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ABSTRACT

Galaxies and galaxy groups located along the line of sight towards gravitationally
lensed quasars produce high-order perturbations of the gravitational potential at the
lens position. When these perturbation are too large, they can induce a systematic
error on H0 of a few-percent if the lens system is used for cosmological inference and the
perturbers are not explicitly accounted for in the lens model. In this work, we present a
detailed characterization of the environment of the lens system WFI 2033−4723 (zsrc =
1.662, zlens = 0.6575), one of the core targets of the H0LiCOW project for which we
present cosmological inferences in a companion paper (Rusu et al. 2019). We use the
Gemini and ESO-Very Large telescopes to measure the spectroscopic redshifts of the
brightest galaxies towards the lens, and use the ESO-MUSE integral field spectrograph
to measure the velocity-dispersion of the lens (σlos = 250+15

−21 km s−1) and of several
nearby galaxies. In addition, we measure photometric redshifts and stellar masses of
all galaxies down to i < 23 mag, mainly based on Dark Energy Survey imaging (DR1).
Our new catalog, complemented with literature data, more than doubles the number
of known galaxy spectroscopic redshifts in the direct vicinity of the lens, expanding
to 116 (64) the number of spectroscopic redshifts for galaxies separated by less than
3′ (2′) from the lens. Using the flexion-shift as a measure of the amplitude of the
gravitational perturbation, we identify 2 galaxy groups and 3 galaxies that require
specific attention in the lens models. The ESO MUSE data enable us to measure
the velocity-dispersions of three of these galaxies. These results are essential for the
cosmological inference analysis presented in Rusu et al. (2019).

Key words: gravitational lensing: strong – quasars: individual: WFI 2033−4723–
galaxies: groups: general
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1 INTRODUCTION

The spectroscopic identification of the galaxies located in
the environment or along the line-of-sight towards a gravi-
tational lens, is one of the important tasks to carry out for
deriving an accurate time-delay distance. This is particu-
larly relevant because the lensing cross section is larger for
galaxies residing in rich environment (Fassnacht et al. 2011;
Wong et al. 2018). Depending on their redshift and projected
distance from the main lens, galaxies or galaxy groups, may
significantly perturb the light bending produced by gravi-
tational lensing. The amplitude of the perturbation on the
lensed images is larger when the perturber is located in the
foreground of the lens, and is maximum at the lens redshift
(McCully et al. 2017). The influence on the lensed images
also depends on the projected distance of the perturber to
the lens. When sufficiently distant in projection to a lens
system, galaxy groups (or clusters) produce a uniform con-
vergence at the lens position. This effect can be accounted
for in the time-delay distance estimate on a statistical ba-
sis, following a methodology similar to the one developed in
Rusu et al. (2017). When closer in projection to the lens,
galaxies or galaxy groups produce higher-order perturba-
tions to the gravitational potential, and therefore must be
explicitly included in the lens model; otherwise these pertur-
bations introduce an unknown systematic error. The shift in
lensed image positions derived by comparing models with or
without the perturber (i.e. the so called flexion shift), may
be used as a criterion to identify objects that need to be
included explicitly in the lens model (McCully et al. 2017).
For these reasons, it is crucial to obtain spectroscopic and
photometric redshifts of the brightest galaxies observable in
the field of view (FOV) of a lens system.

The H0LiCOW (H0 Lenses in COSMOGRAIL’s Well-
spring) program has been initiated with the aim of measur-
ing the Hubble constant H0 with better than 3.5% accuracy
from a small sample of gravitationally lensed quasars with a
diversity of observational properties (Suyu et al. 2017). To
reach this goal, the program combines several ingredients:
it gathers high-quality data (Hubble Space Telescope (HST)
imaging, deep images of the FOV, medium resolution spec-
troscopy of the lens and of nearby galaxies) for each scru-
tinized system (Suyu et al. 2017), a few-percent accuracy
measurement of the time delays (Bonvin et al. 2016), and ad-
vanced Bayesian lens-modelling techniques (Suyu & Halkola
2010; Suyu et al. 2012; Birrer et al. 2015; Birrer & Amara
2018). An important aspect of the H0LiCOW methodol-
ogy is that the inferred value of the cosmological parame-
ters (encoded into the so-called time-delay distance) remains
blinded until publication. The results are unblinded only
when the collaboration considers that all necessary measure-
ments, modelling and tests have been performed, and then
published “as is”.

WFI 2033−4723 is part of the H0LiCOW main sam-
ple of time-delay lenses. It is a quadruply lensed quasar
at redshift zsrc = 1.662 lensed by an elliptical galaxy at
zlens = 0.6575± 0.001 (Morgan et al. 2004; Eigenbrod et al.
2006; Sluse et al. 2012, this paper). The minimum and max-
imum image separation are respectively of ∆θmin ∼ 0.8′′ and
∆θmax ∼ 2.5′′, such that the two brightest images are only
barely spatially resolved with ground-based and natural-
seeing data, but the two other images are easily photometri-
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cally monitored with a 1-m class telescope. Time-delay mea-
surements for the various combinations of image pairs are
presented in Bonvin et al. (2019). When this system was se-
lected to be part of the H0LiCOW sample, the line-of-sight
towards the lens was yet to be characterized. An important
step forward in the characterization of the lens environment
through spectroscopy has been carried out by Momcheva
et al. (2015) and Wilson et al. (2016). In particular, Wil-
son et al. (2016) have confirmed that the lens is part of a
massive galaxy group as first suspected by Morgan et al.
(2004). Because a proper characterization of the lens envi-
ronment is crucial to control the systematic errors on H0,
we have carried out a deeper spectroscopic survey of the
FOV of WFI 2033−4723, derived photometric redshifts for
the faintest field galaxies, and estimated their stellar masses.
Owing to the ESO-MUSE instrument (Bacon et al. 2010),
we have been able to carry over a more exhaustive charac-
terization of the galaxies closest to the lens in projection,
measuring their redshifts as well as the velocity-dispersions
of the lens and of its brightest neighbours. The description
and analysis of those new observations, which double the
number of spectroscopic measurements for the nearest (in
projection) field galaxies, are the main purpose of the this
paper. They are used to identify and get a proxy on the
mass of the main perturbers of the lens potential that need
to be explicitly included in the lens-modelling for cosmo-
logical inference (Rusu et al. 2019). A joined cosmological
inference based on all the lensed systems measured so far by
H0LiCOW is presented in Wong et al. (2019).

The paper is structured as follows. We present an
overview of the data sets used and of the data reduction
process in Sect. 2. The techniques employed to measure the
photometric and spectroscopic redshifts (hereafter photo-z
and spec-z respectively) and stellar masses are presented in
Sect. 3. The methodology used to identify galaxy groups and
a list of the groups we identified are described in Sect. 4. Sec-
tion 5 quantifies the impact of individual galaxies and galaxy
groups on the model. We use the flexion shift to flag the sys-
tems that require explicit inclusion in the multi-plane lens
models presented for this system by Rusu et al. (2019). We
further measure their velocity-dispersions in Sect. 6, as this
information is included in the lens-modelling presented by
Rusu et al. (2019). In addition, we also measure the velocity-
dispersion of the lensing galaxy, which is instrumental in
reducing the impact of the mass-sheet degeneracy on the
lens models. Finally, Sect. 7 summarizes our main results.
In this work, with the exception of the target selection that
was based on R−band magnitude in the Vega system, photo-
metric information comes from multicolor imaging and uses
the AB photometric system. For convenience, group radii
and masses reported in this work assume a flat ΛCDM cos-
mology with H0 = 70 km s−1 Mpc−1, and Ωm = 0.3. We stress
that this choice has no impact on the group identification
as this does not depend on a specific choice of cosmological
parameters.

2 DATA

Our data set combines multi-object and integral field spec-
troscopy obtained with Gemini-South and ESO-Paranal ob-
servatories, and multi-band/deep imaging obtained with the

Spitzer Space Telescope and the Blanco Telescope, includ-
ing data from the Dark Energy Survey (DES1). The goals
of the spectroscopic observations are to measure accurate
redshifts and identify galaxy groups which need to be ex-
plicitly accounted for in the lens model; to measure velocity-
dispersions for the massive individual galaxies that are close
enough to also require inclusion in the lens model; and to cal-
ibrate the photometric redshifts extracted for the galaxies in
the imaging data without available spectroscopy. The multi-
band imaging data complement the spectroscopy, while al-
lowing the measurement of photometric redshifts and stellar
masses of galaxies up to a fainter magnitude limit (our setup
yields a typical depth of i ∼ 23 mag). Those data are also cru-
cial for the cosmographic analysis as they are instrumental
to the estimation of the distribution of convergence at the
lens position (see Rusu et al. 2017, Rusu et al. 2019). A
summary of the data sets is provided in Table 1.

2.1 Imaging

Homogeneous, multi-band, large FOV imaging observations
are needed in order to achieve a more complete character-
ization of the environment and the line of sight (LOS) of
WFI 2033−4723 than what is possible through targeted spec-
troscopy. We base our analysis mainly on grizY -band DES
data included in the Data Release 1 (Abbott et al. 2018)
and obtained during 2013 September and 2015 September
(2014 September - 2015 October for the z−band). We sup-
plement this with proprietary deep u−band data observed
on 2015 July 21, 22 (PI. C. E. Rusu) with the Dark En-
ergy Survey Camera (Flaugher et al. 2015) on the Blanco
Telescope; VLT/HAWK-I (Pirard et al. 2004; Kissler-Patig
et al. 2008) near-infrared data (PI. C. D. Fassnacht, pro-
gram ID 090.A-0531(A)) observed on 2012 October 12; and
with archival IRAC (Fazio et al. 2004) infrared data from
the Spitzer Space Telescope (PI. C. S. Kochanek, program
ID 20451), observed on 2005 October 20 and 2006 June 4.
The characteristics of our data are described in Table 1. We
also have WFC3 F160W HST imaging data (PI. S. H. Suyu,
Program ID 12889) from 2013 April 3 and 4, which is pre-
sented in more detail by Suyu et al. (2017) and was only
used in this work to check the quality of the star-galaxy
classification (see Section 3.1 below).

2.2 Spectroscopy

The use of multi-object spectroscopy is optimal to identify
group(s) or cluster(s) of galaxies with projected distances
of several arcmin from the lens (i.e. typically a few virial
radii for groups at z > 0.1). In this work, we used the MXU
capabilities (multi-object spectroscopy mode with exchange-
able laser-cut masks) of the FORS2 instrument (Appenzeller
et al. 1998) mounted at the Cassegrain focus of the UT1
(Antu) telescope (PID: 091.A-0642(A), PI: D. Sluse), and
the multi-object spectroscopy mode of the Gemini Multi-
Object Spectrographs (GMOS; Hook et al. 2004) at the
Gemini-South telescope (PID: GS-2013A-Q-2, PI: T. Treu).
The instrumental setup and target selection strategy is sim-
ilar to the one we used for the lens system HE 0435−1223

1 https://www.darkenergysurvey.org
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and we refer the reader to Sluse et al. (2017) for details on
the latter. In brief, we used 6 masks and the GRIS300V
grism + GG435 blocking filter for the FORS2 data, and 4
masks and the R400 grating with GG455 filter for the GMOS
observations. The 2 instruments allow us to put slits on tar-
gets located up to typically 2′ from the lens, and pack ap-
proximately 35 long-slits (6′′ length) per mask. With a 40
minutes exposure time per mask (yielding 1h execution time
with overheads), we can measure redshifts of galaxies up to
magnitudes I ∼ 21.5. This setup maximizes the number of
observable targets and ensures a large wavelength coverage
(typically 4500-8700Å) to ease redshift detectability. During
the observations, the seeing was always lower than 0.9′′, and
airmass 1 < sec(z) < 2. The FORS2 observations were car-
ried out in service mode between 2013-05-31 and 2014-09-13,
while GMOS data were obtained in visitor mode during the
nights of 2013-06-03 and 2013-06-06.

The exceptional capabilities of the ESO-MUSE Inte-
gral Field Spectrograph, mounted at the Nasmyth B focus
of Yepun (ESO-VLT UT4 telescope), offer a natural com-
plement to the multi-object data. Owing to its wide FOV
of 1′ × 1′, and a 0.2′′ × 0.2′′ spatial sampling, it allows one
to obtain 90000 simultaneous spectra covering almost the
whole optical range (4800-9350 Å) with a resolving power
R ∼ 1800−3600 (i.e. 2.5 Å spectral resolution; Richard et al.
2017). It is therefore perfectly designed to characterize the
lens environment on small scales, allowing the measurement
of the redshift of the nearest perturbers, and of the velocity-
dispersion of the brightest galaxies (including the lensing
galaxy). Our observing strategy consist of placing the lens-
ing galaxy close to the centre of the field and obtaining 4
exposures of 600 s, each rotated by 90 degrees with respect
to the previous one, and offset by a few spaxels (spatial pix-
els). The four exposures of 600 s are combined into a single
data cube of 2400 s during the data reduction. A first en-
semble of 3 combined data cubes has been obtained as part
of the Science Verification (SV) programme 60.A-9306(A),
on 2014-06-19 and 2014-08-24, allowing us to reach a depth
of I ∼ 25 mag (continuum emission, 3σ). A second ensem-
ble of 6 data cubes (Wide Field mode) has been obtained in
Service mode on 2016-05-24, 2016-06-29, 2016-07-18, 2016-
07-19, 2016-07-20, under programme 097.A-0454(A) (PI: D.
Sluse; hereafter P97). Conditions are optimal (i.e. clear sky,
seeing better than 0.8′′) only for a fraction of the P97 data.
According to the grading scheme established by ESO, two
data sets are attributed a grade A (conditions similar to
SV data, fulfilled), one a grade B (marginally out of spec-
ification), and three a grade C (out of specification). The
P97 data are obtained under high moon fraction, and are
therefore less deep than the SV data, with depth between
I ∈ [21.3, 24.9] mag.

2.3 Spectroscopy data reduction

We carried out data reduction of the FORS2 and Gem-
ini multi-object spectroscopy data following the same pre-
scriptions as Sluse et al. (2017). The reduction cascade in-
cludes the standard steps of spectroscopic data reduction.

2 DrizzlePac is a product of the Space Telescope Science Insti-

tute, which is operated by AURA for NASA.

They are implemented within the ESO reflex environment
(Freudling et al. 2013) and FORS2 pipeline version 2.2 for
FORS data, and through the gemini-gmos IRAF3 subpack-
age for GMOS data. Of particular relevance for this work is
the accuracy at which the wavelength calibration has been
performed. For FORS2 data, we used a polynomial of de-
gree n = 5, which yielded residuals distributed around 0, a
RMS of typically 0.2 pixels = 0.66 Å at all wavelengths and
a model accuracy estimated by matching the wavelength
solution to the sky lines, to 0.25 Å. Comparison of spectra
obtained with different instruments confirms the accuracy
of the wavelength calibration (See Appendix A).

The MUSE data reduction has been carried out using
the MUSE reduction pipeline version 2.0.1 (Weilbacher et al.
2012; Weilbacher et al. 2015). In particular, the standard
steps of bias and flat-fielding corrections, wavelength solu-
tion, illumination correction, and flux calibration were made
for each of the individual exposures with the default param-
eters of the pipeline. A variance data cube is associated to
each data cube produced by the pipeline. It propagates the
errors all along the pipeline reduction chain. While the SV
data, obtained during dark observing conditions, are little
affected by sky subtraction residuals, this is not the case with
the P97 mode data. The latter have been post-processed us-
ing the Zurich Atmospheric Purge tool (ZAP; Soto et al.
2016) that improves the sky subtraction by constructing a
sky model using principal components analysis. For each
data subset, a combined data cube, sampled on a grid of
0.2′′ × 0.2′′ × 1.25 Å, is reconstructed. For the SV data, we
combine the three individual data sets, yielding a total ex-
posure time of 7200 s and a median seeing of 1′′. For the
P97 data, we tested different combinations of data cubes,
minimizing the seeing, amplitude of sky residuals, and op-
timizing the signal-to-noise ratio (SNR). We find that opti-
mizing the SNR is essential for performing reliable velocity-
dispersion measurements of the galaxies. The final datacube
for P97 combines twelve exposures, for a total exposure time
of 10800 s.

We note that for FORS2 data, we sometimes included 2
objects in a slit to maximize the number of observed targets.
For that reason, we perform the extraction by fitting a sum
of 1-D Gaussian profile on each wavelength bin of the rec-
tified 2-D spectrum (with n=[1,2] depending of the number
of objects in the slit). The extraction is performed on indi-
vidual exposures of each spectrum, and final 1-D spectrum
is the result of the coaddition of the wavelength-calibrated
extracted spectra of the same target.

3 REDSHIFTS AND STELLAR MASSES

3.1 Photometric redshifts and stellar masses

Here we give a brief description of our technique to measure
photometric redshifts and stellar masses, which follows the
technique described in Rusu et al. (2017). The analysis of the
resulting data for estimating the external convergence that

3 IRAF is distributed by the National Optical Astronomy Obser-

vatories, which are operated by the Association of Universities for
Research in Astronomy, Inc., under cooperative agreement with

the National Science Foundation.

MNRAS 000, 1–26 (2019)



Environment of WFI 2033−4723 5

[!h]

Table 1. Overview of the imaging and spectroscopic data set. For spectroscopy, the columns list respectively the instrument

used, the number of masks (except for the data obtained with the ESO-MUSE integral field spectrograph), the total number of objects
targeted, the approximate resolving power R of the instrument at central wavelength, the typical wavelength range covered by the spectra

(spectra do not always cover the full wavelength range, depending on the exact object location in the field), and the exposure time per

mask, or for the full data set in case of ESO-MUSE data. Note that the # of spectra includes duplicated objects. For imaging, the
columns list the magnitude depth, filter name, seeing and exposure time of the data sets used.

Instrument: # of # of R λ1 − λ2 Exp

Spectroscopy Masks spectra (Å) (s)

FORS2 6 236 440 4500-9200 2×1330

GMOS 4 130 1000 4400-8200 4×660

MUSE† NA 20 1800-3600 4800-9400 9×4×600

Imaging‡ depth? filter scale seeing Exp

[mag] [′′] [′′] (s)

HAWK-I 21.5 ± 0.1 J 0.1064 0.71 7 × 67.5
HAWK-I 20.86 ± 0.08 H 0.1064 0.71 3 × 60
HAWK-I 20.76 ± 0.04 Ks 0.1064 0.60 3 × 60
DECam 25.17 ± 0.06 u 0.2625 1.16 65 × 500
DES 24.25 ± 0.05 g 0.2625 1.21 5 × 90
DES 23.8 ± 0.1 r 0.2625 0.97 5 × 90
DES 23.13 ± 0.08 i 0.2625 0.81 6 × 90
DES 22.9 ± 0.5 z 0.2625 1.16 4 × 90
DES 21.4 ± 0.2 Y 0.2625 0.92 7 × 45
IRAC 24.6 ± 0.3 3.6 0.600 - 72 × 30
IRAC 24.0 ± 0.2 4.5 0.600 - 72 × 30
IRAC 22.3 ± 0.3 5.7 0.600 - 72 × 30
IRAC 22.1 ± 0.3 7.9 0.600 - 72 × 30
WFC3 26.4 ± 0.1 F160W 0.08 - 26257

Notes: † Only 4/9 data sets were obtained within requested observing conditions (graded A by ESO). The others were graded B (1/9)

or C (4/9), which means that the seeing was not stable during an observation and/or moon was too close, yielding a high sky level.
‡ The number of exposures for DES data denotes the maximum number of overlaps, as the coverage is not uniform. The pixel scale and

exposure time reported for WFC3 characterize the final frame obtained after combining dithered exposures with DrizzlePac2

? We measure 5σ detection limits as mlim = ZP− 2.5 log
(
5
√
Npixσsky

)
, where ZP is the magnitude zero-point, Npix is the number of pixels

in a circle with radius 2′′, and σsky is the sky-background noise variation. We derive the uncertainty as the standard deviation of the
values in 10 empty regions across the frame.

is necessary for the cosmological inference will be presented
by Rusu et al. (2019).

