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ABSTRACT 

 

We present protocols for high-spatial resolution measurement of oxygen isotope ratios of goethite 

(-FeOOH) with the Sensitive High Mass Resolution Ion Microprobe – Stable Isotopes 

(SHRIMP-SI) and propose a natural sample as a potential goethite reference material (RM) for ion 

microprobe analysis. We assess the effects of goethite chemical composition, crystallographic 

orientation, and texture on the accuracy and repeatability of SHRIMP-SI 
18

O (
18

OSIMS) results. 

Synthetic goethites evaluated as potential 
18

OSIMS RM are powdery, porous, and finely 

crystalline; they do not yield repeatable results. A dense colloform goethite from the Capão topaz 

mine, Minas Gerais, Brazil, fulfills major prerequisites: it is stoichiometrically relatively pure, 

yields repeatable oxygen isotope results, and occurs in abundance to produce a RM for long-term 

use. We use an average laser fluorination 
18

OLF-VSMOW value of -17.3 ± 0.3 ‰ (1SD) obtained for 

five aliquots of this RM to normalize all 
18

OSIMS measurements. Multiple 
18

OSIMS analyses of a 

large fragment of the Capão L4 (CL4) RM analyzed in three different runs yield an overall 

repeatability of -17.3 ± 0.5 ‰ (2SD, n = 294) for all three runs combined. Natural variability and 

crystal orientation effects are the main reasons for the excess spread of the 
18

OSIMS results 

compared to the spot internal precision (ca. 0.2 ‰). All 
18

OSIMS analyses (n=1027) in various 

aliquots of CL4, randomly oriented and analyzed in 26 sessions during eight distinct runs, yield an 

overall repeatability of ± 0.7 ‰ (2SD), confirming that CL4 is a suitable SIMS RM. After 

ascertaining its suitability as a RM, we used CL4 to standardize analyses of other natural goethite 

samples with the SHRIMP-SI and compared 
18

OSIMS and laser fluorination results to test the 

relationship between natural properties (e.g., porosity, minor elements substituting for Fe), 

preparation procedures (e.g., polish and relief), instrument conditions, and the overall precision 

and accuracy of the SIMS analyses. Samples containing minor elements substituting for Fe (e.g., 

Al, Mn, Cu, Zn, etc.) or as contaminants (e.g., Si, P) require significant matrix corrections. 

Because we could not find homogenous natural goethite samples showing a large range in metal 

concentrations, we extrapolate our calibration curves beyond the composition of our calibration 

goethite samples. 
18

OSIMS results corrected for instrument mass fractionation (using CL4) and 

compositionally dependent matrix effects (using several calibration goethites of known elemental 

composition) are less precise but statistically indistinguishable from their laser fluorination results. 

However, porous samples are unsuitable for SHRIMP-SI 
18

O analysis. Dense colloform samples 

yield repeatable results for individual growth bands, showing that the high spatial resolution, 

moderate precision, and speed of analysis of the SHRIMP-SI can resolve variations in oxygen 

isotope composition acquired during sample growth. (U-Th)/He geochronology of equivalent 

aliquots from the same goethite samples reveal that the combination of the two methods permits 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 

3 

the extraction of temporal variation in the isotopic compositions of meteoric solutions in the 

geological past. 

1. INTRODUCTION 

The oxygen isotope composition of goethite (-FeOOH) is a useful environmental indicator 

applied in the reconstruction of the isotopic signature of ancient waters and past surface 

temperatures on Earth (Yapp, 1987, 1993,1997, 2000, 2001, 2008; Bird et al., 1992, 1993; Girard 

et al., 1997, 2000, 2002; Poage et al., 2000; Sjostrom et al., 2004; Yapp and Shuster, 2011; Miller 

et al., 2017). The basic assumption of goethite as an environmental indicator is that it precipitates 

in isotopic equilibrium with water, and that the goethite-water 
18

O/
16

O fractionation factor gth-

water– determined from mineral precipitation experiments, calculated theoretically, or derived 

from mineral-water exchange reactions – is well known. Fractionation factors depend primarily on 

temperature, but they may also depend on pH, solution composition, and rate of precipitation 

(Yapp, 1990, 2007, 2012; Müller, 1995; Bao and Koch, 1999; Zheng, 1998). Natural goethites 

show 
18

O values ranging from ~ -16 to +4 ‰ (Yapp, 2001), reflecting the wide range in the 

isotopic composition of meteoric precipitation due to latitude- and elevation-driven Rayleigh 

fractionation. The stable isotope composition of goethite may be determined using fluorination 

and carbon reduction bulk methods, which require ~ 20 mg of material (Yapp, 1987). Laser 

fluorination techniques offer the advantage of requiring < 2 mg of pure sample (Girard et al., 

1997; Miller et al., 2017). Both approaches have been successfully used in measuring the oxygen 

isotope composition of natural goethite from diverse settings to characterize paleoenvironments 

(e.g., Bird et al., 1992; Poage et al., 2000; Bao et al., 2000; Miller et al., 2017). 

Despite these successes, a major challenge in determining the isotopic composition of goethite is 

the fact that it commonly forms colloform aggregates of fine crystals oriented parallel to the 

direction of mineral precipitation, where each growth band may be smaller than 50 µm (Figure 

1a). The refinement and application of (U-Th)/He dating to natural goethite show that sequential 

bands in colloform goethite may span millions of years (Shuster et al., 2005; Heim et al., 2006; 

Vasconcelos et al., 2013). Variations in minor and trace element compositions from one band to 

another suggest that parental solutions change in elemental – and probably also isotopic – 

composition through time. In addition, goethite masses often show evidence for partial dissolution 

before resumption of colloform growth (Figure 1b), contain cross-cutting veins of late-stage 

goethite generations (Figure 1b), and may be intimately intergrown with hypogene or supergene 

minerals (e.g., quartz, kaolinite, gibbsite, cryptomelane, cuprite, malachite, etc.; Figure 1b) of 

potentially different isotopic compositions. Bulk analysis of these samples produces a composite 
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
18

O value for the distinct generations of goethite plus the mineral contaminants possibly present 

within the goethite masses, and chemical analysis and material balance calculations must be 

applied to derive the 
18

O value of the end-member goethite (Yapp, 1987). Therefore, determining 

the 
18

O value of a single generation of goethite may require µm-scale resolution. Importantly, in 

situ analysis with µm-scale resolution also improves our confidence in bulk analysis. For example, 

in many situations, laser fluorination analysis on ~ 2 mg samples, averaging a few hundreds to a 

few thousand years of mineral precipitation, may still resolve important environmental and 

paleoclimatic questions (e.g., Miller et al., 2017), particularly where high resolution in situ 

analyses shows that average results are representative of individual mineral precipitation events. 

We explore the refinement of suitable approaches to use the sensitive high-resolution ion 

microprobe – stable isotopes (SHRIMP-SI) (Ireland, 2004; Ireland et al., 2008) to measure the 


18

O value of goethite at scales (µm) necessary to resolve single mineral precipitation events. We 

also combine SHRIMP-SI 
18

O/
16

O measurements with laser-heating (U-Th)/He dating of the same 

goethite sample to refine the spatial resolution of time-calibrated goethite 
18

O studies (e.g., Miller 

et al., 2017). The spatial resolution of the (U-Th)/He method (~ 200 µm), when combined with 

that of SHRIMP-SI 
18

O/
16

O analysis (~25 µm), offers the opportunity to study, at previously 

unattainable scales, environmental conditions during mineral precipitation at specific times in the 

geological past. Obtaining accurate SHRIMP-SI 
18

O/
16

O measurements, however, requires a well-

characterized reference material (RM). In addition, sample- and instrument-related bias, such as 

the potential dependence of ionization efficiency and instrumental mass fractionation (IMF) on 

chemical composition, crystallographic orientation, sample porosity, texture, and relief (e.g., Eiler 

et al., 1997; Vielzeuf et. al., 2005; Kita et al., 2009, 2010; Ickert and Stern, 2013), must be 

addressed. 

In this study, we characterize, test, and propose a suitable goethite reference material (RM). We 

estimate the precision potentially attainable with SHRIMP-SI 
18

OSIMS by analyzing several 

hundred spots on a large fragment of the RM in three separate SHRIMP-SI runs. Once convinced 

that our RM is suitable, we use it to correct for instrument mass fractionation (IMF) during each 

run. We test the accuracy of SHRIMP-SI 
18

OSIMS results obtained using our RM by comparing 

laser fluorination 
18

OLF-VSMOW and SHRIMP-SI 
18

OSIMS measurements for a sample that has the 

same composition and crystallographic properties of our proposed RM. We further test the 

accuracy of SHRIMP-SI 
18

OSIMS results by comparing SIMS and laser fluorination values for a 

suite of mineralogically pure and homogenous calibration goethites that differ in minor and trace 

element contents from the RM (EA1). Discrepancies between SIMS and LF results show that IMF 
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is partially dependent on goethite chemical composition (matrix effect). We implement two 

distinct matrix corrections: one based on the total Fe contents of our RM and calibration goethites; 

and one based on the total content of elements other than Fe in the RM and calibration goethites. 

We assess the validity of the matrix corrections by comparing 
18

OLF-VSMOW and matrix corrected 

SHRIMP-SI 
18

OSIMS for each of the calibration samples. Once ascertaining that appropriate IMF 

and matrix corrections permit obtaining reliable 
18

O values for our calibration goethites, we use 

our validated RM to investigate potential crystallographic effects on measured 
18

O values. We 

also assess other sample-related parameters (e.g., porosity) that may affect isotopic analysis with 

the SHRIMP-SI and offer guidelines on sample selection criteria and preparation to maximize the 

chance of successful 
18

OSIMS analyses. 

 Finally, we selected a sample of Fe-duricrust blanketing the Gandarela Plateau, Quadrilátero 

Ferrífero, Brazil (Monteiro et al., 2014, 2018), to demonstrate the potential of the 
18

OSIMS method 

to extract information recorded on complex assemblages of goethites, representing many 

generations and recording superimposed weathering events spanning ~ 40 Ma. Importantly, the 

prolonged weathering and paleoclimatic histories for the site in southeastern Brazil are based on 

the textural, elemental, geochronological, and 
18

OSIMS analyses of a single 3x3x3 cm goethite 

sample, attesting to the power of high spatial resolution analysis of supergene phases. 

2. SUITABLE SHRIMP-SI 
18

O/
16

O GOETHITE REFERENCE MATERIAL (RM) 

Goethite is the orthorhombic iron oxyhydroxide -FeOOH, a phase that is isostructural with 

diaspore (AlOOH), groutite (MnOOH), and bracellewite (CrOOH) (Cornell and Schwertmann, 

1996). Structural similarities allow solid solution of Al, Mn, and Cr, but also Ni, Co, V, Cu, Zn, 

Pb, and a variety of other minor and trace (e.g., U and Th) elements, into natural goethites 

(Cornell and Schwertmann, 1996). Consequently, pure Fe-end member goethite is rare. Coarse-

grained, well-crystallized stoichiometric goethites commonly show ~ 10% structural water. For 

these goethites, expected non-stoichiometric OH
-
 is minimum. In addition, goethite forms by a 

variety of processes, such as in situ incongruent oxidative dissolution of Fe
2+

-bearing phases, 

Fe
3+

-metasomatism of porous rocks and minerals at the Earth’s surface, oxidation and direct 

precipitation of Fe
2+

 from slightly acidic and reducing solutions, direct precipitation of Fe
3+

 from 

acid solutions, etc. Variable compositions and complex textures, possibly including intergrown 

mineral phases, pose some challenges in selecting and validating a suitable goethite RM for ion 

microprobe analysis. A suitable RM must be chemically and isotopically homogenous and exist in 

large enough quantity to yield material that, once characterized and validated, can be made 

available to the wider scientific community for independent comparisons. 
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To ensure mineralogical purity, we focused our search for a RM on goethites precipitated directly 

from solution into empty cavities. These samples form colloform masses that are generally devoid 

of mineral contaminants. From a suite of several hundred goethite samples collected over two 

decades from various weathering profiles in Brazil, Australia, New Caledonia, Africa, China, and 

the USA, we selected a large and massive goethite cobble collected in a colluvium in the vicinity 

of the Capão topaz mine, Minas Gerais, Brazil. The sample is composed of cm-wide growth bands 

(Figure 2) for which we had previous information on age and trace element homogeneity. The 

massive colloform goethite cobble from the Capão mine was sliced, polished, and growth bands 

displaying distinct visual characteristics were arbitrarily defined as Layers 1 to 5 (CL1 to CL5) 

(Figure 2). Layers CL1, CL2, CL4, and CL5 were microdrilled and analyzed as described below. 

We also precipitated and tested synthetic goethite as potential RMs, as synthetic goethite has been 

successfully used to investigate goethite–water 
18

O/
16

O fractionation (Yapp, 2007). 

3. ANALYTICAL TECHNIQUES 

Goethite slices and micro-cores (~1-2 cm long and 5 mm internal diameter (ID)) were retrieved 

from the hand specimens (e.g., Figure 2; EA 1), crushed to 0.1 – 2 mm grains, ultrasonicated in 

tap water (~ 20 min), distilled water (~ 10 min), rinsed in ethanol, and air-dried. Clean goethite 

grains were mounted in 2.54 cm OD acrylic disks specially designed for the SHRIMP-SI during 

this study, filled with epoxy, polished, imaged by optical and electron microscopy, and 

investigated by SEM/EPMA before or after ion microprobe analysis. In addition to goethite 

grains, cm-size fragments from the Capão goethite sample (Figure 2) were also mounted in epoxy 

and polished for analysis (EA2). Selected areas or grains were targeted for optical and scanning 

electron microscopy (SEM), electron microprobe analysis (EPMA), X-ray diffraction (XRD), (U-

Th)/He geochronology, laser fluorination (LF), and SHRIMP-SI oxygen isotope analysis. Images 

for all polished disks containing RM, calibration samples, and unknown goethite grains are shown 

in EA 2. 

