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Abstract— In this paper, we address the problem of FSM
state assignment to minimize area and power. The objectives
are targeted as single/independent as well as multi-objective
optimization (MOP) problems. Novel methods for estimating area
and power of an FSM are presented. A fuzzy-based aggregation
function is employed to combine the two objectives. The work
employs genetic algorithm for search space exploration. Exper-
imental results demonstrate the effectiveness of the proposed
measures.

I. INTRODUCTION

State assignment (SA) for Finite State Machine (FSM)
is one of the main optimization problems in the synthesis
of sequential circuits. The SA of an FSM determines the
complexity of its combinational circuit and thus area and
power dissipation of the implementation. State assignment
involves an injective mapping f: S → Bn where n is the code
length (n ≥ �log2 |S|�) and Bn is an n-dimensional Boolean
space, a Boolean hypercube.

The objective of state assignment varies depending on
whether the targeted implementation is two-level or multilevel.
The focus of this work is towards minimizing multilevel FSM
implementation.

The complexity measure for multilevel circuits is the num-
ber of literals in the optimized logic network assuming mini-
mum encoding length. Literal savings by extracting common
subexpressions has been the focus of most of the work done
for multilevel FSM optimization. This involves finding pairs of
states that when encoded can result in extraction of common
subexpressions. In contrast to two-level circuits, state pairs in
multilevel implementations do not necessarily have to be given
adjacent codes for literal savings [1]–[3].

The problem of multilevel area minimization of an FSM
has been modeled as weighted [1]–[3] or constrained [4]–[6]
graph-embedding problem on Boolean hypercubes.

Portable electronics applications have given power-aware
computing a whole new importance. This is due to limitations
in battery capacities and to the fact that progress in their
technologies trail far behind the ever increasing computing
requirements. Power consumption is thus constrained and op-
timized at all levels of design hierarchy [7]. The major source
of power consumption in CMOS circuits is due to charging
and discharging of circuit capacitances. Power consumption in
a circuit can be reduced by either reducing the total switching

in the logic or by reducing the switching capacitance or both
of them.

There has been much interest in power reduction strategies
for FSM. Most of the work reported in literature [8]–[13] tries
to minimize total switching on the flip-flops. This is done by
formulating the problem as a graph embedding problem where
edges between a state pair indicate the steady state transition
probability between them. The problem is thus reduced to
minimizing the total transitions between the states. Such a
formulation is referred to as Minimum Weighted Hamming
Distance (MWHD).

The hard nature of SA problem has generated considerable
interest in the use of non-deterministic heuristics such as
genetic algorithm [3], [11] and simulated annealing [1], for its
design automation. These algorithms are capable of efficiently
searching for a near optimal solution in a large solution
space and have been very successful in solving a number of
combinatorial optimization problems in various disciplines of
science and engineering.

In this paper, we explore the use of genetic algorithm for
SA problem where the logic synthesized is implemented as
multilevel circuit. We present novel and efficient strategies
for estimating multilevel area and power dissipation in an
FSM. We also evaluate several integration mechanisms for
combining area and power measures.

II. PROPOSED METHODOLOGY

A. State Assignment for Area

The contemporary approach employed towards multilevel
FSM area minimization is by using weighted-graph approach
where weights between edges of states define the relative
proximity in assignment (affinity).

Affinity cost as modeled in adjacency graphs is then used
to minimize Equation 1:

ns∑

i=1

ns∑

j=1

AP
Si,Sj

.∆(Si, Sj) (1)

where ∆(Si, Sj) is the Hamming distance between codes of
states Si and Sj , ns being number of states, and AP

Si,Sj
being

the affinity between two states as given by the used cost
measure.

In [14], several literal saving measures based on weighted-
graph embedding problem including those based on Jedi
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[1], Mustang [2] and Armstrong [15] cost measures were
investigated. It was found that all these measures weakly
correlate with the actual literal savings measure.