While the DES and DECam image mosaics cover a very
large FOV, the HST data cover only the inner ∼ 2.2′ × 2.6′
region. In addition, the IRAC and HAWK-I data cover just
a few arcminutes around WFI 2033−4723; this is not enough
to map the whole area where there is spectroscopic data,
but is enough to map the 2′ radius around the lensing sys-
tem, where structure in the environment and along the LOS
has the greatest impact on the lensing model (Collett et al.
2013).

We downloaded cutouts covering 4′ × 4′ around
WFI 2033−4723 using the DES cutout service4. These con-
sist of grizY -band individual exposures that were processed
by the DES pipeline (Morganson et al. 2018) to remove
the instrumental signature, including bias subtraction, flat-
fielding, sky subtraction, artifact masking, and astromet-
ric/photometric calibration. However, at the time when we
performed the analysis, master coadded frames were not
available. We therefore used Scamp (Bertin 2006) to ensure
an accurate image registration, and performed image coad-
dition in each band with Swarp (Bertin et al. 2002). We fol-
lowed similar steps to reduce the DECam u−band data (the
same instrument used by DES), except that we could not

4 https://des.ncsa.illinois.edu/easyweb/cutouts

achieve a viable photometric calibration, despite that the
observing conditions seemed photometric (but the presence
of thin cirrus cannot be excluded).

We reduced the HAWK-I data using the recommended
reduction pipeline5, in conjunction with Scamp and Swarp,
resampling onto the DES pixel scale, and we calibrated
the absolute photometry using bright but unsaturated stars
from 2MASS (Skrutskie et al. 2006). In order to enable the
measurement of accurate colors between the different filters,
we homogenized the shape and size of the point spread func-
tion (PSF) by applying suitable convolution kernels. These
kernels were computed between two-dimensional Moffat pro-
files (Moffat 1969) fitted in each band to scaled and stacked
bright stars inside the FOV. The resulting PSF Full Width
at Half Maximum (FWHM) was ∼ 1.2′′.

Our technique to perform object detection and photo-
metric measurements follows that of Erben et al. (2013).
For each of the ugrizY JHKs bands, SExtractor (Bertin &
Arnouts 1996) is run in dual-image mode, where the detec-
tion image is the sum of the deepest, best-seeing DES im-
ages (r and i, although we also performed detections in the
i−band image only), and the measurement images are the
PSF-matched images in each of the filters. An additional run
performs measurements in the original (i.e. not convolved)

5 https://www.eso.org/sci/software/gasgano.html
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i−band image. This last run is performed to obtain total
magnitudes (SExtractor quantity MAG AUTO), whereas
the previous runs yield accurate colours based on isopho-
tal magnitudes (MAG ISO). As our resampling and convo-
lutions can produce large noise correlation, which may sig-
nificantly underestimate the photometric uncertainties mea-
sured with SExtractor, we use the technique described in
Labbé et al. (2003), Gawiser et al. (2006) and Quadri et al.
(2007) to correct for this effect. Finally, we downloaded re-
duced and photometrically calibrated IRAC data, and we
used T-PHOT (Merlin et al. 2015) to measure magnitudes
matched to the apertures in the DES data, given the much
larger pixel scale of the IRAC data and the broader PSF.

We adopt the galaxy-star classification of Hildebrandt
et al. (2012). Objects with i < 21 and with size smaller than
the PSF are classified as stars. In the range 21 < i < 23,
an object is defined as a star if its size is smaller than the
PSF and in addition if χ2

star < 2.0χ2
gal, where χ2 is the best-

fitting goodness-of-fit χ2 using galaxy and stellar templates.
We use both BPZ (Beńıtez 2000) and EAzY (Brammer et al.
2008) to measure photo-zs for the resulting galaxies. Similar
to Hildebrandt et al. (2010), we find that the use of currently
available mid-IR templates degrade rather than improve the
quality of the inferred redshifts. We therefore ignore the
IRAC data when estimating redshifts. While the u−band
data were observed in non-photometric conditions, we solved
for its zero point in a separate run with BPZ by minimizing
the difference between photo-zs and spec-zs where available.
Figure 1 shows a comparison of the photo-zs and spec-zs,
when the latter exist and are reliable. We also compared
the photo-zs estimated with BPZ and EAzY. They agree well,
with an average scatter of 0.06 and an average outlier frac-
tion (i.e. objects with |∆z |/(1+ z) > 0.15) of 11% down to the
magnitude limit of i < 23 mag.

Finally, since stellar masses are not direct output of
BPZ and EAzY, we estimated stellar masses with Le PHARE

(Arnouts et al. 2002; Ilbert et al. 2010), using galaxy tem-
plates based on the stellar population synthesis package of
Bruzual & Charlot (2003) with a Chabrier (2003) initial
mass function (IMF). The stellar mass estimates are per-
formed fixing the redshift to the best fitted photo-z. We
report the photometry of the i < 23 mag galaxies within 2′
of WFI 2033−4723 in Table C2, and the corresponding red-
shifts and stellar masses in Table C3. Those tables are also
available in electronic form6.

In the above, we addressed the galaxies within 4′ × 4′
of WFI 2033−4723, where our data provides uniform cover-
age. For the surrounding FOV of up to 30′ away, we rely
on DES data to perform galaxy/star separation and mea-
sure photo-zs and stellar masses in a similar way. However,
instead of performing our own measurements, we rely on to-
tal magnitudes provided by the DES pipeline in the form of
the Y3A1 COADD OBJECT SUMMARY table retrieved with
easyaccess (Carrasco Kind et al. 2018). This results in an
increased fraction of photo-z outliers, from ∼ 3% to ∼ 14%.
We make no effort to improve the extracted colors, as our
only use of the resulting quantities is to explore the com-
pleteness of our spectroscopic redshifts (see Section 3.3).

6 http://www.h0licow.org

Figure 1. Comparison of spectroscopic and photometric (BPZ)
redshifts for galaxies with robust spectroscopic redshifts within

the 120′′ radius around the lensing system, based on ugrizYJHK

photometry. The blue dashed line represents the best-fit offset,
and the green solid line the perfect equality between the two red-

shift estimates. We define the outliers as data located outside the

red dashed line marking |zspec − zphot |/(1+ zspec) > 0.15. Error bars
refer to 1σ uncertainties.

3.2 Spectroscopic redshifts

We followed the methodology of Sluse et al. (2017) for the
redshift measurements. Each combined 1-D spectrum of an
object7 is cross-correlated with a set of galactic (Elliptical,
Sb, only galactic emission lines, quasar) and stellar (G, O,
M1, M8, A spectral types, composite of multiple spectral
types) templates using the xcsao task, part of the rvsao

IRAF package (version 2.8.0). Sky regions known to be con-
taminated by telluric absorption, and/or where sky subtrac-
tion is not satisfactory, are masked out. Redshift guesses are
derived visually, and refined using the interactive mode of
rvsao. The redshift from the template providing the high-
est cross-correlation peak is considered as our final redshift
measurement. A flag 0 (secure) / 1 (tentative) / 2 (inse-
cure) is then attached to the spectrum based on the qual-
ity of the cross-correlation, signal-to-noise and number of
emission/absorption lines detected. The uncertainty on the
redshift derived with xcsao depends only on the width and
peak of the cross-correlation. This error appears to be repre-
sentative of the statistical uncertainty affecting our measure-
ments, but is smaller than the systematic error as derived by
comparing our spectra to literature data (See Appendix A).
Unless explicitly stated, the statistical error is used through-

7 If an object was observed in several masks, redshift measure-
ments were performed independently to avoid introducing biases
due to uncertainties in wavelength calibration and/or differences

of wavelength coverage.
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out this analysis. It is also the error reported in the final
catalog.

The galaxies detected in the MUSE FOV have been
identified automatically using the MUSELET tool, part of the
MPDAF package (Piqueras et al. 2017), applied on the com-
bined Science Verification data cubes. Because of the almost
dark conditions during the observations, those data allowed
us to reach a 3σ magnitude limit AB = 25.3 for a point
source, i.e. more than 1 mag deeper than any combination
of P97 data cubes. The MUSELET tool performs an automatic
detection of emission-line features in data cubes by flagging
pixels that deviate from the noise (see Sect. 2.2.1 of Drake
et al. 2017, for a detailed description). A guess redshift
is automatically derived, associating the observed features
to brightest multiplets of emission-lines detected in galaxy
spectra, or to Lyα emission if only one line is detected. The
detection of emission in multiple consecutive pixels (along
the spectral direction) is used to identify spurious line emis-
sion. We visualised the spectra of all the automatically-
identified objects to flag obvious artefacts (e.g. sky reduction
artefacts that concentrate close to the edge of the FOV). Fi-
nally, we compared the catalog of MUSELET targets to a cat-
alog of objects detected by running SExtractor on the me-
dian data cube (i.e. median along the wavelength direction).
This allows the identification of objects that lack emission-
lines. For all the targets we remeasured the redshift using
rvsao, following the methodology described above.

The last step consists in merging the various spectro-
scopic catalogs into a single one. For each spectrum, an ap-
proximate astrometric calibration is deduced based on infor-
mation recorded in the header of the raw frame. For MXU
data, only the position at the centre of the slit is recorded,
such that we applied an additional correction based on the
object position within the slit and orientation of the laser-cut
mask on the sky. Because of the uncertainty of a few arcsec-
onds on the absolute astrometric calibration of the various
instruments, and of additional random uncertainties associ-
ated with spectral extraction, the astrometric positions be-
tween catalogs gathered with different instruments differ by
up to 3′′. Since there was a substantial number (i.e. > 10) of
objects in common between pairs of catalogs, we can cross-
match catalogs to derive the median astrometric offset (in
RA-DEC) ranging from 1.6′′ to 3.2′′ depending of the cata-
logs considered. Once all the catalogs are virtually matched
to the same astrometric system, a new (more robust) cross-
correlation can be performed, allowing us to identify dupli-
cates and possible errors in redshift measurements. Objects
present in multiple spectroscopic catalogs are found to have
compatible redshifts. Instead of combining the multiple mea-
surements, we have decided to keep only the entry with the
lowest redshift uncertainty. The final merged catalog as well
as the extracted spectra for the GMOS, FORS2 and MUSE
data will be available upon acceptance of the paper in elec-
tronic form8. The first 5 lines of the catalog are displayed
in Table 2. Fig. 2 provides an overview of the targets for
which spectroscopic information has been gathered within
180′′ from WFI 2033−4723.

The comparison between multiple data sets also pro-
vides a good way to flag incorrect redshift measurements,

8 www.h0licow.org

or uncertain ones. We provide an in-depth cross-comparison
of the various data sets used in this work in Appendix A.
We found a systematic offset by ∆z = −3.6 × 10−4 of the
ESO-based data (i.e. FORS and MUSE) compared to GMOS
and Momcheva et al. (2015) spectra. While the origin of
this offset remains unknown, we have decided to correct the
ESO-based measurement for this analysis. In addition, Ap-
pendix A lists the four objects for which we suspect a nec-
essary revision of the published redshift.

3.3 Completeness of the spectroscopic redshifts

We evaluate the spectroscopic redshift completeness as a
function of various criteria by comparing our spectroscopic
and photometric catalogs. Figure 4 displays the complete-
ness of our spectroscopic catalog as a function of the lim-
iting magnitude of the sample (fixing the separation to the
lens) and of the separation from the lensing galaxy (fixing
the limiting magnitude). We see that our completeness is
larger than 60% at small radius, down to i ∼ 22.5 mag. This
is similar to the completeness reached for the analysis of
HE 0435−1223 (Sluse et al. 2017). However, owing to the
MUSE data, we have a higher success in the spectroscopic
identification of faint sources located at low projected angu-
lar separation from the lens. This is particularly important
as those galaxies are most likely to produce high-order per-
turbations at the lens image position.

Figure 5 compares the distributions of galaxies (located
in projection less than 6′ from the lens) in the spectroscopic
and photometric samples, as a function of their median stel-
lar mass (as derived in Sect. 3.1). We see that the two distri-
butions agree well, with a slight over-representation of the
most massive galaxies (M ≥ 1011 M�) in the spectroscopic
sample. This is expected as we have a flux limited sample,
and more easily measure redshifts of the brightest galaxies.
This means that our completeness is the highest for the most
massive galaxies, which are also the most likely to perturb
the lens gravitational potential. There are no galaxies with
M ≥ 1011 M� within 1′ radius of the lens that are missing
spectroscopic redshifts, and only 3 of 12 galaxies if we look
up to 2′ separation from the lens. Since those 3 galaxies are
all located at more than 100′′ from the lens, this ensures
that no massive perturber lacks a spectroscopic redshift.

4 GALAXY GROUP IDENTIFICATION

The strategy used to identify groups towards
WFI 2033−4723 is the same as the one developed by
Sluse et al. (2017), building on earlier algorithms imple-
mented in e.g. Wilson et al. (2016). We summarize in
Sect. 4.1 the key aspects of the procedure and refer to Sluse
et al. (2017) for more details. Results of the group-finding
algorithm are presented in Table 3 and Sect. 4.2. Discussion
and comparison with a previous search for groups towards
WFI 2033−4723 are presented in Sect. 4.3.

4.1 Method

After an iterative filtering in redshift space to identify po-
tential group members, an iterative procedure accounting
for the 3D-position of each galaxy is used to refine group

MNRAS 000, 1–26 (2019)
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Figure 2. Overview of the spectroscopic redshifts obtained from our new and literature data in a FOV of ∼ 6′ ×6′ around

WFI 2033−4723 (the black circle delimits a 180′′ radius FOV around the lens). Spectroscopically identified stars are marked with a
red ”Star” symbol, while galaxies are marked with a circle whose size scales with its i-band magnitude (largest colored circle correspond

to i ∼18.6 mag, smallest to i ∼23.9 mag), and color indicates the redshift (right color bar). Galaxies that have been targeted but for which
no spec-z could be retrieved are shown as open black squares, those with a tentative redshift (zQF = 1, see Table 2) with a colored
square (right color bar). The background frame shows an archival FORS1 R-band combined frame (Prog. ID: 074.A-0563(A)) of 300 s

effective exposure time. A zoom on the central region is displayed in Fig. 3

membership and estimate the group velocity-dispersion. In
practice, we first select a region of angular radius θmax cen-
tred on the lens, bin the redshift catalog in uniform bins
of 1000 km s−1(i.e. expected maximal velocity-dispersion of
a line-of-sight structure), and identify a redshift peak as a
bin of more than N elements. The operation is repeated af-
ter shifting the bins by half the bin width (i.e. 500 km s−1).
Then, a first preselection (Step #1) of potential group mem-
bers is performed iteratively for each redshift peak. This is
realised by building a core subsample of galaxies that only
contains those galaxies separated by less than δvmax from a

redshift peak. At each iteration we add galaxies separated by
less than δvmax from the average redshift of this core group,
and update the group redshift and velocity-dispersion us-
ing a bi-weight estimator. If the new group redshift is found
to be more than 2×δvmax from the estimated redshift, we
restrict our search to 2 δvmax around the guessed redshift.
Our past experience (Sluse et al. 2017) suggests that con-
sidering δvmax = 1500km s−1 allows one not to miss large
distant groups whose effect could be important on the cos-
mological inference. Based on this filtered galaxy catalog, we
refine group membership (Step #2), accounting for the 3D

MNRAS 000, 1–26 (2019)
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Table 2. Excerpt of the spectroscopic redshift catalog. Columns #1 to #6 are objects name (=filename of the 1D spectrum), IDs,

positions (RA-DEC, J2000), redshifts z and their uncertainty σz . The last two columns display a quality flag and the object type. The

full table is available in electronic form.

Name1 ID RA DEC z σz zQF2 Type3

FORS 20130531 obj1035 1035 308.404362 −47.392193 0.5381 0.0002 0 Starburst

FORS 20130531 obj967 967 308.414562 −47.383083 0.1807 0.0002 0 ETG-Sx
FORS 20130531 obj570 570 308.431962 −47.385453 0.6174 0.0002 0 Starburst

FORS 20130531 obj445 445 308.470162 −47.401903 0.4434 0.0002 0 Starburst

FORS 20130531 obj846 846 308.424862 −47.369983 0.3870 0.0002 0 ETG-Sx

Notes: (1) Format: Instrument date objID, where instrument is FORS, Gemini or MUSE if the redshift is derived from our survey,
and Momcheva if the redshift comes from Momcheva et al. (2015). The “date” in format yyyymmdd is the date of observation, or

201508 for objects from Momcheva et al. (2015). This is also the name of the 1D extracted spectrum.

(2) The quality flags zQF=0/1/2 if the redshift is extracted from this program and 3,4,5,6 refer to objects from Momcheva et al. (2015).
zQF=0 for secure redshift; zQF=1 for tentative redshift; zQF=2 for unreliable/unknown redshift; zQF=3 for data obtained with

LDSS-3; zQF=4 for data obtained with IMACS; zQF=5 for data obtained with Hectospec; zQF=6 for NED objects.

(3) Type=ETG-Sx if CaK-H and/or G-band are detected; Type=Starburst if clear emission lines are observed, Type=M-dwarf for a
M-dwarf star; Type=Star for other stellar-types; Type=Unknown if no identification could be done or if the spectrum is from an

external catalog.

Figure 3. Central 30′′ ×30′′ region centred on
WFI 2033−4723 (matching the central black box in Fig. 2),

with galaxy naming scheme G2-G6 following Vuissoz et al.

(2008) and G7-G8 are our own designation. North is up, East
is left. Redshifts (see Sect. 3.2) are indicated in parentheses.

Insecure redshifts are followed by a question mark.

positions of the galaxies, implementing the method proposed
by Wilman et al. (2005). The algorithm selects galaxies lo-
cated within n times (n = 2) a presumed velocity-dispersion
(σobs = 500 km s−1at the first iteration) along the line of
sight (i.e. redshift space), and with a maximum aspect ratio
between the transverse and radial extension of b = 3.5. The
maximum extension of the group is deduced from the maxi-
mum separation between the group centroid (optionally lu-
minosity weighted) and the candidate galaxy members. The
galaxies chosen based on these criteria are used to refine the

Figure 4. Left: Fraction of spectroscopic redshifts of galax-

ies used in this work (only robust measurements are included)
as a function of the maximum i-band magnitude of the sam-

ple, for three different radii rmax of 2′ (solid-blue), 6′ (dashed-

orange), 10′ (dashed-dotted-green). The low apparent complete-
ness for the brightest objects (for rmax > 2′) is caused by several

stars mistakenly classified as galaxies in the photometric catalog.

Right: Fraction of spectroscopic redshifts as a function the max-
imum distance to the lens for three different limiting magnitude

(imax = 20.5 mag (solid-blue); imax = 21.5 mag (dashed-orange),

imax = 22.5 mag (dotted-dashed-green).

velocity-dispersion σobs. A gapper algorithm (Beers et al.
1990) is used to evaluate σobs when there are fewer than 10
galaxies, the dispersion between the velocity measurements
when this number drops below 5, and a bi-weight estimator
otherwise. This estimate of σobs serves as an updated proxy
of the velocity-dispersion used to run a new iteration. The
algorithm stops when a stable number of group members is
found. It also happens that the number of members falls to
zero, especially when galaxies are too spread in 3D space
(hence not forming a gravitationally linked group). In this
situation, no group is associated to the identified redshift
peak.

