SA T0 VALUES FOR R100N503A

SumD FortzCF T0 NewCF T0

8383 0.4 1
16766 5.4 4.2
25149 21.6 11.2
33531 29.2 18.6
41914 35 24
50297 37 34.2
58680 58.2 35.8
67063 59.2 35.8
75446 64 40
83829 65.2 56.6
92211 69.8 57.4
100594 70.4 57.8

"#$

%

%"&

%"'

%"(

%"$

%"%

%"%&

%"%'

%"%(

 % &) ' * (

+,-./,0123

4
5.
.-
2,
64
13
,

+47%"8&96:47"###
+47%"8%96:47"###
+47%"$$'96:47%"%

Fig. 5. Current cost curve for SA w.r.t Fortz cost function, test case
h100N280a.

V. RESULTS AND DISCUSSION

A. Test cases
All the test cases are taken from [7]. Table II shows

the characteristics of the test cases. For each test case, the
table lists its network type, number of nodes (N), number
of arcs or edges (A). The 2-level hierarchical networks are
generated using the GT-ITM generator [20], based on a model
of Calvert [21] and Zegura [22]. In hierarchical networks, local
access arcs have capacities equal to 200, while long distance
arcs have capacities equal to 1000. In random networks and
waxman networks capacities are set to 1000 for all arcs. Fortz
and Thorup generated the demands to force some nodes to be
more active senders or receivers than others, thus modeling hot
spots on the network. Their generation assigns higher demands
to closely located nodes pairs. Further details can be found
in [18].

B. Results
In this section we present the computational results. From

hereafter Fortz cost function is referred as FortzCF and our
proposed function is referred as NewCF. Results are compared
with those produced by TS [7] and GA [12]. These existing
results are compared to our simulated annealing implemen-
tation with existing and newly proposed cost function. We
observe that with FortzCF, simulated annealing generally finds

!

Fig. 6. Current cost curve for SA w.r.t New cost function test case
h100N280a.

TABLE II
TEST CASES

Test Code Network type N A
h100N280a 2-level hierarchical graph 100 280
h100N360a 2-level hierarchical graph 100 360
h50N148a 2-level hierarchical graph 50 148
h50N212a 2-level hierarchical graph 50 212
r100N403a Random graph 100 403
r100N503a Random graph 100 503
r50N228a Random graph 50 228
r50N245a Random graph 50 245
w100N391a Waxman graph 100 391
w100N476a Waxman graph 100 476
w50N169a Waxman graph 50 169
w50N230a Waxman graph 50 230

comparable results to existing ones in all the test cases. We
plotted four statistics namely current cost, maximum utiliza-
tion, percentage of extra load and number of congested links.
By maximum utilization, we mean the link utilization (total
traffic i.e., load on the link divided by the link capacity) of the
maximum utilized link in the network. The percentage of extra
load is the sum of the extra load present in the network divided
by the sum of capacities of congested links. Congested links
are the links of utilization greater than 1. We are unaware of
results for the extra load and the number of congested links
for tabu search (TS) and genetic algorithm (GA), so we only
plotted these statistics with respect to the two cost functions:
FortzCF and NewCF.

In our work, C programming language is used for simula-
tion. Simulations are ran for 5000 iterations for each test case
using Pentium-4 machine. Now, we will first discuss the results
obtained for the test case r100N403a. Figure 7 shows the cost
curve for this test case using FortzCF for 3 algorithms: TS,
GA and SA. This figure shows that SA is performing better
than GA and worse than TS. Figure 8 shows the maximum
utilization curve for the same test case. TS is performing better
than others, but when there is no congestion on the network
(i.e, MU < 1) the results of all algorithms are comparable. In
a congested state, SA with FortzCF is doing better than GA
and than SA with NewCF. Figure 9 shows the percentage of

!

"!

#!

$!

%!

&!!

&"!

&#!

! &!!!! "!!!! '!!!! #!!!! (!!!! $!!!!)!!!! %!!!!

*+,-./01.2,3/

4
56
7

8*9:5;7<4:
=>9:5;7<4:
*>9:5;7<4:

!

Fig. 7. Cost versus scaled Internet traffic on r100N403a network using
FortzCF.