3.1. Optical and Scanning Electron Microscopy 

Polished blocks and thin-sections were investigated by transmitted- and reflected-light optical 

microscopy and by SEM/BSE (secondary electron and back-scattered electron images) to 

determine goethite textures, mineral assemblages, paragenetic relationships, modes of 

precipitation, and sample purity. 

3.2. Electron Microprobe Analysis 
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Electron microprobe analyses were performed with a JEOL JXA-8200 at the Centre for 

Microscopy and Microanalysis (CMM) of the University of Queensland, Brisbane, Australia. 

Standards and unknowns were carbon coated under the same conditions. Analyses were performed 

using a beam current of 15 nA, accelerating voltage of 15 kV, and focused spot size of one µm 

(except for more volatile elements, for which spot size was increased to 10 µm). Between 14 and 

21 elements were measured in each individual analytical session using the standards and 

calculated detection limits listed in EA3. 

3.3. X-ray Diffraction 

Goethite samples were analyzed by bench-top powder XRD, following analytical and data 

reduction procedures outlined in Monteiro (2017), to ascertain that they were indeed pure and well 

crystallized. Some of the samples (Roy Hill and Winsor) were also analyzed by synchrotron X-ray 

diffractometry at the Australian National Beamline Facility (ANBF) or the Photon Factory, 

National Laboratory for High Energy Physics (KEK), Tsukuba, Japan, as outlined in Heim (2006), 

Waltenberg (2012), and Vasconcelos et al. (2013). 

3.4. Synthetic Goethite 

Goethite powders were precipitated at various temperatures (22, 30, and 40°C) and two different 

pHs (<2 and >12) (Mostert, 2014). For the high pH experiments, solutions were prepared by 

adding 125 ml of 1 M Fe(NO3)3.9H2O to 125 ml of 5 M KOH into high density polyethylene 

(HDP) bottles. For the low pH experiments, 350 ml of 1 M Fe(NO3)3.9H2O plus 175 ml 2 M 

HNO3 were diluted with 175 ml H2O. 140 ml of this bulk solution was than mixed with140 ml of 

1 M NaOH in a HDP bottle. The solutions were stored in 500 ml bottles for a minimum period of 

74 days to permit adequate crystal growth. Goethite precipitates were split into three or more 50 

ml centrifuge tubes, topped up with distilled water, and centrifuged for 28 min. The supernatant 

was then decanted, the tube filled with distilled water a second time, and sonicated for 15 min. 

The tube containing the goethite residue and distilled water was once again centrifuged for the 

same period. This procedure was repeated at least three times to ensure that all unwanted salts 

were removed. All precipitates were dried in air and stored in closed tubes (Mostert, 2014). 

Mineralogical composition and crystallographic properties of synthetic goethite aliquots were 

determined by Synchrotron Powder Diffraction at the Australian Synchrotron (Mostert, 2014). 

3.5. (U-Th)/He analysis 

Goethite samples were analyzed by (U-Th)/He geochronology at Caltech following the procedures 

outlined in Monteiro et al. (2014). For He extraction, individual goethite aliquots were 
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encapsulated in Pt tubes, loaded into wells in a copper disk, placed in a sample chamber, and 

heated (900 °C) with a diode laser under vacuum for 6 minutes. To ensure total He extraction, Pt 

capsules were heated a second time, also for 6 minutes, at the same temperature. After He 

extraction was completed, degassed samples were transferred to Teflon containers where they 

were dissolved in concentrated ultrapure HCl (closed vials were placed in the oven at 90°C for 

12h), spiked with known amounts of 
235

U and 
230

Th, evaporated and re-dissolved in concentrated 

ultrapure HNO3, diluted in Milli-Q water and analyzed by ICP-MS. 

3.6. Laser fluorination analysis 

Goethite samples were analyzed by laser fluorination at Caltech following procedures outlined in 

Miller et al. (2017). The reported 
18

OLF-VSMOW values are single or multiple measurements carried 

out on 1-3 mg of sample (Table 3). Several aliquots of the UWG-2 garnet standard measured 

throughout the runs yield average 
18

OLF-VSMOW values of 5.4 ± 0.1 ‰ (1n=4), 5.5 ± 0.01 ‰ 

(1 n=2), 5.5 ± 0.5 ‰ (1 n=4), 5.4 ± 0.3 ‰ (1 n=7), and 5.4 ± 0.1 ‰ (1 n=4). 
18

OLF-VSMOW 

values of unknowns were corrected for the difference between measured and accepted values of 

the UWG-2 garnet standard (
18

OVSMOW = 5.8‰) (Valley et al., 1995). 

Our RM and calibration goethites were also analyzed at the University of Oregon stable isotope 

laboratory following procedures outlined by Bindeman et al. (2008). Multiple aliquots of the UOG 

garnet standard analyzed together with the unknowns yield average 
18

OVSMOW values of 6.3 ± 0.3 

‰ (1), 6.5 ± 0.01 ‰ (1), and 6.6 ± 0.2 ‰ (1). 
18

O values of unknowns were corrected for the 

difference between measured and accepted values of the UOG garnet standard (
18

O = 6.5 ‰) 

(Valley et al., 1995). 

3.7. In situ analysis of oxygen isotopes by SHRIMP-SI 

Goethite aliquots from individual samples, subsampled from the same batch of washed grains 

used for (U-Th)/He geochronology, were placed in individual pits in a 37-pit disk mount (EA2). 

We also mounted large goethite chips and grains on glass slides covered with doubled-face tape 

(EA2; e.g., HM-23) to facilitate mounting oriented grains. Loaded mounts were filled with epoxy 

under vacuum to minimize air bubbles. Sample mounts were lapped, polished to 0.25 µm, and 

imaged with a Leica DM6000M automated microscope. All mounts were cleaned with detergent 

and ethanol, dried in vacuum at 60 °C, coated with gold, and kept under vacuum at 60 °C for at 

least two days before analysis. A total of 13 disks were mounted with grains of CL4, goethite 

calibration samples (for which we had laser fluorination results), and unknowns (EA2; four 

unknowns are presented and discussed in this article). All disks contained at least 2 grains of CL4 
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in different geometric positions. One disk hosted two 1.5 cm-long fragments of the Capão 

colloform goethite sample (containing CL1, CL2, CL3, and CL4 bands; EA2) to test the isotopic 

homogeneity of the RM (CL4) and goethite calibration samples (e.g., CL1 and CL2). 

Oxygen isotope measurements were carried out during eight analytical runs, from October 2014 to 

September 2017, using the SHRIMP-SI at ANU (Ávila et al, in press; Ireland et al., 2008, 2014). 

Each run lasted from one to five days, and a single run includes several analytical sessions, 

defined by the disk analyzed during a segment of the run. The instrument was tuned at the 

beginning of each session, and tuning parameters may have varied slightly from session to 

session. Rarely, within a session (e.g., RUN7-session HM23), the instrument may have had to be 

retuned if significant drift was detected; after retuning, a new session was started (e.g., RUN7-

session HM23B). 

Goethite grains were sputtered with a Cs
+
 primary beam with initial acceleration potential of +5 

kV from the ion gun. At the sample surface, the acceleration potential was held at ~ -10 kV, 

producing a final collision energy of 15 keV at the target (Ireland et al., 2014). An elliptical beam 

spot of ~ 20 x 25 µm was used for all sessions. The low and high mass head detectors equipped 

with Faraday cups were used for simultaneous detection of 
16

O
−
 and 

18
O

−
. The electrometers 

measuring 
16

O
−
 and 

18
O

−
 were set to 10

11
 Ω (50V range) and 10

11
 Ω (5V range), respectively. The 

collector slit widths were set at 400 μm for 
16

O
−
 and 300 μm for 

18
O

−
, and potential isobaric 

interferences on 
18

O
−
 from 

17
OH

–
 and 

16
OD

–
 were well resolved. Oxygen measurements consisted 

of five or six acquisition cycles of 20s, each cycle comprising ten 2 s integrations for a total 

acquisition time of about 2 min. The 
18

O/
16

O ratio is the weighted average of five or six cycles. 

Initially, we collected 
18

OSIMS analyses of several goethite samples to test their repeatability. 

After a trial run suggested that our choice of potential RM – CL4 – was indeed homogeneous and 

yielded repeatable results, we focused on quantifying its isotopic homogeneity and suitability as a 

RM (based on the measurement repeatability), and the ultimate precision to be expected from 

SIMS analysis of this goethite. We analyzed, in three separate sessions, 294 points on a single 1.5 

cm block of the Capão goethite containing a large band of CL4 (Figure 2, EA 2). We further 

tested the precision possible with SIMS analysis of goethite by interpreting the entire population 

of CL4 SHRIMP-SI analyses for all eight runs (n=1027), as discussed below. 

After ascertaining that CL4 was indeed a suitable RM and that it yielded moderately reproducible 

results (± 0.5-0.7 ‰ [2 SD], when compared to ± 0.2-0.4 ‰ [2 SD] routinely attained for garnets), 

we used it to analyze several natural goethite samples, varying in compositions and modes of 

precipitation, for calibration purposes (samples illustrated and briefly described in EA1). 
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Calibration goethites and unknowns were analyzed in sequences of 10-12 spots interspersed with 

blocks of 3-4 spots on CL4 RM. The instrumental mass fractionation (IMF-CL4) for a session is 

calculated following equation 1 below: 

a
IMF-CL4

=
R
CL4

raw

R
VSMOW

´ 1+ d18O
LF

/ 1000( )( )
        (1) 

where R
CL4

raw
 is the raw mean 

18
O/

16
O value for a group of CL4 analyses; R

VSMOW
 is the 

18
O/

16
O of 

the Standard Mean Ocean Water (0.0020052; Baertschi, 1976); and d18O
LF

 is the known laser 

fluorination value of the CL4 RM. In this study, values of IMF-CL4 varied between 0.979 and 

0.991 across 26 sessions. If drift occurred during a session, all analyses were drift corrected. Drift 

corrections, applied via the analysis of CL4 throughout each session, were sufficient to 

compensate for the effects of instrument-related variations, such as sputtering, ionization, 

transmission, and detection. This correction is directly applied during data reduction using the 

ANU software POXI. 

Raw values measured on calibration and unknown goethites were corrected for instrument mass 

fractionation according to the equations below:  

R
cal

CL4 = R
cal

raw / a
IMF-CL4

          (2) 

 

R
unk

CL4 = R
unk

raw / a
IMF-CL4

          (3) 

 

where  is defined as above; R
cal

raw
and R

unk

raw
 are the raw 

18
O/

16
O values for calibration and 

unknown goethites, respectively; and R
cal

CL4
 and R

unk

CL4
 are 

18
O/

16
O for calibration and unknown 

goethites, respectively, corrected for IMF, as determined from the analysis of the CL4. This 

correction is also directly applied during data reduction using the ANU software POXI. An initial 


18

O*SIMS value is then calculated using equation 4 below: 

d18O
SIMS-cal

* =
R
cal

CL4

R
VSMOW

æ

è
ç

ö

ø
÷ -1

æ

è
ç

ö

ø
÷ ´1000 or d18O

SIMS-unk

* =
R
unk

CL4

R
VSMOW

æ

è
ç

ö

ø
÷ -1

æ

è
ç

ö

ø
÷ ´1000   (4) 

The IMF-corrected values for calibration goethites and unknowns, as derived above, should be 

close to their true value (as measured by laser fluorination) if the calibration and unknown 
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goethites have compositions similar to that of the reference material CL4. If goethite compositions 

differ from that of CL4, an additional matrix correction is necessary: 

a
matrix-cal

=
R
cal

CL4

R
cal

t
 
 
          (5) 

 

a
matrix-unk

=
R
unk

CL4

R
cal

t
            (6) 

Substituting 2 in 5 and rearranging: 

R
cal

t =
R
cal

raw

a
IMF-CL4

´ a
matrix-cal

 
 
         (7) 

Similarly, substituting 3 in 6 and rearranging: 

R
unk

t =
R
unk

raw

a
IMF-CL4

´ a
matrix-unk

 
 
         (8) 

Where R
cal

t
 and R

unk

t
   are the true values (as measured by laser fluorination) of the 

calibration samples and unknowns, respectively, and a
IMF-CL4

 and a
matrix

 are as defined in 

equations (1), (5) and (6) above. 

We apply matrix correction following the procedures outlined in Martin et al. (2014). After 

correcting the raw values for IMF ( a
IMF-CL4

), as outlined above, we define the remaining 

difference between the 
18

O*SIMS value for the calibration or unknown goethites and its laser 

fluorination 
18

OLF value as the Biasmatrix: 

Biasmatrix = 
18

O*SIMS - 
18

OLF        (9) 

To correct for compositionally dependent matrix effects, we used the total Fe or the sum of the 

average concentrations of all minor elements [V+Co+P+Cr+Al+Ni+Mn+Si+Pb+Cu+Ti+Zn] in the 

calibration goethites, as measured by EMPA. For every run, we calculate an average Biasmatrix 

value for each calibration goethite. We plot the average Biasmatrix values for our RM and each 

calibration goethite against their chemical compositions in two different ways, as described below, 

from which we generate equations to be applied for correction of all calibration goethites and 

unknowns analyzed in that run. 