4.2 Results

We have carried out our group search around redshift peaks
of N ≥ 5 when θmax = 360′′, and N ≥ 10 when θmax = 900′′.
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Figure 5. Characteristics of the spectroscopic sample for galax-

ies located less than 6′ from WFI 2033−4723. Number of galaxies

as a function of the stellar mass for the photometric (solid) and
spectroscopic (dashed) samples for three different cuts in mag-

nitudes imax = (21.5, 22.5, 23.5) mag (resp. blue, green, orange).

A bin width δ(log(M/M�)) = 0.5 has been considered. To ease
legibility, for each magnitude cut, the peak of the distribution

of the spectroscopically confirmed galaxies has been normalized
by a factor n = (2.0, 3.0, 4.5) to match the corresponding peak

(i.e. imax = (21.5, 22.5, 23.5) mag) of the photometric sample. In

addition, line-plot instead of bar-plot has been used for clarity.

The use of two different θmax allows us to avoid missing
the identification of a small compact group located close
to the lens, if another structure at slightly different red-
shift (i.e. a few thousands km/s) is present at larger ra-
dius. The difference of cut-off to identify a peak occurs be-
cause, at large distance from the lens, we are only inter-
ested in identifying the largest groups that could affect di-
rectly the lens-modelling. Table 3 lists the properties of the
group candidates. A visual inspection of the automatically
detected groups revealed that the algorithm tends to iden-
tify multimodal distributions in redshift space as a single
large structure, yielding group candidates with characteris-
tics of a galaxy cluster (i.e. σobs ∼ 1000 km s−1). In such
situations, following Muñoz et al. (2013), we run our algo-
rithm around each redshift peak but restricting the search to
δvmax = 500km s−1 during Step #1, which is also the typical
width of the observed modes in the redshift distribution. The
drawback of this approach is that the small groups identi-
fied this way generally remain unchanged after step #2, even
when only very few galaxies fall in projection within 1 angu-
lar virial radius from the group centroid. Consequently, we
manually flag those groups as spurious when fewer than 2
galaxies fall within one angular virial radius from the group
centroid. The group centroid is expected to fall close to the
brightest galaxy group (Robotham et al. 2011; Shen et al.
2014; Hoshino et al. 2015). Since the use of a luminosity
weighting does not improve the match between the group
centroid and the brightest galaxy (see Appendix B), we ig-
nore the latter in the remaining parts of our analysis.

4.3 Discussion

Wilson et al. (2016, hereafter WIL16) report the semi-
automatic search for groups using a methodology very simi-
lar to the one used here. Since our catalog includes the cat-
alog used by WIL16, we may expect to recover their group
detection, and/or understand whether some detections were
possibly spurious. WIL16 report the automatic detection of
5 groups towards WFI 2033−4723, two of them (at z̄group =
0.1740 and z̄group = 0.2629) being flagged as uncertain as they
are located close to the edge of their FOV. We identified 2
groups at these redshifts when θmax = 900′′, but we removed
them from the final list because they contain fewer than 10
members. The three other groups reported by WIL16 are
found at a redshift compatible with our groups a3, a5 and
a8, but the number of group members is larger by typically
30% in our analysis. The properties of a3 and a5 agree within
error bars with our detection, but not a8. In fact, WIL16 re-
port a group of 5 galaxies at z̄group = 0.6838, namely located

at ∼1200 km s−1 from a8 and -1500 km s−1 from a9. Our
algorithm also originally identified a group candidate of 20
galaxies with σ = 1030 km s−1 centred at the same redshift
as Wilson’s group (i.e. z̄group = 0.6840), but that group can-
didate has been broken down into a8 and a9 as the redshift
distribution is bimodal, which is not expected in the case of
a single group.

In addition to automatic detections, WIL16 report 3
visually identified groups at z̄group = 0.3288, z̄group = 0.3926
and z̄group = 0.5100, as well as 2 groups of fewer than 5
members at z̄group = 0.2151 and z̄group = 0.3986. The groups
at z̄group = 0.3926 and z̄group = 0.3986 found by WIL16
may be part of the large over-density of galaxies observed
at z ∼ 0.394 (i.e. 39 galaxies with z ∈ [0.382, 0.406], or ±
3500 km s−1from z ∼ 0.394). The distribution of redshifts in
that range is multi-modal, suggesting that it is not caused by
a massive galaxy cluster9. Instead, we identify up to 3 com-
pact groups (a0-1, a0-2, a0-3), two of them ( a0-1 and a0-

3) roughly matching the central redshift of the group identi-
fied by WIL16. The properties of those groups differ however
from those reported by Wilson as our data reveal 18 new
galaxies in that redshift range. The other groups reported
by WIL16 are found by our algorithm when θmax = 900′′,
but have been removed because of our choice to only keep
groups of at least 10 members for large θmax. The properties
of those groups, while not identical to those of WIL16 due to
the higher completeness of our catalog, are compatible with
the groups of WIL16.

There are two group candidates reported in our work
that are absent of WIL16, namely b5 and a2. The group
a2 hosts galaxies identified exclusively based on our new
data sets. It is therefore expected that WIL16 report no
detection at that redshift. On the contrary, 6 of the 8 galaxies
identified in b5 were also in WIL16 catalog. As pointed out
in Table 3, the velocity histogram of this group is bimodal,
such that its reported properties are likely biased. If split
in two, the two sub-groups would miss our threshold of 5
galaxy members to be classified as a group. Our finding is
therefore compatible with the lack of detection by WIL16.

9 The visual inspection of 2×15 ks archive Chandra ACIS data
of WFI 2033−4723 shows only point-like sources, but no diffuse

emission that would be associated with a galaxy cluster
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Table 3. Properties of the groups identified in the FOV of WFI 2033−4723. The columns are the group redshift, the number of spec-
troscopically identified galaxies in the group, the group intrinsic velocity-dispersion (rounded to the nearest 10 km s−1) and 1σ standard

deviation from bootstrap, the group centroid, bootstrap error on the centroid, projected distance of the centroid to the lens, median

flexion shift log(∆3x(arcsec)) and 1σ standard deviation from bootstrapping (Sect. 5). The last column indicate for which field a peak of
more than 5 galaxies is detected in redshift space. The properties we display correspond to the FOV marked in bold.

ID z̄group N σint (err) RActr, DECctr err(RActr, DECctr) ∆θ log(∆3x)± err FOV

km s−1 deg arcsec arcsec log(arcsec) arcmin

b5 0.3060? 8 530 (110) 308.61026100, −47.43226275 145.2, 15.6 469.0 −6.59 ± 0.48 900

a0-1 0.3937? 7 140 (30) 308.40536200, −47.41128275 17.1, 8.8 75.3 −7.25 ± 0.58 360

a0-2 0.3867? 8 100 (20) 308.42486699, −47.36855275 78.1, 17.2 96.9 −7.50 ± 0.57 360

a0-3 0.3999†,? 12 380 (70) 308.34270600, −47.33671275 87.4, 79.4 292.5 −7.01 ± 0.40 360

a2 0.4436 6 150 (40) 308.47654650, −47.39469775 36.3, 21.1 124.2 −7.02 ± 0.54 360
a3 0.4956 13 520 (100) 308.46337200, −47.36336725 61.8, 58.9 147.8 −4.98 ± 0.81 360, 900

a5 0.6588 22 500 (80) 308.43557011, −47.37411275 35.6, 18.6 80.7 −4.70 ± 0.45 360, 900

a8 0.6796 ‡ 11 610 (190) 308.42531059, −47.39318538 68.6, 24.3 8.3 −3.75 ± 1.21 360
a9 0.6889? 4 190 (90) 308.41116200, −47.41528275 24.9, 17.5 79.5 −6.42 ± 2.26 360

Note: † Likely spurious. ‡ Apparently bimodal but unsuccessful breakdown into sub-group(s). ? Results from the breakdown of a

larger multi-modal group candidate.

Figure 6. Main groups identified in the field of WFI 2033−4723: For each redshift (column), the distribution of (rest-frame) velocities
of the group galaxies identified spectroscopically is shown (bottom panel) together with a Gaussian of width equal to the intrinsic

velocity-dispersion of the group. Bins filled in red correspond to galaxies identified as group members, in blue as interlopers in redshift

space, and in green as non-group members. The top panel shows the spatial distribution of the galaxies with a redshift consistent with
the group redshift, using the same color scheme as for the bottom panel. The positions of the lens (group) centroid is indicated with

a cross (orange diamond). The size of the symbol is proportional to the brightness of the galaxy, and color code is the same as for the

bottom panel. The solid (dashed) black (green) circles show the field used to identify the peak initial guess for the group redshift (a field
of radius r ∼ 1 × Rvir). The groups with the largest flexion shifts (and hence, potentially the largest impact on the modelling) are the

groups a3, a5 (that includes the lens), and a8 (see Sect. 5.2, and continued panels of this figure).

5 CONTRIBUTION OF LINE OF SIGHT AND
ENVIRONMENT TO THE LENS
STRUCTURE

We are interested in identifying the structures (galaxies or
galaxy groups) that require explicit modelling in the course
of the cosmological inference, but may not be accounted for
using a tidal approximation. For that purpose, we need to
identify massive galaxies or groups that fall too close in pro-
jection to the lens to produce only a uniform perturbation
of the main lens gravitational potential over the area cov-
ered by the lensed images. As in Sluse et al. (2017), we use
the diagnostic proposed by McCully et al. (2014, 2017). The
method consists of comparing the shift of the solutions of

the lens equation with and without including the flexion pro-
duced by the perturber (a single galaxy or a galaxy group).
For a point mass, the magnitude of the shift produced by
the flexion term, called “flexion shift” ∆3x, can be written:

∆3x = f (β) ×
(θE θE,p)2

θ3 , (1)

where θE and θE,p are the Einstein radii of the main lens and
of the perturber, and θ is the angular separation on the sky
between the lens and the perturber. We define f (β) = (1−β)2
if the perturber is behind the main lens, and f (β) = 1 if the
galaxy is in the foreground. Here, β is defined for a galaxy
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Figure 6. continued.

at redshift zp > zd as:

β =
DdpDos

DopDds
, (2)

where the Di j = D(zi, zj ) corresponds to the angular diam-
eter distance between redshift zi and zj , and the subscripts
o, d, p, s stand for the observer, deflector, perturber, and
source. We explain in the next section how θE,p is deter-
mined.

As long as the flexion shift of a galaxy is (much) smaller
than the observational precision on the position of the lensed
images, its perturbation on the gravitational potential of
the main lens can be neglected in the lens model. Based on
the simulation results of McCully et al. (2017), we adopt
the likely conservative threshold of ∆3x > 10−4 arcseconds,
i.e. more than 10 times smaller than the astrometric accu-
racy of the data used in the cosmological inference analysis.
Those authors show that by considering explicitly galaxies
or galaxy groups with flexion shift larger than this threshold,
we limit the bias on H0 at the percent level in the cosmolog-
ical analysis.

5.1 Individual galaxies

We first calculate the flexion shift for the individual galaxies
in the field of WFI 2033−4723. This requires an estimate of
the Einstein radius θE,p of these galaxies. This is achieved
in a two-step process. First, we infer the line-of-sight central
velocity-dispersion σlos of each galaxy using the scaling rela-
tion from Zahid et al. (2016), and DES-based stellar masses
(Sect. 3.1). This empirical ”double power-law” relationship
has been derived from a large sample of early-type galaxies
at z < 0.7 observed with SDSS, covering the stellar mass
range log(M?/M�) ∈ [9.5, 11.5]. Since no significant modi-
fication of the relationship has been found by Zahid et al.
(2016) when splitting the sample in different redshift bins,
we assume no evolution with redshift. In addition, we as-
sume that this relationship is still valid at the low-mass end
of our sample, where M? < 109.5M�. In a few cases, when no
accurate multi-band photometry was available due to object

blending, we fix the stellar mass to 1010.17M�, namely the
median stellar mass of the whole sample. We use the rela-
tion from Zahid et al. (2016) without regard to the galaxy
type. This is a conservative choice as, for the same luminos-
ity, early-types have a larger velocity-dispersion than spirals.
Therefore, we may only overestimate the flexion from indi-
vidual galaxies.

Second, we adopt a Singular Isothermal Sphere to con-
vert the velocity-dispersion of the galaxy into its Einstein
radius θE,p:

θE,p = 4π
(σlos

c

)2 Dps
Dos

, (3)

where Dps (Dos) is the angular diameter distance between
the perturber p (resp. the observer o) and the source s.
All along the procedure, we use the spectroscopic redshift
if available, and the photometric redshift otherwise to cal-
culate distances, together with the stellar mass computed
in Section 3.1 at this corresponding redshift. Table 4 lists
the 10 galaxies with the largest flexion shifts. Only four of
them have a flexion shift ∆3x > 10−4 arcsec, namely the
galaxies labeled G2,G3,G7 and G8 on Fig. 3. Among those
galaxies, G8 does not have reliable multi-band photometry,
and therefore a stellar mass of log(M/M�) = 10.17 has been
assumed. This arbitrary choice may yield a substantial over-
estimate of the flexion shift. Indeed, this galaxy shows spec-
troscopic characteristics of a spiral galaxy, and is clearly
fainter than G4, another spiral located at about the same
redshift than G8, but with a photometric stellar mass of only
log(M/M�) ∈ [8.96, 9.48]. Assessing a stellar mass in that
range for G8 yields flexion shifts ∆3x ∈ [3.43 10−5, 2.55 10−5]
arcsec, well below the threshold above which that galaxy
would have a substantial impact on the modelling.

The uncertainty on the flexion shift of each galaxy is
derived by quadratically adding the uncertainty originating
from the conversion of stellar mass into σlos, with the uncer-
tainty on the stellar mass itself (which is strongly correlated
with the photometric redshift, such that we can effectively
neglect the redshift uncertainty). More precisely, we calcu-
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late the flexion using the 16 and 84 percentile values uncer-
tainty on the velocity-dispersion from Fig. 9 of Zahid et al.
(2016) to derive the 1 σ uncertainty originating from the
velocity-dispersion; and we calculate the uncertainty origi-
nating from the stellar mass by calculating the flexion using
the 16 and 84 percentile values of the stellar mass. Those
two contributions to the error budget yield a typical 1 σ

uncertainty of 0.5 dex on log(∆3x/arcsec).

5.2 Groups

Because galaxies of a group reside in a common dark matter
halo, it is important to assess whether the groups identified
in Sect. 4 need to be explicitly accounted for in the model
by attaching a specific mass distribution to their observed
centroid. Similarly to the methodology used for the galaxies,
we adopt the flexion-shift ∆3x (Eq. 1) as an indicator of the
impact of each group on the model. By describing the group
as a singular isothermal sphere, we can calculate the group’s
Einstein radius (Eq. 3) based on its velocity-dispersion, and
hence ∆3x for each group (Table 3 and Table B1).

In order to account for the uncertainty on the group
centroid and velocity-dispersion, we have repeated the flex-
ion shift estimate on 1000 bootstrap samples of these quan-
tities. More specifically, we resample with replacement the
identified group members (i.e. their position and redshifts)
and recalculate the group properties using the resampled
members. We calculate the flexion shift for each bootstrap
group and estimate the 16 and 84 percentiles based on the
bootstrapped distribution. We have conservatively consid-
ered that groups for which ∆3x > 10−4 arcsec for more than
5% of the bootstrap samples need to be scrutinized. We dis-
cuss below the properties of the these groups:

• a3 at z̄group = 0.4956. The group centroid falls in the
vicinity of a subset of 5 galaxies located within less than
20′′ in projection from the lens. One of those galaxies is the
second-brightest galaxy of the group candidates, the bright-
est one being located in the outskirts of the group (in pro-
jection).

• a5 at z̄group = 0.6588: This group hosts the lensing
galaxy. The group properties have only a very weak depen-
dence on the weighting scheme used to estimate the group
centroid. The latter is distant by about 80′′ from several
group members, none being the brightest group galaxy.

• a8 at z̄group = 0.6796: the distribution in velocity space
for this group is very clumpy. This strongly suggests that
this group candidate is a spurious detection, as reported in
Tables 3 & B1. For that reason, we have decided to discard
this group in the lens models used for cosmological inference
(Rusu et al. 2019).

In addition to those groups, we have also estimated the
flexion shift caused by the group of 5 galaxies at z̄group =
0.6840 identified by Wilson et al. (2016, see Sect. 4). We
find ∆3x = 1.8 × 10−7 arcsec, supporting the small impact of
this group candidate on the modelling .

6 VELOCITY-DISPERSIONS OF INDIVIDUAL
GALAXIES

The velocity-dispersion provides a means of measurement
of a galaxy mass. Including this information in the lens-
modelling allows us to improve the accuracy of the lens
models (Treu & Koopmans 2002b,a; Koopmans 2004; Shajib
et al. 2018). In addition to the lensing galaxy G, the three
galaxies with the largest flexion shift (i.e. G2, G3, G7; see
Fig. 3 and Tab. 4) are bright enough to enable a velocity-
dispersion measurement with MUSE data.

For that purpose, we use a code that reproduces an
observed galaxy spectrum by performing a Bayesian explo-
ration of the stellar population of the galaxy (Auger et al.
2009). More precisely, we model the observed spectrum as a
linear combination of stellar spectra multiplied by a sum of
orthogonal polynomials (to account for imperfect sky sub-
traction and uncertainties in the absolute calibration of the
spectrum), convolved with a Gaussian kernel to mimic the
line-spread-function of the instrument. Contrary to Auger
et al. (2009), which uses synthetic stellar spectra, we use
an ensemble of real stellar spectra of various types and
temperatures (i.e. A0, F2, G0, G5, G8, K1, K2 -III stellar
types) from the Indo-US spectral library (Valdes et al. 2004).
Those spectra cover the rest-frame range [3465-9469] Å, with
a constant spectral resolution of 1 Å that correspond to
σtemplate ∼ 28 km s−1over the wavelength range considered.
The instrumental line-spread-function, derived based on a
third order polynomial fit of the spectral resolution with
wavelength, is characterized by a median FWHM ∼ 55 km/s
over the wavelength range considered. The parameters of
the models are the coefficients of the polynomial function
that accounts for uncertainties on the flux calibration (nui-
sance parameters), the coefficients of the linear combina-
tion of stellar spectra, the velocity offset compared to the
guess redshift, and the velocity dispersion. The priors are
uniform for all these parameters, with a range limited to [-
350, +350] km s−1 for the velocity, and [5, 350] km s−1 for the
velocity dispersion. This methodology, already successfully
applied in Auger et al. (2009); Suyu et al. (2010); Sonnenfeld
et al. (2012), is optimized for measuring velocity-dispersion
of spectra with SNR ≥ 10 per pixel.

A brute force extraction of the spectra of G and G2
yields significant contamination of the galaxy spectra by
the lensed quasar images, precluding a robust velocity-
dispersion measurement. It is therefore necessary to re-
move the quasar flux and local sky residual prior to the
velocity-dispersion measurement. For that purpose, we first
model each slice of the data cube containing the lens sys-
tem and G2 using a 2D model of the light distribution. This
model is constituted of the sum of several components: (1)
a de Vaucouleurs light profile, convolved with a PSF model;
(2) 4 point-like sources whose relative positions are held
fixed to the HST positions; and (3) a spatially uniform sky
background. The code, already successfully used to model
ESO-SINFONI IFS data of gravitationally lensed quasars
(Braibant et al. 2014; Sluse et al. 2015), uses the MPFIT im-
plementation of the Levenberg-Marquardt least-square op-
timization algorithm (Markwardt 2009). The lowest resid-
uals are obtained using a symmetric Moffat profile for the
PSF. The extraction of the galaxy spectrum is performed
within a fixed aperture on the data cube after subtraction
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Table 4. Main characteristics of the 10 galaxies with the largest flexion shift. The first 6 columns display the galaxy ID (and label used

in Fig. 3 if displayed), coordinates (RA, DEC in degrees; ICRS), redshift z, i-band magnitude, and distance to the lensing galaxy (in

arcsec). The next three columns provide the logarithm of the flexion shift log(∆3x/1arcsec) for three different percentiles of the posterior
distribution, i.e. 16, 50 and 84 percent (see Sect. 5.1 for details). Values of the flexion shifts ∆3x > 10−4 arcsec are displayed with bold

font to ease the identification of the most prominent perturbers.

