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ABSTRACT
We study the correlations between supermassive black holes (BHs) and their host galaxies,
using a sample of 83 BH masses collected from the most recent and reliable spatially resolved
estimates available from the literature. We confirm the mono- and bivariate correlations
between SMBHs and the bulges of their host galaxies, confirming that the correlation with the
effective velocity dispersion is not significantly improved by higher dimensionality. Instead,
pseudo-bulges do not seem to correlate with their SMBHs, probably because their secular
evolution is often unable to trigger accretion onto the central BH. We then present a novel ap-
proach aimed at finding the fundamental relation between SMBHs and their host galaxies. For
the first time, we analytically combine BH masses with the Fundamental Plane (FP), showing
that MBH–σ e appears to be the fundamental relation rather than a putative ‘BH Fundamental
Plane’ of the kind MBH–σ e–Re. These results can be explained by a picture which sees the
MBH–σ e relation as a natural outcome of the change in AGN feedback from momentum-driven
to energy-driven. The other scaling relations are then established through the FP.
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1 IN T RO D U C T I O N

The studies conducted in the last 25 yr have shown that supermassive
black holes (hereafter SMBHs) play a crucial role in the formation
and the evolution of their host spheroids (see Kormendy & Ho
2013 and Graham 2016 for reviews). The most significant pieces of
evidence are given by the correlations between the BH mass MBH

and the effective velocity dispersion σ e (Ferrarese & Merritt 2000;
Gebhardt et al. 2000; Tremaine et al. 2002; Gültekin et al. 2009)
and that between MBH and the bulge mass Mbul (Magorrian et al.
1998; Marconi & Hunt 2003; Häring & Rix 2004) where, in the case
of elliptical galaxies, the bulge corresponds to the whole spheroid.
Other monovariate correlations which have been investigated are
those with the bulge kinetic energy Mbulσ

2
e (Feoli & Mancini 2009;

Mancini & Feoli 2012), the Dark Matter (DM) halo (Ferrarese 2002,
but see Kormendy & Bender 2011), the Sérsic index (Savorgnan
et al. 2013), the pitch angle (Davis, Graham & Seigar 2017) or that
with the core radius (Saglia et al. 2016).

� E-mail: st.denicola2@gmail.com (SdN); alessandro.marconi@unifi.it
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Recently, there have been studies investigating whether higher
dimensionality, i.e. a relation combining MBH with multiple galaxy
parameters, can yield better MBH predictions (e.g. Hopkins et al.
2007a,b; Sani et al. 2011; Beifiori et al. 2012; Saglia et al. 2016).
Finding the fundamental relation between SMBHs and their hosts
is of great importance since it would shed light on the physical
mechanism behind these correlations and would provide us with
the parameter(s) that yield(s) the most accurate MBH predictions.
Works focusing on BH–galaxy scaling relations have shown that the
MBH–σ e relation has the lowest intrinsic scatter (e.g. Gültekin et al.
2009; Saglia et al. 2016; van den Bosch 2016) and is just marginally
(if at all) improved by higher dimensionality (Beifiori et al. 2012;
Saglia et al. 2016). In a recent review, King & Pounds (2015) show
how this relation can be explained by a change in AGN feedback
from momentum-driven to energy-driven and how it could generate
the canonical MBH ∝ M1

bul. Instead, in Hopkins et al. (2007b) it is
found that the fundamental relation should be a plane of the kind
MBH ∝ σα

e Rβ
e at 3σ significance level. A total of five BH–galaxy

bivariate correlations are detected in the very exhaustive study
of Saglia et al. (2016), although Shankar et al. (2016), Shankar,
Bernardi & Sheth (2017), and Shankar et al. (2019) have raised the
issue of a presence of a bias in favour of more massive BHs in their
sample.
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The most general description of a bulge is given by the Funda-
mental Plane (hereafter FP, Djorgovski & Davis 1987). This plane
is given by the combination of the virial theorem and a tilt mostly
given by the weak dependence of the mass-to-light ratio M/L on
L itself (Cappellari et al. 2006).1 Thus, in order to have the most
general picture of this BH–bulge interaction, the whole FP should
be combined with BH masses, also because the BH itself is part
of the system probed by the FP. So far, there has been only one
study (van den Bosch 2016) focusing on unifying the FP with BH
masses. In that work, the author shows that a relation of the form

MBH ∝
(

LK

Re

)3.8
should be used to measure BH masses when σ e

measurements are not available.2

Besides classical bulges, we also encounter the so-called pseudo-
bulges (Kormendy & Kennicutt 2004; Fisher & Drory 2008; Fisher
et al. 2013). These systems actively form stars and are rotationally
supported, thus resembling discs more than classical bulges. Our
own Galaxy is the closest example of pseudo-bulge (Kormendy &
Ho 2013). Such systems do not seem to follow the BH–hosts scaling
relations (Graham & Scott 2013; Saglia et al. 2016) and may not
even lie on the FP (Kormendy & Kennicutt 2004, but see table 10
of Saglia et al. 2016), although these are quite difficult to identify
(Graham 2014).

In this work, we analyse the existing correlations and we propose
a novel multivariate analytic approach aimed at combining BH
masses with the FP also taking into account covariances and
correlations between observables. This enables us to verify, among
all scaling relations and regardless of the dimensionality, which one
yields the best predictions of the others. The paper is structured as
follows. In Section 2, we present the data set. In Section 3, we fit
linear regressions to our data. In Section 4, we present our approach
aimed at unifying the FP and BH masses. In Section 5, we briefly
examine the causality of our results and draw our conclusions.
Notes on galaxies omitted from the analysis can be found in
Appendix A. Unless differently specified, we will always provide
1σ uncertainties on all variables.

2 TH E DATA

2.1 BH masses

We start with the compilation of 97 BH masses from Saglia et al.
(2016). Then, we add three galaxies (NGC1277, IC2560, Cygnus A)
from the Kormendy & Ho (2013) compilation and other five galaxies
(NGC1271, NGC1275, NGC1600, NGC3706, NGC5252) from van
den Bosch (2016). Finally, we add the recent four BH mass estimates
from Krajnović et al. (2018). All BH masses are measured through
either stellar dynamics, gasdynamics, or astrophysical masers
(Kormendy & Ho 2013), thus deriving from spatially resolved
kinematics. We do not consider BHs with upper-limits on their
masses or estimates from reverberation mapping or virial methods,
since these methods need to be calibrated with the MBH–galaxy
relations. This explains why our sample is a factor of 2 smaller
than the largest BH masses compilations (Beifiori et al. 2012; van
den Bosch 2016). We also discard BH masses from papers where
observational details are not provided (e.g. Cappellari et al. 2008).

Two strong matters of debate are given by the inclusion of DM
haloes (for stellar dynamics) and emission-line widths (for gas-

1The SMBH itself could contribute to this tilt, as we show in Section 4.
2Note that in this work the author focuses on whole galaxies rather than on
bulges solely.

dynamics) in the analysis when estimating MBH. In both cases, the
authors claim that neglecting these factors can yield underestimated
MBH values, even if in the first case not including the DM halo in
the analysis only indirectly affects MBH through M/L (Kormendy &
Ho 2013). A DM halo is not always important [see e.g. table 1
of Schulze & Gebhardt (2011) or table 3 of Rusli et al. (2013)],
especially if the BH sphere of influence is well resolved, while in
the second case it is not guaranteed that the emission-line widths
contribute significantly to the analysis, as they could simply be due
to unresolved rotation (which is taken into account in the modelling)
or turbulent motions. In this sample, we find several galaxies having
their MBH estimated both with and without modelling a DM halo.
When possible, we try to be conservative, keeping those estimates
which take a DM halo into account (for stellar dynamics), or
emission-line widths (for gasdynamics) in the analysis. Details on
our omissions are discussed in Appendix A. This leaves us with a
total of 83 galaxies (see Table 1).