3.7.1 Biasmatrix correction based on Fe content 
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Pure stoichiometric goethite should contain 62.86 wt% Fe. Elements substituting for Fe will lower 

its content proportionally, which could affect sputtering characteristics and ionization efficiency 

(Fe-dependent matrix effect). To correct measured 
18

O*SIMS values for Fe-dependent matrix 

effects, we use the total average Fe contents measured by EMPA to plot the values of Biasmatrix 

against Fe content for each calibration goethite analyzed in all the runs (EMPA listed in Table 1 

and illustrated in EA4). Linear regressions through the correlation plots generated for all the runs 

together are used to produce an equation that relates Fe-contents to Biasmatrix (BiasFe): 

BiasFe = -0.74 (± 0.13) x + 45.71 (± 7.72) [r
2
 = 0.49]      (8) 

 

where x is the average Fe content (wt%) of the calibration goethite, as illustrated in Figure 3a and 

summarized in Table 1. 

 

We used the value of BiasFe to calculate the “true” 
18

O“true” value for each calibration goethite: 

 


18

OFe-“true” = 
18

O*SIMS - BiasFe        (9) 

 

Comparisons of 
18

OFe-“true” with 
18

OLF for each calibration and unknown goethites measured in 

our experiments show that one single equation to calculate BiasFe, lumping together all runs, does 

not properly reconcile SIMS and LF results. Therefore, we apply the same approach outlined 

above and generate a compositionally dependent regression to calculate BiasFe for each run 

separately, as illustrated in Figure 3c. This run-specific approach provides the most accurate 

results (
18

OFe-“true”) as deduced by the match between BiasFe-corrected 
18

OSIMS and 
18

OLF 

values. Even more accurate reconciliation between 
18

OSIMS and 
18

OLF values would be possible 

if we were to carry out linear regressions for each session separately. Whether a more accurate and 

precise reconciliation is worth the additional analytical time required to achieve it will depend 

entirely on the nature of the scientific question to be answered. 

 

3.7.2 Biasmatrix correction based on content of all elements replacing iron 

Goethite may accommodate Al, Mn, Cr, Ni, Co, Cu, Ti, Pb, and Zn substituting for Fe. 

Substitution of these elements may also affect ion probe sputtering characteristics and ionization 

efficiency, resulting in compositionally dependent matrix effects. But in addition to elements in 

solid solution, natural goethites often show elevated Si and P contents (Table 1, EA4,5). It is 

unlikely that these elements replace Fe
3+

 in octahedral coordination in the -FeOOH structure, but 

their presence, irrespective of crystallographic site, will result in lowered Fe contents as 
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determined by EPMA, and should also affect ion probe sputtering characteristics and ionization 

efficiency. Therefore, we use the sum of the average concentrations of 

[V+Co+P+Cr+Al+Ni+Mn+Si+Pb+Cu+Ti+Zn] measured by EMPA in our calibration goethites to 

generate a linear regression for all runs lumped together; the linear regression is used to apply a 

correction for BiasALL, as outlined below: 

BiasALL = 1.93 (± 0.46) x – 2.65 (± 0.97) [r
2 

= 0.33]      (10) 

where x is the sum of the average [V+Co+P+Cr+Al+Ni+Mn+Si+Pb+Cu+Ti+Zn] content (wt%) of 

each calibration goethite (Figure 3b, Table 1). 

Similarly to the matrix corrections based on total Fe contents, a universal regression for all runs 

does not produce the most accurate matrix-corrected 
18

OSIMS values, as determined by the 

accuracy of the equality below: 


18

O*SIMS – BiasALL = 
18

OLF         (11) 

Therefore, we use linear regressions generated for each separate run to implement matrix 

corrections based on the [V+Co+P+Cr+Al+Ni+Mn+Si+Pb+Cu+Ti+Zn] contents of our calibration 

goethites, and to calculate the 
18

OALL-true for each calibration goethite, as summarized in Figure 

3d. 

3.7.3 Error analysis 

The final error reported for each 
18

OSIMS result must include the following uncertainties (Ickert 

and Stern, 2013): (1) within spot uncertainty or internal error; (2) repeatability uncertainty; (3) 

instrument mass fractionation uncertainty; (4) reference material LF uncertainty; (5) matrix effect 

uncertainty; and (6) elemental analysis uncertainty used for calibrating matrix effects. 

Within spot uncertainty (e) is associated with internal errors related to signal and detector noise, 

and it is defined as (Martin et al., 2014): 

e =
1

1

e
i

2
i

n

å
    (12) 

where n is the number of scans of 
18

O and 
16

O measurements on each spot (n = 5 or 6, in our 

case), and ei is the standard deviation of 10 sub-count 
18

O/
16

O ratios. This uncertainty is 

automatically calculated by POXI, and it is reported for individual SHRIMP-SI spot results 

throughout the analytical session. Typical values ranged from 0.1 to 0.2 ‰. 
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The repeatability uncertainty depends on instrument factors, grain homogeneity and orientation, 

and the number of spot analyses. It is the standard error (95% CI) of a population of spot analysis 

on the CL4 RM ( analyzed under the same conditions as the unknowns throughout a run. 

Repeatability uncertainty for each group of CL4 RM analysis, for each population of CL4 

analyzed within a session throughout the eight runs, are summarized in Table 4. Values range 

from ± 0.06 to ± 0.33 ‰ (1 SE). 

The IMF uncertainty s
R
CL4
RAW( ) is the instrument mass fractionation uncertainty determined relative 

to CL4 propagated into individual spot analysis (Ickert and Stern, 2013). It is determined by the 

confidence limits in the mean R
CL4

raw
 s

R
CL4
RAW( ) for an analytical session, as reported in Table 4. The 

IMF uncertainty is computed into the within spot uncertainty (e) above throughout the run. 

The reference material (CL4) uncertainty s
R
CL4
t( )  reflects how well we know the value of the RM 

with respect to its true value, as determined by laser fluorination. We adopted the 
18

OLF value of -

17.3 ± 0.3 ‰ for CL4 for the reasons discussed in the results and discussion sections below. 

Matrix effect uncertainties s
a
matrix

( )  are calculated as the residuals (Fe and ALL) on the linear 

regressions of Bias versus Fe or [V+Co+P+Cr+Al+Ni+Mn+Si+Pb+Cu+Ti+Zn] contents measured 

for the RM and calibration goethites for each run separately (equations 13 e 14). This is the major 

uncertainty factor in all our SIMS measurements. 

          (13) 

          (14) 

Where  is the predicted bias by the linear correlation and N is the number of RM and 

calibration goethites used in the regression (Martin et al., 2014). 

Finally, uncertainties in quantifying the Fe and Fe-substituting element (V, Co, P, Cr, Al, Ni, Mn, 

Si, Pb, Cu, Ti and Zn) contents of calibration materials and unknown goethite samples by electron 

microprobe analysis must be accounted for in the final 
18

OSIMS uncertainty. 

The final uncertainty for each analysis was calculated either as 
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s
d 18O

» e2 + e
CL4

2 +s
R
CL4
t

2 +s
a
Fe-matrix

2 +s
Fe-EPMA

       (15) 

or 

s
d 18O

» e2 + e
CL4

2 +s
R
CL4
t

2 +s
a
ALL-matrix

2 +s
ALL-EPMA

      (16) 

 

The results and errors for each spot analysis, without compositionally controlled matrix 

corrections and with either s
a
Fe-matrix

( ) or s
a
ALL-matrix

( )  corrections, are plotted (Figures 6, 7) for each 

calibration goethite, as discussed below. 

4. RESULTS 

4.1. Electron microprobe results 

Figure 2 illustrates the average elemental composition of CL1, CL4, and CL5 growth bands. Table 

1 shows the average composition of RM and each calibration goethite investigated in this study; 

complete analytical results are available in EA5 and are plotted in EA4. The CL4 goethite shows 

nearly stoichiometric concentrations of Fe and O (Figure 2) and less than 2 wt% total minor and 

trace element contents. All samples selected as calibration goethites show relatively low but still 

significant minor and trace element contents (Table 1; EA4,5). No absolutely pure stoichiometric 

-FeOOHgoe was found among the many samples screened for this study (Table 1; EA4,5). 

4.2. X-ray diffraction results 

Figure 4 illustrates XRD patterns for CL4 and some of our calibration goethites. Rietveld 

refinement for a representative aliquot of CL4 indicates that goethite is the only identifiable 

mineral. Trace veins of Mn oxides, observed in reflected-light optical and scanning electron 

microscopy in CL4, are not detectable by XRD. All XRD patterns show crystalline goethites 

devoid of significant contaminant contents, except for small quartz peaks in all samples other than 

CL4 (Figure 4). 

4.3. Synthetic Goethite SHRIMP-SI test 

Given the rarity of natural stoichiometrically pure -FeOOH, and aiming to avoid 
18

OSIMS 

uncertainties associated with matrix-effects related to minor elements substituting for Fe, we 

investigated the potential suitability of synthetic goethite (Mostert, 2014) as SHRIMP-SI RM. 

Their purity, known temperature of precipitation, and the known composition of the water from 

which the -FeOOH precipitated should make synthetic goethites ideal RMs for the SHRIMP-SI. 
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As discussed below, the finely crystalline texture of the synthetic material, its porous nature, and 

the heterogeneous pellets produced when the synthetic powders were agglomerated under a 10-30-

ton/cm
2
 hydraulic press show that synthetic goethite is not suitable as a SHRIMP-SI RM unless 

large homogeneous single crystals were to be experimentally grown. 

4.4. (U-Th)/He ages 

(U-Th)/He ages for replicate aliquots of CL4 and other calibration samples are summarized in 

Table 2. All samples yield reproducible or very narrow ranges of results for the replicates, 

suggesting that, at least within the spatial and chronological resolution of the (U-Th)/He method, 

they are homogeneous. (U-Th)/He ages among samples range from ~ 284 to ~ 3.5 Ma. Most of the 

goethites show low U (< 10 ppm) and Th (< 1 ppm) contents, except for sample Win 06 03A, 

which contains between 150 – 317 ppm U and 9 – 18 ppm Th, and sample BAHLGB, which 

contains between 81 – 76 ppm U. All goethite samples show low Th/U ratios. 

4.5. Laser fluorination analysis 

Table 3 lists laser fluorination 
18

OLF-VSMOW values for CL4 and all calibration goethites. EA7 

provide laser fluorination 
18

OLF-VSMOW values for four additional unknown goethite samples. We 

use the average [-17.3 ± 0.3 ‰ (1SD)] of five 
18

O LF-VSMOW [-17.22 ± 0.03, -17.72 ± 0.05, -17.27 

± 0.02,-16.90 ± 0.05, and -17.34 ± 0.02 ‰ (1SD)] analyses done at Caltech as the correct value of 

the primary CL4 RM for the reasons discussed below. Two aliquots of the CL4 RM analyzed in 

the University of Oregon laboratory yielded 
18

O LF-VSMOW results of -16.34 and -16.33 ± 0.2 ‰. 

The reason for the discrepancy between the laser fluorination results from the two laboratories is 

not fully known. Natural heterogeneity in the stable isotope composition of samples may account 

for some of the variability, but the reproducibility among the five aliquots analyzed at Caltech and 

the two aliquots analyzed at Oregon suggests an analytical, as opposed to a sample heterogeneity, 

issue. Noticeably, samples CL1 and CL2 (from the same hand-sample from which CL4 was 

obtained) also show discordant results between the Caltech and Oregon laboratories (Oregon 

results are ~ 1 ‰ heavier than the Caltech results, Table 3). Unfortunately, the limited number of 

laser fluorination results available precludes ascertaining the real variability related to isotopic 

composition heterogeneity. Total oxygen yield varied between 84 and 115% (except for one 

analysis of sample Win01B for which oxygen yield was 37% – this result was ignored – and one 

analysis of sample CL1 for which oxygen yield was 54%). 

4.6. SHRIMP-SI 
18

O/
16

O analysis 

4.6.1. Reference material and calibration goethites 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 

17 

Using the 
18

OLF-VSMOW value of -17.3 ± 0.3 ‰ (1) for our primary RM (CL4), we measured the 

raw 
18

OSIMS values for a variety of samples ranging in mode of precipitation, composition, 

textures, and porosity (Table 4, EA1); the complete dataset is given in the supplementary resource 

EA6. Multiple analyses (n=294) for one large block of CL4 investigated in three distinct runs are 

illustrated in Figure 5a. A comprehensive set of results for several aliquots of CL4 analyzed in 

eight SHRIMP-SI runs are illustrated in Figure 5b. These results illustrate the repeatability that 

delimits the ultimate precision obtainable by SHRIMP-SI 
18

OSIMS goethite investigations using 

CL4 as the RM in our runs. 

IMF-corrected 
18

OSIMS values, based on the analysis of CL4, are obtained for CL1, CL2, and CL5 

and compared to their laser-fluorination 
18

OLF-VSMOW results (Figure 6a-c). IMF- and matrix-

corrected (based on Fe contents – BiasFe) 
18

OSIMS values for two of the same samples (CL1 and 

CL5), together with their laser-fluorination 
18

OLF-VSMOW values, are shown in Figure 6d,e. IMF- 

and matrix-corrected (based on [V+Co+P+Cr+Al+Ni+Mn+Si+Pb+Cu+Ti+Zn] contents – BiasALL) 


18

OSIMS values for CL1 and CL5 and their laser-fluorination 
18

OLF-VSMOW values are shown in 

Figure 6f, g. The significance of those results is discussed below. 