There are several complications in using weighted graph
approach for literal savings measure estimation based on com-
mon cube extraction. First, the common cubes interact with
each other, annulling certain predicted savings. Second, such
measures optimize relative literal savings rather than absolute
number of literals in an implementation. Consequently, they
may lead the search to solutions having higher relative savings
with higher implementation costs. Such an interaction is very
difficult to predict at higher level of abstractions.

In order to use an efficient but accurate estimate of actual
literal savings, we propose the use of EXPAND function,
employed in ESPRESSO [16], as a measure for estimating area
of an FSM. EXPAND is the first step employed in two-level
logic minimization and provides a cover for the function that
is minimal with respect to single-cube containment. However,
the cover might contain some redundant terms. It should be
observed that ESPRESSO [16] is based on iterative application
of several functions including EXPAND, IRREDUNDANT
and REDUCE. Hence, using EXPAND as a cost measure is
more efficient than using ESPRESSO. As will be illustrated
by experimental results in Section III, it is found that using
EXPAND with single output optimization strongly correlates
with actual multilevel literal savings measure.

B. State Assignment for Low Power

Switching activity in combinational logic of the controllers
is due to logic transitions on the flip-flops as well as on
primary inputs. Thus, to reduce power dissipation in an FSM,
one can:

1) Minimize switching activity at the flip-flops.
2) Minimize the capacitance on flip-flops being switched,

i.e., fanout branches (fanout) from flip-flops.
3) Minimize the combinational logic being switched.

State assignment for power minimization can also be mod-
eled by a weighted graph where weights between edges of
states represent the total switching probability between the two
states. By assigning shorter distance codes to states connected
with higher weights, i.e., higher transition probability, the over-
all switching on the state lines of the FSM can be minimized.
Thus, a cost model for minimizing power consumption can
be to have Minimum Weighted Hamming Distance (MWHD).
Mathematically, this can be achieved by minimizing Equation
1 with the affinity being modeled as:

AP
Si,Sj

= Pij + Pji (2)

where Pij is the state transition probability from state Si to
state Sj .

The first formulation for power minimization used in this
work tries to optimize the above MWHD cost. MWHD ap-
proach tries to minimize the total transition probability of
the state machine in the hope that the total number of logic
transitions in the synthesized circuit will also get reduced, i.e.,

it tries to maximize power reductions mainly due to point 1
discussed above.

In this work, we propose a new cost function for minimizing
power dissipation in an FSM. The idea is based on mini-
mizing fanout branches out of frequently switched sequential
elements. Reducing fanout branches on highly switching flip-
flops reduces the switching capacitance and hence reduces
power dissipation. The transition probabilities of sequential
elements are computed based on steady state transition proba-
bilities computed from the state table. The flip-flops’ transition
frequencies are weighted with their respective fanout counts
for determining minimum weighted fanout (MWF) solution by
minimizing Equation 3:

MWF =
n∑

i=1

TiBi (3)

where Bi and Ti are the number of fanout branches and the
transition frequency of flip-flop i, respectively. Expand cover
is used in estimating flip-flop fanout branches.

C. Genetic Algorithm

Genetic algorithms have been adopted to explore the so-
lution space in search of good state assignments. The chro-
mosomal representations employed and the crossover operator
used is similar to the one suggested by Amaral et al. [3]. In
this representation, each state code is described as an array of
bits equal to the number of storage elements required. Parent
selection for crossover is based on the roulette wheel method.
Crossover is performed by randomly selecting a subset of
state encoding columns from the first parent and the rest from
the second parent. The mutation operator used swaps two
randomly selected states in a randomly selected parent. The
number of mutations occurring in a generation is controlled
by the mutation rate. A value of 20% is selected and mutation
is applied to all but the best solution.

After every generation, members for the next generation are
selected from both parents and newly generated offsprings.
A combination of greedy (for the best half of parents and
new offsprings) and random from the second half is used.
Diversity in population is maintained by discarding duplicate
offsprings. In this work, a population size of 64 and a
maximum generation size of 350 are used.