2.2 Galaxy parameters

Effective velocity dispersions are obtained from the same literature
sources providing MBH (Kormendy & Ho 2013; Saglia et al. 2016;
van den Bosch 2016). These are measured according to the equation

σ =
⎛
⎝

∫ Re

0

√(
v(r)2 + σ (r)2

)
I (r)dr∫ Re

0 I (r)dr

⎞
⎠

1
2

(1)

where v(r) and σ (r) are the first two moments of the collisionless
Boltzmann equation, I(r) is the surface brightness profile, and Re

is the effective radius. We are convinced that the BH sphere of
influence (hereafter SOI) should be included in the computation of
σ e since the BH itself is part of the system probed by the FP. Other
authors (e.g. McConnell & Ma 2013) prefer to omit this region,
in order to (try to) decouple the gravitational effects of the SMBH
from the σ e estimate.

We take the 3.6 μm Spitzer photometry from Savorgnan & Gra-
ham (2016, for the effective radii) and Savorgnan et al. (2016, for the
luminosities). In the first paper, the authors perform sophisticated
decompositions, claiming not to underestimate the systematics
involved in such analysis. We convert effective radii to physical
units using distances of our sample. In order to alleviate the problem
given by incomplete data, when Spitzer photometry is not available
we turn to the K-band photometry from 2MASS data performed
by van den Bosch (2016). However, in this last work the focus is
not on decompositions and hence such data can only be used for
early types. Moreover, these data are less deep than Spitzer’s and
the photometric analysis is performed in a much more simplified
manner with respect to the work of Savorgnan & Graham (2016).
Nevertheless, in Fig. 1 we compare Spitzer and 2MASS data. For
the luminosities, the agreement is fairly good (∼0.12 dex), as can be
expected given the low K − 3.6 colour index (Sani et al. 2011), while
things are slightly worse when dealing with radii (∼0.20 dex), which
can be explained by the different analyses and techniques used to
derive the photometric variables (Savorgnan & Graham 2016; van
den Bosch 2016).

3 LI NEAR R EGRESSI ONS

The first step of the analysis consists in fitting the scaling relations
to our data. These relations have the form

z = α(x − 〈x〉) + γ + ε (2)
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Table 1. Column 1: Galaxy name. Column 2: Morphology. Column 3: Flag A, A = 0 indicates core ellipticals, A = 1 indicates power-law ellipticals, A = 2
indicates bulges, A = 3 indicates pseudo-bulges (Saglia et al. 2016). Column 4: Distance. Column 5: BH mass. Column 6: Effective velocity dispersion. Column
7: Luminosity, measured either at 3.6 μm (Savorgnan et al. 2016) or from 2MASS data (van den Bosch 2016, Section 2.2. Column 8: Effective radius, coming
from the same analysis as L. Column 9: Flag B, B = 0 indicates K-band data, B = 1 indicates Spitzer data.

Galaxy Morphology A Distance MBH σ e LK Re B
(Mpc) (log M�) (log km s−1) (log L�) (log kpc)

Circinus SABb: 3 2.82 ± 0.47 6.23 ± 0.10 1.90 ± 0.02 10.00 ± 0.12 − 0.91 ± 0.07 1
A1836 BCGE 0 152.4 ± 8.4 9.57 ± 0.06 2.46 ± 0.02 11.75 ± 0.06 0.89 ± 0.02 0
IC1459 E4 0 28.9 ± 3.7 9.39 ± 0.08 2.52 ± 0.01 11.70 ± 0.06 0.90 ± 0.06 1
NGC524 S0 2 24.2 ± 2.2 8.94 ± 0.05 2.39 ± 0.02 10.52 ± 0.08 0.17 ± 0.07 1
NGC821 S0 1 23.4 ± 1.8 8.22 ± 0.21 2.32 ± 0.02 10.84 ± 0.31 0.33 ± 0.03 1
NGC1023 SB0 2 10.81 ± 0.80 7.62 ± 0.06 2.31 ± 0.02 10.45 ± 0.07 − 0.41 ± 0.03 1
NGC1399 E1 0 20.85 ± 0.67 8.95 ± 0.31 2.498 ± 0.004 11.81 ± 0.06 1.53 ± 0.01 1
NGC2273 SBa 3 29.5 ± 1.9 6.93 ± 0.04 2.10 ± 0.03 10.43 ± 0.40 − 0.57 ± 0.03 1
NGC2549 S0/ 2 12.7 ± 1.6 7.16 ± 0.37 2.16 ± 0.02 9.73 ± 0.06 − 0.72 ± 0.06 1
NGC3115 S0/ 2 9.54 ± 0.40 8.95 ± 0.10 2.36 ± 0.02 10.93 ± 0.06 0.20 ± 0.06 1
NGC3227 SBa 3 23.7 ± 2.6 7.32 ± 0.23 2.12 ± 0.04 9.93 ± 0.25 − 0.28 ± 0.05 1
NGC3245 S0 2 21.38 ± 1.97 8.38 ± 0.11 2.31 ± 0.02 10.20 ± 0.06 − 0.60 ± 0.04 1
NGC3377 E5 1 10.99 ± 0.46 8.25 ± 0.25 2.16 ± 0.02 10.64 ± 0.25 0.52 ± 0.02 1
NGC3384 SB0 3 11.49 ± 0.74 7.03 ± 0.21 2.16 ± 0.02 10.20 ± 0.06 − 0.51 ± 0.03 1
NGC3393 SABa 3 49.2 ± 8.2 7.20 ± 0.33 2.17 ± 0.03 10.62 ± 0.25 − 0.48 ± 0.07 1
NGC3585 S0 2 20.5 ± 1.7 8.52 ± 0.13 2.33 ± 0.02 11.45 ± 0.25 0.93 ± 0.07 1
NGC3608 E1 0 22.8 ± 1.5 8.67 ± 0.10 2.26 ± 0.02 11.04 ± 0.25 0.68 ± 0.03 1
NGC3842 E1 0 92 ± 11 9.96 ± 0.14 2.43 ± 0.04 12.04 ± 0.06 1.52 ± 0.05 1
NGC3998 S0 2 14.3 ± 1.2 8.93 ± 0.05 2.44 ± 0.01 10.15 ± 0.31 − 0.48 ± 0.04 1
NGC4026 S0 2 13.3 ± 1.7 8.26 ± 0.12 2.25 ± 0.02 9.86 ± 0.31 − 0.39 ± 0.06 1
NGC4258 SABbc 2 7.27 ± 0.50 7.58 ± 0.03 2.06 ± 0.04 10.03 ± 0.03 − 0.33 ± 0.03 1
NGC4261 E2 0 32.4 ± 2.8 8.72 ± 0.10 2.50 ± 0.02 11.53 ± 0.25 0.87 ± 0.04 1
NGC4291 E2 0 26.6 ± 3.9 8.99 ± 0.16 2.38 ± 0.02 10.86 ± 0.25 0.30 ± 0.06 1
NGC4459 E2 1 16.01 ± 0.52 7.84 ± 0.09 2.22 ± 0.02 10.64 ± 0.25 0.00 ± 0.01 1
NGC4473 E5 1 15.25 ± 0.49 7.95 ± 0.24 2.28 ± 0.02 10.80 ± 0.25 0.44 ± 0.01 1
NGC4564 S0 2 15.94 ± 0.51 7.95 ± 0.12 2.21 ± 0.02 10.15 ± 0.06 − 0.41 ± 0.01 1
NGC4596 SB0 2 16.5 ± 6.2 7.88 ± 0.26 2.13 ± 0.02 10.34 ± 0.06 − 0.14 ± 0.16 1
NGC4649 E2 0 16.46 ± 0.61 9.67 ± 0.10 2.58 ± 0.02 11.66 ± 0.06 0.90 ± 0.02 0
NGC4697 E5 1 12.54 ± 0.40 8.13 ± 0.01 2.25 ± 0.02 11.17 ± 0.31 0.64 ± 0.01 1
NGC4889 E4 0 102.0 ± 5.1 10.32 ± 0.44 2.54 ± 0.01 12.25 ± 0.06 1.47 ± 0.02 1
NGC5077 E3 0 38.7 ± 8.4 8.93 ± 0.27 2.35 ± 0.02 11.42 ± 0.06 0.64 ± 0.09 1
NGC5128 E 0 3.62 ± 0.20 7.75 ± 0.08 2.18 ± 0.02 10.80 ± 0.31 0.03 ± 0.02 1
NGC5576 E3 1 25.7 ± 1.7 8.44 ± 0.13 2.26 ± 0.02 11.02 ± 0.06 0.79 ± 0.03 1
NGC5845 E3 1 25.9 ± 4.1 8.69 ± 0.16 2.38 ± 0.02 10.43 ± 0.31 − 0.41 ± 0.07 1
NGC6086 E 0 138 ± 11 9.57 ± 0.17 2.500 ± 0.002 11.87 ± 0.08 1.20 ± 0.04 0
NGC6251 E1 0 108.4 ± 9.0 8.79 ± 0.16 2.46 ± 0.02 11.94 ± 0.06 1.20 ± 0.04 1
NGC7052 E3 0 70.4 ± 8.4 8.60 ± 0.23 2.42 ± 0.02 11.77 ± 0.06 1.10 ± 0.05 1
NGC7582 SBab 3 22.3 ± 9.8 7.74 ± 0.20 2.19 ± 0.05 10.61 ± 0.32 − 0.62 ± 0.19 0
NGC7768 E4 0 116 ± 27 9.13 ± 0.18 2.41 ± 0.04 12.00 ± 0.25 1.37 ± 0.10 1
UGC3789 SABab 3 49.9 ± 5.4 6.99 ± 0.08 2.03 ± 0.05 10.33 ± 0.31 − 0.24 ± 0.05 1
NGC1332 S0 2 22.3 ± 1.8 8.82 ± 0.10 2.47 ± 0.01 11.20 ± 0.31 0.29 ± 0.06 1
NGC1374 E3 1 19.23 ± 0.66 8.76 ± 0.06 2.23 ± 0.01 10.72 ± 0.06 0.36 ± 0.01 1
NGC1407 E0 0 28.0 ± 3.4 9.65 ± 0.08 2.442 ± 0.003 11.72 ± 0.12 0.97 ± 0.05 0
NGC1550 SA0 0 51.6 ± 5.6 9.57 ± 0.07 2.44 ± 0.02 11.32 ± 0.10 0.66 ± 0.05 0
NGC3091 E3 0 51.2 ± 8.3 9.56 ± 0.07 2.48 ± 0.02 11.75 ± 0.06 1.10 ± 0.07 1
NGC3368 SABab 3 10.40 ± 0.96 6.88 ± 0.08 2.122 ± 0.003 10.09 ± 0.06 − 0.57 ± 0.04 1
NGC3489 SAB0 3 12.10 ± 0.84 6.78 ± 0.05 1.949 ± 0.002 9.68 ± 0.25 − 1.00 ± 0.03 1
NGC4751 E 1 26.9 ± 2.9 9.15 ± 0.06 2.56 ± 0.02 10.95 ± 0.09 0.52 ± 0.05 0
NGC5328 E 0 64.1 ± 7.0 9.67 ± 0.16 2.523 ± 0.002 11.71 ± 0.09 0.94 ± 0.05 0
NGC5516 E 0 58.4 ± 6.4 9.52 ± 0.06 2.52 ± 0.02 11.83 ± 0.09 1.30 ± 0.05 0
NGC6861 E 1 27.3 ± 4.6 9.30 ± 0.08 2.590 ± 0.003 11.14 ± 0.13 0.32 ± 0.07 0
NGC7619 E 0 51.5 ± 7.4 9.40 ± 0.11 2.47 ± 0.01 11.78 ± 0.25 1.16 ± 0.06 1
NGC2748 Sc 3 23.4 ± 8.2 7.65 ± 0.24 2.06 ± 0.02 9.84 ± 0.25 − 0.39 ± 0.15 1
NGC4151 Sa 2 20.0 ± 2.8 7.81 ± 0.08 2.19 ± 0.02 10.61 ± 0.25 − 0.18 ± 0.06 1
NGC7457 S0 2 12.5 ± 1.2 6.95 ± 0.30 1.83 ± 0.02 9.69 ± 0.08 − 0.28 ± 0.04 1
NGC307 S0 2 52.8 ± 5.7 8.60 ± 0.06 2.31 ± 0.01 10.50 ± 0.05 − 0.31 ± 0.05 0
NGC3627 SAB(s)b 3 10.0 ± 1.1 6.93 ± 0.05 2.088 ± 0.002 9.45 ± 0.09 − 1.08 ± 0.05 0
NGC3923 E4 1 20.9 ± 2.7 9.45 ± 0.12 2.35 ± 0.02 11.50 ± 0.11 0.89 ± 0.06 0
NGC4486A E2 1 16.00 ± 0.52 7.10 ± 0.15 2.16 ± 0.01 10.08 ± 0.05 − 0.19 ± 0.01 0
NGC4501 SA(rs)b 3 16.5 ± 1.1 7.30 ± 0.08 2.20 ± 0.01 10.16 ± 0.07 − 0.40 ± 0.03 0
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Table 1 – continued