Similar results for six calibration goethites of different compositions, corrected for IMF (Figure 

7a-f), corrected for both IMF and matrix effects based on Fe contents (Figure 7 g-l), and corrected 

for IMF and matrix effects based on [V+Co+P+Cr+Al+Ni+Mn+Si+Pb+Cu+Ti+Zn] contents 

(Figure 7 m-r), all using the CL4 RM, are compared to their laser-fluorination 
18

OLF-VSMOW 

values; the implication of the results are also discussed below. 

4.6.2. Crystal orientation effect on 
18

OSIMS results 

To test whether goethite is subject to crystallographic effects (Lyon et al., 1998; Huberty et al., 

2010; Kita et al., 2010) previously detected for other iron oxides, we mounted several goethite 

aliquots with the c-axis either parallel (Figure 8 a,b,e,f) or perpendicular (Figure 8c,g) to the plane 

of the sample mount. Fortunately, natural goethites grow preferentially along the c-axis, forming 

elongated needles, blades, or prismatic micro-crystallites with aspect ratios of 5-1000. These 

samples preferentially break into grains elongated along the c-axis (Figure 8); they will sit flat 

when placed on the sample mount, making mounting oriented grains viable. 

SHRIMP-SI spot analysis for two aliquots of the Win-01B calibration goethite illustrated in 

Figure 8a-c are individually shown in Figure 8d. The results, -11.72 ± 0.07 ‰ (1 SEn=6) for 

aliquots where the c-axis is parallel to the surface ablated by the Cs
+
-beam (Figure 8a,b) and -

12.23 ± 0.11 ‰ (1 SEn=6) for aliquots where the c-axis is perpendicular to that plane (Figure 
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8c), show only a small difference in apparent 
18

OSIMS with crystal orientation for this sample. In 

another example, two aliquots of the CL4 RM (Figure 8e-g) mounted with the c-axis parallel 

[
18

OSIMS values of -17.82 ± 0.11 ‰ (1 SE, n=4) and -17.05 ± 0.15 ‰ (1 SE, n=7)] and one 

aliquot mounted with c-axis perpendicular to the polished surface [
18

OSIMS value of -15.37 ± 0.11 

‰ (1 SE, n=4)] suggest a potential instrumental bias of 2.0 ± 0.2 ‰ (1 SE). 

Another test for the susceptibility of SHRIMP-SI results to crystallographic orientation is 

provided in the experiment illustrated in Figure 9. In this experiment, a disk containing the CL4 

RM and another disk containing additional grains of CL4 to be analyzed as unknowns were 

oriented as shown in Figure 9. The mount containing CL4 RM was kept in the same position 

throughout the experiment (Figure 9c). Three grains of CL4 goethite, with c-axes parallel to the 

surface (Figure 9a,d), were analyzed as unknowns, yielding the results plotted in Figure 9f. During 

the same run, the unknown disk was rotated 90° clockwise with respect to the Cs
+
-beam, as 

illustrated in Figure 9b,e, and re-analyzed. The three aliquots yield average
18

OSIMS values of -

17.0 ± 0.1 ‰ [G1] (1 SE), -17.1 ± 0.1 ‰ [G2] (1 SE), and -17.7 ± 0.1 ‰ [G3] (1 SE) before 90° 

rotation; and -19.2 ± 0.1 ‰ [G1_R] (1 SE), -18.3 ± 0.1 ‰ [G2_R] (1 SE), and -19.0 ± 0.1 ‰ 

[G3_R] (1 SE) after rotation. This test confirms that fractionation related to crystal orientation can 

potentially introduce an instrumental bias of ~ 1.7 ± 0.2 ‰ on 
18

OSIMS values, considerably less 

than values observed for hematite (see discussion). The reasons for lower instrument crystal 

orientation bias on goethite, as compared to hematite, are not obvious. 

4.6.3. Porosity effect on 
18

OSIMS results 

Porosity is another sample-related factor that may affect the SHRIMP-SI 
18

O/
16

O ratios. This 

feature was particularly noticeable in our attempts to analyze synthetic stoichiometric goethites 

(Figure 10). Successful analysis of synthetic samples would permit the development of 

stoichiometrically pure reference materials (and metal doped goethites to be used for matrix 

corrections). Unfortunately, synthetic samples were very fine-grained and porous. Attempts to 

eliminate pore spaces by agglomerating the finely crystalline goethite masses into pellets using a 

hydraulic press (~10-30 tons/cm
2
) were unsuccessful. The pressed pellets still showed variable 

porosity after polishing (Figure 10), and the isotopic results from more porous areas differed from 

those of the less porous segments of the pellet (e.g., from - 3.82 ‰ to - 8.57 ‰ in a single 

sample), suggesting that it was not possible to eliminate the porosity problem. Various fragments 

of the pressed pellets also showed variations in isotopic composition and oxygen yields when 

analyzed by laser fluorination (H. Miller, unpublished results), suggesting that during sample 
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agglomeration under pressure goethite grains may acquire different water contents, ultimately 

affecting the isotopic signature of the sample fraction investigated. 

Porosity also affects 
18

OSIMS results in natural samples. For example, the grain illustrated in 

Figure 8a,b yields relatively reproducible results except for spots 6 and 7, which are discrepant by 

about +2‰ from the mean (Figure 8d). Petrographic observation shows that the two spots that 

yield discrepant results occur in a yellow porous zone in the grain (Figure 8b). Spot 5, sitting at 

the boundary between brown (nonporous) and yellow (porous) goethite, yields an intermediate 

value (Figure 8b,d). 

4.6.4. Goethite texture effect on 
18

OSIMS results 

We also tested grain texture as a selection and vetting criterion when choosing samples to be 

analyzed and when interpreting results obtained from goethite analyses by the SHRIMP-SI. Figure 

11 illustrates three goethite samples (BAH-F124-111.2B, BAH-F226-157.6, BAH-F124-123.2) 

displaying contrasting textures. We will show below the effect of these textures on SHRIMP-SI 

results. 

Figure 11a illustrates a grain from sample BAH-F124-111.2B. 
18

OSIMS values for spots for same-

generation symmetrical bands from opposite sides of the cavity yield the results illustrated in 

Figure 11b. The entire dataset reveals a relatively homogeneous population with 
18

OSIMS = 0.3  ± 

0.1 ‰ (1 SE, n=56), which is the same as the 
18

OLF-VSMOW result [0.4 ± 0.2 ‰ (1 SD)] obtained 

for an aliquot of this goethite (EA7). The apparent scatter in the 
18

OSIMS results for bands I, III, 

and IV can be partially explained by the change in orientation of the goethite crystallites. For 

example, goethite crystallites sampled at spots 19 and 20 show an orthogonal orientation to 

crystallites analyzed at spots 11-16 in the same band (Figure 11a,b). 

Two grains from the massive and homogeneous BAH-F226-157.6 goethite (Figure 11c,d) yield 

reproducible results within each grain, and the results illustrate the possible precision obtained 

when goethite textures are homogeneous. The increased precision permits resolving differences in 


18

OSIMS values for the two grains from this sample. The average 
18

OSIMS value for two grains [-

2.5 ± 0.1 ‰ (SEM, n=21] is in good agreement with three out of four 
18

O laser fluorination 

results (-2.4 ± 0.01 ‰, -2.6 ± 0.01, -1.7 ± 0.02 ‰, and -2.5 ± 0.02 ‰; EA7). 

In contrast, the porous, prismatic and randomly oriented goethite crystals in sample BAH-F124-

123.2 (Figure 11e) yield more scattered data: -3.1 ± 0.4 ‰ (SEM, n=8) for Grain 1; and -4.3 ± 0.4 

‰ (SEM, n=7) for Grain 2; and, for the entire population, -3.7 ± 0.3 ‰ (SEM, n=15). Three 
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goethite grains from this sample yielded 
18

OLF-VMSOW values of -2.7 ± 0.2 ‰ (1SD; Oregon), -1.4 

± 0.04 ‰, and -1.9 ± 0.03 ‰ (1SD; Caltech). 

5. DISCUSSION 

5.1. The CL4 SHRIMP-SI reference material 

The Capão goethite is a large ~10 cm cobble collected from a colluvium near the Capão topaz 

mine: it is dense, massive, colloform, and well crystallized (Figure 2). Its colloform habit, wide 

growth bands, and chemical and mineralogical purity (as determined by electron microprobe 

analysis and X-ray diffractometry, respectively) (Figures 2,4; Table 1; EA2) suggest precipitation 

in an empty cavity. Acicular goethite crystals are closely packed and display c-axes oriented in the 

direction of sample growth (Figure 2), enabling mounting of oriented grains. To investigate its 

suitability as a SHRIMP-SI RM, we tested the repeatability of measurements obtained from a 

fragment of CL4 within a run and between three separate runs. Before discussing those results, we 

need to justify the 
18

OLF-VSMOW adopted value of -17.3 ± 0.3 ‰. 

There are seven laser fluorination 
18

O determinations for CL4 (Table 3). We were unable to 

obtain more laser fluorination results from a wider range of laboratories, despite repeated efforts. 

The limited number of measurements, coupled with the fact that the Caltech and Oregon results 

differ by nearly one ‰, demands either pooling the results into a single average number with a 

large uncertainty to be propagated to all SIMS results; or, alternatively, choosing among the 

results from the two laboratories. To decide on the most suitable approach, we used the average of 

the five Caltech values, the average of the two Oregon values, and the pooled seven results from 

the two laboratories to fit our SIMS results. For some of our calibration goethites, we calculated 

 using the three different numbers, and we compared the SIMS results, corrected for IMF 

(IMF-CL4), and also corrected for composition variations (Fe-matrix by BiasFe or ALL-matrix by 

BiasALL corrections), with their laser fluorination values. The value of CL4 that resulted in the 

most consistent reconciliation between SIMS and LF results was the Caltech value of -17.3 ± 0.3 

‰, thus justifying its adoption in this study. 

We analyzed 294 SHRIMP-SI 20 x 25 µm spots on a large fragment of the CL4 mounted as a 

single block. Instrumental drift was evaluated and corrected for, if necessary, as outlined in 

section 3.7 above. The 
18

OSIMS values for each session in the three runs (Runs 7, 9, and 10) are 

reasonably precise (Table 4), suggesting that the proposed RM is isotopically homogeneous. All 

results for the eight sessions pooled together still yield a reasonably precise dataset (-17.3 ± 0.5 

‰, 2 SD, n=294) (Figure 5a), attesting to the compositional and isotopic homogeneity of CL4 and 
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confirming its suitability as a reference material for the SIMS. Lastly, results for all CL4 spot 

analysis from all 26 sessions in eight separate SHRIMP-SI runs, where crystal fragments may 

have been mounted in random orientations, still define a moderately precise dataset (-17.3 ± 0.7 

‰, 2 SD, n=1027) (Figure 5b), further substantiating CL4’s suitability as a RM. Therefore, using 

CL4 as our RM, we tested the reliability of 
18

OSIMS measurements by devising and applying two 

distinct types of matrix corrections and comparing
18

OSIMS with 
18

OLF-VSMOW values for a variety 

of natural goethite samples ranging in compositions and textures (Figures 6,7). 

5.2. Correcting for matrix effects associated with solid solutions in goethite 

As discussed above, a potential source of uncertainty in goethite 
18

OSIMS is the fact that -

FeOOH forms natural solid solutions, where a variety of elements (Al, Mn, Ni, Co, Cu, Cr, V, Ti, 

etc.) may substitute for Fe
+3

 (Schulze, 1984; Schwertmann, 1994). Variable elemental 

substitutions and differences in elemental composition between the RM and unknowns may lead 

to significant instrument fractionation associated with compositionally dependent sputtering 

efficiency (matrix effects) (Shimizu and Hart, 1982; Ireland, 1995). In addition, natural goethites 

often contain Si and P as minor elements (Table 1; EA 4,5), and it is unclear whether these 

elements occur in solid solution or as mineral contaminants (Glasauer and Schwertmann, 1999). 

Some of the Si may occur as thin films of amorphous silica (opal) coating individual goethite 

fibers (Glasauer and Schwertmann, 1999); similarly, P may occur as nanofilms of phosphate on 

crystallite surfaces. These are difficult features to overcome and assess, but they must be factored 

into matrix corrections. 

Figure 2 and Table 1 illustrate the elemental composition of our proposed 
18

OSIMS RM (CL4) and 

other growth bands (CL1, CL2, and CL5) from the same sample. Table 1 and EA 4,5 show 

compositions for other natural goethite samples used for calibration purposes. The results show 

that the goethites investigated in this study contain up to a few percent Al and Si (± Zn, Mn, P, Pb 

and Cu) as dopants or contaminants. Iron contents are inversely proportional to the concentrations 

of these elements (Figure 2, Table 1, and EA4,5). This inverse relationship permits using total Fe-

contents – or total minor element contents – to correct for compositionally dependent matrix 

effects on SIMS results, as described in Section 3.7 above and summarized in Figure 3. 

We initially assess the suitability of our RM by comparing SIMS and LF results obtained for other 

Capão goethite growth bands (Figure 2) using CL4 as the reference material. Because other 

growth bands from the same sample have similar and very negative
18

O values, share the same 

texture and mode of precipitation, and only differ slightly in composition, they provide a useful 

initial test of CL4’s performance as a RM. Therefore, using CL4 as RM, we make 
18

OSIMS 
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measurements for CL1, CL2, and CL5 (Figures 2,6). Figure 6b illustrates that CL2 
18

OSIMS 

values, corrected for  (instrument mass fractionation) only, overlap with its Caltech laser 

fluorination value, suggesting that CL2 is sufficiently similar to CL4 that compositionally 

dependent matrix corrections are not required. 
18

OSIMS values for CL1 and CL5, corrected for 

 only (Figures 6 a,c), differ from their laser fluorination results (Caltech values). Figures 6 

d,e illustrate 
18

OSIMS measurements for CL1 and CL5, now corrected for both IMF and matrix 

effects (  and matrix), associated with variable Fe contents (BiasFe) and derived using the 

run-specific regressions in Figure 3. Figures 6 f,g show the same results corrected for matrix 

effects associated with all elements (V+Co+P+Cr+Al+Ni+Mn+Si+Pb+Cu+Ti+Zn) potentially 

replacing Fe in the goethite structure (BiasALL) (regression equations also shown in Figure 3). 