The area and power objectives are aggregated using product
based and Ordered Weighted Averaging (OWA) operator [17].
In OWA, we employ both “orlike” (Max) and “andlike” (Min)
fuzzy operators as given in Equation 4:

µ = β × O(µa, µp) + (1 − β) × 1
2
(µa + µp) (4)

where O is max/min type fuzzy operator, µi represents cost
for area or power objective and β is a constant parameter
that represents the degree to which OWA operator resembles
a pure “or” or pure “and”, respectively. In this work we employ
β = 0.5



TABLE I

COMPARISON OF EXPAND-SO MEASURE WITH OTHER AREA MINIMIZATION HEURISTICS.
Benchmark EXPAND-SO ESPRESSO-SO+FX EXPAND-MO Jedi ( [1] ) Nova Mustang [2] Armstrong( [3] )

bbara 56(52) 51 57 73(57) 57 64 59(86)
bbsse 110(105) 100 120 134(111) 140 106 127(180)
cse 198(228) 183 239 240(200) 214 206 220(NA)

dk14 104(86) 101 115 108(76) 111 117 124(NA)
donfile 87(72) 68 106 82(76) 154 160 171(NA)

ex2 78(68) 66 130 123(122) 127 119 131(NA)
ex3 56(48) 53 67 65(66) 71 71 68(NA)
keyb 199(205) 161 161 260(140) 201 167 334(NA)
lion9 11(11) 10 25 19(13) 27 17 27(21)
planet 486(436) 469 557 603(547) 591 544 607(NA)
pma 165(152) 153 189 263(NA) 241 NA 218(NA)
s1 227(105) 155 285 282(152) 340 183 291(NA)

s1494 570(624) 543 717 679(NA) 715 NA 696(NA)
s832 231(218) 215 307 357(NA) 274 NA 301(NA)
sand 498(494) 473 514 554(437) 558 462 619(NA)

shiftreg 2(2) 2 4 2(2) 2 2 2(10)
styr 419(429) 423 466 518(508) 502 546 546(NA)
tbk 353(268) 312 493 305(278) 365 547 711(NA)

traian11 22(20) 18 29 34(27) 32 37 32(47)
%Improvement -8.89 15.48 17.63(6.51) 18 22.56 26.72(41.57)

III. EXPERIMENTAL RESULTS

In this section, experimental results of the proposed state
assignment measures for area and power minimization are
presented. Experiments are performed on a subset of MCNC-
93 FSM benchmark circuits with different complexities.

A. Area

In Table I, we compare the performance of several cost
functions targeting area minimization including Espresso with
single-output minimization followed by FX (ESPRESSO-
SO+FX), Expand with single-output minimization (EXPAND-
SO), Expand with multiple-output minimization (EXPAND-
MO), Jedi [1], Nova [6], Mustang [2], and Armstrong [3].

The values in the table represent the literal count obtained
after synthesizing the obtained solutions using ESPRESSO-
SO+FX. Results shown in brackets are those reported in
literature based on synthesis using script.rugged except for
Amaral et al. [3] where results are reported in factored form.

The last row in the table shows the percentage improvement
of EXPAND-SO over all other cost measures. It is observed
that EXPAND-SO achieves significant improvements over
all other techniques and only lags behind the accurate cost
measure using ESPRESSO-SO+FX by nearly 9%.

B. Power

The performance of the proposed MWF measure is next
compared with MWHD and default Jedi state assignment
algorithm in Table II. Power consumptions are measured in
microwatts using power estimate -t SEQUENTIAL option of
SIS and assuming default conditions. It can be seen that the
MWF measure achieves better results than MWHD and Jedi
on both area and power, and on average it achieves 6.47% less
power and 14.53% less area, per circuit, than Jedi algorithm.

The multiobjective optimization of both area and power
is shown by integrating the Expand-SO area estimate with
MWF measure. We employ both the product of area and
power estimates (MWFA) as well as fuzzy-based aggregations,
employing Max and Min type fuzzy operators using equal

weighted OWA aggregation. As can be seen from the re-
sults, the multiobjective optimization of both area and power
achieves overall higher reduction in both area and power with
MWF(Fuzzy-Max) resulting in the least power dissipation.