Galaxy Morphology A Distance MBH σ e LK Re B
(Mpc) (log M�) (log km s−1) (log L�) (log kpc)

NGC5018 E3 1 40.6 ± 4.9 8.02 ± 0.08 2.32 ± 0.01 11.54 ± 0.09 0.62 ± 0.05 0
NGC5419 E 0 56.2 ± 6.1 9.86 ± 0.14 2.56 ± 0.01 12.00 ± 0.09 1.26 ± 0.05 0
IC4296 BCGE 0 49.2 ± 3.6 9.11 ± 0.07 2.51 ± 0.02 11.78 ± 0.25 1.21 ± 0.03 1
NGC1277 S0/ 2 73.0 ± 7.3 9.70 ± 0.05 2.52 ± 0.07 10.83 ± 0.08 0.09 ± 0.04 0
IC2560 SBbc 3 33.2 ± 3.3 6.59 ± 0.16 2.15 ± 0.02 10.13 ± 0.25 − 0.14 ± 0.04 1
NGC224 Sb 2 0.77 ± 0.03 8.15 ± 0.16 2.23 ± 0.02 10.34 ± 0.10 − 0.19 ± 0.02 1
NGC4472 E2 0 17.14 ± 0.59 9.40 ± 0.04 2.48 ± 0.01 11.86 ± 0.06 1.05 ± 0.01 1
NGC3031 Sb 2 3.60 ± 0.13 7.81 ± 0.13 2.15 ± 0.02 10.43 ± 0.31 − 0.24 ± 0.02 1
NGC4374 E1 0 18.51 ± 0.60 8.97 ± 0.05 2.47 ± 0.02 11.64 ± 0.25 1.07 ± 0.01 1
NGC4486 E1 0 16.68 ± 0.62 9.68 ± 0.04 2.51 ± 0.03 11.64 ± 0.25 0.85 ± 0.02 1
NGC4594 Sa 2 9.87 ± 0.82 8.82 ± 0.04 2.38 ± 0.02 10.79 ± 0.25 − 0.03 ± 0.08 1
NGC3379 E1 0 10.70 ± 0.54 8.62 ± 0.11 2.31 ± 0.02 10.96 ± 0.25 0.42 ± 0.02 1
NGC221 E2 1 0.80 ± 0.03 6.39 ± 0.19 1.89 ± 0.02 9.12 ± 0.04 − 0.90 ± 0.02 0
CygnusA E 0 242 ± 24 9.42 ± 0.12 2.43 ± 0.05 12.19 ± 0.10 1.46 ± 0.04 0
NGC1271 SB0 2 80.0 ± 8.0 9.48 ± 0.15 2.45 ± 0.01 11.07 ± 0.08 0.34 ± 0.07 0
NGC1275 E 1 73.8 ± 7.4 8.90 ± 0.24 2.39 ± 0.08 11.84 ± 0.08 1.15 ± 0.04 0
NGC1600 E 0 64.0 ± 6.4 10.23 ± 0.04 2.47 ± 0.02 11.86 ± 0.08 1.08 ± 0.04 0
NGC3706 E 0 46.0 ± 4.6 8.78 ± 0.06 2.51 ± 0.01 11.58 ± 0.08 0.80 ± 0.04 0
NGC5252 S0 2 92.0 ± 9.2 8.98 ± 0.23 2.28 ± 0.02 11.49 ± 0.09 0.88 ± 0.06 0
NGC4339 E 1 16.0 ± 1.6 7.63 ± 0.36 1.98 ± 0.02 10.26 ± 0.25 0.37 ± 0.04 0
NGC4434 E 1 22.4 ± 2.2 7.85 ± 0.15 1.99 ± 0.02 10.28 ± 0.25 0.20 ± 0.04 0
NGC4578 E 1 16.3 ± 1.6 7.28 ± 0.22 2.03 ± 0.02 10.33 ± 0.25 0.49 ± 0.04 0
NGC4762 E 1 22.6 ± 2.3 7.36 ± 0.14 2.13 ± 0.02 11.05 ± 0.25 1.06 ± 0.04 0