Both corrections yield IMF- and matrix-corrected 
18

OSIMS measurements very close to their 


18

OLF-VSMOW values, suggesting that either correction scheme is appropriate. 

To assess the same correction schemes applied to goethite samples of different origins, distinct 

isotopic compositions, and much more varied minor and trace element contents, we repeat the 

tests above on six additional samples analyzed as calibration goethites: Roy L5, Roy L6, WIN 

01B, WIN 03A, BAHLGB, and STOP1-6-D1 (Figure 7). Figure 7 a-f show the measured results 

using CL4 to correct for IMF only; Figure 7 g-l shows the same results after matrix corrections 

based on the total Fe contents (BiasFe) (see Figure 3 for regression lines); Figure 7 m-r shows the 

results matrix corrected using the average contents of all other elements substituting for iron 

(BiasALL). The plots clearly illustrate that compositionally dependent matrix effects are significant, 

and that matrix corrections are essential if accurate goethite
18

O values are to be obtained by 

SIMS. They also indicate that, for most samples, matrix corrections using total Fe contents or total 

content of elements substituting for Fe permit reasonably reconciling 
18

OSIMS and 
18

OLF-VSMOW 

values. Corrections based on matrix effects associated with all elements replacing Fe may be more 

appropriate because a decrease in Fe content may not necessarily result in significant matrix 

corrections. For example, if Fe is replaced by Mn
3+

 in the goethite structure, the matrix effect 

could potentially be relatively small (this remains to be demonstrated). However, if lowered Fe 

contents result from the presence of SiO2 or phosphate nanofilms coating goethite grains, the 

matrix effect may be significant as 
18

O values in Si-polymorphs or phosphates are generally 

much more positive (+15-20 ‰) than in goethite. Thus, a matrix correction based on the total 

amount of the substituting elements, as opposed to a decrease in Fe content, is often more 

appropriate. And, in fact, BiasALL does appear to provide a statistically more robust reconciliation 

(except for sample Roy L5, Figure 7 g,m) between 
18

OSIMS and 
18

OLF-VSMOW results for most of 

the runs, justifying preferentially choosing the BiasALL regressions. 
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5.3. The effect of crystallographic orientation on 
18

O/
16

O ratios 

Crystallographic orientation is known to affect ionization efficiency during the isotopic analysis of 

oxides (e.g., hematite, magnetite) by ion microprobes (Lyon et al., 1998; Huberty et al., 2010; Kita 

et al., 2010). This effect may result in instrument-specific isotopic variability as large as 5 ‰ 

(magnetite, Lyon et al., 1998) and up to 11 ‰ for the SHRIMP-SI (Llyam White, results on 

hematite, personal communication), masking potential variations in natural isotopic compositions 

in these minerals. 

Our results reveal a maximum discrepancy of ~ 2 ‰ when goethite samples are analyzed in 

crystallographic orientations orthogonal to that of RM crystals. Fortuitously, the fact that most 

goethite grains tend to break into elongated fragments with the direction of elongation parallel to 

the c-axis ensures that most crystal fragments can be oriented with respect to each other and with 

respect to the crystallographic orientation of the RM, thus reducing the magnitude of this 

analytical bias. Therefore, 
18

OSIMS values measured for properly oriented goethite samples should 

yield much more precise results than those presented here and more faithfully retrieve the 

mineral’s 
18

O value. Despite this caveat, the results in Figure 5b, which illustrate the dispersion 

of 1027 SHRIMP spot analyses on randomly oriented CL4 crystals, show that, even when grain 

orientation is unconstrained, relatively precise 
18

OSIMS results are still attainable. 

5.4. The effect of porosity on 
18

O/
16

O ratios 

Spot analysis of porous areas in a grain commonly yielded discrepant results from the mean 

obtained from the analysis of other regions of the same grain. The reoccurrence of this feature in 

several samples leads to the conclusion that areas of high porosity should be avoided when 

selecting positions for SHRIMP-SI goethite
 18

O/
16

O measurements. As porosity is a difficult 

feature to quantify, it is impossible to ascertain how much of the spread in 
18

OSIMS values within 

a sample may arise from heterogeneous porosity not readily discernible by visual inspection. 

Fortunately, porous goethite is yellow, and goethite becomes progressively darker as porosity 

decreases. Petrographic examination of goethite grains may suffice to determine areas of high 

porosity to be avoided during SIMS analysis. Porosity is also noticeable by the pitted nature of the 

reflected-light image of the polished sample in the SHRIMP mount (Figure 8a), another way of 

screening unsuitably porous samples. 

5.5. The influence of texture and multiple generations on the 
18

O values of goethite  

Grain BAH-F124-111.2B (Figure 11a) represents a typical colloform goethite symmetrically 

precipitated from the walls towards the center of an open cavity. After the cavity was completely 
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sealed by the precipitating goethite (with minor alternating bands of Cu-rich cryptomelane), the 

sample continued to grow in the direction illustrated by the arrows in Figure 11a. As illustrated in 

Figure 11a,b, individual growth bands in colloform goethites provide suitable samples for 

SHRIMP-SI 
18

O analysis: they are well crystallized; the crystals are parallel and elongated along 

the c-axis avoiding or easily accounting for possible variability related to crystallographic 

orientation; the results are relatively well constrained and reproducible; the spatial resolution of 

the SHRIMP-SI resolves the isotopic composition of single bands (too thin to be physically 

separated and analyzed by other methods); and analyzing individual bands permits detecting 

changes in the isotopic composition of fluids during mineral precipitation through time, making 

full use of the advantages provided by in situ analysis with the SIMS. 

In contrast, the scatter in 
18

OSIMS values obtained for sample BAH-F124-123.2 may be a function 

of (a) true variability in the sample, (b) crystallographic orientation (individual crystallites appear 

to grow aligned in different directions), and (c) porosity, or (d) the combined result of all these 

effects. These data suggest that sample texture must be used as a vetting criterion for the selection 

of the best grains or the best areas in a grain to undergo stable isotope analysis with the SHRIMP-

SI; however, despite the larger scatter in the 
18

OSIMS data, the 
18

OSIMS values are roughly 

compatible with the 
18

OLF-VSMOW result. 

6. Application to goethites from an ancient weathering profile in SE Brazil 

Here, we illustrate the potential of the methodological approaches refined in this contribution by 

providing an example that takes advantage of the high-spatial resolution (20-25 µm) of the 

SHRIMP-SI to measure variations in the oxygen isotope compositions of several generations of 

intimately intergrown goethites that are too small or too intertwined to be fully resolvable by 

physical separation. A 3x3x3 cm goethite sample (Figure 12a) from the canga horizon overlying 

the Gandarela iron deposit, Quadrilátero Ferrífero, Brazil, reveals several generations of 

intertwined goethite crystals that range in ages from 48.3 ± 4.8 to 9.5 ± 0.9 Ma (n = 52) (Monteiro 

et al., 2014; 2018), with several apparent ages (mixed ages?) in-between. The results suggest 

several generations of goethite intergrown at scales not entirely resolvable by methods that require 

physical separation (e.g., (U-Th)/He geochronology and LF). This intimate intergrowth is 

confirmed by visual observation of the hand-specimen and by petrographic/SEM analyses (Figure 

12). At least four visually distinct generations were identified: a massive and dull reddish-brown 

goethite (Figure 12b,g); a coarsely-crystalline yellow-orange goethite in veins (Figure 12c,h); a 

patchy goethite (Figure 12d,h); and a massive and black vitreous goethite (Figure 12e). These four 

generations were tentatively physically separated and dated. The spread in (U-Th)/He results 
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(Monteiro et al., 2018) for some of the generations clearly indicates that physically separating 

each generation is not entirely possible. But average results for each generation (Figure 12) reveal 

that the dull goethite is the oldest; the yellow veins constitute an intermediate-age generation; the 

patchy goethite is younger and may reflect a mixture of generations; and the black vitreous 

goethite is the youngest and isotopically the lightest. The relative ages are consistent with the 

paragenetic sequences observed in the hand specimen, and thin sections and polished grains 

(Figure 12). Electron microprobe analysis reveals that the various goethite generations show 

distinct minor element contents (Figure 12f). Finally, SHRIMP-SI analysis for each generation 

reveals differences in 
18

O values also. 

This complexity in ages, textures, and elemental and isotopic compositions is not resolvable by 

bulk methods. The high spatial resolution results, however, permit resolving a protracted and 

complex history of goethite precipitation-dissolution-reprecipitation under contrasting water/rock 

ratios through time. Weathering of the banded iron-formation and associated quartzites-phyllites 

in the Quadrilátero Ferrífero initiated sometime prior to ~ 49 Ma under relatively high water/rock 

ratios (
18

Ogoe ~ 0 ‰), promoting the dissolution of Fe- and Al-bearing lithologies, transportation 

of these elements in solution in the near-surface environment (which suggests the presence of 

organic acids), and their reprecipitation in duricrusts (canga), forming the 1
st
-generation Al-rich 

goethite (Figure 12a-b,g). Its elemental and isotopic compositions suggest that this 1
st
-generation 

goethite precipitated under tropical humid conditions with abundant vegetation. The duricrust was 

stable for a long period, but during the Late Oligocene warming (Zachos et al., 2001), massive 

influx of meteoric waters promoted partial dissolution of the canga, organic acids helped to leach 

Al from the system, and a 2
nd

-generation of goethite, devoid of Al but moderately enriched in Si, 

precipitated in fractures (Figure 12a,c,h). The low Al contents, light isotopic composition, and 

abundance of veins of this generation suggest effective flushing by the weathering solutions under 

high water/rock conditions. This isotopically lighter vein-goethite is consistent with voluminous 

rainfall (Monteiro, 2018). 

The patchy 3
rd

-generation goethite (Figure 12a, d, h) is isotopically heavy and Al-rich, and its 

texture, elemental, and isotopic composition suggest fine-scale local partial dissolution-

reprecipitation of 1
st
- and 2

nd
-generation goethites under relatively low water/rock ratios; re-

precipitated goethite masses may contain goethite grains from all generations (1
st
, 2

nd
, and 3

rd
) that 

are too finely intertwined to be resolved. Partial dissolution of 1
st
- and 2

nd
-generation goethite 

under water-saturated conditions with subsequent precipitation of 3
rd

-generation goethite by 

evapotranspiration of weathering solutions during alternating wet-dry climates would account for 

the textures, heavy isotopic composition, and high Al content of this 3
rd

-generation goethite. 
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Finally, massive influx of meteoric water in the Miocene (~11-9 Ma), causing wholesale 

dissolution-reprecipitation of all previous generations of goethite under high water/rock ratios, led 

to the formation of 4
th

-generation vitreous goethite (Figure 12a, e). Dissolution-reprecipitation of 

goethite occurred in situ, also without flushing of Al from the system. It may record rising 

groundwater levels, filling of nearby perched lakes, and formation of nearby bauxites by 

weathering of lake sediments. Interestingly, this last event is coeval with a major regional 

weathering event in southeastern Brazil retrieved from the Mn oxide 
40

Ar/
39

Ar record (Carmo and 

Vasconcelos, 2004; Vasconcelos and Carmo, 2018). 

The complexity of the processes above, the coexistence of several generations of goethite in close 

spatial proximity, and the variability in elemental and isotopic compositions at scales only 

resolvable by EMPA and with the SHRIMP-SI attest to the benefit of high-spatial resolution 

methods in the study of supergene minerals. In forthcoming studies, we will illustrate the 

application of the analytical approaches outlined here to produce time-calibrated 

paleoprecipitation 
18

O curves for continental weathering profiles in the Amazon and southeastern 

Brazil to demonstrate that the construction of continental paleoweathering curves complements 

the paleoclimatic record obtained from ocean sediments. 

7. CONCLUSIONS 

The Sensitive High Resolution Ion Microprobe for Stable Isotopes (SHRIMP-SI) provides a 

useful platform for investigating the stable isotope composition preserved in supergene goethites 

[-(Fe1-x(Al,Mn,Ni,V,Cu,Co,…)xOOH)] retrieved from continental weathering profiles. 

Characterization and validation of a suitable reference material (CL4) in this study makes the 

analysis of goethite by SIMS feasible. Matrix correction procedures, based both on Fe contents, or 

the abundances of all elements replacing Fe in the goethite structure, permits reconciling 

SHRIMP-SI and laser fluorination results for the same samples, confirming that texturally 

appropriate goethite can indeed be accurately analyzed by SIMS. The effects of crystallographic 

orientation reveal that mounting samples and reference materials in the same crystallographic 

geometry is the most appropriate approach for ensuring the most precise and accurate results. 

Sample texture, porosity, and crystallographic characteristics must be used in screening for 

suitable goethite samples for SHRIMP-SI analyses. The high spatial resolution possible with the 

ion microprobe permits measuring the isotopic composition of single growth bands in colloform 

samples, resolving the temporal 
18

O record preserved in natural goethites. It also permits 

retrieving complex histories of mineral dissolution-reprecipitation often recorded in ancient 

weathering profiles. If goethites do indeed precipitate at, or near, equilibrium with meteoric 
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waters, as currently interpreted, 
18

OSIMS analysis permit retrieving the composition of rainwater 

into the remote past assuming temperatures can be independently retrieved (e.g., Miller, 2018). 
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Figure Captions 

 

Figure 1. a) SEM image of goethite bands showing µm-size crystals orientated parallel to the 

direction of growth. b) Goethite grain showing partial dissolution and recrystallization features. 

