Dalibor Fronček

α_{2}-LABELING OF GRAPHS

Abstract

We show that if a graph G on n edges allows certain special type of rosy labeling (a.k.a. ρ-labeling), called α_{2}-labeling, then for any positive integer k the complete graph $K_{2 n k+1}$ can be decomposed into copies of G. This notion generalizes the α-labeling introduced in 1967 by A. Rosa.

Keywords: graph decomposition, graph labeling.

Mathematics Subject Classification: 05C78.

Let G be a graph with at most n vertices. We say that the complete graph K_{n} has a G-decomposition if there are subgraphs $G_{0}, G_{1}, G_{2}, \ldots, G_{s}$ of K_{n}, all isomorphic to G, such that each edge of K_{n} belongs to exactly one G_{i}. Such a decomposition is called cyclic if there exists a graph isomorphism φ such that $\varphi\left(G_{i}\right)=G_{i+1}$ for $i=0,1, \ldots, s-1$ and $\varphi\left(G_{s}\right)=G_{0}$.
A. Rosa [5] introduced in 1967 certain types of vertex labelings as important tools for decompositions of complete graphs $K_{2 n+1}$ into graphs with n edges.

A labeling of a graph G with n edges is an injection from $V(G)$, the vertex set of G, into a subset S of the set $\{0,1,2, \ldots, 2 n\}$ of elements of the additive group $Z_{2 n+1}$. Let ρ be the injection. The length of an edge $x y$ is defined as $\ell(x, y)=$ $\min \{\rho(x)-\rho(y), \rho(y)-\rho(x))\}$. The subtraction is performed in $Z_{2 n+1}$ and hence $0<\ell(x, y) \leq n$. If the set of all lengths of the n edges is equal to $\{1,2, \ldots, n\}$ and $S \subseteq\{0,1, \ldots, 2 n\}$, then ρ is a rosy labeling (called originally ρ-valuation by A. Rosa); if $S \subseteq\{0,1, \ldots, n\}$ instead, then ρ is a graceful labeling (called β-valuation by A. Rosa). A graceful labeling ρ is said to be an α-labeling if there exists a number ρ_{0} with the property that for every edge $x y \in G$ with $\rho(x)<\rho(y)$ it holds that $\rho(x) \leq \rho_{0}<\rho(y)$. Obviously, G must be bipartite to allow an α-labeling. For an exhaustive survey of graph labelings, see [2] by J. Gallian.

Each graceful labeling is of course also a rosy labeling. The following theorem was proved by A. Rosa in [5].

Theorem 1. A cyclic G-decomposition of $K_{2 n+1}$ for a graph G with n edges exists if and only if G has a rosy labeling.

The main idea of the proof is the following. $K_{2 n+1}$ has exactly $2 n+1$ edges of length i for every $i=1,2, \ldots, n$ and each copy of G contains exactly one edge of each length. The cyclic decomposition is constructed by taking a labeled copy of G, say G_{0}, and then adding an element $i \in Z_{2 n+1}$ to the label of each vertex of G_{0} to obtain a copy G_{i} for $i=1,2, \ldots, 2 n$.

For graphs with an α-labeling, even stronger result was proved by A. Rosa.
Theorem 2. If a graph G with n edges has an α-labeling, then there exists a G-decomposition of $K_{2 n k+1}$ for any positive integer k.

It is easy to observe that there are graphs that allow rosy or graceful labelings but not α-labelings. The smallest example is the 3 -comet consisting of three paths P_{3} with their endvertices glued together in one vertex of degree 3.

Nice generalization of Theorem B was proved by S. El-Zanati, C. Vanden Eynden, and N. Punnim [1]. They relaxed the properties of the α-labeling to obtain a ρ^{+}-labeling as follows. A labeling of a bipartite graph G with bipartition X, Y is called a ρ^{+}-labeling if it is a rosy labeling with the additional property that for every edge $x y \in E(G)$ with $x \in X, y \in Y$ it holds that $\rho^{+}(x)<\rho^{+}(y)$. The difference between these labelings is that while in an α-labeling we require all vertices in X to have the labels smaller than every vertex in Y, in a ρ^{+}-labeling we only require that all neighbors of each given vertex $y \in Y$ have their labels smaller than $\rho^{+}(y)$. Moreover, we can use labels from the set $\{0,1, \ldots, 2 n\}$ while in α-labeling only from the set $\{0,1, \ldots, n\}$.