Figure 1. Comparison of the K-band and the Spitzer photometries for the galaxies of our sample for which both measurements are available. The red lines are
the 1:1 lines. The values are these revised plots to the productuin good agreement with the Spitzer radii being on average slightly larger, which can be expected
since Spitzer data are deeper.
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for monovariate correlations and

z = α(x − 〈x〉) + β(y − 〈y〉) + γ + ε (3)

for bivariate correlations. In these equations, α and β are the
slopes, γ is the zero-point, and ε is the intrinsic scatter around
the dependent variable. This last parameter is of great importance
since it represents the scatter not due to measurement errors, thus
providing information about which variable(s) is (are) most closely
connected to the central BH. Centring the independent variable
reduces the covariance between the observables; moreover, the
zero-point should be ∼〈z〉. Commonly used fitting routines are the
Bayesian linmixerr and its multidimensional equivalent mlin-
mixerr (Kelly 2007). Here, we rely on the robust lts linefit
and lts planefit algorithms (Cappellari et al. 2013), which
combine the Least Trimmed Squares algorithm from Rousseeuw &
Van Driessen (2006) with a residuals sum-of-squares minimization.
These routines can automatically exclude the outliers from the fit,
but we decided not to use this feature. For example, the largest
galaxies (e.g. NGC4889, NGC1600, see Fig. 2) are expected to
be outliers of the MBH–σ e relation because of the longer time
needed by their SMBH to clear the bulge of gas, which results
in abnormally large MBH’s (King & Pounds 2015). All the variables
are logarithmic with units of measurement reported in Table 1. In
all fits, the dependent variable will be MBH.

We consider the monovariate correlations between MBH and
σ e, LK, and Re. Then, we turn to bivariate correlations between
MBH and three possible pairs of galaxy parameters. The relation
between MBH, σ e, and Re is of particular interest since it was
proposed as the fundamental relation by Hopkins et al. (2007b).
In the exhaustive study of Saglia et al. (2016), this correlation is
also detected, but with a stronger dependence on σ e and a slightly
weaker dependence on Re.

3.1 Regression results

Regression results are reported in Table 2, and shown in Figs 2
(monovariate) and 3 (bivariate). Those points interpreted as unre-
liable data (see Appendix A) are plotted as red points and omitted
from the regressions. Galaxies are divided into four subgroups (core
ellipticals, power-law ellipticals, spirals with classical bulges and
pseudo-bulges) using the T flag defined in table 1 of Saglia et al.
(2016). We notice that MBH–σ e has the lowest intrinsic scatter,
whose value agrees with those found in similar studies (Saglia et al.
2016; Savorgnan et al. 2016). Using a sample of 45 early types,
Kormendy & Ho (2013) derive a relation with a scatter <0.3 dex.
Instead, BHs correlate much more weakly with the bulge photomet-
ric parameters and, interestingly, the relations with luminosity and
effective radius show the same slope. Since the intrinsic scatter em-
beds all factors not accountable with measurement errors, it appears
that SMBHs are indeed more closely connected to σ e than any other
variable, confirming the conclusions of earlier works on this topic
(Gültekin et al. 2009; Beifiori et al. 2012; van den Bosch 2016).

At variance with their classical counterparts, pseudo-bulges do
not seem to correlate with their central BHs (Kormendy, Bender &
Cornell 2011), except for a possible correlation with σ e. It is
intriguing that in Saglia et al. (2016) this correlation is not detected
(see their table 11), even if their sample constitutes the basis of our
own compilation.3 It appears that the limited number of pseudo-

3Note that we discard several galaxies that are taken into account in the
Saglia et al. (2016) analysis. See Appendix A.

bulges with reliable BH masses detections prevents us from reaching
a definitive conclusion. Moreover, both classical and pseudo-bulges
are not uniquely defined and several galaxies might host both
components (Erwin et al. 2015).

It should be stressed that the large range spanned by BH masses
can yield misleading results. In fig. 11 of King & Pounds (2015), it is
shown how similar slopes but different normalizations for different
galaxy subgroups can give anomalously high slopes. In Table 3, we
fit the MBH–σ e relation to each of the four subgroups, showing that
slopes are much closer to the value of 4 expected from momentum-
driven theories, which do not constitute a serious threat for the bulge
integrity. Since our BH mass estimates are biased towards higher
values because of the limited resolution of current-days telescopes
(Bernardi et al. 2007; Shankar et al. 2016), the slope of this relation
could naturally increase with data from new generation telescopes,
if the sample is very heterogeneous in masses.

As shown in Table 2, combining σ e with L or Re does not
significantly improve the intrinsic scatter of the MBH–σ e relation.
Nevertheless, neither L nor Re have a slope consistent with zero,
even at 3σ limit. Our results are consistent with the findings of
Saglia et al. (2016).4 The dependence on σ e is stronger than what
originally found by Hopkins et al. (2007b) and, interestingly, the σ e

coefficient is consistent with the value of 4 predicted by momentum-
driven AGN feedback (King 2003).

4 TH E B H H Y P E R P L A N E : A M U LT I VA R I ATE
ANALYTI C APPROACH

This section describes a novel analytic approach that combines MBH

with FP. The only other work published so far which deals with this
issue is van den Bosch (2016), where the author shows that, when
σ e measurements are not available, the ratio LK/Re should be used
as a proxy of MBH. Here, we want to verify which relation gives
the best prediction of the others, i.e. able to reproduce their slopes
and intrinsic scatters. Although we know that FP does not improve
if additional parameters are added (Djorgovski & Davis 1987), in
order to find the fundamental BH–hosts relation, this plane must
be taken into account since it provides the most general description
of a host bulge. Moreover, the BH itself could contribute to the tilt
in the FP (see van den Bosch 2016). First, we model the FP with
a trivariate Gaussian following Bernardi et al. (2003b). Then, we
show how to use this description to find the fundamental relation.
Since pseudo-bulges do not seem to follow the scaling relations,
we have preferred to omit them from the sample. Results including
these systems are reported in Appendix B, where we show that our
conclusions do not differ significantly.

4.1 A four-dimensional regression

We start writing down the most general relation between MBH and
the host galaxy:5

MBH = α L + B Re + C V + g0 � (4)

which is shown in Fig. 4 for our sample. All the variables of
appearing in this equation (MBH, L, V, and Re) are logarithmic.

4That authors use masses rather than luminosities. These are computed from
mass-to-light ratios taken from different sources. See appendix B of Saglia
et al. (2016).
5To avoid confusion with the standard deviation of the Gaussians, we will
use V to label the velocity dispersion in the remainder of the paper.
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Black holes-hosts fundamental relation 605

Figure 2 Monovariate correlations between BH masses and galaxy parameters (upper row: σ e, lower row, left: L, lower row, right: Re). Galaxies are coloured
according to the T flag defined in table 1 of Saglia et al. (2016, Column 2 of table 1). Red points are omitted from the regressions (see Appendix A). The
intrinsic scatter and the Spearman’s coefficient are printed on the bottom-right of the plot. The dashed lines delimit the range given by the intrinsic scatter.