Bulk 
18

O analysis will only retrieve average results for these samples. White arrows indicate 

direction of mineral precipitation. In situ SHRIMP-SI measurement resolves the oxygen isotope 

composition of each generation, and permits retrieving environmental information for specific 

periods of mineral precipitation. 

Figure 2. (a) A large goethite cobble from a colluvium next to the Capão topaz mine, Minas 

Gerais, Brazil, displays cm-wide homogeneous colloform bands of nearly stoichiometrically pure 

FeOOHgoe, providing a suitable candidate (CL4 RM) for SIMS 
18

O reference material. (b) The 

inverse relationship between Fe and minor element concentrations suggests that elemental 

compositions can be used to correct for matrix effects inherent in SIMS methods.   

Figure 3. Correlation diagrams between total wt% Fe or total wt% ALL (where ALL = 

V+Co+P+Cr+Al+Ni+Mn+Si+Pb+Cu+Ti+Zn) against Bias (where Bias = 
18

O*SIMS - 
18

OLF) for 

the calibration goethite samples analyzed in each SHRIMP-SI run. Fig. 3a, and b illustrate 

regression curves for the relationships Bias vs wt% Fe (a) and Bias vs wt% ALL (b), respectively, 

for all SHRIMP runs together. Fig. 3c, and d show regression lines derived for each separate 

SHRIMP run. These regressions were used for correcting measured 
18

O*SIMS results for matrix 

effects, as discussed in the text. 
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Figure 4. X-ray diffraction analysis reveals that the sample selected for SHRIMP-SI RM and other 

natural goethites selected for callibration consist of nearly pure -FeOOH (lines indicate goethite 

x-ray diffraction peaks) and are free from significant amounts of contaminants, except for the 

minor presence of a silica polymorph. 

Figure 5. All SHRIMP-SI 
18

OSIMS results obtained for CL4 RM. (a) 294 
18

OSIMS spot analyses 

on a large aliquot of CL4 RM, obtained during three different instrument runs, show a natural 

sample variability of ± 0.5 ‰ (2SD). (b) 1027 
18

OSIMS spot analysis for several grains of the CL4 

RM mounted in different crystallographic orientations shows moderate scatter arising from natural 

chemical or isotopic heterogeneity and crystal orientation effects. The precision (± 0.7 ‰, 2SD) 

suggests that CL4 RM constitutes a reasonable SHRIMP-SI reference material. 

Figure 6. SHRIMP-SI results for three additional colloform bands (L1, L2, and L5) from the 

Capão cobble depicted in Figure 2a,c shows that bands L1 and L5 yield uncorrected 
18

OSIMS 

values that differ from their 
18

OLF-VSMOW results. Composition-calibrated matrix corrections, 

using total Fe (Figure 6d,e) or total [V+Co+P+Cr+Al+Ni+Mn+Si+Pb+Cu+Ti+Zn] contents 

(Figure 6f,g) permit reconciling 
18

OSIMS and 
18

OLF-VSMOW values. The large scatter for band L5 

is consistent with petrographic and XRD data showing that this band has undergone partial 

recrystallization, goethite crystals are more randomly oriented, and hematite is present. Results for 

band L2 yield compatible 
18

OSIMS and 
18

OLF-VSMOW values, suggesting that band L2 probably 

has similar elemental composition as the CL4 RM. 

Figure 7. SHRIMP-SI results for the six relatively pure and well-crystallized goethite samples 

illustrated in EA1. 7a-f shows that uncorrected 
18

OSIMS values differ significantly from 
18

OLF-

VSMOW results. Composition-calibrated matrix corrections, using total Fe (Figure 7g,l) or total 

[V+Co+P+Cr+Al+Ni+Mn+Si+Pb+Cu+Ti+Zn] contents (Figure 7m,r) permit reconciling 
18

OSIMS 

and 
18

OLF-VSMOW values for all samples. Matrix corrections using total 

[V+Co+P+Cr+Al+Ni+Mn+Si+Pb+Cu+Ti+Zn] contents permit better reconciliation between 

SIMS and LF results for all samples except RoyL5 (Figure 6g,m). Errors for each SHRIMP-SI 

spot analysis were calculated as discussed in the text. 

Figure 8. Goethite is orthorhombic and preferentially elongated along the c-axis, and fragments of 

bands of colloform goethite also fracture elongated along the c-axis. To test the dependency of 


18

OSIMS values on crystal orientation, we analysed two aliquots for sample Winsor 06 01B in 

distinct crystallographic positions (a-d). The results (d) show a slight difference in measured 


18

OSIMS values for the crystals oriented with the c-axis parallel (a,b) and perpendicularly (c) to the 
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disk surface. In another experiment (e-h), aliquots of CL4 RM parallel (e,f) or perpendicular (g) to 

the plane of the page yield the results in (h), revealing a crystal orientation bias of ~ 2‰. In 

addition to crystal orientation, goethite aliquot in a,d shows that porosity also affects 
18

OSIMS 

measurements. The porous yellow band (points 5-7 in a,b) yield discrepant results from the rest of 

the sample, while EMPA does not detect any difference in composition between the yellow and 

brown bands. 

Figure 9: SHRIMP-SI results obtained for three aliquots of the CL4 RM (analysed as unknowns), 

where the aliquots have b-axes parallel to the disk surface (c). With the disk oriented as shown in 

(a), the three crystal fragments in (d) were analyzed, yielding the results shown in f. When the 

disk is rotated 90° clockwise and reanalyzed (b,e), the results show larger discrepancies between 


18

OSIMS and 
18

OLF-VSMOW values. 

Figure 10: Fragments of pressed pellets of synthetic goethite yield the 
18

OSIMS numerical results 

shown in yellow. The scattered results prevent the use of these synthetic samples as SHRIMP-SI 


18

OSIMS goethite reference materials. However, despite the large scatter, the data (e.g., goethite 

precipitated at pH>12 shows progressively lighter isotopic composition with temperature, while 

goethites precipitated at the same temperature but at pH<2 show heavier 
18

O values) suggest that 

broad trends in 
18

OSIMS values for synthetic samples may be resolved with the SHRIMP-SI, even 

if precision is partially compromised by sample porosity. 

Figure 11: (a, b) Repeatability of SHRIMP-SI 
18

O results for symmetrical colloform bands on 

opposite walls of a cavity infilled with goethite (white arrows indicate direction of crystal growth). 

The entire population yields a relatively narrow 
18

OSIMS range (0.3 ± 0.6 ‰ (1SD)) compatible 

with its 
18

OLF-VSMOW value of 0.4 ± 0.2 ‰ (1SD). Figure 11c,d illustrates the repeatability of 

SHRIMP-SI 
18

O results for an optically homogeneous goethite sample. Figure 11e,f show much 

larger scatter in 
18

OSIMS results when goethite masses comprise randomly oriented and poorly 

packed crystals. 

Figure 12. (a) Hand-specimen of several generations of goethite cementing a canga horizon in the 

Gandarela plateau, Minas Gerais, Brazil (Monteiro et al., 2014; 2018). The results reveal that the 

Al-rich first-generation (48-?? Ma?) goethite has a ~
18

OSIMS value of -0.3 ± 0.2 ‰; it is cross-cut 

by isotopically light (
18

OSIMS = -1.2 ± 0.6 ‰) and Si-rich/Al-poor second generation (~27±6 Ma) 

goethite; patchy goethite is also Al-rich, isotopically heavy (~
18

OSIMS value of 3.4 ± 0.5 ‰), and 

young (18.7 ± 1.8 Ma, n=6); and pure vitreous goethite is the youngest (11.3 ± 1.1 Ma, n=6) and 

isotopically the lightest (
18

OSIMS = -1.4 ± 0.3 ‰). These complex textures and distributions of 
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ages, chemical and isotopic compositions record important episodes of the weathering history for 

the Quadrilátero Ferrífero, Brazil, in one 3x3x3 cm hand specimen. 
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Table 1: Elemental composition of all goethite samples. 

  
Capao

-L4 

± (1 

) 

Capao

-L1 

± (1 

) 

Capao

-L5 

± (1 

) 

Roy-

L5 

± (1 

) 

Roy-

L6 

± (1 

) 

Win-

01B 

± (1 

) 

Win-

03A(*) 

± (1 

) 

Stop-1-

6-D1 

± (1 

) 

BAH 

LGB 

± (1 

) 

Elem

ent  n = 37   n = 20   n = 8   n = 6   n = 6   n = 30   n = 11   n = 28   n = 53   

O 35.78 0.90 35.76 0.75 37.64 0.51 

37.4

4 0.67 

37.5

9 0.51 36.99 0.39 37.76 0.49 37.73 0.61 36.17 0.89 

Na 0.01 0.05 0.01 0.01 0.02 0.02 0.04 0.04 0.02 0.02 0.02 0.02 0.00 0.01 0.07 0.06 0.01 0.02 

K 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.02 0.05 0.00 0.00 0.01 0.01 

V 0.00 0.02 0.02 0.03 0.02 0.03 0.00 0.00 0.01 0.02 -   0.03 0.06 0.01 0.02 0.01 0.02 

Co 0.07 0.02 0.08 0.04 0.09 0.05 0.05 0.02 0.06 0.01 0.08 0.03 0.07 0.03 0.00 0.02 0.07 0.03 

Mg 0.11 0.02 0.11 0.03 0.30 0.04 0.02 0.01 0.00 0.00 0.05 0.03 0.16 0.18 0.16 0.01 0.04 0.05 

P 0.02 0.03 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.05 0.02 0.26 0.13 0.76 0.17 0.09 0.05 

Cr 0.01 0.01 0.01 0.02 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.02 0.00 0.01 0.00 0.01 0.01 0.02 

Fe 61.21 0.77 62.64 1.02 58.64 0.33 

60.0

4 0.57 

60.6

5 0.53 62.41 0.43 58.02 1.58 58.44 1.43 61.84 1.54 

Al 0.12 0.02 0.15 0.03 0.32 0.06 0.11 0.02 0.13 0.01 0.12 0.04 0.34 0.21 0.02 0.05 0.14 0.05 

S 0.03 0.10 0.02 0.02 0.02 0.01 0.03 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Ni 0.01 0.02 0.01 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.03 0.00 0.01 0.01 0.02 

Mn 0.05 0.02 0.05 0.03 0.10 0.03 0.55 0.04 0.62 0.05 0.25 0.05 0.21 0.14 0.09 0.02 0.08 0.06 

Si 1.12 0.09 0.71 0.22 1.81 0.10 1.08 0.06 1.08 0.04 0.98 0.13 1.59 0.61 1.37 0.31 1.35 0.24 

Pb 0.26 0.06 0.22 0.09 0.24 0.07 0.02 0.02 0.02 0.03 0.04 0.03 0.05 0.05 0.00 0.03 0.10 0.11 

Cu 0.02 0.03 0.03 0.02 0.10 0.03 0.01 0.01 0.00 0.00 0.02 0.02 0.14 0.18 0.00 0.01 0.14 0.09 

Ti 0.00 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.01 0.01 0.02 0.03 0.02 0.03 0.00 0.01 0.01 0.02 

Ca 0.00 0.03 0.00 0.00 0.05 0.01 0.00 0.00 0.00 0.00 0.07 0.22 0.11 0.14 0.20 0.06 0.00 0.00 

Zn 0.03 0.04 0.02 0.04 0.04 0.03 0.01 0.01 0.03 0.02 0.01 0.04 0.38 0.14 0.02 0.02 0.02 0.03 

Ba -   0.02 0.02 0.02 0.02 -   -   0.04 0.04 0.03 0.03 -   0.03 0.04 

Sr -   0.02 0.02 0.00 0.01 -   -   0.01 0.01 -   -   0.02 0.02 

Cl -       - 

 
-   -   -   0.01 0.01 -       
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Tota

l   98.83 1.03 99.90 1.04 99.45 0.50 

99.4

4 0.91 

100.