Theorem 3. If a bipartite graph G with n edges has a ρ^{+}-labeling, then there exists a G-decomposition of $K_{2 n k+1}$ for any positive integer k.

We will generalize α-labeling in a different way by defining an α_{2}-labeling.
Definition 4. We say that a bipartite graph G with n edges has an α_{2}-labeling if
$-\alpha_{2}$ is a rosy labeling with the label set L;
$-L=L_{0} \cup L_{1} \cup L_{2}$ and $L_{i} \cap L_{j}=\emptyset$ for $i \neq j$;

- there exist integers λ_{1}, λ_{2} such that $0 \leq l_{0} \leq \lambda_{1}<l_{1} \leq \lambda_{2}<l_{2}$ for all labels $l_{i} \in L_{i}, i=0,1,2$;
- if $x y$ is an edge of G and $\alpha_{2}(x)<\alpha_{2}(y)$, then $\alpha_{2}(x) \in L_{i}$ and $\alpha_{2}(y) \in L_{i+1}$ for $i \in\{0,1\}$ and $\alpha_{2}(y)-\alpha_{2}(x) \leq n$.

Notice that when restricted to a pair of sets L_{i} and L_{i+1}, the labeling is "alpha-like" in the sense that the length of an edge is always equal to the difference between the higher and the lower label (in that order).

Now we show that the existence of an α_{2}-labeling of G guarantees a decomposition in the same way as an α-labeling.

Theorem 5. Let G be a graph on n edges that allows an α_{2}-labeling. Then for any positive integer k there exists a G-decomposition of the complete graph $K_{2 n k+1}$.

Proof. We want to show that for any k there is a graph G^{\prime} consisting of k edge-disjoint copies of G with a rosy labeling ρ. These copies may share vertices.

Denote the copies by $G_{0}, G_{1}, \ldots, G_{k-1}$. For a vertex z with $\alpha_{2}(z) \in L_{j}$, define the label of its copy z_{i} belonging to G_{i} as $\rho\left(z_{i}\right)=i j n+\alpha_{2}(z)$. Let $x_{i} y_{i}$ be the image of an edge $x y$ of G belonging to G_{i}. It follows from the definition of α_{2} that then $\alpha_{2}(x) \in$ $L_{j}, \alpha_{2}(y) \in L_{j+1}$ and therefore $\rho\left(x_{i}\right)=i j n+\alpha_{2}(x)$ and $\rho\left(y_{i}\right)=i(j+1) n+\alpha_{2}(y)$.

First we need to prove that ρ is injective. Because G^{\prime} consists of k edge disjoint copies of G, distinct copies G_{i}, G_{j} can share vertices. We then only need to show that if x_{i} and y_{i} are images of different vertices x and y of G, respectively, then $\rho\left(x_{i}\right) \neq \rho\left(y_{i}\right)$. For the sake of contradiction we suppose that $x_{i} \neq y_{i}$ and $\rho\left(x_{i}\right)=\rho\left(y_{i}\right)$. First suppose that both $\alpha_{2}(x), \alpha_{2}(y) \in L_{j}$ for some $j \in\{0,1,2\}$. Then $\rho\left(x_{i}\right)=i j n+\alpha_{2}(x)$ while $\rho\left(y_{i}\right)=i j n+\alpha_{2}(y)$. But because $\rho\left(x_{i}\right)=\rho\left(y_{i}\right)$, we get $\rho\left(x_{i}\right)=i j n+\alpha_{2}(x)=$ $\left.i j n+\alpha_{2}(y)=\rho\left(y_{i}\right)\right)$ which immediately yields $\alpha_{2}(x)=\alpha_{2}(y)$. But this contradicts our assumption that α_{2} is a rosy labeling since a rosy labeling must be injective.