ID RA DEC z MAG dist log(∆16
3 x) log(∆50

3 x) log(∆84
3 x)

501 (G2) 308.424014 −47.395599 0.7449 20.02 3.8 −2.65 −1.99 −1.60
1100 (G8)† 308.425195 −47.394358 0.6779 - 4.1 −4.07 −3.51 −3.09
482 (G7) 308.423727 −47.398862 0.6574 20.37 13.0 −4.58 −3.91 −3.54
581 (G3) 308.426804 −47.393648 0.6542 21.19 7.2 −4.98 −4.16 −3.71
1045 (G6) 308.424872 −47.392103 0.3864 21.28 12.3 −5.08 −4.41 −4.01

967 308.414562 −47.383083 0.1807 17.96 52.1 −5.16 −4.60 −4.32

468 308.424933 −47.400595 0.6588 21.01 18.5 −5.47 −4.72 −4.29
574 308.435791 −47.391868 0.6845 20.88 28.1 −5.55 −5.00 −4.63

567 308.420762 −47.384463 0.6574 20.71 41.3 −5.77 −5.28 −4.93

344 308.429001 −47.412962 0.6170 20.05 63.5 −5.68 −5.29 −5.02

Note: † Flexion shift likely over-estimated due to lack of photometric measurement.

of the lensed images and sky models. The associated error
is calculated by summing the variance of each spaxel in the
aperture.

The velocity-dispersion measurement-steps take as in-
put the spectrum of the galaxy and its associated variance.
It is necessary to mask regions of the spectra affected by
telluric sky absorption and/or residual sky background not
perfectly removed by the reduction procedure, as those fea-
tures may be mistakenly attributed to stellar features (in a
complex way that depends on the object’s redshift). For that
purpose, we have performed the measurements using differ-
ent masking schemes (see Appendix C for details). Multi-
ple aperture radii have been tested for the extraction, and
we choose 4 pixels radius (i.e. a square of 9 pixels = 1.8′′

side-length) as the best compromise between an aperture too
small compared to the seeing, and an aperture too large such
that the uncertainty on the estimate of the sky subtraction
and PSF modelling of nearby targets (quasar images and/or
nearby galaxies) contribute to a large fraction of the inte-
grated galaxy flux and introduce a large systematic error on
its flux. The final velocity-dispersion measurement (Table
5) results from the marginalization of the probability distri-
bution function obtained for the different masking schemes,
and three choices of polynomial order (i.e. order 3, 4, 5). The
confidence interval is defined as the region centered on the
median and including 68.4% of the probability distribution.

The seeing has been estimated by fitting a Gaussian
profile independently for each wavelength slice, on 3 field
stars. In that process, we have ignored spectral slices masked
out for measuring the velocity-dispersion. In addition, the
seeing has also been estimated on the quasar images when
modelling the lens-system luminosity profile. We observed
an apparent bias in the FWHM measurement caused by sky
residuals (FWHM agree between the different stars better
for SV data than for P97 data, and the agreement is bet-
ter at redder wavelengths). Therefore, we use the FWHM of
the brighest star as our proxy of the PSF width. The lat-
ter agrees with the FWHM derived from the quasar but is
systematically larger by 10%. Because of the more complex
measurement of the quasar FWHM, we decided to choose
the star-based FWHM as our proxy of the seeing. We mea-
sured a median and scatter (along the wavelength direction)

Table 5. Median velocity-dispersion and 68.4% CI of 4 galaxies

in the FOV of WFI 2033−4723 (See Fig. 2). Measurements are

performed within a square aperture of 3 × 3 pixels (1.8′′) centred
on the galaxy. The last column indicates which MUSE data set

has been used for the velocity-dispersion measurement.

Name RA,DEC σ CI on σ Note

(deg) (km s−1) (km s−1)

G (308.42558, −47.39547) 250 229, 267 SV

G2 (308.42402, −47.39560) 232 222, 243 P97

218 213, 222 SV
223 215, 237 P97+SV

G3 (308.42680, −47.39365) 79 60, 102 SV

G7 (308.42373, −47.39886) 166 160, 173 SV

of the seeing: FWHM = 1.06±0.1 for the SV data and FWHM
= 0.98 ± 0.25 for the P97 data.

7 SUMMARY

In the framework of inferring H0 from the time-delay lens
system WFI 2033−4723 (Bonvin et al. 2019, Rusu et al. 2019,
Wong et al. 2019), we have performed a detailed charac-
terization of the environmental properties of this system,
with the following immediate objectives: (1) identify indi-
vidual galaxies and galaxy groups susceptible to produce
high-order perturbation to the lens potential and therefore
requiring to being explicitly included in the lens models and
estimate their masses; (2) derive redshift proxies (i.e. spec-zs
or photo-zs) for all the galaxies in the field of view to en-
able a statistical estimate of the convergence associated to
the galaxies along the line of sight; (3) measure the velocity
dispersion of the main lensing galaxy for self-consistency of
the mass modelling.

To reach these goals we have measured photo-zs, spec-zs
and inferred stellar masses for most of the galaxies up to ≈4′

from the lens, down to i ≈ 23.0 mag. We have used deep mul-
ticolour imaging as well as multi-objects and integral-field
spectroscopy. In particular, we used grizY imaging from the
Dark Energy Survey, proprietary u-band obtained with DE-
Cam, near-infrared HAWK-I (JHKs) and HST (F160W),
mid-infrared IRAC-Spitzer data, multi-object spectroscopy
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Figure 7. Rest-frame spectra of the galaxies G-G2-G3-G7 (see
Fig. 3 for identification) over-plotted with the velocity-convolved

synthetic stellar population spectrum (red) used to measure the

velocity-dispersion. The grey areas display the regions ignored
in the velocity-dispersion fitting process due to the presence of

known sky absorption or large variability. The green curve is a

multiplicative polynomial of order 4 used to correct mismatch
between the observed spectrum and the synthetic one. The red-
shift, measured simultaneously with the velocity-dispersion mea-

surement, includes a systematic correction by ∆z ∼ −3.6 × 10−4

(See Appendix A). Those redshifts agree statistically with those

derived in our redshift catalogue (Sect. 3.2).

with ESO-FORS2 and Gemini-GMOS instruments. We have
complemented those data with the spectroscopic catalog
from Momcheva et al. (2015) who spectroscopically mea-
sured the redshift of galaxies distant by up to 15′ from
WFI 2033−4723 down to i ≈ 21.5. In addition we have also
used the exceptional capabilities of the ESO-MUSE integral-
field spectrograph to derive spectroscopic redshift of the ob-
ject closer in projection from the lens (with a projected dis-
tance as large as 30′′from WFI 2033−4723), but also to ob-
tain velocity-dispersions of the brightest galaxies suscepti-
ble to produce high-order perturbation of the lens potential.
With 64 galaxies having a confirmed redshift within a radius
of 2′ from the lens, we double the number of systems with
a measured spectroscopic redshift in the direct vicinity of
WFI 2033−4723.

Our main results are the following:

(i) We have gathered a catalog of 366 galaxies
with confirmed spectroscopic redshifts in the FOV of
WFI 2033−4723. In addition, we have tentative redshift mea-

surements for 24 galaxies, and 79 objects for which no red-
shift could be measured. We also spectroscopically identify
110 stars in the FOV.

(ii) We used the same methodology as Sluse et al. (2017)
to identify groups of more than 5 (10) galaxies located
within 6 (15) arcmin from the lensing galaxy. This selec-
tion does not aim at identifying all the groups along the line
of sight, but those that are more susceptible affecting cosmo-
logical inference with the time-delay method, namely small
groups close in projection from the lens, and/or more mas-
sive groups/clusters located farther away. Nine group can-
didates fulfilling those criteria were found, but two of them
are likely to be spurious identifications. In particular, a0-3
(see Tab. 3) has fewer than 2 galaxies appearing in projec-
tion within one virial radius from its centroid. Another group
candidate, a8, shows a bimodal redshift distribution unlikely
to be associated with a single group, but our algorithm is
unsuccessful in identifying this over-density as 2 separated
groups, or one group + isolated galaxies.

(iii) We confirm earlier findings that the main lensing
galaxy is part of a large group at z̄group = 0.6588 (Mor-
gan et al. 2004; Wilson et al. 2016), for which we derive
σlos = 500 ± 80km s−1. The number of spectroscopically con-
firmed members has increased by 30% owing to this work,
and is now reaching 22 galaxies. The lensing galaxy is the
seventh brightest galaxy of the group and is therefore sus-
pected not to lie at the centre of its host halo.

(iv) Following McCully et al. (2017), we have calculated
the flexion shift ∆3x to identify the galaxies/galaxy groups
along the line-of-sight most susceptible to produce high-
order perturbation of the lensing potential. Two groups may
require to be included explicitly in the lens models: The
group a3 at z̄group = 0.4956, for which we identified 13 group
members, and the group a5 which hosts the lensing galaxy.
In addition, three galaxies (G2, G7, G3, see Fig. 3) are sus-
ceptible to produce a non-negligible high-order perturba-
tion of the main lens gravitational potential. Owing to our
MUSE spectroscopic data, we have been able to measure
the velocity-dispersion for these galaxies, which are used as
a prior for the lens-modelling of WFI 2033−4723 presented
in Rusu et al. (2019).

(v) We measure the velocity-dispersion of the lens to be
σlos = 250+15

−21 km s−1.

These results are used by Rusu et al. (2019) to account
for the main perturbers explicitly in the mass modelling of
WFI 2033−4723 , quantify the statistical contribution to the
main lens potential of galaxies along the line of sight, and
constrain H0 from the time delay measured in that lens sys-
tem (Bonvin et al. 2019). Wong et al. (2019) present the
constraints on various cosmological parameters combining
the H0LICOW lenses analysed so far.
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de Janeiro, Conselho Nacional de Desenvolvimento Cient́ı-
fico e Tecnológico and the Ministério da Ciência, Tecnologia
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Vergara C. J., 2014, A&A, 565, L11

Brammer G. B., van Dokkum P. G., Coppi P., 2008, ApJ, 686,
1503

Bruzual G., Charlot S., 2003, MNRAS, 344, 1000

Carrasco Kind M., Drlica-Wagner A., Koziol A. M. G., Petravick

D., 2018, arXiv:1810.02721,

Chabrier G., 2003, Publications of the Astronomical Society of

the Pacific, 115, 763

Collett T. E., et al., 2013, MNRAS, 432, 679

Drake A. B., et al., 2017, MNRAS, 471, 267

Eigenbrod A., Courbin F., Meylan G., Vuissoz C., Magain P.,
2006, A&A, 451, 759

Erben T., et al., 2013, MNRAS, 433, 2545

Fassnacht C. D., Koopmans L. V. E., Wong K. C., 2011, MNRAS,
410, 2167

Fazio G. G., et al., 2004, ApJS, 154, 10

Flaugher B., et al., 2015, AJ, 150, 150

Freudling W., Romaniello M., Bramich D. M., Ballester P., Forchi

V., Garcia-Dablo C. E., Moehler S., Neeser M. J., 2013, A&A,
559, A96

Gawiser E., et al., 2006, ApJS, 162, 1

Hildebrandt H., et al., 2010, A&A, 523, A31

Hildebrandt H., et al., 2012, MNRAS, 421, 2355

Hook I. M., Jørgensen I., Allington-Smith J. R., Davies R. L.,

Metcalfe N., Murowinski R. G., Crampton D., 2004, PASP,

116, 425

Hoshino H., et al., 2015, MNRAS, 452, 998

Ilbert O., et al., 2010, ApJ, 709, 644

Kissler-Patig M., et al., 2008, A&A, 491, 941

Koopmans L. V. E., 2004, astro.ph.12596
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APPENDIX A: COMPARISON WITH
LITERATURE REDSHIFTS

Independent redshift measurements are available for a small
subsample of objects. On one hand, we have compared the
38 robust galaxy measurements present in our catalog and
in MOM15 catalog10. The results (split by instrument), are
shown in the left panel of Fig. A1. We find a median redshift
offset with MOM15 of δz = 3.6 × 10−4 ± 8.5 × 10−6 (standard
error on the mean; stde), compatible with what we observed
for HE 0435−1223. Since the width of the observed δz dis-
tribution is compatible with the median formal error on the
redshift, we conclude that, while GMOS and MOM15 red-
shifts are mutually compatible, the offset between FORS
and MOM15 is real. On the other hand, we have compared
redshifs for targets in common in the FORS, GMOS and
MUSE catalogs (right panel of Fig. A1). There are 9 galax-
ies with robust redshift measurements in common between
the GMOS and FORS catalogs. The distribution of red-
shift differences between the 2 catalogs is centered on δz =
zFORS− zGMOS ∼ 0.0005±0.00007 (stde). There are 6 galax-
ies in common between the MUSE and the FORS samples,
and we measure δz = zMUSE − zFORS ∼ −0.00009 ± 0.00005
(stde). Despite the smaller sample of galaxies, those re-
sults support the results found by comparing our results to
MOM15, namely that FORS and MUSE redshifts are mu-
tually compatible but offset by about δz ∼ 0.0004 compared
to MOM15 and GMOS.

These comparisons suggest that there are unaccounted
systematic errors between the catalogs, but it is difficult
to trace their origin. This has no impact on our analysis
provided that we apply a systematic correction to match
redshifts of all the catalogs. Similarly to the approach fol-
lowed for HE 0435−1223, we have decided to correct the
ESO-based data (i.e. MUSE and FORS). We apply for our
analysis a systematic correction of δz = −3.6 × 10−4 to the
FORS and MUSE redshifts. Such an offset corresponds to
∼ 1 FORS pixel ∼ 3.3 Å in our wavelength calibration (i.e.
about five times the error on the wavelength calibration de-
rived along the reduction). This translates into a velocity
offset δv ∼ 120 km s−1. In addition, we have quadratically
added an error σ

sys
z to the redshifts measured with differ-

ent instruments. Based on the above comparisons, we have
considered σ

sys
z = 0.0002 for FORS, MUSE and GMOS, and

σ
sys
z = 0.0001 for MOM15 data. This systematic error ac-

counts for the uncertainty on the offset between pairs of
catalogs, and for a possible systematic error associated to

10 We only consider objects with the same redshift and with flags
3 and 4 in the MOM15, i.e. we exclude objects that are not new

measurements from MOM15 but included in their catalog.

Figure A1. Left panel: distribution of the difference of red-

shifts between our spectra obtained with 3 different instruments
(FORS, GMOS, MUSE) and MOM15 (i.e. δz = zi−zMOM15, where

i = [FORS,GMOS, MUSE]). Right panel: Distribution of the

difference of redshifts between FORS and GMOS / MUSE.

the barycentric correction (our redshifts include a barycen-
tric correction -smaller than the systematic offset δz- but
we do not know if this is the case of MOM15 redshifts). Fi-
nally, we note that we do not account for the displacement
of our Galaxy w.r.t. the Cosmic Microwave Background,
which for WFI 2033−4723 implies an additional correction
δz ∼ 0.00053 (that would be identical for all the catalogs).
The impact of this correction on the cosmological analysis is
yet negligible relative to other sources of uncertainties, and
can otherwise be accounted for explicitly.

In addition, there are also 4 objects for which our spec-
tra do not support the redshift measurement published by
Momcheva et al. (2015). There is one object for which we
propose to revise the redshift measurement. The discrepancy
is small (δz = 0.04) but significant. Since there is a nearby,
but fainter galaxy 3.0′′away from the target, we cannot fully
exclude that the redshifts correspond to 2 different objects,
but this seems unlikely. For three other targets, we could not
measure any redshift, while Momcheva et al. (2015) publish
a robust measurement. Since the signal to noise ratio of our
spectra is on average better, we suggest that there could
be a potential mis-identification in Momcheva et al. (2015).
Therefore, we choose for this analysis to set the quality flag
to 2 when there is no confirmation of the published redshift
with our new spectrum, and to 1 in case of possible support.
Table A1 lists the coordinates and IDs of the galaxies with
potentially discrepant redshifts.

APPENDIX B: GROUPS FOUND WHEN
USING A LUMINOSITY WEIGHTING SCHEME

As a comparison, we applied our group detection algorithm
using a luminosity weighting scheme to calculate the group
centroid. Table B1 displays the properties of the groups
identified following this methodology. Groups at the same
redshift and with similar velocity-dispersion as the fiducial

MNRAS 000, 1–26 (2019)
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Table A1. Objects with significantly different redshifts in Momcheva et al. (2015) and in our catalog. The last column comments on

the reason of likely mis-identification.

(RA,DEC) (deg) ID-MOM ID zMOM (σz ) z (σz ) Note

(308.417400, −47.41113) 13198 354 0.3540 (3.0e-4) 0.39485 (9.7e-5) Unknown. Nearest galaxy is 3′′.
(308.390047, −47.39731) 11787 487 0.4997 (3.0e-4) - Unknown. Flagged changed to 2

(308.388206, −47.39150) 12266 1044 0.9701 (3.0e-4) - Unknown. Flagged changed to 2

(308.4031, −47.34367) 12814 607 0.7514 (2.3e-4) - Unknown. Flagged changed to 1

ones are identified, except the group a0-1 (Table B1). On
the other hand, the group candidates identified with that
weighting scheme seem to be less physically plausible, in
particular because they often host fewer galaxies within one
virial radius than in the fiducial case. This led to the flagging
of the groups b5 (z̄group = 0.3059) and a0-2 (z̄group = 0.3867)
as spurious group candidates. The group centroid is compat-
ible with the one reported in Table 3 within 3 σ. The group
centroid is generally found to be closer to a group galaxy in
the fiducial case. In addition, the brightest galaxy is never
found to be the closest to the centroid, even when luminosity
weighting is used.

APPENDIX C: MASKING FOR
VELOCITY-DISPERSION MEASUREMENT

Two different masking schemes have been used to measure
the velocity-dispersion of G. A first mask consists of regions
identified as being susceptible to residual sky artefacts, as
well as main telluric lines. The second mask contains the
same features as the first mask but wavelengths bluer than
6600 Å are also masked out, as those regions are the most
susceptible to uncertainties due to sky extraction. For G2,
a third mask, containing only the known telluric absorption
and the red edge of the spectrum (λ > 9100 Å) has also been
used.

We list in Table C1 the spectral range excluded for the
velocity-dispersion measurements. This list contains known
telluric absorption, as well as spectral ranges for which the
data suggested sky variability larger than expectation based
on the variance frame. To identify those regions, we pro-
ceeded as follows: we extract a spectrum in an aperture of
the same size as the aperture used for the galaxies, for 10
different empty regions of the FOV. We then compare the
observed variation of the spectrum, as a function of wave-
length, to the median variance estimated based on the vari-
ance spectrum. We have considered that regions (limited to
maximum 50 consecutive pixels) that deviate by more than
3 times the median standard deviation are the most suscep-
tible to be poorly sky subtracted, and therefore are masked
out. Similar regions are found for SV and P97 data, sug-
gesting that those regions need effectively to be masked in
addition to the spectral bands containing telluric lines. In
addition to those regions, we have also added the reddest
edge of the spectrum whose absolute level varies by more
than 100% between individual data-cubes in the SV data.