Here, � is the dispersion of this relation and g0 a random Gaussian
number with zero mean, so that the product of � and g0 represents
the intrinsic scatter of our relation.6

The first thing to do is fit equation (4) to our data, in order to
check if we are able to constrain the three slopes of the hyperplane
and its intrinsic scatter. This is needed not only to see how the
coefficients compare to those obtained for lower dimensionality
relations but also to quantify the effect of the FP in establishing
such correlations. The regression has been performed by extending
the fitting routine used in the previous section (Cappellari et al.
2013) to the four-dimensional case. We obtain

A = −0.12 ± 0.33;

6Note that there should also be a dependence on redshift, but since for our
sample Dmax ∼ 250 Mpc (Cygnus A), this term is negligible.

B = 0.56 ± 0.33;

C = 4.18 ± 0.48;

� = 0.35 ± 0.04;

N = 8.34 ± 0.05,

where N is the zero-point of the regression. The errors are only
slightly larger than those obtained with planar regressions, which
is reassuring because the dimensionality of the problem combined
with the low number of points could have yielded abnormally large
errors, or even prevented the convergence of the algorithm.

We see that the intrinsic scatter of this relation is comparable with
those of the other regressions where σ e is involved (see column
6 of Table 2), resulting slightly lower than the BHFPs with σ e
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606 S. de Nicola, A. Marconi and G. Longo

Table 2. Regression results between MBH and the galaxy parameters. Column 1: The independent variable(s). Column
2: The sample used in the regression, All for the full sample, ClBul of classical bulges and Pseudo for pseudo-bulges.
Columns 3 and 4: The slopes (α and β). Column 5: The zero-point (γ ). Column 6: The intrinsic scatter (ε). Columns 7
and 8: The values of 〈x〉 and 〈y〉 (see equations 2 and 3).

Variable(s) Subgroup α β γ ε 〈x〉 〈y〉
σ e All 5.07 ± 0.27 – 8.30 ± 0.05 0.42 ± 0.04 2.291 –

ClBul 4.48 ± 0.30 – 8.60 ± 0.05 0.38 ± 0.04 2.333 –
Pseudo 3.50 ± 0.70 – 7.14 ± 0.07 0.27 ± 0.08 2.135 –

L All 1.12 ± 0.08 – 8.48 ± 0.06 0.53 ± 0.05 10.913 –
ClBul 1.00 ± 0.09 – 8.71 ± 0.06 0.47 ± 0.05 11.074 –

Pseudo 0.49 ± 0.47 – 7.10 ± 0.12 0.43 ± 0.14 10.109 –

Re All 1.07 ± 0.10 – 8.43 ± 0.07 0.63 ± 0.06 0.306 –
ClBul 0.91 ± 0.12 – 8.70 ± 0.07 0.60 ± 0.06 0.500 –

Pseudo 0.15 ± 0.23 – 7.09 ± 0.10 0.39 ± 0.12 − 0.502 –

σ e–Re All 3.95 ± 0.34 0.39 ± 0.09 8.43 ± 0.05 0.38 ± 0.04 2.301 0.310
ClBul 3.69 ± 0.34 0.32 ± 0.09 8.68 ± 0.05 0.34 ± 0.04 2.341 0.500

Pseudo 2.80 ± 0.83 − 0.14 ± 0.19 7.05 ± 0.08 0.27 ± 0.11 2.120 − 0.529

σ e–L All 3.48 ± 0.43 0.43 ± 0.11 8.48 ± 0.05 0.37 ± 0.04 2.303 10.923
ClBul 3.20 ± 0.45 0.37 ± 0.11 8.69 ± 0.05 0.34 ± 0.04 2.341 11.074

Pseudo 2.9 ± 1.3 − 0.08 ± 0.46 7.01 ± 0.10 0.30 ± 0.13 2.096 10.113

Figure 3. Bivariate correlations between BH masses and galaxy parameters (left: MBH–σ e–L, right: MBH–σ e–Re). Symbols and colour coding are the same
as in Fig. 2.

Table 3. Results of the fit of the MBH–σ e relation to each subgroup defined
in Saglia et al. (2016, see also Section 3.1). Column 1: The subgroup. Column
2 and 3: The slopes and the zero-points. Column 4: The intrinsic scatter.
Column 5: The values of 〈x〉 (see equation 2). All slopes are closer to the
value of 4 predicted by momentum-driven theories (King & Pounds 2015)
than that obtained from the full sample. Note the much larger uncertainty
on the Pseudo-slope.

Subgroup α γ ε 〈x〉
Core 4.32 ± 0.89 9.27± 0.07 0.38 ± 0.07 2.404
Power 3.65 ± 0.55 8.09 ± 0.10 0.41 ± 0.10 2.270
ClBul 4.25 ± 0.54 8.28 ± 0.07 0.34 ± 0.07 2.283
Pseudo 3.50 ± 0.70 7.14 ± 0.07 0.27 ± 0.08 2.135

and consistent with the value found for MBH–σ e within 1.5σ . The
comparison between the scatters is made by evaluating the quantity

|ε1 − ε2|√
σ 2

ε1
+ σ 2

ε2

. (5)

Once again, it appears that σ e alone is a very good predictor of
MBH. Interestingly, the introduction of L does not significantly alter
the slopes of the MB−σ e−Re, indeed the L-slope is the only one
consistent with zero within 1σ .

4.2 Modelling the BH hyperplane

We now investigate the effects of the FP on the relations between BH
and bulge structural parameters. The three variables defining the FP
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Black holes-hosts fundamental relation 607

Figure 4. The 3D representation of the putative ‘BH hyperplane’. Different
symbols denote different galaxy subsets, as shown in the legend. Points are
coloured according to their MBH values.

are strongly pairwise correlated (Bernardi et al. 2003b). Due to the
smallness of our sample, computing covariances and correlations
between these three observables may be cumbersome. Thus, we
turn to the much more robust analysis of Bernardi et al. (2003b).

In that work, the authors studied a sample of ∼9000 early-type
galaxies from the SDSS finding that the luminosity distribution is
well modelled by a Gaussian (see also Saglia et al. 2001), and also
the distributions of both V and Re around the mean (at fixed L) are
of Gaussian shape. This means that

φ(L,Re, V ) = ψ(Re, V |L)φ(L), (6)

where ψ(Re, V|L) and φ(L) are a bivariate and a monovariate
Gaussian, respectively, and φ(L, Re, V) is the joint distribution,
which is well modelled by a trivariate Gaussian. In practice, we
draw L from a Gaussian distribution with mean 〈L〉 and variance σ 2

L

then Re from a Gaussian with mean 〈Re|L〉 and variance σ 2
Re |L and

finally the velocity dispersion taking into account both correlations
with L and Re. Labelling the correlation coefficients between two
variables with ρ, we obtain (see appendix A of Bernardi et al.
2003b)

L = g1σL (7a)

Re = L

σL

σRe
ρReL + g1σRe

√
1 − ρ2

ReL
(7b)

V = L

σL

ξLV + Re

σRe

ξReV + g2σV |ReL, (7c)

where the gs are Gaussian random numbers with zero mean and
unit variance,

ξLV = σV

ρLV − ρReLρReV

1 − ρ2
LRe

(8a)

ξReV = σV

ρReV − ρReLρLV

1 − ρ2
LRe

(8b)

Table 4. The covariance matrix describing the FP of
the sample of Bernardi et al. (2003b). This is derived
from z-band observations.

Coefficient Value

σV 0.17
σ L 0.69
σRe 0.64
ρVL 0.78
ρV Re 0.54
ρReL 0.88

σV |LRe
= σV

√
1 − ρ2

LRe
− ρ2

LV − ρ2
V Re

+ 2ρReLρLV ρReV

1 − ρ2
LRe

(8c)

and

C =
⎛
⎝ σL ρReLσRe

σL ρLV σLσV

ρReLσRe
σL σRe

ρReV σRe
σV

ρLV σLσV ρReV σRe
σV σV

⎞
⎠ (9)

is the covariance matrix. The parameters of this matrix should be
estimated using a maximum likelihood analysis: since we expect
our data to be distributed following a trivariate normal distribution

L = N 3D({L, V , Re} ,C ), (10)

where C is the covariance matrix, we can use this function to
estimate the six parameters that define C needed to determine our
best-fitting function. However, since our sample is not very large, we
speculate that these six parameters might be so well constrained.
In order to increase the robustness of the analysis, we can take
the covariance matrix derived from the sample of Bernardi et al.
(2003b). In fact, that covariance matrix describes the properties of a
generic sample of early types. If we consider only the early types in
our sample, then we should, in principle, deal with a (biased) subset
of that sample. The problem is that our photometric data are either
at 3.6 μm or in the K-band, but such a covariance matrix is not
available for that bands. To alleviate the problem given by the fact
that the SDSS observations are carried out in the optical, we take
the covariance matrix from Bernardi et al. (2003b) in the z band
(see Table 4), thus assuming that both variances and correlations do
not change significantly.