Now let $\alpha_{2}(x) \in L_{j}$ and $\alpha_{2}(y) \in L_{j+1}$ for $j \in\{0,1\}$. Then $\rho\left(x_{i}\right)=i j n+\alpha_{2}(x)$ while $\rho\left(y_{i}\right)=i(j+1) n+\alpha_{2}(y)$ and we get $\rho\left(x_{i}\right)=i j n+\alpha_{2}(x)=i(j+1) n+\alpha_{2}(y)=$ $\rho\left(y_{i}\right)$ which yields $\alpha_{2}(x)=$ in $+\alpha_{2}(y)$. But $\alpha_{2}(y) \leq 2 n$ and $i \leq k-1$. Therefore, $\alpha_{2}(x)=i n+\alpha_{2}(y) \leq(k-1) n+2 n=k n+n \leq 2 k n$ whenever $k>0$. Because this is performed in $Z_{2 k n+1}$, it follows that $\alpha_{2}(x) \geq \alpha_{2}(y)$. Since α_{2} is a rosy labeling, it must be injective and $\alpha_{2}(x) \neq \alpha_{2}(y)$. Thus $\alpha_{2}(x)>\alpha_{2}(y)$, which contradicts our assumption that $\alpha_{2}(x) \in L_{j}$ and $\alpha_{2}(y) \in L_{j+1}$ for $j \in\{0,1\}$.

Similarly, if $\alpha_{2}(x) \in L_{0}$ and $\alpha_{2}(y) \in L_{2}$, then $\rho\left(x_{i}\right)=\alpha_{2}(x)$ while $\rho\left(y_{i}\right)=$ 2 in $+\alpha_{2}(y)$ and we get $\alpha_{2}(x)=2$ in $+\alpha_{2}(y)$. Now $\alpha_{2}(y) \leq 2 n$ and $i \leq k-1$. Therefore, $\alpha_{2}(x)=2 i n+\alpha_{2}(y) \leq 2(k-1) n+2 n=2 k n$ and again in $Z_{2 k n+1}$ it follows that $\alpha_{2}(x) \geq \alpha_{2}(y)$. Because α_{2} is injective, $\alpha_{2}(x) \neq \alpha_{2}(y)$ and hence $\alpha_{2}(x)>\alpha_{2}(y)$. This contradicts our assumption that $\alpha_{2}(x) \in L_{0}$ and $\alpha_{2}(y) \in L_{2}$. Therefore, ρ is an injection.

Now we want to show that each copy G_{i} contains n edges of length $i n+1, i n+$ $2, \ldots, i n+n$. By our formula, the length of an edge $x_{i} y_{i}$ (with the original vertices x, y satisfying $\left.x \in L_{j}, y \in L_{j+1}\right)$ is equal to $\ell\left(x_{i} y_{i}\right)=\rho\left(y_{i}\right)-\rho\left(x_{i}\right)=i(j+1) n+$ $\alpha_{2}(y)-\left(i j n+\alpha_{2}(x)\right)=i n+\alpha_{2}(y)-\alpha_{2}(x)=i n+\ell(x y)$. Since G contains edges of lengths ranging from 1 to n, G_{i} contains edges of lengths $i n+1, i n+2, \ldots, i n+n$. Therefore, G^{\prime} contains edges of lengths from 1 to $k n$, which completes the proof.

As an illustration of the decomposition method based on the α_{2}-labeling we now prove the following simple result about lobsters. We recall here that a lobster is a tree that can be converted into a caterpillar by deleting all vertices of degree one, and a caterpillar is a tree that can be converted into a path or a single vertex by deleting all vertices of degree one. It is known that not all lobsters allow α-labelings (see [5]).

Theorem 6. Every lobster L with n edges allows an α_{2}-labeling.
Proof. It is well known (see [5]) that all caterpillars allow α-labelings. So, if L is a caterpillar, we are done. Therefore we may assume that L is a lobster with n edges which is not a caterpillar. Let L^{\prime} be the caterpillar arising from L by deleting all vertices of degree one. Let $X_{0}=\left\{x_{0}, x_{1}, \ldots, x_{s}\right\}$ and $X_{1}=\left\{x_{s+1}, x_{s+2}, \ldots, x_{m}\right\}$ be the bipartition of L^{\prime} with an α-labeling defined as $\alpha\left(x_{i}\right)=i$ for $i=0,1, \ldots, m$. Let the number of neighbors of x_{i} of degree one in L be r_{i} and denote the set of these
pendant neighbors of x_{i} belonging to L but not to L^{\prime} by $Y_{i}=\left\{y_{i 1}, y_{i 2}, \ldots, y_{i r_{i}}\right\}$ for every $i=0,1, \ldots, m$ where obviously Y_{i} is empty if $r_{i}=0$.