MNRAS 000, 1–26 (2019)
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Table B1. Properties of the groups identified in the FOV of WFI 2033−4723. Same as Table 3 but considering a luminosity weighted
centroid. The compact group a2-1 is not identified when we follow that methodology. The columns are the group redshift, the number

of spectroscopically identified galaxies in the group, the group intrinsic velocity-dispersion (rounded to the nearest 10 km s−1) and 1σ

standard deviation from bootstrap, the group centroid, bootstrap error on the centroid, projected distance of the centroid to the lens,
median flexion shift log(∆3x(arcsec)) and 1σ standard deviation from bootstrapping (Sect. 5). The last column indicates for which field

a peak of more than 5 galaxies is detected in redshift space. The properties we display correspond to the FOV marked in bold.

ID z̄group N σint ± err αctr, δctr err(αctr, δctr) ∆θ log(∆3x)± err FOV

km s−1 deg arcsec arcsec log(arcsec) arcmin

b5 0.3059† 10 490 (90) 308.50539418, −47.37161310 251.0, 145.1 212.7 −6.07 ± 0.63 900

a0-2 0.3867† 8 100 (20) 308.44570176, −47.36695669 87.9, 20.4 113.8 −7.68 ± 0.51 360

a0-3 0.3999†, ‡ 12 380 (70) 308.34270600, −47.33671275 87.6, 77.7 292.5 −7.04 ± 0.44 360

a2 0.4436 6 150 (40) 308.47252846, −47.39111478 19.3, 25.7 115.5 −7.18 ± 0.46 360

a3 0.4956 13 520 (110) 308.42814292, −47.38372192 67.3, 66.6 42.8 −4.43 ± 0.95 360
a5 0.6588 22 500 (90) 308.44512558, −47.37258509 36.0, 20.2 95.2 −4.87 ± 0.43 360, 900

a8 0.6796‡ 11 610 (200) 308.42531059, −47.39318538 71.5, 25.2 8.3 −3.71 ± 1.14 360, 900

a9 0.6889 4 190 (90) 308.41390309, −47.41358372 22.9, 15.3 71.1 −6.37 ± 2.20 360

Note: † Likely spurious. ‡ No luminosity weighting due to some group members missing magnitude measurement. ? Results from the

break down of a larger multi-modal group candidate.

Table C1. Sky bands masked out for the velocity-dispersion mea-
surements. λ1 and λ2 correspond respectively to the beginning

and end of the wavelength band. The third column indicates if

the band is a region known to be affected by telluric absorption
or identified based on the study of the sky variability. For clarity,

we have not merged overlapping masked regions.

λ1 (Å) λ2 (Å) Note

4750 4780 Telluric

5573 5584 Variable
5885 5960 Telluric

6295 6307 Variable

6359 6369 Variable
7716 7782 Variable

7791 7857 Variable

7800 7920 Telluric
7910 7968 Variable

7990 8030 Variable

8341 8405 Variable
8426 8471 Variable

8758 8790 Telluric

8762 8829 Variable
8820 8850 Telluric

8826 8892 Variable
8885 8895 Telluric

8902 8965 Variable

8910 8922 Telluric
8997 9056 Variable

9100 9344 Red edge
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Table C2: Photometric properties of the i ≤ 23 galaxies inside 120′′ of WFI 2033−4723