!

!"#

!"$

!"%

!"&

'

'"#

'"$

'"%

'"&

#

! '!!!! #!!!! (!!!! $!!!!)!!!! %!!!! *!!!! &!!!!

+,-./012/3-40

5
-6

73
83

19
:7.

7;
-:

7<
4

=+>?< :;A?
BC>?< :;A?
+C>?< :;A?
+C>D/EA?

!

Fig. 8. Maximum utilization versus scaled Internet traffic on r100N403a
network.

extra load of the network for the same test case. It is clear
from this figure that SA with FortzCF is performing better
than SA with NewCF when the demand is high. Figure 10
shows the number of congested links in the network for the
same test case. SA with NewCF is performing better than SA
with FortzCF for high demand values. Figure 11 shows the
progression of congested links with both cost functions. It is
clear that NewCF is doing better than FortzCF. In the following
paragraphs, we will discuss results obtained for the other test
cases.

In terms of cost, for test cases r50N228a and r50N245a
performance of SA is in between that of GA and TS. For test
case h50N212a, we found SA performance to be worse than
that of GA and TS. For other test cases, we found comparable
results.

In terms of maximum utilization, for test cases h50N148a
and h100N360a, the maximum utilization using NewCF is
initially better than other algorithms and becomes comparable
after MU crosses 1. For test cases r50N245a and r100N503a,

!

"

#

$

%

&!

&"

&#

&$

! &!!!! "!!!! '!!!! #!!!! (!!!! $!!!!)!!!! %!!!!

!"#$%&'(%)#*&

+%
,"
%*
-#
.%
'/
0'1
2-
,#
'$/
#&

*+,-./012-
*+,3452-

!

Fig. 9. Percentage of extra load versus scaled Internet traffic on r100N403a
network.

!

"!

#!

$!

%!

&!

'!

�!

	!

!

"!!

! "!!!! #!!!! $!!!! %!!!! &!!!! '!!!! �!!!! 	!!!!

+,./012/340

5
63

7/
819

:1;
94

</
�>

/0
1?

 4
!�

+B#D98>%;D
+B#5/&;D

!

Fig. 10. Number of congested links versus scaled Internet traffic on
r100N403a network.

"

#

$

%

&

&"

 & " ' # ($

)*+,-*./01

2
34
5+
,6/
768
/0
9+
1*
+:
6;
.0
<1

=>?@/,*A8@
=>?2+B8@

Fig. 11. Progression of number of congested links w.r.t to both cost functions.

TABLE III
COST FUNCTION VALUES CORRESPONDING TO THE HIGHEST DEMAND VALUES FOR ALL TEST CASES

Test case Demand value FortzCF NewCF
Best Avg SD Best Avg SD

h100N280a 4605 20.438 20.777 0.309 2.023 2.076 0.046
h100N360a 12407 20.157 20.206 0.049 2.80 2.804 0.0047
h50N148a 4928 22.908 23.01 0.102 2.702 2.743 0.042
h50N212a 3363 13.449 13.498 0.0455 1.819 1.852 0.0282
r100N403a 70000 68.669 69.65 0.104 21.569 21.756 0.178
r100N503a 100594 83.982 84.23 0.321 22.022 22.196 0.052
r50N228a 42281 32.355 32.34 0.015 11.701 11.716 0.0201
r50N245a 53562 151.033 151.2 0.199 32.239 32.963 0.7606

w100N391a 48474 12.065 12.067 0.0072 2.51 2.541 0.0307
w100N476a 63493 24.296 24.3509 0.0863 4.416 4.452 0.0507
w50N169a 25411 14.552 14.567 0.01274 3.011 3.107 0.148
w100N230a 39447 11.828 11.917 0.059 3.112 3.1189 0.0056

TS is performing better than other algorithms. For the test case
r50N228a, SA and TS are equally doing better than GA. For
other test cases, we find comparable results.

In terms of percentage of extra load, NewCF is providing
better results than FortzCF in h100N280a and h50N148a. We
found comparable results in test cases r100N503a, w50N230a,
w100N476a, w50N169a and w100N391a. We found that
FortzCF is doing better than NewCF in test cases r50N228a,
h50N212a, h100N360a, r50N245a and r100N403a.