Now we want to construct an α_{2}-labeling in which $V_{0}=X_{0}, V_{1}=X_{1} \cup Y_{0} \cup Y_{1} \cup \cdots \cup$ Y_{s}, and $V_{2}=Y_{s+1}, Y_{s+2}, \ldots, Y_{m}$. First we set $\alpha_{2}\left(x_{i}\right)=\alpha\left(x_{i}\right)=i$ for $i=0,1, \ldots, m$. Then we define the labeling for the vertices $y_{i j}$ as follows:

$$
\alpha_{2}\left(y_{0 j}\right)=m+j
$$

(if any vertices $y_{0 j}$ exist) and for $i=1,2, \ldots, m$

$$
\alpha_{2}\left(y_{i j}\right)=m+i+\sum_{l=0}^{i-1} r_{l}+j
$$

for all appropriate pairs i, j. One can now check that the labeling is injective and each length $1,2, \ldots, n$ where $n=m+\sum_{l=0}^{m} r_{i}$ appears exactly once. It should be also obvious that the maximum label used is less than $2 n+1$, because it is at most equal to $m+m+\sum_{l=0}^{m-1} r_{l}+r_{m}=2 m+(n-m)=m+n<2 n$. Finally, it should be clear that the sets V_{0}, V_{1}, and V_{2} satisfy the definition of the α_{2}-labeling.

The following corollary follows immediately from Theorems 2 and 3 .
Corollary 7. Every lobster with n edges decomposes $K_{2 n k+1}$ for every positive k.
This result by itself, however, is not new. It was proved by S.I. El-Zanati, C. Vanden Eynden and N. Punnim in [1] (who used earlier results by A. Lladó, G. Ringel, and O. Serra [3], and by A. Lladó and S. C. López [4]) that every lobster allows a ρ^{+}-labeling, which implies the result in the Corollary. They even conjecture that every bipartite graph allows a ρ^{+}-labeling. Their conjecture leads us to the following question.

Problem. Does the existence of an α_{2}-labeling of a bipartite graph G imply the existence of a ρ^{+}-labeling of G ?

Finally, we remark that it may be tempting to try to generalize the definition for label sets $L_{0}, L_{1}, \ldots, L_{t}$ with $t>2$. While such a generalization may work for some special classes of graphs, it needs to be defined carefully. For instance, if we have $n=10, t=3$ and $k=2$, then by using a formula analogous to the formula above for the vertices with $\alpha_{2}(x)=20 \in L_{3}$ and $\alpha_{2}(y)=9 \in L_{0}$ we get in K_{41} in the copy G_{1} the labels equal to $\rho\left(x_{1}\right)=1 \cdot 3 \cdot 10+20=50 \equiv 9 \bmod 41$ and $\rho\left(y_{1}\right)=1 \cdot 0 \cdot 10+9=9$ and we have mapped two different vertices of G_{1} onto the same vertex of K_{41}.

Therefore, this type of labeling may be used case by case for some classes of graphs even in a more general form, but one has to always make sure that the situation described above will not occur.

Acknowledgments

The author would like to express his thanks to the anonymous referee whose comments helped to correct a serious gap in the original definition of the α_{2}-labeling.

REFERENCES

[1] S. El-Zanati, C. Vanden Eynden, N. Punnim, On the cyclic decomposition of complete graphs into bipartite graphs, Australas. J. Combin. 24 (2001), 209-219.
[2] J.A. Gallian, A dynamic survey of graph labeling, Electronic Journal of Combinatorics DS6 (2007).
[3] A. Lladó, G. Ringel, O. Serra, Decomposition of complete bipartite grafs into trees, DMAT Research Report, Univ. Politecnica de Catalunya, 11 (1996).
[4] A. Lladó, S.C. López, Edge-decompositions of $K_{n, n}$ into isomorphic copies of a given tree, J. Graph Theory 48 (2005).
[5] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Intl. Symp. Rome 1966), Gordon and Breach, Dunod Paris, 1967, 349-355.

Dalibor Fronček
dalibor@d.umn.edu

University of Minnesota Duluth
Department of Mathematics and Statistics
1117 University Dr., Duluth, MN 55812, U.S.A.

Received: March 10, 2009.
Revised: July 5, 2009.
Accepted: July 6, 2009.