RA DEC u g r i z Y J H K 3.6µm 4.5µm 5.7µm 7.9µm
308.42101 −47.36379 23.42 ± 0.07 23.65 ± 0.13 23.01 ± 0.09 22.44 ± 0.09 21.85 ± 0.15 21.76 ± 0.21 21.34 ± 0.16 21.06 ± 0.17 20.83 ± 0.11 20.96 ± 0.01 21.11 ± 0.02 21.86 ± 0.18 20.68 ± 0.13
308.41123 −47.36396 22.30 ± 0.04 21.38 ± 0.02 20.10 ± 0.01 19.55 ± 0.01 19.30 ± 0.02 19.05 ± 0.04 18.83 ± 0.03 18.44 ± 0.03 18.18 ± 0.02 18.88 ± 0.00 18.96 ± 0.00 19.40 ± 0.02 18.73 ± 0.02
308.44054 −47.36504 25.05 ± 0.15 24.53 ± 0.21 22.99 ± 0.06 21.76 ± 0.03 21.76 ± 0.09 21.30 ± 0.14 20.85 ± 0.07 20.39 ± 0.07 20.17 ± 0.06 20.03 ± 0.01 20.49 ± 0.01 20.55 ± 0.04 21.57 ± 0.22
308.44739 −47.36605 24.09 ± 0.09 24.09 ± 0.16 23.39 ± 0.09 22.83 ± 0.09 22.47 ± 0.17 − 22.34 ± 0.20 − − 22.17 ± 0.03 22.72 ± 0.08 − −
308.43790 −47.36645 23.43 ± 0.07 23.00 ± 0.07 22.42 ± 0.05 22.18 ± 0.06 22.26 ± 0.13 − 22.38 ± 0.18 21.43 ± 0.21 − 22.24 ± 0.04 22.30 ± 0.06 − −
308.42581 −47.36886 22.61 ± 0.05 22.36 ± 0.05 21.46 ± 0.03 20.84 ± 0.03 20.68 ± 0.08 20.39 ± 0.10 20.65 ± 0.11 20.12 ± 0.11 20.10 ± 0.11 20.03 ± 0.01 20.49 ± 0.01 20.47 ± 0.05 20.99 ± 0.15
308.42481 −47.36999 24.15 ± 0.11 23.00 ± 0.06 21.46 ± 0.02 21.03 ± 0.03 20.88 ± 0.06 20.73 ± 0.10 20.67 ± 0.08 20.33 ± 0.10 20.37 ± 0.07 20.72 ± 0.01 20.89 ± 0.02 21.78 ± 0.13 21.52 ± 0.22
308.40978 −47.36709 23.30 ± 0.05 22.68 ± 0.05 22.25 ± 0.04 22.11 ± 0.05 21.94 ± 0.13 22.09 ± 0.13 21.76 ± 0.14 − 21.89 ± 0.21 22.64 ± 0.05 23.51 ± 0.18 − 22.66 ± 0.72
308.44013 −47.36891 23.88 ± 0.06 23.89 ± 0.11 23.53 ± 0.08 22.84 ± 0.07 22.93 ± 0.14 21.72 ± 0.16 22.07 ± 0.16 22.05 ± 0.21 − 21.56 ± 0.02 21.90 ± 0.03 22.22 ± 0.18 21.28 ± 0.15
308.42281 −47.36942 23.53 ± 0.06 23.44 ± 0.09 22.87 ± 0.07 22.30 ± 0.07 22.53 ± 0.15 − − − − 22.43 ± 0.04 22.87 ± 0.09 23.44 ± 0.65 21.62 ± 0.22
308.43034 −47.36987 24.01 ± 0.09 23.92 ± 0.13 23.19 ± 0.07 22.62 ± 0.08 22.77 ± 0.16 21.83 ± 0.18 − − − 22.41 ± 0.03 22.91 ± 0.09 − −
308.43807 −47.37058 25.70 ± 0.19 − 23.62 ± 0.09 22.93 ± 0.08 22.80 ± 0.17 22.60 ± 0.17 22.37 ± 0.18 − 21.96 ± 0.17 21.53 ± 0.02 21.97 ± 0.04 22.09 ± 0.17 22.49 ± 0.50
308.41218 −47.37069 24.12 ± 0.11 23.68 ± 0.12 23.03 ± 0.08 22.71 ± 0.09 22.46 ± 0.17 22.05 ± 0.17 21.85 ± 0.17 − − 23.66 ± 0.11 23.96 ± 0.22 − −
308.44830 −47.37209 25.90 ± 0.20 24.11 ± 0.18 22.48 ± 0.05 20.85 ± 0.02 20.23 ± 0.03 19.93 ± 0.06 19.73 ± 0.03 19.61 ± 0.04 19.71 ± 0.05 20.05 ± 0.00 20.40 ± 0.01 20.81 ± 0.05 21.54 ± 0.20
308.45696 −47.37198 23.70 ± 0.07 23.78 ± 0.14 22.76 ± 0.06 22.53 ± 0.08 22.24 ± 0.14 22.16 ± 0.19 − − − 22.18 ± 0.03 22.65 ± 0.07 21.95 ± 0.15 22.53 ± 0.54
308.39568 −47.37250 24.03 ± 0.10 24.10 ± 0.19 23.31 ± 0.10 22.75 ± 0.09 22.61 ± 0.18 − − − − 22.20 ± 0.03 22.56 ± 0.07 − −
308.44898 −47.37334 25.16 ± 0.21 24.31 ± 0.25 23.79 ± 0.14 22.61 ± 0.08 22.41 ± 0.18 21.54 ± 0.22 21.47 ± 0.11 21.23 ± 0.15 20.73 ± 0.09 20.23 ± 0.01 20.47 ± 0.01 20.80 ± 0.06 20.67 ± 0.10
308.41995 −47.37393 23.07 ± 0.07 22.59 ± 0.05 21.43 ± 0.03 20.86 ± 0.03 20.66 ± 0.06 20.35 ± 0.09 20.06 ± 0.07 19.62 ± 0.07 19.20 ± 0.05 19.56 ± 0.00 19.88 ± 0.01 19.97 ± 0.03 19.83 ± 0.05
308.42187 −47.37483 24.00 ± 0.12 23.76 ± 0.14 22.98 ± 0.09 22.64 ± 0.11 22.14 ± 0.16 − 22.00 ± 0.23 21.60 ± 0.23 21.20 ± 0.18 22.14 ± 0.03 22.41 ± 0.06 21.92 ± 0.14 −
308.44046 −47.37507 24.19 ± 0.12 23.65 ± 0.11 22.73 ± 0.07 22.27 ± 0.07 22.10 ± 0.15 22.02 ± 0.15 21.78 ± 0.16 21.47 ± 0.18 21.46 ± 0.19 22.20 ± 0.03 22.67 ± 0.09 − 22.13 ± 0.45
308.45037 −47.37492 25.06 ± 0.18 − 22.98 ± 0.10 21.82 ± 0.06 21.09 ± 0.09 20.55 ± 0.12 20.51 ± 0.07 20.00 ± 0.07 20.04 ± 0.07 20.10 ± 0.00 20.47 ± 0.01 20.80 ± 0.04 21.99 ± 0.27
308.40490 −47.37558 26.40 ± 0.32 24.66 ± 0.27 23.13 ± 0.08 22.67 ± 0.09 22.66 ± 0.16 22.15 ± 0.14 21.82 ± 0.16 21.50 ± 0.19 21.45 ± 0.18 22.00 ± 0.02 22.36 ± 0.05 22.92 ± 0.36 −
308.44774 −47.37690 24.23 ± 0.13 23.20 ± 0.10 21.92 ± 0.05 21.35 ± 0.04 21.09 ± 0.09 21.10 ± 0.12 20.65 ± 0.10 20.04 ± 0.09 19.87 ± 0.08 20.31 ± 0.01 20.44 ± 0.01 20.83 ± 0.06 20.07 ± 0.06
308.46438 −47.37656 21.33 ± 0.02 21.01 ± 0.02 20.08 ± 0.01 19.77 ± 0.01 19.59 ± 0.03 19.42 ± 0.06 19.43 ± 0.04 19.17 ± 0.05 19.05 ± 0.05 19.40 ± 0.00 19.43 ± 0.01 19.60 ± 0.02 18.78 ± 0.02
308.46340 −47.37697 22.50 ± 0.03 21.82 ± 0.03 21.22 ± 0.02 20.69 ± 0.02 20.52 ± 0.04 20.41 ± 0.08 20.45 ± 0.06 20.25 ± 0.07 20.39 ± 0.09 21.39 ± 0.02 21.67 ± 0.04 22.34 ± 0.25 22.76 ± 0.94
308.41763 −47.37657 23.73 ± 0.06 23.77 ± 0.11 23.17 ± 0.07 22.83 ± 0.08 23.10 ± 0.21 22.17 ± 0.26 − − − 24.30 ± 0.23 − − −
308.41767 −47.37698 23.87 ± 0.08 23.67 ± 0.09 22.72 ± 0.05 22.40 ± 0.07 22.05 ± 0.13 21.91 ± 0.16 21.69 ± 0.15 21.31 ± 0.18 21.29 ± 0.18 21.70 ± 0.02 21.67 ± 0.04 22.72 ± 0.39 21.11 ± 0.18
308.42845 −47.37945 23.79 ± 0.10 23.49 ± 0.12 22.59 ± 0.08 21.96 ± 0.07 22.11 ± 0.16 20.97 ± 0.17 21.25 ± 0.15 21.37 ± 0.21 20.63 ± 0.15 20.45 ± 0.01 20.67 ± 0.01 21.24 ± 0.09 21.12 ± 0.16
308.41490 −47.37750 22.57 ± 0.05 22.63 ± 0.06 21.97 ± 0.05 21.58 ± 0.06 21.51 ± 0.12 21.64 ± 0.18 21.45 ± 0.18 21.44 ± 0.22 21.02 ± 0.19 21.55 ± 0.02 21.86 ± 0.04 21.67 ± 0.13 21.70 ± 0.27
308.39792 −47.37756 23.11 ± 0.05 23.49 ± 0.13 23.16 ± 0.11 22.85 ± 0.14 22.94 ± 0.21 − 21.80 ± 0.22 − − 22.20 ± 0.03 22.23 ± 0.05 − −
308.40164 −47.37850 20.46 ± 0.01 20.42 ± 0.01 20.02 ± 0.01 19.77 ± 0.01 19.65 ± 0.03 19.29 ± 0.05 19.58 ± 0.05 19.51 ± 0.08 19.18 ± 0.06 19.97 ± 0.01 19.99 ± 0.01 20.47 ± 0.05 19.40 ± 0.04
308.38346 −47.37811 − − 23.59 ± 0.13 22.53 ± 0.07 21.81 ± 0.15 21.14 ± 0.14 20.49 ± 0.05 19.96 ± 0.04 19.51 ± 0.03 19.05 ± 0.00 19.23 ± 0.00 19.68 ± 0.02 20.10 ± 0.06
308.43360 −47.37827 23.70 ± 0.08 23.26 ± 0.07 21.84 ± 0.03 20.84 ± 0.02 20.69 ± 0.05 20.46 ± 0.09 20.10 ± 0.05 19.91 ± 0.06 19.71 ± 0.05 19.48 ± 0.00 19.34 ± 0.00 18.67 ± 0.01 17.69 ± 0.01
308.39754 −47.37876 − − 23.31 ± 0.13 22.25 ± 0.08 21.67 ± 0.14 − 21.07 ± 0.12 21.07 ± 0.16 20.56 ± 0.12 21.24 ± 0.01 21.67 ± 0.03 22.31 ± 0.18 23.10 ± 0.93
308.42256 −47.37883 23.84 ± 0.11 23.24 ± 0.10 22.61 ± 0.07 22.28 ± 0.08 22.47 ± 0.17 21.76 ± 0.19 − − − 23.55 ± 0.11 23.71 ± 0.21 − −
308.40732 −47.37970 22.23 ± 0.03 22.06 ± 0.04 21.33 ± 0.03 20.93 ± 0.03 20.83 ± 0.07 20.74 ± 0.11 20.52 ± 0.10 20.14 ± 0.11 19.87 ± 0.09 20.32 ± 0.01 20.69 ± 0.01 20.78 ± 0.06 20.57 ± 0.09
308.43204 −47.37984 23.79 ± 0.08 23.21 ± 0.07 21.98 ± 0.03 21.42 ± 0.03 21.37 ± 0.08 20.95 ± 0.11 20.75 ± 0.09 20.61 ± 0.10 20.24 ± 0.09 20.61 ± 0.01 20.87 ± 0.02 21.41 ± 0.09 20.94 ± 0.12
308.45374 −47.37999 23.28 ± 0.05 23.35 ± 0.09 22.51 ± 0.05 22.09 ± 0.06 22.50 ± 0.14 21.97 ± 0.16 22.29 ± 0.16 − 21.41 ± 0.16 21.83 ± 0.02 22.19 ± 0.05 22.35 ± 0.22 22.68 ± 0.66
308.40269 −47.37998 24.43 ± 0.13 23.83 ± 0.14 23.60 ± 0.13 22.70 ± 0.09 22.62 ± 0.18 − − − 21.32 ± 0.18 22.23 ± 0.03 22.75 ± 0.07 − 22.77 ± 0.65
308.41260 −47.38071 23.52 ± 0.09 22.79 ± 0.07 22.05 ± 0.05 21.73 ± 0.06 21.66 ± 0.12 21.24 ± 0.14 21.43 ± 0.20 21.13 ± 0.21 22.11 ± 0.28 22.57 ± 0.04 23.10 ± 0.12 − 22.87 ± 0.87
308.44761 −47.38087 24.64 ± 0.10 24.46 ± 0.23 23.82 ± 0.11 22.92 ± 0.08 23.00 ± 0.16 21.94 ± 0.16 22.10 ± 0.15 21.81 ± 0.19 21.65 ± 0.16 21.46 ± 0.01 21.73 ± 0.02 22.12 ± 0.13 −
308.40375 −47.38136 23.97 ± 0.09 23.66 ± 0.12 23.07 ± 0.09 22.76 ± 0.10 23.00 ± 0.19 − − − 21.26 ± 0.19 22.80 ± 0.05 23.38 ± 0.14 23.42 ± 0.64 −
308.43322 −47.38140 23.68 ± 0.07 23.66 ± 0.12 22.87 ± 0.07 22.56 ± 0.09 22.41 ± 0.15 22.15 ± 0.16 21.90 ± 0.19 22.03 ± 0.20 21.84 ± 0.22 21.92 ± 0.02 22.29 ± 0.05 21.74 ± 0.12 −
308.39012 −47.38156 24.03 ± 0.09 24.08 ± 0.18 23.35 ± 0.12 22.59 ± 0.09 22.09 ± 0.16 21.10 ± 0.14 21.20 ± 0.11 21.63 ± 0.21 20.49 ± 0.09 19.90 ± 0.00 19.90 ± 0.01 20.14 ± 0.03 19.96 ± 0.04
308.42917 −47.38181 24.03 ± 0.10 23.33 ± 0.09 22.21 ± 0.04 21.43 ± 0.03 21.14 ± 0.07 20.82 ± 0.10 20.56 ± 0.09 20.45 ± 0.10 20.11 ± 0.08 19.94 ± 0.00 20.31 ± 0.01 20.16 ± 0.03 19.94 ± 0.05
308.41451 −47.38311 20.65 ± 0.02 19.35 ± 0.01 18.29 ± 0.00 17.86 ± 0.00 17.61 ± 0.01 17.42 ± 0.02 17.07 ± 0.01 16.97 ± 0.02 16.87 ± 0.02 17.69 ± 0.00 17.96 ± 0.00 18.58 ± 0.01 18.91 ± 0.02
308.40732 −47.38241 23.98 ± 0.12 23.91 ± 0.21 23.13 ± 0.11 22.70 ± 0.12 22.38 ± 0.19 − 21.44 ± 0.18 − 20.62 ± 0.14 20.60 ± 0.01 20.62 ± 0.02 20.94 ± 0.08 20.95 ± 0.16
308.44960 −47.38232 25.99 ± 0.28 − 23.93 ± 0.18 22.84 ± 0.10 21.92 ± 0.14 21.33 ± 0.19 21.00 ± 0.08 20.32 ± 0.07 20.10 ± 0.05 19.56 ± 0.00 19.62 ± 0.01 20.01 ± 0.03 20.59 ± 0.10
308.46599 −47.38484 21.68 ± 0.04 21.43 ± 0.05 20.77 ± 0.04 20.57 ± 0.05 20.38 ± 0.10 20.43 ± 0.12 20.58 ± 0.13 20.35 ± 0.16 − 21.80 ± 0.03 22.30 ± 0.07 22.37 ± 0.30 21.54 ± 0.27
308.46393 −47.38389 22.81 ± 0.04 21.95 ± 0.03 21.25 ± 0.02 20.94 ± 0.02 20.80 ± 0.06 20.78 ± 0.11 20.75 ± 0.07 20.68 ± 0.11 20.61 ± 0.10 22.25 ± 0.04 22.67 ± 0.08 22.16 ± 0.20 −
308.41753 −47.38255 23.50 ± 0.05 23.26 ± 0.07 23.22 ± 0.07 22.94 ± 0.09 23.03 ± 0.15 22.11 ± 0.16 − − − 21.86 ± 0.02 21.76 ± 0.03 21.81 ± 0.11 −
308.46023 −47.38288 23.04 ± 0.05 22.74 ± 0.06 21.74 ± 0.04 21.17 ± 0.03 21.00 ± 0.08 20.63 ± 0.12 20.45 ± 0.07 20.18 ± 0.09 20.20 ± 0.09 20.20 ± 0.01 20.52 ± 0.01 20.45 ± 0.04 20.77 ± 0.11
308.39643 −47.38275 − − 23.04 ± 0.11 22.51 ± 0.11 − − 21.60 ± 0.19 − − 23.13 ± 0.08 23.26 ± 0.14 − −
308.39767 −47.38360 23.06 ± 0.06 21.65 ± 0.03 19.96 ± 0.01 19.39 ± 0.01 19.09 ± 0.02 18.91 ± 0.04 18.55 ± 0.03 18.31 ± 0.04 18.06 ± 0.03 18.55 ± 0.00 18.85 ± 0.00 19.13 ± 0.01 19.70 ± 0.04
308.41075 −47.38296 − − 23.37 ± 0.12 22.32 ± 0.07 21.72 ± 0.12 21.36 ± 0.18 20.63 ± 0.08 20.53 ± 0.10 19.99 ± 0.07 19.88 ± 0.00 20.20 ± 0.01 20.81 ± 0.04 21.00 ± 0.10
308.38011 −47.38347 23.32 ± 0.07 23.14 ± 0.14 22.81 ± 0.10 22.59 ± 0.12 21.85 ± 0.18 − 21.38 ± 0.17 20.79 ± 0.16 20.76 ± 0.15 20.75 ± 0.01 20.71 ± 0.02 21.46 ± 0.12 20.94 ± 0.15
308.46251 −47.38376 23.93 ± 0.12 23.61 ± 0.17 22.26 ± 0.06 21.68 ± 0.06 21.42 ± 0.11 21.13 ± 0.14 20.82 ± 0.10 20.47 ± 0.11 19.79 ± 0.07 20.26 ± 0.01 20.67 ± 0.01 20.41 ± 0.04 20.39 ± 0.08
308.42079 −47.38448 25.91 ± 0.24 23.76 ± 0.15 21.73 ± 0.04 20.55 ± 0.02 20.12 ± 0.04 19.82 ± 0.07 19.32 ± 0.04 19.02 ± 0.04 18.78 ± 0.04 18.88 ± 0.00 19.40 ± 0.00 19.55 ± 0.02 20.25 ± 0.07
308.42724 −47.38441 24.60 ± 0.14 23.57 ± 0.11 22.67 ± 0.07 21.99 ± 0.05 22.28 ± 0.14 21.60 ± 0.15 21.34 ± 0.16 22.17 ± 0.25 21.38 ± 0.18 21.04 ± 0.01 21.39 ± 0.02 21.13 ± 0.07 21.83 ± 0.28
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308.42077 −47.38527 25.66 ± 0.23 − 23.70 ± 0.15 22.92 ± 0.11 22.27 ± 0.19 − − − − 21.57 ± 0.02 21.65 ± 0.03 21.95 ± 0.17 −
308.43194 −47.38546 22.17 ± 0.02 22.06 ± 0.03 21.42 ± 0.02 21.15 ± 0.03 21.20 ± 0.07 20.81 ± 0.11 20.62 ± 0.09 20.77 ± 0.14 21.11 ± 0.13 20.67 ± 0.01 21.02 ± 0.02 20.89 ± 0.06 21.28 ± 0.17
308.43621 −47.38549 26.57 ± 0.32 24.35 ± 0.22 22.67 ± 0.05 21.59 ± 0.03 21.37 ± 0.07 21.22 ± 0.13 20.82 ± 0.07 20.38 ± 0.09 20.32 ± 0.07 20.21 ± 0.01 20.65 ± 0.01 21.03 ± 0.06 21.30 ± 0.16
308.44779 −47.38546 23.96 ± 0.08 23.73 ± 0.14 23.02 ± 0.08 22.19 ± 0.05 21.73 ± 0.10 22.13 ± 0.18 21.34 ± 0.11 21.11 ± 0.15 20.78 ± 0.10 20.24 ± 0.01 20.45 ± 0.01 20.97 ± 0.06 20.82 ± 0.11
308.42556 −47.38664 22.49 ± 0.05 21.80 ± 0.04 21.37 ± 0.04 21.13 ± 0.04 21.07 ± 0.09 20.82 ± 0.13 20.69 ± 0.14 20.55 ± 0.14 20.57 ± 0.16 21.32 ± 0.02 21.68 ± 0.04 22.82 ± 0.39 21.25 ± 0.18
308.40666 −47.38705 23.56 ± 0.07 22.68 ± 0.05 22.19 ± 0.04 21.89 ± 0.05 22.18 ± 0.12 22.38 ± 0.17 21.62 ± 0.16 22.00 ± 0.17 21.48 ± 0.20 22.58 ± 0.04 22.93 ± 0.09 − −
308.44941 −47.38724 23.71 ± 0.09 23.06 ± 0.10 22.34 ± 0.06 22.13 ± 0.08 21.83 ± 0.12 − 21.86 ± 0.17 21.92 ± 0.19 21.57 ± 0.17 21.39 ± 0.02 21.64 ± 0.03 21.57 ± 0.11 22.47 ± 0.57
308.45485 −47.38776 23.39 ± 0.06 23.13 ± 0.09 22.57 ± 0.06 22.27 ± 0.07 22.33 ± 0.16 21.89 ± 0.18 22.27 ± 0.19 − − 22.41 ± 0.04 22.90 ± 0.10 22.80 ± 0.36 −
308.46152 −47.38850 24.56 ± 0.13 24.13 ± 0.19 23.39 ± 0.11 22.70 ± 0.08 22.57 ± 0.16 − 22.22 ± 0.18 21.81 ± 0.19 21.72 ± 0.19 21.44 ± 0.02 21.79 ± 0.04 21.25 ± 0.08 −
308.41408 −47.38876 23.62 ± 0.08 23.31 ± 0.10 23.12 ± 0.10 22.72 ± 0.11 22.96 ± 0.18 21.95 ± 0.19 21.53 ± 0.20 − 21.54 ± 0.30 21.10 ± 0.01 20.90 ± 0.01 21.26 ± 0.07 21.09 ± 0.13
308.41397 −47.38982 22.65 ± 0.04 22.59 ± 0.05 22.05 ± 0.04 21.63 ± 0.05 21.49 ± 0.09 21.52 ± 0.14 21.24 ± 0.18 21.05 ± 0.17 20.70 ± 0.16 20.74 ± 0.01 20.98 ± 0.02 21.26 ± 0.08 21.27 ± 0.17
308.45983 −47.38988 23.86 ± 0.11 22.87 ± 0.08 21.32 ± 0.03 20.54 ± 0.02 20.19 ± 0.04 20.07 ± 0.08 19.65 ± 0.04 19.38 ± 0.05 18.97 ± 0.03 18.90 ± 0.00 19.22 ± 0.00 19.13 ± 0.01 19.17 ± 0.03
308.41802 −47.39064 22.74 ± 0.07 22.43 ± 0.07 21.60 ± 0.05 20.86 ± 0.04 20.51 ± 0.07 20.48 ± 0.12 20.04 ± 0.11 19.82 ± 0.11 19.76 ± 0.11 20.22 ± 0.01 20.74 ± 0.02 21.11 ± 0.08 21.49 ± 0.22
308.45550 −47.39144 22.58 ± 0.06 21.99 ± 0.05 21.46 ± 0.05 21.26 ± 0.06 21.29 ± 0.11 21.17 ± 0.15 21.27 ± 0.17 20.44 ± 0.16 21.21 ± 0.19 22.14 ± 0.04 22.65 ± 0.09 22.35 ± 0.26 −
308.38767 −47.39115 25.62 ± 0.20 − 23.56 ± 0.10 22.94 ± 0.09 22.89 ± 0.17 − 22.06 ± 0.16 21.50 ± 0.15 − 21.18 ± 0.01 21.80 ± 0.04 21.45 ± 0.11 22.23 ± 0.47
308.38745 −47.39175 23.20 ± 0.06 23.20 ± 0.10 22.49 ± 0.07 21.66 ± 0.05 21.27 ± 0.09 21.12 ± 0.14 20.64 ± 0.09 20.51 ± 0.11 20.05 ± 0.09 19.75 ± 0.00 20.00 ± 0.01 20.34 ± 0.04 20.46 ± 0.09
308.40012 −47.39140 23.22 ± 0.04 23.31 ± 0.08 23.09 ± 0.08 22.56 ± 0.08 22.53 ± 0.13 − 22.24 ± 0.20 21.60 ± 0.19 − 21.80 ± 0.02 22.34 ± 0.05 22.95 ± 0.37 22.82 ± 0.76
308.43576 −47.39187 25.62 ± 0.18 23.88 ± 0.19 21.96 ± 0.04 20.74 ± 0.02 20.38 ± 0.04 20.24 ± 0.08 19.62 ± 0.04 19.34 ± 0.05 19.22 ± 0.04 19.11 ± 0.00 19.62 ± 0.01 19.73 ± 0.02 20.35 ± 0.07
308.42488 −47.39213 23.49 ± 0.07 22.81 ± 0.06 21.71 ± 0.04 21.21 ± 0.03 20.86 ± 0.07 20.47 ± 0.10 20.52 ± 0.10 20.16 ± 0.10 20.15 ± 0.09 20.48 ± 0.01 20.60 ± 0.01 20.51 ± 0.04 19.95 ± 0.05
308.40430 −47.39224 22.16 ± 0.03 21.73 ± 0.03 20.62 ± 0.02 20.14 ± 0.02 19.88 ± 0.04 19.66 ± 0.06 19.43 ± 0.05 19.07 ± 0.05 18.87 ± 0.04 19.09 ± 0.00 19.25 ± 0.00 19.29 ± 0.01 18.93 ± 0.02
308.44061 −47.39218 24.69 ± 0.13 − 23.35 ± 0.10 22.69 ± 0.08 22.55 ± 0.15 − − − − 21.81 ± 0.02 22.27 ± 0.05 22.11 ± 0.16 −
308.46714 −47.39302 23.94 ± 0.10 − 23.73 ± 0.18 22.98 ± 0.13 − − − − − 22.66 ± 0.05 22.79 ± 0.10 − −
308.42533 −47.39323 23.86 ± 0.10 23.41 ± 0.12 22.79 ± 0.08 22.54 ± 0.09 22.26 ± 0.18 − − 21.39 ± 0.23 − 21.85 ± 0.03 21.80 ± 0.04 21.41 ± 0.10 20.94 ± 0.13
308.39394 −47.39339 24.39 ± 0.11 24.35 ± 0.19 23.47 ± 0.10 22.52 ± 0.07 22.17 ± 0.13 22.34 ± 0.23 21.89 ± 0.17 − 21.65 ± 0.20 22.11 ± 0.03 22.46 ± 0.06 22.76 ± 0.31 −
308.42675 −47.39371 23.45 ± 0.08 22.84 ± 0.08 21.81 ± 0.05 21.21 ± 0.04 21.07 ± 0.08 20.77 ± 0.12 20.60 ± 0.11 20.26 ± 0.11 20.05 ± 0.09 20.21 ± 0.01 20.64 ± 0.01 20.23 ± 0.03 20.80 ± 0.10
308.38117 −47.39392 25.77 ± 0.18 24.81 ± 0.45 23.18 ± 0.09 22.26 ± 0.06 21.89 ± 0.11 22.37 ± 0.19 21.32 ± 0.10 21.00 ± 0.10 20.87 ± 0.11 20.89 ± 0.01 21.40 ± 0.02 21.75 ± 0.12 −