In terms of number of congested links, we find equal
number of congested links for both cost functions in test
cases w50N230a and w100N391a. In all other test cases,
we found that NewCF is performing better than FortzCF.
The motivation behind our new cost function is that in case
of a network congestion, it is preferred to have a solution
which provides less number of congested links. For instance,
a network engineer may prefer to increase the capacity of
10 congested links rather than increasing the capacity of 40
congested links. Our cost function optimizes the maximum
utilization when there is no congestion in the network; and in
the case of congestion it first tries to optimize the number of
congested links and then the maximum utilization. Table III
shows the best, the average, and the standard deviation cost
values for all test cases with the highest demand values.

VI. CONCLUSION

A new cost function for finding good solutions with respect
to congested links and extra load is proposed in this paper.
Simulated annealing iterative heuristic is used and tested on
several networks using the new and an existing cost function.
We found that the new cost function includes intelligence to
optimize the number of congested links. The results obtained
are compared with existing results of tabu search and genetic
algorithm for the same problem. Comparable results were
found with some exceptions. The new cost function, however,
provided better results with respect to the number of congested
links in most cases. This provides more flexibility to the net-
work designer to choose between the different cost functions
depending on the target to be achieved; e.g., lower maximum

utilization, less number of congested links, etc.

VII. ACKNOWLEDGEMENT

Acknowledgement goes to King Fahd University of
Petroleum & Minerals (KFUPM), Dhahran, Saudi Arabia,
for supporting this research work. The authors would like to
thank Bernard Fortz and Mikkel Thorup for sharing the test
problems.

VIII. APPENDIX

This appendix provides the notation used in the OSPFWS
problem formulation.

A. Notations
G Graph.
N Set of nodes.
n A single element in set N .
A Set of arcs.
At Set of arcs representing shortest paths from all

sources to destination node t.
a A single element in set A. It can also be

represented as (i, j).
s Source node.
v Intermediate node.
t Destination node.
D Demand matrix.
D[s, t] An element in the demand matrix that specifies the

amount of demand from source node s to
destination node t. It can also be specified as dst.

wij Weight on arc (i, j). If a = (i, j), then it can
also be represented as wa.

cij Capacity on arc (i, j). If a = (i, j), then it can
also be represented as ca.

Φ Cost function.
Φi,j Cost associated with arc (i, j). If a = (i, j), then

it can also be represented as Φa.
δt
u Outdegree of node u when destination node is t.

δ+(u) Outdegree of node u.
δ−(u) Indegree of node u.
lta Load on arc a when destination node is t.

la Total load on arc a.
f (s,t)

a Traffic flow from node s to t over arc a.
MU It is the maximum utilization of the network. It is

defined as the utilization of the link whose
value is more than that of other links.

MC It is the maximum cost of link present in the
network.

| A | Number of arcs.
SumD It is the sum of all the demand values in demand

matrix.
SetCA It is the set of congested arcs.

B. Assumptions

1) A single element in the set N is called a “Node”.
2) A single element in the set A is called a “Arc”.
3) A set G = (N,A) is a graph defined as a finite nonempty

set N of nodes and a collection A of pairs of distinct
nodes from N .

4) A “directed graph” or “digraph” G = (N,A) is a finite
nonempty set N of nodes and a collection A of ordered
pairs of distinct nodes from N ; each ordered pair of
nodes in A is called a “directed arc”.

5) A digraph is “strongly connected” if for each pair
of nodes i and j there is a directed path (i =
n1, n2, ..., nl = j) from i to j. A given graph G must
be strongly connected for this problem.

6) A “demand matrix” is a matrix that specifies the traffic
flow between s and t, for each pair (s, t) ∈ NXN .

7) (n1, n2, ..., nl) is a “directed walk” in a digraph G if
(ni, ni+1) is a directed arc in G for 1 ≤ i ≤ l − 1.

8) A “directed path” is a directed walk with no repeated
nodes.

9) Given any directed path p = (i, j, k, ..., l,m), the
“length” of p is defined as wij + wjk + ... + wlm.