As a test to ensure that our FP is consistent with that derived in
Bernardi et al. (2003c), we plot in the left-hand panel of Fig. 5 the
early types of our sample with their best-fitting line. Our galaxies
seem to follow that FP but are, on average, larger than expected.
This is a selection effect generated by the need of large galaxies to
resolve the BH SOIs, otherwise the required resolution is beyond
current-day facilities (Bernardi et al. 2007; Shankar et al. 2016). In
order to remove the bias, we estimated the normalization through a
one-dimensional regression fixing the slopes to the FP of Bernardi
et al. (2003c) and then computed the residuals with respect to the
new best-fitting line.

The residuals distribution is plotted in the right-hand panel of
Fig. 5. The symmetry of the residuals plot provides validation of
our early types being a (biased high) subset of the 9000 early types
of Bernardi et al. (2003a).

The next step consists in substituting equations (7) into (4). To
this extent, we have developed a mathematica code which combines
equation (4) with equation (8). We obtain

MBH = αLL + g0εL (11)
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608 S. de Nicola, A. Marconi and G. Longo

Figure 5. Left: Effective radius Re as a function of the FP relation found by Bernardi et al. (2003c). Our galaxies follow that FP, whose equation is reported on
the x-axis, but are larger than expected. Right: Distribution of the residuals (normalized to unity) with respect to the new best-fitting line obtained by minimizing
with respect to the normalization only. M, m, s, and k are mean, median, skewness, and kurtosis, respectively. Both quantities on the axes are unitless.

where

αL = A + BσRe
ρReL + CσV ρV L

σL

, (12a)

εL =
√

�2 + B2σ 2
Re

(
1 − ρ2

ReL

) + C2σ 2
V

(
1 − ρ2

V L

) + L, (12b)

L = 2BCσRe
σV (ρReV − ρLV ρReL). (12c)

We have thus put together all the terms multiplying L and all those
multiplying the casual coefficients by adding them in quadrature,
so that αL is the slope of the relation and εL its intrinsic scatter.
In practice, we are deriving the analytic expression (MBH|V , Re)
relation, i.e. we are projecting the hyperplanar relation of the
previous paragraph on the MBH–L relation. Because of the symmetry
of the trivariate distribution, we can write analogous expressions to
equation (11) by simply interchanging variables and coefficients. If
we drew, say, L and V from Re, then

MBH = αRe
Re + g0εRe

(13)

where

αRe
= B + AσLρReL + CσV ρV Re

σRe

, (14a)

εRe
=

√
�2 + A2σ 2

L(1 − ρ2
ReL

) + C2σ 2
V (1 − ρ2

V Re
) + Re

, (14b)

Re
= 2ACσLσV (ρLV − ρReV ρReL), (14c)

while starting from V we would obtain

MBH = αV V + g0εV (15)

where

αV = C + AσLρV L + BσRρV Re

σV

, (16a)

εV =
√

�2 + A2σ 2
L

(
1 − ρ2

ReV

) + B2σ 2
Re

(
1 − ρ2

V Re

) + V ,

(16b)

V = 2ABσLσRe
(ρReL − ρReV ρV L). (16c)

Equations (12), (14), and (16) are those we are going to use to find
the slopes of and the intrinsic scatters starting from the intrinsic
relation (4) and taking the FP into account.

4.3 The fundamental BH–hosts relation

Using equations (12a), (14a), and (16a), we can compute the
expected slopes for the three monovariate relations using the values
of A, B, and C from the hyperplanar regression, while equations
(12b), (14b), and (16b) give us the three intrinsic scatters. However,
considering the approximations we made (see par. 4.2), we preferred
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Black holes-hosts fundamental relation 609

Table 5. Regression results between MBH and quantities obtained from
linear combinations of σ e and Re. Column 1: the independent variable.
Column 2: the subgroup. Column 3: the slope. Column 4: the zero-point.
Column 5: the intrinsic scatter. Column 6: The value of 〈x〉 (equation 2). The
subgroup ET embeds galaxies flagged with A = 0 (core-galaxies) or A = 1
(power-law ellipticals, Table 1).

Variable(s) Subgroup α β ε 〈x〉
MHop All 0.99 ± 0.05 8.43 ± 0.04 0.37 ± 0.04 9.332

ClBul 0.88 ± 0.05 8.85 ± 0.04 0.35 ± 0.04 9.504
ET 0.92 ± 0.06 8.85 ± 0.04 0.38 ± 0.04 9.689

Mvir All 0.88 ± 0.05 8.44 ± 0.05 0.46 ± 0.05 4.813
ClBul 0.80 ± 0.05 8.83 ± 0.04 0.45 ± 0.05 4.903

ET 0.93 ± 0.06 8.84 ± 0.04 0.44 ± 0.04 5.012

Ugrav All 0.69 ± 0.04 8.43 ± 0.05 0.41 ± 0.04 9.513
ClBul 0.63 ± 0.05 8.83 ± 0.04 0.39 ± 0.04 9.679

ET 0.69 ± 0.04 8.84 ± 0.04 0.40 ± 0.04 9.824

to be conservative trying to simplify this approach by assuming one
relation to be fundamental and see how it performs in predicting
the others.
For example, let us assume MBH–V to be the fundamental relation. If
V is the sole variable of importance in deriving MBH, then we should
have A = B = 0 in equation (4) and C and � equal to slope and
intrinsic scatter of the MBH–V (Table 2). We must set A = B = 0 not
only in equation (4), but also in equations (14) and (12). Then, by
using for C and � the values obtained through the linear regression
we can check how V predicts slopes and intrinsic scatters of MBH–L
(using equations 12) and MBH–Re (using equations 14).

This procedure must then be repeated assuming, in turn, the other
two relations to be fundamental. Besides these three photometric
quantities appearing in our sample, the results of above suggest
considering linear combinations of V and Re too, i.e.

W = aV + bRe

where a and b are integers which give W a particular meaning. The
three combinations examined here are as follows:

(i) a = 2 and b = 1, which make W the mass predicted by the
virial theorem (Mvir);

(ii) a = 4 and b = 0.4 (MHop), which is the relation proposed
by Hopkins et al. (2007b) as the fundamental relation with the
coefficients derived in Table 2;

(iii) a = 4 and b = 1, which makes W the gravitational energy
Ugrav of a singular isothermal sphere (SIS).

These three quantities can be used in equation (4) just as L,
V, and Re. In particular, Mvir is expected to be a good proxy
of Mbul (Cappellari et al. 2006). The results of the regressions
(using the whole sample) linking MBH to these three new variables
[equation (2)] are reported in Table 5. Apart from the MBH–
MHop, no relation is better than the MBH–σ e in terms of intrinsic
scatter.

In order to assess the goodness of the predictions, a χ2 defined
as

χ2 =
∑

j

[(
αobs − αmod

σα,obs

)2

+
(

εobs − εmod

σε,obs

)2
]

(17)

has been used to compare the results predicted by a relation with
those obtained from the fits. The subscripts obs and mod refer to the
parameters derived from the regression and those computed with

Table 6. Comparison of the results obtained from the regressions and those
obtained with the model described above only including early types with the
covariance matrix of Bernardi et al. (2003b). Each row represents the model
prediction assuming as fundamental variable that in the leftmost column. α’s
and ε’s are slopes and intrinsic scatters, respectively. The rightmost column
shows the χ2 values. The values in bold are those obtained through linear
regressions.