308.46979 −47.39416 23.41 ± 0.09 22.56 ± 0.07 21.31 ± 0.03 20.60 ± 0.03 20.42 ± 0.06 20.41 ± 0.12 19.77 ± 0.05 19.46 ± 0.06 19.08 ± 0.04 19.44 ± 0.00 19.84 ± 0.01 19.91 ± 0.03 20.29 ± 0.08
308.47106 −47.39424 23.25 ± 0.08 21.93 ± 0.04 20.39 ± 0.02 19.81 ± 0.01 19.60 ± 0.03 19.40 ± 0.06 19.02 ± 0.03 18.75 ± 0.04 18.62 ± 0.03 19.18 ± 0.00 19.28 ± 0.01 19.61 ± 0.02 19.28 ± 0.03
308.38867 −47.39439 − − 24.55 ± 0.20 22.83 ± 0.07 22.14 ± 0.10 − 21.85 ± 0.11 − − 22.64 ± 0.04 23.11 ± 0.10 23.23 ± 0.46 −
308.40306 −47.39498 24.28 ± 0.11 23.97 ± 0.18 23.26 ± 0.09 22.88 ± 0.10 23.76 ± 0.43 − 22.22 ± 0.22 − 21.31 ± 0.17 22.13 ± 0.03 22.49 ± 0.06 − 21.94 ± 0.29
308.41818 −47.39481 24.57 ± 0.13 24.11 ± 0.18 23.55 ± 0.11 22.84 ± 0.10 22.59 ± 0.16 − − 21.58 ± 0.19 21.54 ± 0.17 21.35 ± 0.01 21.64 ± 0.03 21.55 ± 0.09 21.58 ± 0.19
308.42403 −47.39565 23.65 ± 0.05 22.56 ± 0.06 20.98 ± 0.04 19.99 ± 0.03 19.42 ± 0.04 19.13 ± 0.06 19.04 ± 0.05 18.69 ± 0.05 18.40 ± 0.04 18.54 ± 0.00 19.09 ± 0.00 19.20 ± 0.01 19.69 ± 0.04
308.41182 −47.39607 24.01 ± 0.08 23.50 ± 0.10 22.91 ± 0.07 22.32 ± 0.06 22.03 ± 0.12 22.27 ± 0.20 21.96 ± 0.16 21.29 ± 0.15 21.64 ± 0.19 21.27 ± 0.01 21.62 ± 0.03 21.89 ± 0.13 21.41 ± 0.17
308.39050 −47.39733 23.38 ± 0.10 22.88 ± 0.10 21.31 ± 0.04 20.64 ± 0.04 20.22 ± 0.06 20.16 ± 0.09 19.64 ± 0.06 19.15 ± 0.05 18.90 ± 0.05 19.03 ± 0.00 19.17 ± 0.00 19.42 ± 0.02 19.05 ± 0.02
308.39011 −47.39870 24.21 ± 0.13 23.74 ± 0.16 22.74 ± 0.08 22.24 ± 0.08 21.90 ± 0.15 21.41 ± 0.19 21.46 ± 0.15 21.49 ± 0.20 − 21.99 ± 0.03 22.11 ± 0.05 22.90 ± 0.38 −
308.39567 −47.39734 21.40 ± 0.02 20.75 ± 0.02 20.18 ± 0.02 19.88 ± 0.02 19.72 ± 0.04 19.74 ± 0.07 19.41 ± 0.06 19.50 ± 0.08 19.43 ± 0.07 20.16 ± 0.01 20.40 ± 0.01 20.92 ± 0.07 19.60 ± 0.04
308.45910 −47.39805 22.77 ± 0.07 22.29 ± 0.06 21.01 ± 0.03 20.13 ± 0.02 19.70 ± 0.04 19.61 ± 0.07 19.13 ± 0.04 18.82 ± 0.04 18.53 ± 0.04 18.67 ± 0.00 19.12 ± 0.00 19.20 ± 0.01 19.93 ± 0.06
308.40622 −47.39819 22.66 ± 0.04 22.18 ± 0.06 22.19 ± 0.06 21.91 ± 0.08 21.41 ± 0.12 21.77 ± 0.24 21.56 ± 0.20 21.16 ± 0.22 − 21.59 ± 0.02 21.73 ± 0.04 22.66 ± 0.33 21.78 ± 0.30
308.40842 −47.40086 23.52 ± 0.07 22.95 ± 0.08 22.30 ± 0.05 21.83 ± 0.05 21.48 ± 0.09 21.58 ± 0.17 21.37 ± 0.15 20.56 ± 0.10 20.31 ± 0.08 20.88 ± 0.01 21.20 ± 0.02 20.97 ± 0.05 21.24 ± 0.14
308.40702 −47.40044 23.42 ± 0.04 23.07 ± 0.07 22.54 ± 0.04 22.53 ± 0.06 22.44 ± 0.13 22.33 ± 0.22 22.34 ± 0.21 − − 23.87 ± 0.13 24.01 ± 0.24 − −
308.40741 −47.39958 19.68 ± 0.01 19.24 ± 0.01 19.02 ± 0.01 18.90 ± 0.02 18.83 ± 0.04 18.82 ± 0.08 18.80 ± 0.08 18.53 ± 0.09 19.24 ± 0.11 19.79 ± 0.01 20.21 ± 0.02 20.93 ± 0.12 20.29 ± 0.13
308.46357 −47.39887 24.62 ± 0.13 23.71 ± 0.16 22.23 ± 0.05 21.22 ± 0.03 20.82 ± 0.06 20.70 ± 0.11 20.39 ± 0.07 19.92 ± 0.06 19.89 ± 0.07 20.13 ± 0.01 20.63 ± 0.01 20.59 ± 0.05 21.72 ± 0.27
308.46407 −47.39963 25.49 ± 0.17 24.10 ± 0.22 21.94 ± 0.05 20.95 ± 0.03 20.55 ± 0.05 20.53 ± 0.09 19.97 ± 0.05 19.65 ± 0.05 19.39 ± 0.05 19.71 ± 0.00 20.18 ± 0.01 20.31 ± 0.04 21.20 ± 0.17
308.42374 −47.39889 23.26 ± 0.09 22.56 ± 0.07 21.28 ± 0.04 20.25 ± 0.02 19.78 ± 0.04 19.55 ± 0.06 19.17 ± 0.05 18.75 ± 0.04 18.50 ± 0.03 18.73 ± 0.00 19.17 ± 0.00 19.29 ± 0.02 19.77 ± 0.05
308.44765 −47.40020 23.86 ± 0.10 23.90 ± 0.24 23.01 ± 0.11 22.82 ± 0.15 22.01 ± 0.17 − 21.65 ± 0.17 20.89 ± 0.15 − 20.88 ± 0.01 20.94 ± 0.02 21.40 ± 0.10 21.72 ± 0.28
308.42493 −47.40061 24.52 ± 0.13 23.56 ± 0.13 21.92 ± 0.05 20.93 ± 0.03 20.55 ± 0.05 20.51 ± 0.08 19.88 ± 0.06 19.65 ± 0.06 19.45 ± 0.05 19.23 ± 0.00 19.61 ± 0.01 19.58 ± 0.02 19.55 ± 0.04
308.43856 −47.40083 25.13 ± 0.13 23.73 ± 0.14 21.83 ± 0.04 20.77 ± 0.02 20.35 ± 0.04 20.29 ± 0.07 19.83 ± 0.04 19.49 ± 0.05 19.10 ± 0.04 19.27 ± 0.00 19.76 ± 0.01 19.92 ± 0.02 20.59 ± 0.09
308.44623 −47.40079 23.24 ± 0.06 23.12 ± 0.08 22.50 ± 0.06 21.66 ± 0.05 21.33 ± 0.08 21.37 ± 0.14 21.02 ± 0.10 20.55 ± 0.10 20.39 ± 0.10 20.13 ± 0.01 20.45 ± 0.01 20.63 ± 0.05 21.05 ± 0.14
308.47024 −47.40189 22.08 ± 0.03 21.85 ± 0.04 21.06 ± 0.02 20.82 ± 0.03 20.58 ± 0.05 20.64 ± 0.09 20.70 ± 0.09 20.54 ± 0.10 20.83 ± 0.12 20.97 ± 0.01 21.12 ± 0.02 21.23 ± 0.09 21.26 ± 0.20
308.42565 −47.40373 23.36 ± 0.04 22.91 ± 0.06 22.65 ± 0.05 22.41 ± 0.06 22.20 ± 0.12 21.94 ± 0.17 21.58 ± 0.13 21.56 ± 0.16 21.52 ± 0.14 20.24 ± 0.01 20.00 ± 0.01 20.14 ± 0.03 20.01 ± 0.05
308.38221 −47.40452 25.58 ± 0.15 24.36 ± 0.26 22.66 ± 0.07 21.82 ± 0.05 21.36 ± 0.07 21.41 ± 0.13 20.64 ± 0.06 20.57 ± 0.09 20.43 ± 0.08 20.58 ± 0.01 21.13 ± 0.02 21.31 ± 0.09 22.83 ± 0.95
308.40545 −47.40476 23.26 ± 0.07 22.67 ± 0.06 21.60 ± 0.03 21.13 ± 0.04 20.83 ± 0.06 20.89 ± 0.11 20.32 ± 0.07 20.30 ± 0.09 19.61 ± 0.06 20.00 ± 0.01 20.06 ± 0.01 20.47 ± 0.04 19.58 ± 0.04
308.42013 −47.40480 24.16 ± 0.09 24.11 ± 0.17 23.16 ± 0.08 22.64 ± 0.08 22.34 ± 0.15 − 21.93 ± 0.18 − − 21.84 ± 0.02 22.34 ± 0.06 22.15 ± 0.18 22.71 ± 0.69
308.43360 −47.40678 19.70 ± 0.02 18.48 ± 0.01 17.36 ± 0.01 16.91 ± 0.00 16.61 ± 0.01 16.47 ± 0.01 16.17 ± 0.01 16.01 ± 0.02 16.00 ± 0.02 16.69 ± 0.00 16.94 ± 0.00 17.53 ± 0.00 17.56 ± 0.01
308.45381 −47.40588 − 24.52 ± 0.26 23.25 ± 0.08 22.61 ± 0.07 22.52 ± 0.16 − 22.06 ± 0.15 − − 23.53 ± 0.11 23.49 ± 0.17 − −
308.42381 −47.40624 24.08 ± 0.09 23.57 ± 0.10 22.50 ± 0.05 22.16 ± 0.06 21.88 ± 0.10 − 22.67 ± 0.23 21.67 ± 0.19 − 22.17 ± 0.03 22.52 ± 0.07 22.78 ± 0.32 −
308.42722 −47.40738 − − 24.01 ± 0.19 22.63 ± 0.08 21.83 ± 0.10 21.91 ± 0.18 21.48 ± 0.14 20.94 ± 0.11 20.77 ± 0.10 20.70 ± 0.01 21.08 ± 0.02 21.27 ± 0.08 22.28 ± 0.45
308.38962 −47.40510 23.01 ± 0.07 22.43 ± 0.07 21.09 ± 0.03 20.60 ± 0.03 20.29 ± 0.05 20.36 ± 0.10 19.81 ± 0.06 19.48 ± 0.07 19.30 ± 0.06 19.69 ± 0.00 19.63 ± 0.01 20.03 ± 0.03 18.77 ± 0.02
308.46476 −47.40821 23.10 ± 0.07 22.85 ± 0.08 21.62 ± 0.04 20.85 ± 0.03 20.44 ± 0.05 20.37 ± 0.08 20.01 ± 0.06 19.65 ± 0.06 19.38 ± 0.05 19.65 ± 0.00 20.09 ± 0.01 20.20 ± 0.03 20.92 ± 0.13
308.44082 −47.40813 21.79 ± 0.01 21.91 ± 0.03 21.95 ± 0.03 21.70 ± 0.04 21.30 ± 0.07 21.64 ± 0.13 21.66 ± 0.12 21.92 ± 0.22 21.63 ± 0.18 21.25 ± 0.01 21.48 ± 0.02 21.32 ± 0.08 20.93 ± 0.12
308.46158 −47.40859 − 24.30 ± 0.19 23.09 ± 0.07 22.30 ± 0.05 22.55 ± 0.17 22.46 ± 0.17 22.00 ± 0.14 21.62 ± 0.14 − 23.14 ± 0.07 25.13 ± 0.85 22.75 ± 0.31 −
308.39143 −47.40953 22.16 ± 0.04 21.61 ± 0.04 20.72 ± 0.02 20.38 ± 0.03 20.06 ± 0.05 20.07 ± 0.07 20.00 ± 0.08 19.59 ± 0.08 19.60 ± 0.08 20.01 ± 0.01 20.07 ± 0.01 20.55 ± 0.05 19.66 ± 0.05
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308.40381 −47.41063 − − 23.14 ± 0.15 22.63 ± 0.16 21.89 ± 0.19 − − − − 21.40 ± 0.02 21.61 ± 0.03 − −
308.40452 −47.40996 24.23 ± 0.11 22.82 ± 0.09 21.03 ± 0.03 19.98 ± 0.02 19.53 ± 0.03 19.38 ± 0.04 18.89 ± 0.03 18.67 ± 0.03 18.28 ± 0.03 18.41 ± 0.00 18.88 ± 0.00 18.99 ± 0.01 19.72 ± 0.04
308.40542 −47.41073 23.29 ± 0.08 21.75 ± 0.04 20.00 ± 0.01 19.40 ± 0.01 19.15 ± 0.02 18.97 ± 0.03 18.51 ± 0.02 18.28 ± 0.03 18.07 ± 0.03 18.76 ± 0.00 18.95 ± 0.00 19.52 ± 0.02 20.08 ± 0.06
308.38371 −47.41005 23.26 ± 0.07 22.56 ± 0.06 21.25 ± 0.03 20.59 ± 0.02 20.28 ± 0.04 20.23 ± 0.07 19.65 ± 0.04 19.30 ± 0.04 19.10 ± 0.04 19.23 ± 0.00 19.52 ± 0.01 19.45 ± 0.02 19.57 ± 0.04
308.40136 −47.40982 − − 23.88 ± 0.15 22.76 ± 0.10 21.74 ± 0.09 21.42 ± 0.12 20.86 ± 0.07 20.61 ± 0.08 20.21 ± 0.06 19.90 ± 0.00 20.15 ± 0.01 20.44 ± 0.03 21.50 ± 0.18
308.44878 −47.40976 25.00 ± 0.18 − 23.72 ± 0.13 22.76 ± 0.09 22.18 ± 0.14 − 21.89 ± 0.14 − − 23.06 ± 0.06 23.41 ± 0.13 − −
308.43258 −47.41084 25.33 ± 0.17 24.08 ± 0.25 22.15 ± 0.06 21.25 ± 0.04 20.80 ± 0.06 20.75 ± 0.11 20.16 ± 0.07 19.78 ± 0.06 19.68 ± 0.06 20.10 ± 0.01 20.56 ± 0.01 20.67 ± 0.05 21.54 ± 0.21
308.46839 −47.41076 − − 23.42 ± 0.09 22.59 ± 0.07 22.24 ± 0.13 − 22.23 ± 0.16 − − 23.17 ± 0.07 23.76 ± 0.20 23.76 ± 0.88 −
308.41674 −47.41133 23.27 ± 0.07 22.20 ± 0.05 20.74 ± 0.02 20.14 ± 0.02 19.63 ± 0.03 19.66 ± 0.05 18.99 ± 0.03 18.68 ± 0.03 18.48 ± 0.03 18.93 ± 0.00 18.86 ± 0.00 19.19 ± 0.01 17.92 ± 0.01
308.38727 −47.41135 23.69 ± 0.07 23.64 ± 0.16 22.94 ± 0.08 22.61 ± 0.10 22.65 ± 0.23 21.87 ± 0.20 − − − 23.50 ± 0.12 23.91 ± 0.30 23.05 ± 0.58 −
308.38777 −47.41163 23.55 ± 0.07 23.42 ± 0.12 22.67 ± 0.07 22.53 ± 0.10 22.44 ± 0.21 22.01 ± 0.18 − 21.65 ± 0.22 − 22.54 ± 0.05 23.19 ± 0.15 22.23 ± 0.25 −
308.38916 −47.41185 24.13 ± 0.11 23.44 ± 0.10 22.15 ± 0.04 21.58 ± 0.04 21.01 ± 0.06 21.17 ± 0.11 20.61 ± 0.07 20.18 ± 0.07 20.01 ± 0.06 20.06 ± 0.01 20.40 ± 0.01 20.53 ± 0.04 20.78 ± 0.11
308.42727 −47.41219 23.29 ± 0.06 22.90 ± 0.08 22.29 ± 0.05 22.02 ± 0.07 22.09 ± 0.16 22.31 ± 0.19 22.07 ± 0.26 21.51 ± 0.21 21.55 ± 0.21 22.27 ± 0.03 22.58 ± 0.07 21.92 ± 0.15 −
308.43237 −47.41259 23.21 ± 0.08 21.93 ± 0.05 20.26 ± 0.02 19.57 ± 0.02 19.19 ± 0.03 19.06 ± 0.04 18.66 ± 0.04 18.38 ± 0.04 18.26 ± 0.04 18.60 ± 0.00 18.89 ± 0.00 19.11 ± 0.01 19.63 ± 0.04
308.40152 −47.41256 − − 23.69 ± 0.11 22.65 ± 0.07 21.96 ± 0.09 − 21.37 ± 0.09 21.24 ± 0.11 20.90 ± 0.09 20.72 ± 0.01 21.14 ± 0.02 22.03 ± 0.14 22.17 ± 0.35
308.42907 −47.41300 25.01 ± 0.16 22.94 ± 0.09 21.08 ± 0.03 19.93 ± 0.02 19.32 ± 0.02 19.34 ± 0.04 18.74 ± 0.02 18.52 ± 0.03 18.55 ± 0.03 18.78 ± 0.00 19.21 ± 0.00 19.40 ± 0.02 20.25 ± 0.07
308.39061 −47.41355 − − 22.98 ± 0.08 21.76 ± 0.05 21.01 ± 0.06 21.05 ± 0.11 20.13 ± 0.04 19.86 ± 0.05 19.60 ± 0.04 19.42 ± 0.00 19.80 ± 0.01 20.16 ± 0.04 21.34 ± 0.22
308.39208 −47.41374 24.76 ± 0.16 24.20 ± 0.25 23.07 ± 0.08 21.73 ± 0.04 21.17 ± 0.06 21.18 ± 0.11 20.40 ± 0.05 20.42 ± 0.08 19.84 ± 0.05 19.44 ± 0.00 19.61 ± 0.01 19.70 ± 0.02 19.84 ± 0.05
308.45196 −47.41398 24.74 ± 0.13 23.10 ± 0.09 21.72 ± 0.03 21.15 ± 0.03 20.82 ± 0.05 20.86 ± 0.08 20.50 ± 0.06 20.38 ± 0.08 19.94 ± 0.06 20.87 ± 0.01 21.10 ± 0.02 21.79 ± 0.12 22.61 ± 0.58
308.41153 −47.41422 24.78 ± 0.11 24.57 ± 0.31 23.60 ± 0.10 22.98 ± 0.09 22.62 ± 0.15 − 21.58 ± 0.11 21.33 ± 0.11 20.87 ± 0.09 20.22 ± 0.01 20.30 ± 0.01 20.83 ± 0.05 20.99 ± 0.12
308.44140 −47.41479 − 24.23 ± 0.30 23.27 ± 0.12 22.18 ± 0.07 21.98 ± 0.15 − 21.43 ± 0.14 21.05 ± 0.15 20.68 ± 0.10 21.44 ± 0.01 21.94 ± 0.03 22.08 ± 0.13 −
308.46176 −47.41545 23.25 ± 0.06 23.14 ± 0.11 22.82 ± 0.09 22.19 ± 0.09 21.58 ± 0.12 − 21.91 ± 0.19 21.45 ± 0.17 21.13 ± 0.19 21.42 ± 0.02 21.63 ± 0.03 22.12 ± 0.17 21.36 ± 0.18
308.40175 −47.41579 26.16 ± 0.23 − 23.68 ± 0.12 22.26 ± 0.06 21.86 ± 0.10 21.60 ± 0.12 21.16 ± 0.09 20.87 ± 0.09 20.63 ± 0.08 20.32 ± 0.01 20.67 ± 0.01 21.37 ± 0.09 21.72 ± 0.25
308.46024 −47.41804 24.39 ± 0.14 24.45 ± 0.40 22.38 ± 0.07 21.75 ± 0.07 21.14 ± 0.09 20.89 ± 0.13 20.43 ± 0.07 19.97 ± 0.07 19.48 ± 0.05 20.04 ± 0.01 20.30 ± 0.01 20.36 ± 0.04 20.14 ± 0.07
308.46076 −47.41753 22.09 ± 0.04 21.83 ± 0.05 21.07 ± 0.03 20.62 ± 0.04 20.42 ± 0.07 20.06 ± 0.09 20.08 ± 0.09 19.77 ± 0.10 19.67 ± 0.10 20.46 ± 0.01 20.88 ± 0.02 21.32 ± 0.12 20.97 ± 0.19
308.40004 −47.41621 23.91 ± 0.08 23.68 ± 0.11 22.80 ± 0.06 22.61 ± 0.08 22.60 ± 0.19 − − − 21.99 ± 0.19 22.67 ± 0.04 22.90 ± 0.09 22.79 ± 0.29 −
308.40327 −47.41681 − 24.93 ± 0.32 23.71 ± 0.09 22.92 ± 0.07 22.63 ± 0.14 − 22.13 ± 0.15 − − 24.09 ± 0.14 24.01 ± 0.22 − −
308.41432 −47.41633 23.56 ± 0.04 23.54 ± 0.09 23.43 ± 0.07 22.95 ± 0.08 23.15 ± 0.23 − − − − 22.09 ± 0.03 22.33 ± 0.05 22.74 ± 0.29 −
308.39178 −47.41651 23.12 ± 0.06 23.01 ± 0.10 22.69 ± 0.08 22.58 ± 0.12 21.60 ± 0.12 21.46 ± 0.15 21.35 ± 0.15 20.93 ± 0.13 20.58 ± 0.12 19.79 ± 0.01 19.65 ± 0.01 19.96 ± 0.03 20.29 ± 0.09
308.38910 −47.41648 24.96 ± 0.22 − − 22.96 ± 0.14 22.72 ± 0.27 − − − − 21.88 ± 0.02 22.26 ± 0.05 23.54 ± 0.67 −
308.46190 −47.41655 25.75 ± 0.25 − 23.52 ± 0.14 22.47 ± 0.09 22.23 ± 0.18 21.40 ± 0.15 21.17 ± 0.10 20.59 ± 0.09 20.36 ± 0.08 20.41 ± 0.01 20.76 ± 0.01 21.06 ± 0.07 21.70 ± 0.26
308.42574 −47.41679 24.32 ± 0.13 23.69 ± 0.15 22.62 ± 0.06 22.03 ± 0.06 21.86 ± 0.12 21.88 ± 0.19 21.26 ± 0.14 20.83 ± 0.14 21.22 ± 0.14 21.11 ± 0.01 21.36 ± 0.02 21.49 ± 0.09 21.58 ± 0.21
308.43406 −47.41755 22.43 ± 0.04 21.57 ± 0.03 21.04 ± 0.03 20.71 ± 0.03 20.61 ± 0.07 20.82 ± 0.11 20.40 ± 0.10 20.20 ± 0.12 20.47 ± 0.12 21.14 ± 0.01 21.43 ± 0.03 22.27 ± 0.22 22.34 ± 0.51
308.38993 −47.41785 21.54 ± 0.02 21.56 ± 0.03 21.01 ± 0.03 20.65 ± 0.04 20.71 ± 0.08 21.04 ± 0.12 20.65 ± 0.11 21.03 ± 0.17 20.65 ± 0.15 20.84 ± 0.01 21.13 ± 0.03 21.68 ± 0.16 21.66 ± 0.32
308.45861 −47.41822 22.70 ± 0.03 22.62 ± 0.05 21.90 ± 0.03 21.71 ± 0.05 21.78 ± 0.10 21.41 ± 0.12 21.24 ± 0.11 21.75 ± 0.14 20.93 ± 0.13 21.69 ± 0.02 21.98 ± 0.04 22.09 ± 0.18 22.13 ± 0.40
308.43596 −47.41918 24.00 ± 0.07 23.90 ± 0.17 23.18 ± 0.08 22.88 ± 0.10 22.82 ± 0.23 − − − − 24.21 ± 0.18 24.57 ± 0.43 − −
308.43561 −47.41958 24.18 ± 0.09 23.62 ± 0.11 22.87 ± 0.06 22.30 ± 0.06 22.48 ± 0.16 22.74 ± 0.14 21.64 ± 0.14 21.70 ± 0.14 21.37 ± 0.14 21.20 ± 0.01 21.55 ± 0.03 21.47 ± 0.10 21.40 ± 0.20
308.41567 −47.42068 25.36 ± 0.14 23.53 ± 0.13 21.80 ± 0.04 20.67 ± 0.02 20.19 ± 0.04 20.06 ± 0.06 19.61 ± 0.04 19.26 ± 0.04 19.01 ± 0.04 19.01 ± 0.00 19.45 ± 0.01 19.77 ± 0.02 20.25 ± 0.07
308.39755 −47.42148 23.10 ± 0.06 23.07 ± 0.10 22.70 ± 0.09 22.05 ± 0.08 21.98 ± 0.15 21.36 ± 0.18 21.16 ± 0.14 20.99 ± 0.15 20.41 ± 0.12 20.45 ± 0.01 20.57 ± 0.01 21.18 ± 0.08 22.15 ± 0.45
308.42477 −47.42203 24.66 ± 0.15 24.40 ± 0.25 23.28 ± 0.09 22.44 ± 0.08 22.19 ± 0.12 21.90 ± 0.17 21.62 ± 0.14 21.42 ± 0.17 20.94 ± 0.11 20.86 ± 0.01 21.16 ± 0.02 21.80 ± 0.13 21.93 ± 0.31
308.39837 −47.42224 24.32 ± 0.14 23.17 ± 0.10 21.85 ± 0.04 21.27 ± 0.04 21.12 ± 0.08 21.15 ± 0.13 20.84 ± 0.09 20.42 ± 0.11 20.40 ± 0.12 21.11 ± 0.01 21.28 ± 0.03 21.86 ± 0.15 22.19 ± 0.47
308.43431 −47.42335 26.77 ± 0.35 − 24.02 ± 0.13 22.83 ± 0.08 22.04 ± 0.09 21.96 ± 0.13 21.31 ± 0.08 20.87 ± 0.08 20.69 ± 0.07 20.22 ± 0.01 20.55 ± 0.01 21.17 ± 0.07 21.20 ± 0.14
308.43740 −47.42406 22.57 ± 0.03 22.30 ± 0.04 21.44 ± 0.02 21.06 ± 0.03 20.72 ± 0.05 20.92 ± 0.10 20.45 ± 0.08 20.18 ± 0.09 20.12 ± 0.08 20.45 ± 0.01 20.77 ± 0.02 21.05 ± 0.08 20.98 ± 0.15
308.42660 −47.42412 24.87 ± 0.16 24.39 ± 0.22 23.69 ± 0.11 22.81 ± 0.09 22.32 ± 0.14 − 21.80 ± 0.15 − 21.54 ± 0.17 21.23 ± 0.01 21.54 ± 0.03 22.24 ± 0.20 21.90 ± 0.30
308.40465 −47.42448 23.06 ± 0.05 23.03 ± 0.11 22.88 ± 0.08 22.94 ± 0.16 22.39 ± 0.21 − − − − 21.85 ± 0.03 21.62 ± 0.04 − −
308.43161 −47.42530 23.76 ± 0.11 23.89 ± 0.26 23.39 ± 0.14 21.73 ± 0.06 20.95 ± 0.07 21.19 ± 0.13 20.22 ± 0.07 19.76 ± 0.06 19.41 ± 0.05 19.21 ± 0.00 19.37 ± 0.01 19.72 ± 0.03 19.44 ± 0.04
308.40678 −47.42557 21.24 ± 0.01 21.34 ± 0.02 21.08 ± 0.02 20.78 ± 0.03 20.94 ± 0.07 21.17 ± 0.11 20.67 ± 0.09 20.72 ± 0.13 20.59 ± 0.11 20.93 ± 0.01 21.26 ± 0.03 21.41 ± 0.10 −
308.42512 −47.36257 24.77 ± 0.17 24.40 ± 0.29 23.08 ± 0.11 21.99 ± 0.07 21.13 ± 0.09 20.61 ± 0.12 20.28 ± 0.07 19.88 ± 0.07 19.29 ± 0.04 19.30 ± 0.00 19.48 ± 0.01 20.12 ± 0.03 20.42 ± 0.08