10) The “outdegree” of a node u is a set of arcs leaving
node u i.e., {(u, v) : (u, v) ∈ A}.

11) The “indegree” of a node u is a set of arcs entering node
u i.e.,{(v, u) : (v, u) ∈ A}.

12) The input to the problem will be a graph G, a demand
matrix D, and capacities of each arc.

REFERENCES

[1] J. T Moy. OSPF: Anatomy of an Internet Routing Protocol. Addison-
Wesley., 1999.

[2] Routing information protocol at http://www.faqs.org/rfcs/rfc1058.html.
[3] Dimitri Bertsekas and Robert Gallager. Data Networks. Prentice Hall

Series, 1992.
[4] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,

Algorithms and Applications. Prentice Hall.
[5] Cisco Systems. Configuring OSPF. http://www.cisco.com/univercd/,

2004.
[6] Shekhar Srivastava, Gaurav Agrawal, Micha Pioro, and Deep Medhi.

Determining link weight system under various objectives for OSPF
networks using a lagrangian relaxation-based approach. IEEE ETrans-
actions on Network and Service Management, 2(1):9–18, Third quarter
2005.

[7] Bernard Fortz and Mikkel Thorup. Internet traffic engineering by opti-
mizing OSPF weights. IEEE Conference on Computer Communications
(INFOCOM), pages 519–528, 2000.

[8] Sadiq M. Sait and Habib Youssef. Iterative Computer Algorithms
and their Application to Engineering. IEEE Computer Society Press,
December 1999.

[9] Daniele Frigioni, Mario loffreda, Umberto Nanni, and Giulio
Pasqualone. Experimental analysis of dynamic algorithms for the
single source shortest paths problem. ACM Journal of Experimental
Algorithms, 1998.

[10] G. Ramalingam and Thomas Reps. An incremental algorithm for a
generalization of the shortest-path problem. Journal of Algorithms, pages
267–305, 1996.

[11] Bernard Fortz. Combinatorial optimization and telecommunications.
http://www.poms.ucl.ac.be/staff/bf/en/COCom-5.pdf.

[12] Ericsson, M. Resende, and P. Pardalos. A genetic algorithm for the
weight setting problem in OSPF routing. J.Combinatorial Optimisation
conference, 2002.

[13] F. Lin and J. Wang. Minimax open shortest path first routing algorithms
in networks supporting the smds services. IEEE Internation Conference
on Communications (ICC), 2:666–670, 1993.

[14] A. Bley, M. Grotchel, and R. Wesslay. Desing of broadband virtual
private netwokrs: Model oand heuristics for the B-WiN. Technical
Report SC 98-13 DIMACS Workshop on Robust Communication Network
and Survivability, 1998.

[15] M. Rodrigues and K. G. Ramakrishnan. Optimal routing in data
networks. Presentation at International Telecommunication Symposium
(ITS), 1994.

[16] Anja Feldmann, Albert Greenberg, Carsten Lund, Nick Reigold, Jennifer
Rexford, and Fred True. Deriving traffic demands for operational IP
networks: Methodology and experience. IEEE/ACM Transactions on
Networking,, 9(3), 2001.

[17] Ashwin Sridharan, Roch Guerin, and Christophe Diot. Achieving near-
optimal traffic engineering solutions for current OSPF/IS-IS networks.
IEEE INFOCOM, 2003.

[18] Bernard Fortz and Mikkel Thorup. Increasing internet capacity using
local search. Technical Report IS-MG, 2000.

[19] E. Dijkstra. A node on two problems in connection of graphs. Numerical
Mathematics, 1959.

[20] E. W. Zegura. GT-ITM: Georgia Tech internetwork topology mod-
els (software),. http://www.cc.gatech.edu/faq/Ellen.Zegura/gt-itm/gt-
itm.tar.gz, 1996.

[21] K. Calvert, M. Doar, and E. W. Zegura. Modeling internet toplogy.
IEEE Communications Magazine, (35):160–163, 1997.

[22] K. L Calvert E. W. Zegura and S. Bhattacharjee. How to model
an internetwork. 15th IEE Conference on Computer Communications
(INFOCOM), pages 594–602, 1996.