Fund. / Obs. L Re V MHop MVir UGrav χ2

L α 1.13 1.38 2.66 0.68 0.90 0.59 34.1
ε 0.44 0.47 0.50 0.47 0.45 0.46

Re α 0.73 1.14 1.35 0.43 0.64 0.40 150.5
ε 0.61 0.59 0.64 0.62 0.60 0.61

V α 1.11 1.08 4.32 0.93 1.01 0.73 1.4
ε 0.50 0.57 0.41 0.41 0.47 0.44

MHop α 1.24 1.48 4.07 0.92 1.07 0.74 7.4
ε 0.43 0.48 0.39 0.38 0.41 0.39

MVir α 1.10 1.49 2.96 0.71 0.93 0.62 25.1
ε 0.45 0.46 0.48 0.46 0.44 0.45

UGrav α 1.20 1.53 3.53 0.82 1.02 0.69 11.2
ε 0.42 0.45 0.42 0.40 0.40 0.40

our model, respectively. The variances of the three new variables
of Table 5 are linked to those of V and Re by the notorious
formula

σ 2
W = a2σ 2

V + b2σ 2
Re

+ 2abσV σRρV Re
. (18)

The results for the sample of early-type galaxies are shown
Table 6. V predicts the other relations better than its linear com-
binations with Re or the other two monovariate correlations. It is
intriguing that, even though Re alone completely fails in predicting
the coefficients of the other regressions, increasing its exponent
from 0.4 (MHop) to 1 (Ugrav) does not change the χ2 significantly,
showing that V is the predominant variable.
We now repeat the analysis considering all classical bulges, i.e.
also those coming from decompositions of spirals. Although we
do not have a covariance matrix that describes such a sample, we
can still take the covariance matrix of Bernardi et al. (2003b), since
classical bulges behave in the same way as early types. We caution
that in this case all the errors coming from the decompositions are
additional sources of uncertainty for the results that follow, even
though we will show in the next paragraph that what really makes
the difference for the results is the covariance matrix.

Taking again the values of Table 4 to build the covariance matrix,
we obtain the results reported in Table 7. We see that the only
difference with respect to the previous paragraph is that here the
results of MHop and Ugrav are interchanged. But even in this case it
is the velocity dispersion to yield the best predictions of the other
relations.

4.4 The importance of the covariance matrix

We now show the critical dependence on the covariance matrix of
the results we obtained in the last section. We have in fact used
a covariance matrix from the SDSS sample of early-type galaxies
that is more homogeneous and larger than ours which is also biased
towards more luminous objects (Shankar et al. 2016, Fig. 5). Thus,
we show the consequences of using, at least, the variances obtained
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610 S. de Nicola, A. Marconi and G. Longo

Table 7. Same as Table 6 also including bulges coming from decomposi-
tions of spirals.

Fund. / Obs. L Re V MHop MVir UGrav χ2

L α 1.00 1.18 2.27 0.57 0.77 0.50 86.4
ε 0.47 0.50 0.51 0.50 0.48 0.48

Re α 0.57 0.91 1.05 0.33 0.50 0.31 293.7
ε 0.62 0.60 0.64 0.63 0.62 0.62

V α 1.12 1.08 4.48 0.93 0.96 0.71 14.6
ε 0.48 0.55 0.38 0.40 0.47 0.43

MHop α 1.18 1.40 3.89 0.88 1.01 0.71 37.2
ε 0.40 0.45 0.36 0.35 0.38 0.36

MVir α 0.95 1.28 2.39 0.60 0.80 0.53 76.7
ε 0.46 0.47 0.49 0.47 0.45 0.46

UGrav α 1.10 1.41 3.15 0.75 0.94 0.63 42.5
ε 0.40 0.43 0.42 0.39 0.39 0.39

Table 8. Variances obtained from our classic bulge
sample by fitting equation (10) to it and taking cor-
relation coefficients from Table 4.

Coefficient Value

σV 0.17 ± 0.01
σ L 0.64 ± 0.03
σRe 0.55 ± 0.03

Table 9. Same as Table 7 using variances directly derived from our sample.

Fund. / Obs. L Re V MHop MVir UGrav χ2

L α 1.00 1.03 2.93 0.69 0.79 0.56 39.9
ε 0.47 0.55 0.61 0.55 0.49 0.51

Re α 0.67 0.91 1.55 0.45 0.58 0.39 203.3
ε 0.65 0.60 0.73 0.68 0.62 0.65

V α 0.89 0.73 4.48 0.87 0.76 0.61 3.3
ε 0.59 0.72 0.38 0.42 0.57 0.49

MHop α 1.00 1.02 4.18 0.89 0.86 0.66 2.5
ε 0.48 0.59 0.39 0.35 0.44 0.38

MVir α 0.95 1.09 3.03 0.71 0.80 0.58 33.9
ε 0.48 0.50 0.58 0.51 0.45 0.47

UGrav α 1.02 1.11 3.66 0.82 0.86 0.63 10.7
ε 0.44 0.51 0.49 0.41 0.40 0.39

from our sample through a maximum likelihood analysis such as
the one presented in the last section.7

We start by considering all classical bulges of our sample.
Taking the correlation coefficients from Table 4 and fitting the three
variances using equation (10), we get the covariance matrix reported
in Table 8, which leads to the results for our analysis of Table 9.
This shows how critical the choice of the covariance matrix turns
out to be. In fact, using the variances from our sample, the BHFP
has a χ2 slightly lower than that of V. When instead we just use the
early types of our sample, the covariance matrix (Table 10) leads to
the results reported in Table 11.

7Note that, given the small number of data points, the estimate of the whole
covariance matrix from our sample could lead to huge errors.

Table 10. Same as Table 8 only including early types.

Coefficient Value

σV 0.16 ± 0.01
σ L 0.58 ± 0.04
σRe 0.46 ± 0.03

Table 11. Same as Table 9 using early types only.

Fund. / Obs. L Re V MHop MVir UGrav χ2

L α 1.13 1.25 3.21 0.79 0.92 0.64 11.6
ε 0.44 0.54 0.60 0.52 0.47 0.48

Re α 0.81 1.14 1.80 0.54 0.72 0.48 88.5
ε 0.64 0.59 0.74 0.68 0.62 0.65

V α 0.93 0.81 4.32 0.90 0.86 0.66 7.7
ε 0.59 0.71 0.41 0.43 0.54 0.48

MHop α 1.09 1.17 4.30 0.92 0.95 0.71 0.2
ε 0.48 0.58 0.40 0.38 0.45 0.40

MVir α 1.07 1.30 3.48 0.80 0.93 0.65 8.4
ε 0.47 0.49 0.55 0.49 0.44 0.45

UGrav α 1.11 1.27 3.94 0.88 0.96 0.69 2.0
ε 0.45 0.51 0.47 0.42 0.41 0.40

In this last case, both the BHFP and Ugrav reproduce almost
perfectly the other relations, while V has a higher χ2 than all its
linear combination with Re. This can be explained by the fact that
the Kormendy relation we derived for our sample has a much lower
intrinsic scatter than in other works on this topic (e.g. Saglia et al.
2016). The quantity V alone yields the worst predictions for the
monovariate correlations MBH–L and MBH–Re, while this estimate
improves drastically when V gets combined with Re. Note that
despite the reduced number of data-points (49 for the early-type
subsample) the errors in the variance estimates reassure us about the
robustness of the minimization results. Thus, we caution that using
a covariance matrix estimated from a biased and heterogeneous
sample can significantly alter the results of the analysis.

5 C O N C L U S I O N S

We have studied the scaling relations between SMBHs and their host
galaxies, extending our analysis to the four-dimensional case. In this
work, we analytically combine for the first time the whole FP with
BH masses deriving formulae to express slopes and intrinsic scatter
of the BH–hosts as functions of the covariance matrix. Conversely
to the findings of Hopkins et al. (2007b), the fundamental scaling
relation seems to be the canonical MBH–σ e, even though a bivariate
relation MBH ∝ σ∼4

e R∼β
e with an exponent 0.4 ≤ β ≤ 1 acceptably

explains the other correlations when combined with the FP. We
have seen that this result is independent of whether we include or
not classical bulge parameters coming from decompositions (but
the same also holds for pseudo-bulges, see Appendix B) but also
that it critically depends on the covariance matrix one chooses out
for the analysis.