25 0.79 

101.2

1 0.53 99.25 0.69 98.88 1.38 100.15 1.21 

(*) Data from Waltenberg (2012) 

              

Table 2 

Capao L5 261.1 7.2 1.85 0.04 0.08 0.02 2.75 0.13 0.04 

                    

Average 227.0   2.0   0.1   2.5   0.03 

S.D. (1) 19.9   0.3   0.0   0.3     

                    

Win 01B 209.7 4.5 8.10 0.06 0.08 0.02 9.47 0.39 0.01 

Win 01B 202.6 4.5 8.04 0.08 0.07 0.02 9.08 0.29 0.01 

Win 01B 202.9 4.3 7.94 0.06 0.04 0.02 8.97 0.37 0.01 

Win 01B 203.5 4.7 7.94 0.09 0.18 0.03 9.03 0.24 0.02 

Win 01B 187.1 4.4 7.85 0.09 0.09 0.03 8.17 0.21 0.01 

                    

Average 201.1   8.0   0.1   8.9   0.01 

S.D. (1) 8.4   0.1   0.1   0.5     

                    

Roy L5 66.6 1.8 3.18 0.06 0.21 0.02 1.18 0.04 0.07 

Roy L5 67.5 1.9 3.24 0.06 0.30 0.03 1.22 0.03 0.09 

                    

Average 67.1   3.2   0.3   1.2   0.08 

S.D. (1) 0.7   0.0   0.1   0.0     

                    

Roy L6 78.9 2.0 3.66 0.06 0.12 0.02 1.59 0.06 0.03 

Roy L6 77.9 2.2 3.52 0.07 0.13 0.03 1.52 0.03 0.04 
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Average 78.4   3.6   0.1   1.6   0.03 

S.D. (1) 0.7   0.1   0.0   0.1     

                    

WIN 03A(b)* 37.7 - 150.48 - 8.96 - 31.34 - 0.06 

WIN 03A(c)*  37.8 - 150.53 - 2.71 - 31.13 - 0.02 

WIN 03A(d)* 36.8 - 317.35 - 18.24 - 64.61 - 0.06 

                    

Average 37.4   206.1   10.0   42.4   0.05 

S.D. (1) 0.5   96.3   7.8   19.3     

                    

BAHLGB 16.9 0.3 75.4 0.3 0.05 0.02 6.3 0.2 0.001 

BAHLGB 15.6 0.3 81.7 0.3 0.06 0.02 6.3 0.3 0.001 

                    

Average 16.3   78.5   0.1   6.3   0.00 

S.D. (1) 0.9   4.5   0.0   0.0     

                    

STOP1-6-D1
‡
 2.8 0.2 3.11 - 0.21 - 0.05 - 0.07 

STOP1-6-D1
‡
 4.1 0.2 3.33 - 0.11 - 0.08 - 0.03 

                    

Average 3.5   3.2   0.2   0.1   0.05 

S.D. (1) 0.9   0.2   0.1   0.0     

# not used to calculate the 

average * He age from Waltenberg (2012) ‡ He age from Heim (2006) 
 

 

Table 3: Laser fluorination 
18

O results 

Sample Mass (mg) yield (%) 
18

OVSMOW (‰) ± 1 Laboratory 
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CL1 1.59 54   -18.083 0.033 1 

  2.05 89   -18.076 0.033 1 

      Average -18.079     

      1sd 0.005     

              

    99   -17.21 0.20 2 

              

CL2 1.04 97   -17.90 0.01 1 

  1.67 99   -16.31 0.20 2 

              

CL4 1.11 100   -17.22 0.03 1 

  1.84 106   -17.72 0.05 1 

  1.93 111   -17.27 0.02 1 

  1.58 109   -16.90 0.05 1 

  1.81 107   -17.34 0.02 1 

      Average -17.29     

      1sd 0.29     

              

    104   -16.34 0.20 2 

    99   -16.33 0.20 2 

              

CL5 1.38 94   -16.19 0.03 1 

              

Roy L5 1.84 112   -1.41 0.02 1 

  2.07 110   -1.33 0.02 1 

  2.68 110   -1.27 0.04 1 

  1.55 111   -1.36 0.09 1 

  2.15 92   -1.41 0.20 2 

      Average -1.36     

      1sd 0.06     
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Roy L6 1.65 115   -0.94 0.03 1 

  1.81 115   -1.19 0.03 1 

  2.37 111   -1.14 0.07 1 

  1.99 109   -1.38 0.07 1 

  1.92 110   -1.19 0.20 2 

      Average -1.17     

      1sd 0.16     

              

Win 01B 1.84 37   -13.64 0.03 1 

  1.50 99   -12.20 0.20 2 

              

Win 03A 1.73 108   -2.21 0.02 1 

  1.96 110   -1.96 0.20 2 

      Average -2.08     

      1sd 0.18     

              

BAHLGB 1.62 108   -2.68 0.02 1 

  1.55 84   -2.52 0.20 2 

      Average -2.60     

      1sd 0.12     

              

Stop1-6-D1 1.60 106   -0.67 0.04 1 

1: Caltech       
(bold): 

18
O value used for matrix 

calibration 

2: University of Oregon           
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Table 4: Summary of SHRIMP-SI oxygen isotope ratios and uncertainties. RM = reference material. 

Run Session δ18OSIMS 

± Internal 

errorsample 

( 95% CI) 

Standard 

deviation 

(1σ) 

Standard 

Error of 

the Mean 

(95% CI) 

MSWD 

± 

External 

error 

(1σ)  

no. 

spots 

no. 

outliers 
δ18OVSMOW BiasME

(*) BiasFe BiasALL 

δ18OSIMS 

(corrected-

Fe) 

δ18OSIMS 

(corrected-

ALL) 

                                

R2 HM-1                             

  CL4 - normalizing RM -17.3 0.2 0.1 0.2 0.8 0.2 4 0 -17.3 -         

  CL1 -18.3 0.3 0.3   0.4 0.3 4 0 -18.1 -0.2 -0.4 -0.7 -17.9 -17.6 

  CL1 -19.3 0.7 0.2   6.3 0.5 7 4 -18.1 -1.2 -0.4 -0.7 -18.9 -18.6 

  CL2 -19.5 0.1 0.2   1.6 0.1 10 3 -17.9 -1.6         

  CL5 -14.6 0.5 0.5   14.2 0.5 7 0 -16.2 1.6 2.3 2.3 -16.8 -16.8 

  CL5 -12.9 0.4 0.3   4.2 0.4 6 1 -16.2 3.3 2.3 2.3 -15.2 -15.2 

  Win 01B -11.7 0.2 0.2   0.6 0.2 9 3 -12.2 0.5 -0.2 -0.1 -11.5 -11.6 

  Win 01B -12.2 0.3 0.3   5.4 0.3 6 0 -12.2 0.0 -0.2 -0.1 -12.0 -12.1 

  BAH -1.7 1.4 0.1   0.1 1.0 2 0 -2.6 0.9 0.1 0.8 -1.9 -2.5 

  BAH -1.6 0.2 0.3   2.0 0.3 9 0 -2.6 1.0 0.1 0.8 -1.7 -2.3 

                                

R2 HM-4                             

  CL4 - normalizing RM -17.3 0.1 0.3 0.1 2.0 0.2 19 0 -17.3 -         

  CL1 -17.4 0.3 0.1   0.2 0.2 4 0 -18.1 0.7 -0.4 -0.7 -17.0 -16.7 

  CL1 -19.3 0.6 0.2   1.2 0.4 3 3 -18.1 -1.2 -0.4 -0.7 -18.5 -18.2 

  CL1 -19.4 0.9 0.4   5.3 0.7 5 2 -18.1 -1.3 -0.4 -0.7 -18.5 -18.2 

  CL2 -16.2 0.4 0.5   5.4 0.4 7 0 -17.9 1.7         

  CL2 -17.8 0.3 0.2   1.1 0.3 3 0 -17.9 0.1         

  CL5 -12.5 0.2 0.2   0.9 0.2 7 0 -16.2 3.7 2.3 2.3 -14.7 -14.8 

  CL5 -11.9 0.5 0.2   2.5 0.4 3 0 -16.2 4.3 2.3 2.3 -14.1 -14.2 
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  CL5 -14.6 0.3 0.3   1.9 0.3 5 0 -16.2 1.6 2.3 2.3 -16.8 -16.9 

  CL5 -15.0 0.4 0.2   0.8 0.3 4 0 -16.2 1.2 2.3 2.3 -17.3 -17.3 

  CL5 -15.4 0.6 0.3   4.8 0.4 6 2 -16.2 0.8 2.3 2.3 -17.7 -17.7 

  Win 01B -12.9 1.2 0.5   11.9 0.9 4 1 -12.2 -0.7 -0.2 -0.1 -12.7 -12.8 

  Win 01B -12.0 1.1 0.8   8.9 0.9 4 0 -12.2 0.2 -0.2 -0.1 -11.7 -11.9 

  BAH -2.5 0.8 0.3   2.9 0.6 3 0 -2.6 0.1 0.1 0.8 -2.6 -3.2 

                                

R4 JA-1                             

  CL4 - normalizing RM -17.3 0.1 0.3 0.1 3.8 0.3 63 1 -17.3 -         

  CL2 -17.9 0.2 0.2   1.1 0.2 9 1 -17.9 0.0         

  CL2 -18.9 0.3 0.3   3.4 0.3 8 0 -17.9 -1.0         

  CL2 -17.8 0.4 0.4   4.9 0.4 8 0 -17.9 0.1         

  CL2 -18.8 0.1 0.2   0.6 0.1 8 0 -17.9 -0.9         

  CL2 -18.2 0.2 0.2   2.3 0.2 8 0 -17.9 -0.3         

  CL2 -17.4 0.4 0.5   5.2 0.4 8 1 -17.9 0.5         

  CL2 -16.0 0.3 0.4   7.1 0.3 8 0 -17.9 1.9         

  CL2 -17.6 0.2 0.2   0.6 0.2 6 0 -17.9 0.3         

  CL2 -17.4 0.2 0.3   2.1 0.2 8 0 -17.9 0.5         

  CL2 -19.0 0.2 0.2   2.0 0.2 8 5 -17.9 -1.1         

                                

R5 HM-13                             

  CL4 - normalizing RM -17.3 0.3 0.6 0.3 9.1 0.5 18 1 -17.3 -         

  Win 01B -11.1 0.7 0.3   2.1 0.5 4 1 -12.2 1.1 0.3 0.6 -11.4 -11.7 

  Win 01B -12.3 0.6 0.7   14.5 0.6 8 0 -12.2 -0.1 0.3 0.6 -12.6 -13.0 

  Win 03A 0.6 0.4 0.3   1.2 0.3 3 0 -2.1 2.7 2.3 2.8 -1.6 -2.2 

  Win 03A 0.5 2.2 0.3   1.6 1.6 3 1 -2.1 2.6 2.3 2.8 -1.8 -2.4 

  Roy L5 0.1 0.4 0.1   0.3 0.3 5 2 -1.4 1.5 1.4 1.0 -1.3 -0.9 
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  Roy L5 0.0 0.4 0.1   0.8 0.3 3 0 -1.4 1.3 1.4 1.0 -1.4 -1.0 

  Roy L5 -0.1 0.5 0.2   1.3 0.4 4 1 -1.4 1.3 1.4 1.0 -1.4 -1.1 

  Roy L6 0.7 0.4 0.1   0.5 0.3 3 0 -1.2 1.8 1.1 1.2 -0.4 -0.5 

  Roy L6 0.6 0.4 0.2   0.8 0.3 5 2 -1.2 1.8 1.1 1.2 -0.5 -0.6 

  Roy L6 1.2 4.4 0.5   4.6 3.1 2 0 -1.2 2.4 1.1 1.2 0.1 0.0 

  Roy L6 0.6 2.0 0.2   1.3 1.5 2 0 -1.2 1.8 1.1 1.2 -0.5 -0.6 

  Stop1-6-D1 0.9 0.5 0.5   9.2 0.5 6 0 -0.7 1.6 2.1 1.6 -1.2 -0.7 

  Stop1-6-D1 1.1 0.9 0.4   5.5 0.7 3 0 -0.7 1.8 2.1 1.6 -1.0 -0.5 

  Stop1-6-D1 1.1 1.1 0.4   6.2 0.8 4 1 -0.7 1.8 2.1 1.6 -1.0 -0.5 

  Stop1-6-D1 0.6 0.4 0.0   0.1 0.3 3 0 -0.7 1.2 2.1 1.6 -1.5 -1.0 

                                

R5 HM-15                             

  CL4 - normalizing RM -17.3 0.1 0.3 0.1 2.5 0.2 21 3 -17.3 -         

                                

                                

R5 HM-16_TH                             

  CL4 - normalizing RM -17.3 0.2 0.4 0.2 3.8 0.3 14 0 -17.3 -         

                                

R6 HM-19_HM-20                             

  CL4 - normalizing RM -17.3 0.2 0.6 0.1 23.1 0.4 58 0 -17.3 -         

  Roy L5 1.5 0.3 0.2   3.7 0.3 5 0 -1.4 2.9 2.7 2.1 -1.2 -0.6 

  Roy L5 2.1 0.3 0.4   4.3 0.4 9 1 -1.4 3.4 2.7 2.1 -0.7 0.0 

  Roy L5 3.5 0.3 0.2   3.7 0.3 5 0 -1.4 4.8 2.7 2.1 0.7 1.3 

  Roy L6 2.5 0.2 0.2   2.3 0.2 8 1 -1.2 3.7 2.0 2.9 0.5 -0.4 

  Roy L6 2.1 0.2 0.2   1.7 0.2 12 1 -1.2 3.2 2.0 2.9 0.1 -0.8 

  Roy L6 1.6 0.3 0.2   1.5 0.2 5 1 -1.2 2.8 2.0 2.9 -0.4 -1.2 

  Stop1-6-D1 3.2 0.2 0.2   1.6 0.2 6 0 -0.7 3.9 4.7 4.7 -1.5 -1.5 
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  Stop1-6-D1 3.1 0.4 0.4   7.5 0.4 7 1 -0.7 3.8 4.7 4.7 -1.6 -1.5 

  Stop1-6-D1 3.2 0.5 0.2   2.9 0.4 3 0 -0.7 3.9 4.7 4.7 -1.5 -1.4 

                                