We report MAG ISO magnitudes measured with SExtractor, but corrected to total magnitudes using MAG AUTOi −MAG ISOi , with detections in the combined
ir-bands. Reported magnitudes are corrected for galactic extinction following Schlegel et al. (1998). For the IRAC channels, when computing the physical quantities in
Table C3, additional uncertainties were added from the EAzY template error function (not included in this table).
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Table C3: Measured redshifts and stellar masses of the galaxies in Table C2

RA DEC sep zspec/EAzY log M? RA DEC sep zspec/EAzY log M?

308.42101 −47.36379 113.9 0.891+0.129
−0.124 10.40+0.08

−0.10 308.41123 −47.36396 117.9 0.388+0.000
−0.000 10.66+0.03

−0.04
308.44054 −47.36504 115.0 0.736+0.051

−0.054 10.45+0.04
−0.04 308.44739 −47.36605 118.2 0.724+0.161

−0.154 9.50+0.46
−0.50

308.43790 −47.36645 108.2 0.433+0.127
−0.148 7.99+0.21

−0.21 308.42581 −47.36886 95.1 0.651+0.065
−0.064 10.18+0.05

−0.06
308.42481 −47.36999 91.1 0.387+0.000

−0.000 9.71+0.06
−0.07 308.40978 −47.36709 108.3 0.228+0.068

−0.067 8.64+0.54
−0.62

308.44013 −47.36891 101.6 0.781+0.146
−0.127 9.89+0.43

−0.47 308.42281 −47.36942 93.3 0.642+0.088
−0.087 9.19+0.58

−0.66
308.43034 −47.36987 92.3 0.611+0.111

−0.114 9.07+0.65
−0.52 308.43807 −47.37058 94.2 0.537+0.126

−0.139 9.42+0.08
−0.09

308.41218 −47.37069 94.1 0.445+0.000
−0.000 9.26+0.28

−0.39 308.44830 −47.37209 100.6 0.762+0.031
−0.035 11.11+0.06

−0.06
308.45696 −47.37198 114.0 0.504+0.088

−0.092 9.24+0.65
−0.69 308.39568 −47.37250 109.3 0.668+0.137

−0.141 9.37+0.52
−0.56

308.44898 −47.37334 97.8 0.810+0.119
−0.116 10.20+0.09

−0.08 308.41995 −47.37393 78.0 0.566+0.000
−0.000 10.35+0.08

−0.09
308.42187 −47.37483 74.1 0.540+0.154

−0.165 9.13+0.52
−0.52 308.44046 −47.37507 81.6 0.494+0.144

−0.158 9.53+0.11
−0.14

308.45037 −47.37492 95.4 0.928+0.127
−0.134 11.00+0.03

−0.04 308.40490 −47.37558 86.6 0.393+0.091
−0.090 9.38+0.19

−0.13
308.44774 −47.37690 85.8 0.455+0.103

−0.110 10.05+0.16
−0.10 308.46438 −47.37656 116.7 0.443+0.000

−0.000 10.42+0.09
−0.07

308.46340 −47.37697 113.9 0.335+0.340
−0.247 9.71+0.05

−0.05 308.41763 −47.37657 69.9 0.584+0.095
−0.095 9.06+0.36

−0.46
308.41767 −47.37698 68.5 0.477+0.090

−0.091 9.47+0.18
−0.33 308.42845 −47.37945 57.5 0.523+0.173

−0.195 9.63+0.21
−0.15

308.41490 −47.37750 68.9 0.661+0.000
−0.000 9.61+0.10

−0.09 308.39792 −47.37756 92.3 1.106+0.391
−0.303 9.69+0.46

−0.59
308.40164 −47.37850 83.5 0.463+0.000

−0.000 9.55+0.04
−0.04 308.38346 −47.37811 119.2 1.290+0.137

−0.129 10.26+0.91
−0.88

308.43360 −47.37827 64.5 0.690+0.000
−0.000 10.54+0.04

−0.04 308.39754 −47.37876 90.1 0.830+0.155
−0.184 9.60+0.62

−0.66
308.42256 −47.37883 59.6 0.335+0.187

−0.143 8.80+0.51
−0.63 308.40732 −47.37970 71.2 0.663+0.000

−0.000 9.97+0.11
−0.07

308.43204 −47.37984 58.0 0.499+0.000
−0.000 10.07+0.12

−0.09 308.45374 −47.37999 88.5 0.566+0.062
−0.063 9.44+0.63

−0.76
308.40269 −47.37998 77.9 0.810+0.126

−0.139 9.42+0.42
−0.48 308.41260 −47.38071 60.9 0.320+0.109

−0.127 8.83+0.07
−0.07

308.44761 −47.38087 75.2 0.712+0.100
−0.096 9.90+0.14

−0.22 308.40375 −47.38136 72.6 0.458+0.148
−0.191 8.92+0.50

−0.51
308.43322 −47.38140 53.6 0.537+0.116

−0.102 9.24+0.23
−0.28 308.39012 −47.38156 99.0 1.054+0.084

−0.081 10.52+0.12
−0.11

308.42917 −47.38181 49.4 0.684+0.000
−0.000 10.28+0.05

−0.05 308.41451 −47.38311 51.1 0.181+0.000
−0.000 10.70+0.03

−0.03
308.40732 −47.38241 63.8 0.653+0.134

−0.175 9.34+0.69
−0.55 308.44960 −47.38232 75.4 1.119+0.160

−0.133 10.86+0.06
−0.09

308.46599 −47.38484 106.0 0.518+0.000
−0.000 8.14+0.06

−0.06 308.46393 −47.38389 102.7 0.245+0.059
−0.060 9.14+0.04

−0.04
308.41753 −47.38255 49.6 0.931+0.592

−0.481 9.77+0.55
−0.63 308.46023 −47.38288 96.1 0.632+0.000

−0.000 10.21+0.16
−0.10

308.39643 −47.38275 83.6 0.643+0.289
−0.284 8.95+0.34

−0.53 308.39767 −47.38360 79.4 0.500+0.000
−0.000 10.65+0.04

−0.03
308.41075 −47.38296 56.8 0.971+0.152

−0.168 10.97+0.09
−1.39 308.38011 −47.38347 118.1 1.128+0.207

−0.234 10.01+0.58
−0.70

308.46251 −47.38376 99.7 0.683+0.000
−0.000 10.13+0.18

−0.13 308.42079 −47.38448 40.4 0.658+0.000
−0.000 11.27+0.05

−0.05
308.42724 −47.38441 39.4 0.265+0.072

−0.078 9.00+0.24
−0.17 308.42077 −47.38527 37.7 0.807+0.283

−0.276 8.72+0.88
−0.75

308.43194 −47.38546 38.9 0.618+0.000
−0.000 9.68+0.05

−0.07 308.43621 −47.38549 44.2 0.685+0.000
−0.000 10.39+0.17

−0.05
308.44779 −47.38546 65.2 0.780+0.109

−0.129 10.03+0.13
−0.12 308.42556 −47.38664 31.1 0.174+0.000

−0.000 8.74+0.18
−0.22

308.40666 −47.38705 54.2 0.181+0.000
−0.000 8.32+0.07

−0.07 308.44941 −47.38724 65.5 0.348+0.116
−0.107 7.92+0.21

−0.21
308.45485 −47.38776 76.9 0.531+0.103

−0.085 9.52+0.40
−0.58 308.46152 −47.38850 91.6 0.660+0.138

−0.136 9.44+0.52
−0.48

308.41408 −47.38876 36.0 0.706+0.858
−0.508 9.59+0.57

−0.52 308.41397 −47.38982 33.9 0.750+0.000
−0.000 9.73+0.10

−0.12
308.45983 −47.38988 86.4 0.574+0.000

−0.000 10.65+0.03
−0.03 308.41802 −47.39064 24.4 0.747+0.000

−0.000 10.57+0.15
−0.24

308.45550 −47.39144 74.9 0.260+0.072
−0.081 8.79+0.08

−0.08 308.38767 −47.39115 92.9 0.471+0.145
−0.160 9.47+0.17

−0.14
308.38745 −47.39175 93.1 0.818+0.095

−0.095 10.63+0.11
−0.12 308.40012 −47.39140 62.9 0.816+0.109

−0.117 9.57+0.48
−0.56

308.43576 −47.39187 28.3 0.685+0.000
−0.000 10.97+0.12

−0.07 308.42488 −47.39213 11.4 0.387+0.000
−0.000 9.97+0.11

−0.14
308.40430 −47.39224 52.3 0.538+0.000

−0.000 10.52+0.08
−0.06 308.44061 −47.39218 38.9 0.594+0.152

−0.156 9.57+0.20
−0.20

308.46714 −47.39302 102.3 0.966+0.279
−0.252 9.35+0.16

−0.39 308.42533 −47.39323 7.4 0.677+0.000
−0.000 9.23+0.79

−0.70
308.39394 −47.39339 76.7 0.812+0.090

−0.085 9.98+0.33
−0.54 308.42675 −47.39371 6.7 0.655+0.000

−0.000 10.17+0.06
−0.05

308.38117 −47.39392 107.6 0.530+0.106
−0.112 10.15+0.06

−0.19 308.46979 −47.39416 108.5 0.443+0.153
−0.119 10.52+0.15

−0.11
308.47106 −47.39424 111.6 0.387+0.000

−0.000 10.61+0.05
−0.05 308.38867 −47.39439 89.3 0.823+0.075

−0.062 9.64+0.21
−0.21

308.40306 −47.39498 54.2 0.469+0.137
−0.189 9.05+0.51

−0.45 308.41818 −47.39481 17.4 0.690+0.162
−0.150 9.50+0.65

−0.64
308.42403 −47.39565 3.4 0.745+0.000

−0.000 11.15+0.04
−0.04 308.41182 −47.39607 33.0 0.634+0.114

−0.100 9.55+0.12
−0.12

308.39050 −47.39733 85.1 0.511+0.060
−0.055 10.68+0.14

−0.12 308.39011 −47.39870 86.6 0.499+0.151
−0.156 9.62+0.35

−0.52
308.39567 −47.39734 72.6 0.199+0.000

−0.000 9.66+0.06
−0.15 308.45910 −47.39805 83.0 0.658+0.000

−0.000 11.24+0.04
−0.11

308.40622 −47.39819 47.7 0.410+0.613
−0.325 9.16+0.58

−0.62 308.40842 −47.40086 45.8 0.538+0.131
−0.194 9.58+0.10

−0.10
308.40702 −47.40044 48.3 0.419+0.000

−0.000 8.90+0.59
−0.45 308.40741 −47.39958 46.3 0.060+0.000

−0.000 7.85+0.04
−0.03

308.46357 −47.39887 94.2 0.683+0.068
−0.073 10.74+0.05

−0.21 308.46407 −47.39963 95.8 0.656+0.000
−0.000 10.73+0.18

−0.06
308.42374 −47.39889 13.5 0.658+0.000

−0.000 11.16+0.04
−0.04 308.44765 −47.40020 57.3 0.730+0.364

−0.253 9.46+0.62
−0.55

308.42493 −47.40061 19.2 0.659+0.000
−0.000 10.64+0.06

−0.10 308.43856 −47.40083 38.0 0.691+0.000
−0.000 10.81+0.08

−0.12
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308.44623 −47.40079 54.7 0.881+0.000
−0.000 10.29+0.08

−0.10 308.47024 −47.40189 112.1 0.444+0.000
−0.000 9.63+0.09

−0.06
308.42565 −47.40373 30.4 0.178+0.083

−0.087 7.76+0.22
−0.20 308.38221 −47.40452 110.1 0.560+0.062

−0.063 10.35+0.07
−0.14

308.40545 −47.40476 59.2 0.394+0.000
−0.000 9.77+0.14

−0.11 308.42013 −47.40480 36.5 0.601+0.123
−0.126 9.72+0.42

−0.66
308.43360 −47.40678 46.1 0.194+0.000

−0.000 11.15+0.04
−0.04 308.45381 −47.40588 79.3 0.531+0.146

−0.169 9.17+0.21
−0.21

308.42381 −47.40624 39.6 0.502+0.059
−0.063 8.43+0.21

−0.21 308.42722 −47.40738 43.8 0.853+0.099
−0.096 9.57+0.81

−0.98
308.38962 −47.40510 93.9 0.403+0.000

−0.000 10.28+0.15
−0.12 308.46476 −47.40821 106.8 0.655+0.000

−0.000 10.78+0.08
−0.13

308.44082 −47.40813 59.7 0.944+0.000
−0.000 9.59+0.05

−0.06 308.46158 −47.40859 100.6 0.537+0.149
−0.196 9.21+0.21

−0.21
308.39143 −47.40953 97.2 0.394+0.000

−0.000 9.98+0.13
−0.13 308.40381 −47.41063 76.1 0.725+0.346

−0.340 9.60+0.27
−0.34

308.40452 −47.40996 73.2 0.689+0.000
−0.000 11.15+0.05

−0.05 308.40542 −47.41073 73.8 0.394+0.000
−0.000 10.90+0.04

−0.04
308.38371 −47.41005 114.4 0.566+0.000

−0.000 10.59+0.05
−0.07 308.40136 −47.40982 78.4 1.139+0.120

−0.121 10.83+0.25
−1.72

308.44878 −47.40976 77.4 0.817+0.145
−0.150 9.40+0.13

−0.10 308.43258 −47.41084 58.8 0.617+0.000
−0.000 10.76+0.06

−0.19
308.46839 −47.41076 118.9 0.773+0.146

−0.152 9.46+0.21
−0.21 308.41674 −47.41133 61.4 0.395+0.000

−0.000 10.71+0.08
−0.05

308.38727 −47.41135 109.3 0.549+0.106
−0.103 9.17+0.40

−0.48 308.38777 −47.41163 108.8 0.509+0.000
−0.000 9.27+0.55

−0.73
308.38916 −47.41185 106.4 0.475+0.081

−0.078 10.21+0.13
−0.14 308.42727 −47.41219 61.1 0.394+0.000

−0.000 8.84+0.16
−0.12

308.43237 −47.41259 64.7 0.495+0.000
−0.000 11.08+0.05

−0.05 308.40152 −47.41256 85.0 0.925+0.118
−0.117 10.70+0.21

−0.21
308.42907 −47.41300 64.4 0.617+0.000

−0.000 11.33+0.04
−0.04 308.39061 −47.41355 107.1 0.878+0.051

−0.048 10.07+0.89
−0.81

308.39208 −47.41374 104.7 0.856+0.070
−0.073 10.75+0.04

−0.03 308.45196 −47.41398 93.6 0.363+0.000
−0.000 9.97+0.13

−0.15
308.41153 −47.41422 76.0 0.678+0.146

−0.189 9.58+0.62
−0.59 308.44140 −47.41479 80.4 0.745+0.106

−0.112 9.53+0.67
−0.73

308.46176 −47.41545 114.7 0.883+0.134
−0.129 9.76+0.53

−0.64 308.40175 −47.41579 93.5 0.790+0.067
−0.065 10.42+0.15

−1.64
308.46024 −47.41804 118.1 0.567+0.082

−0.094 10.68+0.08
−0.13 308.46076 −47.41753 117.8 0.744+0.000

−0.000 10.18+0.09
−0.09

308.40004 −47.41621 97.3 0.464+0.000
−0.000 8.87+0.43

−0.49 308.40327 −47.41681 94.3 0.625+0.142
−0.140 9.31+0.04

−0.04
308.41432 −47.41633 80.3 0.829+0.127

−0.145 9.59+0.47
−0.58 308.39178 −47.41651 111.8 1.216+0.104

−0.104 10.55+0.08
−0.13

308.38910 −47.41648 116.6 0.602+0.249
−0.257 9.45+0.26

−0.20 308.46190 −47.41655 117.5 0.733+0.077
−0.081 9.26+1.07

−0.87
308.42574 −47.41679 77.4 0.505+0.118

−0.127 9.80+0.15
−0.18 308.43406 −47.41755 83.0 0.200+0.000

−0.000 9.03+0.07
−0.17

308.38993 −47.41785 118.5 0.580+0.000
−0.000 9.69+0.06

−0.07 308.45861 −47.41822 115.8 0.484+0.000
−0.000 9.30+0.11

−0.14
308.43596 −47.41918 89.9 0.533+0.133

−0.140 8.94+0.25
−0.42 308.43561 −47.41958 91.0 0.301+0.083

−0.082 8.79+0.13
−0.14

308.41567 −47.42068 94.4 0.689+0.000
−0.000 10.97+0.07

−0.06 308.39755 −47.42148 116.0 0.835+0.134
−0.136 10.35+0.08

−0.15
308.42477 −47.42203 96.3 0.715+0.117

−0.123 9.94+0.14
−0.11 308.39837 −47.42224 117.1 0.393+0.000

−0.000 9.68+0.24
−0.09

308.43431 −47.42335 103.4 0.897+0.082
−0.076 10.61+0.15

−0.07 308.43740 −47.42406 107.7 0.581+0.000
−0.000 10.08+0.16

−0.13
308.42660 −47.42412 103.9 0.833+0.163

−0.176 9.70+0.49
−0.47 308.40465 −47.42448 116.5 1.071+0.329

−0.341 9.79+0.42
−0.56

308.43161 −47.42530 109.2 0.920+0.045
−0.048 11.10+0.09

−0.10 308.40678 −47.42557 118.0 0.689+0.000
−0.000 9.66+0.05

−0.05
308.42512 −47.36257 117.8 1.058+0.086

−0.090 11.38+0.05
−0.06

Where spectroscopic measurements (marked with null error bars) are not available, photometric redshift values (estimated
with EAzY) correspond to the peak of the probability distributions, and logarithmic mass values (incorporating the IRAC
photometry) correspond to the medians of the probability distributions estimated with Le PHARE, unless only the MASS BEST
value was successfully computed by Le PHARE. Error bars mark the enclosed 68% confidence regions.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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