C. Literature Comparison

In Table III, we compare the performance of the
MWF(Fuzzy-Max) measure to other techniques reported in
literature [10]–[13]. Comparison is made relative to the output-
oriented (default) Jedi state assignment algorithm, with results
reported as %reduction relative to Jedi. The last row in the
table shows the percentage improvement achieved by our
technique over other techniques.

It can be seen that our approach achieves higher overall sav-
ings over all the approaches. The MWF(Fuzzy-Max), though
being slightly better in power dissipation, significantly out-
performs Pedram’s approach [10] in area savings. Significant
power savings are also observed between our approach and
Ciesielski et al. [12] and IITG8 [13] measures. The ingenuity
of our measure can also be seen from its complete dominance
over Almiani et al.’s approach [11] in both area and power
optimizations, although the latter employs a more expensive
Espresso iteration in their cost calculation.

IV. CONCLUSION

In this work, we have presented a genetically engineered
state assignment solution for area and power minimization.
We have proposed efficient cost functions that highly correlate
with the actual literal count and power dissipation of a multi-
level circuit implementation. Experimental results demonstrate
the effectiveness of the proposed measures in achieving lower
area and power dissipation solutions in comparison to tech-
niques reported in the literature.
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TABLE II

AREA AND POWER DISSIPATION FOR VARIOUS HEURISTICS.

MWHD MWF Jedi MWFA MWF(Fuzzy-Max) MWF(Fuzzy-Min)
Benchmark Power Area Power Area Power Area Power Area Power Area Power Area

bbara 214.7 82 150.5 55 187.7 74 181.2 65 181.2 58 181.2 58
bbsse 446.1 140 412.2 122 538.8 149 394.5 118 437.1 123 448.2 128
cse 528.9 217 424.8 211 495.8 251 391.3 209 455.2 205 459.9 210

dk14 661.2 140 561.4 103 714.4 157 561.4 103 551.3 101 579.2 115
donfile 895.9 206 513.7 109 380.8 89 474.1 100 355.2 82 295.8 75
keyb 655.3 263 645 237 767.6 260 517.3 215 535.6 210 511.7 192
lion9 142 20 116.7 19 145.6 19 100.8 15 105.3 16 129.9 11
planet 1788.6 656 1795.1 553 2001.5 675 1889.7 510 1702.5 470 1843.2 465
pma 653.4 198 778 180 883.7 236 693.1 165 651.2 155 675.2 145
s1 1165.1 406 766.5 187 1205.3 353 771.4 197 751.2 191 625.8 161

s1494 1376.3 734 1553.1 625 1668.9 679 852.4 569 838.2 530 1025.5 505
s832 922.1 368 677.5 271 1068.4 376 665.2 260 650.2 242 621.5 249
sand 1645.5 599 1541.4 559 1458.9 651 1617.2 585 1289.9 490 1352.2 498

shiftreg 163.3 27 96.3 2 132.5 9 98.8 4 96.3 2 96.3 2
styr 1277.5 540 1062.9 431 1118.6 567 1086.8 453 1022.3 432 1100 376
tbk 1682 630 1589.3 488 721.2 305 1766.6 556 1095.2 422 1350 398

train11 180.4 38 136.3 23 218.2 35 142.4 22 122.2 23 150.1 21
Average 846.96 309.65 754.16 245.59 806.35 287.35 717.89 243.88 637.65 220.71 673.28 212.29

TABLE III

POWER AND AREA %-REDUCTION COMPARISON WITH JEDI.

MWF(Fuzzy-Max) Pedram [10] Ciesielski [12] IITG8 [13] Almaini [11]
Power Area Power Area Power Power Power Area

bbara 3.46 21.62 17.97 -10.14 16.07 -25.68 21.62
bbsse 18.88 17.45 18.37 6.56 5.66
cse 8.19 18.33 12.15 -1.41 18.48 2.58 18.33

dk14 22.83 35.67 4.92 -0.98 16.19
donfile 6.72 7.86 6.22 22.64 -5.57 7.86
keyb 30.22 19.23 35.56 20.87 2.53 19.23
lion9 27.68 15.79
planet 14.93 30.37 -19.22 30.37
pma 26.3 34.32
s1 37.68 45.89 -22.46 -7.32 45.89