R6 HM-20_BAH                             

  CL4 - normalizing RM -17.3 0.1 0.3 0.1 5.0 0.3 36 4 -17.3 -         

  Roy L5 0.4 0.4 0.3   3.1 0.3 4 0 -1.4 1.7 2.7 2.1 -2.4 -1.7 

  Roy L5 1.1 0.2 0.2   0.8 0.2 5 0 -1.4 2.4 2.7 2.1 -1.7 -1.0 

  Roy L5 1.3 1.0 0.7   13.2 0.9 5 1 -1.4 2.7 2.7 2.1 -1.4 -0.8 

  Roy L5 2.8 0.2 0.1   1.0 0.1 5 1 -1.4 4.1 2.7 2.1 0.0 0.7 

  Roy L6 2.9 0.6 0.3   6.1 0.5 4 0 -1.2 4.1 2.0 2.9 0.9 0.1 

  Roy L6 2.6 0.5 0.5   15.9 0.5 6 0 -1.2 3.8 2.0 2.9 0.6 -0.3 

  Roy L6 2.8 0.7 0.6   19.8 0.7 5 0 -1.2 4.0 2.0 2.9 0.8 0.0 

  Roy L6 2.0 0.5 0.4   10.0 0.5 5 0 -1.2 3.2 2.0 2.9 0.0 -0.8 

  Stop1-6-D1 2.9 0.3 0.2   1.2 0.3 4 0 -0.7 3.6 4.7 4.7 -1.8 -1.8 

  Stop1-6-D1 3.1 0.2 0.2   2.2 0.2 5 0 -0.7 3.7 4.7 4.7 -1.6 -1.6 

  Stop1-6-D1 2.6 0.5 0.4   9.4 0.5 5 0 -0.7 3.2 4.7 4.7 -2.1 -2.1 

  Stop1-6-D1 3.4 0.3 0.2   3.4 0.3 5 0 -0.7 4.1 4.7 4.7 -1.3 -1.3 

                                

R7 HM-17                             

  CL4 - normalizing RM -17.3 0.2 0.4 0.1 7.2 0.3 53 3 -17.3 -         

  Roy L5 2.1 2.0 0.7   34.2 1.5 4 1 -1.4 3.4 2.3 1.9 -0.2 0.2 

  Roy L5 2.4 0.4 0.3   7.0 0.3 7 1 -1.4 3.7 2.3 1.9 0.1 0.4 

  Roy L5 2.3 1.1 0.5   7.5 0.9 4 1 -1.4 3.7 2.3 1.9 0.0 0.4 

  Roy L6 1.9 0.4 0.5   4.6 0.4 7 0 -1.2 3.0 1.9 2.1 -0.1 -0.3 

  Roy L6 3.1 0.7 0.2   3.5 0.5 3 0 -1.2 4.3 1.9 2.1 1.2 1.0 

  Roy L6 2.7 0.4 0.0   0.0 0.3 4 1 -1.2 3.9 1.9 2.1 0.8 0.6 
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R7 HM-17-D                             

  CL4 - normalizing RM -17.3 0.2 0.5 0.2 9.0 0.4 44 4 -17.3 -         

  Roy L5 0.9 0.7 0.9   32.1 0.8 10 0 -1.4 2.3 2.3 1.9 -1.4 -1.0 

  Roy L5 1.3 0.7 0.6   4.2 0.7 5 0 -1.4 2.7 2.3 1.9 -1.0 -0.6 

  Roy L6 1.8 0.2 0.3   0.7 0.3 9 1 -1.2 3.0 1.9 2.1 -0.1 -0.3 

  Roy L6 1.7 1.4 0.5   2.1 1.0 3 0 -1.2 2.9 1.9 2.1 -0.2 -0.4 

  BAH 0.1 0.9 0.5   10.0 0.7 5 1 -2.6 2.7 3.3 2.6 -3.2 -2.5 

  BAH 0.1 0.8 0.5   5.3 0.7 4 0 -2.6 2.7 3.3 2.6 -3.2 -2.6 

                                

R7 HM-21                             

  CL4 - normalizing RM -17.3 0.1 0.4 0.1 4.5 0.3 41 3 -17.3 -         

  Roy L5 1.7 0.4 0.6   9.9 0.5 13 3 -1.4 3.1 2.3 1.9 -0.6 -0.2 

  Roy L6 1.0 0.3 0.5   2.7 0.5 12 4 -1.2 2.1 1.9 2.1 -1.0 -1.1 

  Stop1-6-D1 2.1 0.2 0.2   1.5 0.2 11 4 -0.7 2.8 3.3 2.6 -1.1 -0.5 

                                

R7 HM-23                             

  CL4 - normalizing RM -17.3 0.2 0.6 0.2 11.2 0.4 40 2 -17.3 -         

  Win 03A 1.8 0.2 0.4   4.0 0.3 16 2 -2.1 3.9 3.5 4.1 -1.7 -2.3 

  Win 03A 1.7 0.2 0.4   4.7 0.3 14 3 -2.1 3.8 3.5 4.1 -2.4 -2.3 

  Roy L5 1.8 0.2 0.4   9.1 0.3 16 1 -1.4 3.1 2.3 1.9 -0.5 -0.2 

  Roy L5 0.7 0.4 0.4   4.6 0.4 8 1 -1.4 2.0 2.3 1.9 -1.6 -1.3 

  Roy L6 1.9 0.2 0.4   4.1 0.3 16 2 -1.2 3.0 1.9 2.1 -0.1 -0.2 

  Roy L6 0.7 0.5 0.6   8.0 0.5 8 1 -1.2 1.9 1.9 2.1 -1.2 -1.4 

                                

R7 HM-23B                             

  CL4 - normalizing RM -17.3 0.4 0.4 0.3 6.7 0.4 8 1 -17.3 -         
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  Win 03A 2.2 1.7 0.8   7.3 1.3 3 0 -2.1 4.3 3.5 4.1 -1.3 -1.9 

  Win 03A 2.2 0.8 0.3   1.6 0.6 3 0 -2.1 4.3 3.5 4.1 -2.2 -2.2 

  Roy L5 1.3 1.7 0.0   0.0 1.2 3 1 -1.4 2.7 2.3 1.9 -1.0 -0.6 

  Roy L5 0.1 0.6 0.1   0.2 0.4 3 0 -1.4 1.4 2.3 1.9 -2.2 -1.8 

  Roy L6 1.3 3.1 0.3   4.3 2.2 3 1 -1.2 2.5 1.9 2.1 -0.6 -0.8 

  Roy L6 0.1 2.6 0.2   0.4 1.8 3 1 -1.2 1.3 1.9 2.1 -1.8 -2.0 

                                

R7 HM-23_HM-27                             

  CL4 - normalizing RM -17.3 0.1 0.4 0.1 2.4 0.3 28 3 -17.3  -         

  CL1 -16.8 0.2 0.3   2.0 0.2 10 2 -18.1 1.3 0.7 1.0 -17.5 -17.7 

  CL2 -17.8 0.2 0.3   3.4 0.3 10 2 -17.9 0.1         

  Win 03A 1.8 1.2 0.5   5.3 0.9 4 1 -2.1 3.9 3.5 4.1 -1.7 -2.3 

  Win 03A 1.8 0.3 0.2   0.9 0.3 4 0 -2.1 3.8 3.5 4.1 -1.8 -2.4 

  Roy L5 1.4 0.9 0.7   5.1 0.8 6 2 -1.4 2.7 2.3 1.9 -0.9 -0.5 

  Roy L5 0.4 0.3 0.1   0.4 0.2 5 1 -1.4 1.8 2.3 1.9 -1.9 -1.5 

  Roy L6 2.1 0.8 0.5   13.1 0.7 4 0 -1.2 3.2 1.9 2.1 0.1 0.0 

  Roy L6 0.8 0.6 0.4   2.6 0.5 4 0 -1.2 1.9 1.9 2.1 -1.2 -1.4 

                                

R7 HM-23                             

  CL4 - normalizing RM -17.3 0.2 0.4 0.2 5.8 0.3 31 3 -17.3 -         

  Win 03A 2.0 0.2 0.3   1.4 0.2 9 2 -2.1 4.0 3.5 4.1 -1.6 -2.2 

  Win 03A 2.3 0.3 0.3   3.3 0.3 10 0 -2.1 4.3 3.5 4.1 -1.3 -1.9 

  Roy L5 1.8 0.5 0.5   5.2 0.5 6 0 -1.4 3.2 2.3 1.9 -0.5 -0.1 

  Roy L5 -0.3 0.4 0.4   3.5 0.4 5 1 -1.4 1.1 2.3 1.9 -2.6 -2.2 

  Roy L6 1.7 0.6 0.6   4.6 0.6 5 1 -1.2 2.9 1.9 2.1 -0.2 -0.4 

  Roy L6 0.9 0.2 0.3   1.3 0.3 7 2 -1.2 2.0 1.9 2.1 -1.1 -1.3 
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R8 HM-22_JA                             

  CL4 - normalizing RM -17.3 0.1 0.4 0.1 10.8 0.3 57 0 -17.3 -         

  Roy L5 -1.0 0.2 0.3   5.2 0.3 11 1 -1.4 0.3 0.4 0.1 -1.5 -1.2 

  Roy L6 -0.9 0.3 0.6   13.8 0.5 11 1 -1.2 0.3 0.3 0.2 -1.1 -1.1 

                                

R8 HM-BAH_JA                             

  CL4 - normalizing RM -17.3 0.1 0.3 0.1 6.0 0.2 48 0 -17.3 -         

  BAH -2.4 0.1 0.3   5.4 0.2 20 1 -2.6 0.2 0.9 0.4 -3.3 -2.8 

                                

R8 HM-23_JA                             

  CL4 - normalizing RM -17.3 0.1 0.3 0.1 6.8 0.2 37 1 -17.3 -         

  Win 03A -0.5 0.2 0.2   3.7 0.2 10 0 -2.1 1.6 1.0 1.1 -1.5 -1.6 

  Win 03A -1.5 0.4 0.4   10.3 0.4 8 1 -2.1 0.6 1.0 1.1 -2.4 -2.5 

  Roy L6 -1.9 0.4 0.5   13.5 0.5 11 1 -1.2 -0.7 0.3 0.2 -2.2 -2.1 

  Roy L6 -0.5 0.2 0.3   6.5 0.3 11 1 -1.2 0.7 0.3 0.2 -0.7 -0.7 

                                

R8 HM-22                             

  CL4 - normalizing RM -17.3 0.1 0.3 0.3 2.6 0.2 7 0 -17.3 -         

                                

R9 HM-27_HM-16                             

  CL4 - normalizing RM -17.3 0.1 0.3 0.1 5.6 0.2 64 0 -17.3 -         

  CL1 -20.5 0.2 0.3   5.3 0.3 10 0 -18.1 -2.4 -2.3 -3.2 -18.2 -17.2 

  CL2 -18.5 0.2 0.3   2.6 0.2 9 0 -17.9 -0.6         

  Roy L5 -0.4 0.2 0.6   4.3 0.4 14 2 -1.4 0.9 1.5 0.5 -1.9 -0.9 

  Roy L6 -0.7 0.2 1.0   11.1 0.7 16 0 -1.2 0.5 0.8 1.0 -1.5 -1.7 

  BAH -1.7 0.4 0.3   3.9 0.3 5 0 -2.6 0.9 3.3 2.4 -4.9 -4.0 

  BAH -1.8 0.4 0.2   3.6 0.3 4 0 -2.6 0.9 3.3 2.4 -5.0 -4.1 
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R9 HM-27_HM-22                             

  CL4 - normalizing RM -17.3 0.1 0.3 0.1 4.8 0.2 43 1 -17.3 -         

  Roy L5 0.1 0.4 0.4   7.5 0.4 6 0 -1.4 1.5 1.5 0.5 -1.3 -0.4 

  Roy L6 -0.2 0.2 0.1   0.2 0.1 6 1 -1.2 1.0 0.8 1.0 -1.0 -1.2 

                                

R9 HM-23B                             

  CL4 - normalizing RM -17.3 0.1 0.3 0.1 6.2 0.2 53 0 -17.3 -         

                                

R9 HM-27_AZL                             

  CL4 - normalizing RM -17.3 0.1 0.3 0.1 2.2 0.2 46 0 -17.3 -         

                                

                                

R9 HM-16C                             

  CL4 - normalizing RM -17.3 0.2 0.4 0.2 7.1 0.3 14 0 -17.3 -         

                                

R10 HM-17                             

  CL4 - normalizing RM -17.3 0.1 0.3 0.1 2.1 0.2 79 0 -17.3 -         

                                

R10 HM-27_HM-18                             

  CL4 - normalizing RM -17.3 0.1 0.2 0.1 3.9 0.2 45 0 -17.3 -         

  Roy L5 -1.8 0.2 0.3   4.8 0.3 10 0 -1.4 -0.4 0.5 0.3 -2.3 -2.1 

  Roy L6 -1.7 0.1 0.2   2.9 0.2 10 0 -1.2 -0.5 0.2 0.4 -1.9 -2.1 

  Stop1-6-D1 0.0 0.1 0.2   2.2 0.2 10 0 -0.7 0.7 1.3 0.8 -1.2 -0.7 

                                

R10 HM-27_HM-23                             
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  CL4 - normalizing RM -17.3 0.1 0.4 0.1 11.3 0.3 92 0 -17.3 -         

  Win 03A 0.0 0.1 0.2   1.7 0.1 15 0 -2.1 2.1 1.5 1.9 -1.4 -1.9 

  Win 03A -0.4 0.2 0.2   3.7 0.2 10 1 -2.1 1.7 1.5 1.9 -1.8 -2.2 

  Roy L5 0.1 0.1 0.2   2.3 0.2 13 1 -1.4 1.5 0.5 0.3 -0.4 -0.2 

  Roy L5 -0.8 0.2 0.3   4.0 0.2 10 0 -1.4 0.6 0.5 0.3 -1.3 -1.1 

  Roy L6 0.7 0.1 0.3   8.3 0.2 18 1 -1.2 1.9 0.2 0.4 0.5 0.3 

  Roy L6 -1.7 0.2 0.3   8.0 0.3 10 2 -1.2 -0.5 0.2 0.4 -1.9 -2.1 

                                

                                

(*) Measured Bias                             
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