s1494 49.78 21.94 6.89
s832 39.14 35.64 7.75 26.68
sand 11.58 24.73 10.52 16.12 -19.29 -30.32

shiftreg 27.32 77.78 -29.08
styr 8.61 23.81 -9 9.16 23.81
tbk -51.86 -38.36 5.03

train11 44 34.28 11.61 13.2 34.29
%Improvement 2.09 73.9 29.31 74.74 130 24.36

REFERENCES

[1] B. Lin and A. R. Newton. Synthesis of multiple-level logic from sym-
bolic high-level description languages. IFIP International Conference
on Very Large Scale Integration, pages 187–196, August 1989.

[2] S. Devadas, H.T. Ma, A.R. Newton, and Sangiovanni-Vincentelli. MUS-
TANG: State Assignment of Finite State Machines for Optimal Multi-
Level Logic Implememations. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 7:1290–1300, Dec. 1988.

[3] J. Amaral, K. Turner, and J. Ghosh. Designing Genetic Algorithm for
State Assignment Problem. IEEE Trans on SMC, 25:659–694, 1995.

[4] G. DeMicheli, R. K. Brayton, and A. Sangiovanni Vincenteli. Optimal
state assignment for Finite State Machines. IEEE Transaction on
Computer Aided Design, CAD-4:3, 269–285, 1985.

[5] X. Du, G. Hachtel, B. Lin, and A. R. Newton. MUSE: A Multilevel
symbolic encoding algorithm for state assignment. IEEE Trans. Com-
puter Aided Design, CAD-10:28–38, 1991.

[6] T. Villa and A. Sangiovanni-Vincentelli. Nova: state assignment of finite
state machines for optimal two-level logic implementations. Proceedings
of the 1989 26th ACM/IEEE conference on Design automation confer-
ence, pages 327–332, 1989.

[7] M. Pedram. Design technologies for low power VLSI. In Encyclopedia
of Computer Science and Technology, Marcel Dekker, Inc., pages 73–96,
1997.

[8] L. Benini and G. DeMicheli. State encoding for low power embedded
controllers. IEEE Journal of Solid-State Circuits, 30:258–268, 1995.

[9] E. Olson and S. M. Kang. State assignment for low-power FSM

synthesis using genetic local search. IEEE Custom Integrated Circuits
Conference, pages 140–143, 1994.

[10] Chi-Ymg Tsui, M. Pedram, Chih-Ang Chen, and A. M. Despain.
Low-Power State Assignment Targeting Two And Multi-level Logic
Implementations. IEEE/ACM International Conference on Computer-
Aided Design, pages 82–87, 1994.

[11] Y. Xia and A. E. A. Almaini. Genetic algorithm based state assignment
for power and area optimisation. IEEE Proceedings Computers and
Digital Techniques, 149:128–133, 2002.

[12] Sangju. Park, Sangwook Cho, Seiyang Yang, and Maciej Ciesielski. A
New State Assignment Technique for Testing and Low Power. Annual
ACM IEEE Design Automation Conference, pages 510–513, 2004.

[13] S. Chattopadhyay and P. N. Reddy. Finite state machine state assignment
targeting low power consumption. IEEE Proceedings Computers and
Digital Techniques, 151:61–70, 2004.

[14] Faisal N. Khan. FSM State Assignmnet for Area, Power and Testabil-
ity using Non-Deterministic Evolutionary Heuristics. Master’s thesis,
KFUPM, Saudi Arabia, 2005.

[15] D. B Armstrong. A programmed algorithm for assigning internal codes
to sequential machines. IRE Transactions on Electronic Computers,
pages 466–472, 1962.

[16] Robert K. Brayton, Gary D. Hachtel, Curtis T. McMullen, and Alberto L.
Sangiovanni-Vincentelli. Logic Minimization Algorithms for VLSI Syn-
thesis. Kluwer Academic Publishers, 1984.

[17] R. Yager. Multiple Objective Decision-making Using Fuzzy Sets.
International Journal of Man-Machine Studies, pages 9:375–382, 1977.