In the only other work where the whole FP is taken into account
(van den Bosch 2016) the main conclusion also points to a BH–
host coevolution driven by σ e solely. Indeed, the intrinsic scatter
of the MBH–σ e relation is not significantly improved by higher
dimensionality (Section 3). In the work of van den Bosch (2016),
no improvement at all is found, but in that work the focus is on
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whole galaxies rather than decomposition, and BHs are known to
correlate poorly (if at all) with disc parameters (Kormendy et al.
2011).

Provided that each galaxies hosts, or has hosted, an AGN at
its centre (Soltan 1982), we believe that the MBH–σ e relation is
established when MBH reaches a critical value Mσ proportional to
σ 4

e which signals a change of the AGN feedback from momentum-
driven to energy-driven (King 2003, 2005). While in the first case the
efficient Compton cooling enables SMBHs and bulges to coevolve
pacifically, in the second case the energy output from BH winds
is two orders of magnitude larger than the bulge’s binding energy,
thus seriously threatening the integrity of the host spheroid (King &
Pounds 2015). However, the simple Mσ ∝ σ 4

e dependence arises
from the (unrealistic) description of a galaxy as a singular isothermal
sphere (SOI, see equations 37–41 of King & Pounds 2015). If
the potential has a more complicated form, then a dependence
on Re might come out, but the whole picture is still uncertain.
Furthermore, since the modelling of the FP as a trivariate Gaussian
(Bernardi et al. 2003b) introduces covariances and correlations
between the bulge parameters and considering how tight this relation
is, then it can be expected that a bivariate correlation can provide
acceptable results. Besides, as we have seen in Section 4.4, the
results differ depending on the variances, so the whole picture is still
uncertain.

These problems could be resolved by the future development
of new generation facilities. For instance, the sample used in
this work is very heterogeneous regardless of the variable we
consider. This is of particular relevance for BH mass estimates,
which challenge current-day facilities and often give disagreeing
results when different techniques are applied to the same galaxy
(Kormendy & Ho 2013), and, furthermore, the subset of BH
masses nowadays available are likely to be a biased-high subsample
(Shankar et al. 2016, 2017, 2019). Velocity dispersions should
also be measured with the same instrument, but such coverage
is not available. As far as concerns photometry, decomposing all
spirals of our sample (∼60) using K-band data (Spitzer data are not
available for the whole sample) steps beyond the purposes of this
work, and more accurate multicomponent decompositions could
lead to significantly different results (see e.g. the latest results of
Davis, Graham & Cameron 2018, 2019; Sahu, Graham & Davis
2019).
We finally note that the fact that we assume each relation to be the
fundamental one in order to see how it performs in predicting the
others is itself an approximation. We should use the whole equations
(12), (14), and (16) to quantify the correction introduced by the FP
on each of the monovariate scaling relations.
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Krajnović D. et al., 2018, MNRAS, 477, 3030
Kuo C. Y. et al., 2011, ApJ, 727, 20
Magorrian J. et al., 1998, AJ, 115, 2285
Mancini L., Feoli A., 2012, A&A, 537, A48
Marconi A., Hunt L. K., 2003, ApJ, 589, L21
McConnell N. J., Ma C.-P., 2013, ApJ, 764, 184
Paturel G., Petit C., Prugniel P., Theureau G., Rousseau J., Brouty M.,

Dubois P., Cambrésy L., 2003, A&A, 412, 45
Rousseeuw P. J., Van Driessen K., 2006, Data Min. Knowl. Discovery, 12,

29
Rusli S. P. et al., 2013, AJ, 146, 45
Saglia R. P., Colless M., Burstein D., Davies R. L., McMahan R. K., Wegner

G., 2001, MNRAS, 324, 389
Saglia R. P. et al., 2016, ApJ, 818, 47
Sahu N., Graham A. W., Davis B. L., 2019, ApJ, 876, 155
Sani E., Marconi A., Hunt L. K., Risaliti G., 2011, MNRAS, 413, 1479
Savorgnan G. A. D., Graham A. W., 2016, ApJS, 222, 10
Savorgnan G., Graham A. W., Marconi A., Sani E., Hunt L. K., Vika M.,

Driver S. P., 2013, MNRAS, 434, 387
Savorgnan G. A. D., Graham A. W., Marconi A., Sani E., 2016, ApJ, 817,

21
Schulze A., Gebhardt K., 2011, ApJ, 729, 21
Shankar F. et al., 2016, MNRAS, 460, 3119
Shankar F., Bernardi M., Sheth R. K., 2017, MNRAS, 466, 4029
Shankar F. et al., 2019, MNRAS, 485, 1278
Soltan A., 1982, MNRAS, 200, 115
Tremaine S. et al., 2002, ApJ, 574, 740
van den Bosch R. C. E., 2016, ApJ, 831, 134
Yamauchi A., Nakai N., Sato N., Diamond P., 2004, PASJ, 56, 605

MNRAS 490, 600–612 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/490/1/600/5561515 by C
alifornia Institute of Technology user on 05 D

ecem
ber 2019

http://dx.doi.org/10.1111/j.1365-2966.2011.19903.x
http://dx.doi.org/10.1086/367776
http://dx.doi.org/10.1086/374256
http://dx.doi.org/10.1086/367794
http://dx.doi.org/10.1086/512719
http://dx.doi.org/10.1111/j.1365-2966.2005.09981.x
http://dx.doi.org/10.1093/mnras/stt562
http://dx.doi.org/10.1093/mnras/stx1794
http://dx.doi.org/10.3847/1538-4357/aae820
http://dx.doi.org/10.3847/1538-4357/aaf3b8
http://dx.doi.org/10.1086/164948
http://dx.doi.org/10.1093/mnras/stu2376
http://dx.doi.org/10.1088/0004-637X/703/2/1502
http://dx.doi.org/10.1086/342308
http://dx.doi.org/10.1086/312838
http://dx.doi.org/10.1088/0004-6256/136/2/773
http://dx.doi.org/10.1088/0004-637X/764/2/174
http://dx.doi.org/10.1086/312840
http://dx.doi.org/10.1088/0004-637X/764/2/151
http://dx.doi.org/10.1088/0004-637X/698/1/198
http://dx.doi.org/10.1086/383567
http://dx.doi.org/10.1086/521590
http://dx.doi.org/10.1086/521601
http://dx.doi.org/10.1086/519947
http://dx.doi.org/10.1086/379143
http://dx.doi.org/10.1086/499430
http://dx.doi.org/10.1146/annurev-astro-082214-122316
http://dx.doi.org/10.1086/426101
http://dx.doi.org/10.1038/nature09695
http://dx.doi.org/10.1146/annurev-astro-082708-101811
http://dx.doi.org/10.1146/annurev.astro.42.053102.134024
http://dx.doi.org/10.1038/nature09694
http://dx.doi.org/10.1093/mnras/sty778
http://dx.doi.org/10.1088/0004-637X/727/1/20
http://dx.doi.org/10.1086/300353
http://dx.doi.org/10.1051/0004-6361/201117168
http://dx.doi.org/10.1086/375804
http://dx.doi.org/10.1088/0004-637X/764/2/184
http://dx.doi.org/10.1051/0004-6361:20031411
http://dx.doi.org/10.1088/0004-6256/146/3/45
http://dx.doi.org/10.1046/j.1365-8711.2001.04317.x
http://dx.doi.org/10.3847/0004-637X/818/1/47
http://dx.doi.org/10.3847/1538-4357/ab0f32
http://dx.doi.org/10.1111/j.1365-2966.2011.18229.x
http://dx.doi.org/10.3847/0067-0049/222/1/10
http://dx.doi.org/10.1093/mnras/stt1027
http://dx.doi.org/10.3847/0004-637X/817/1/21
http://dx.doi.org/10.1088/0004-637X/729/1/21
http://dx.doi.org/10.1093/mnras/stw678
http://dx.doi.org/10.1093/mnras/stw3368
http://dx.doi.org/10.1093/mnras/stz376
http://dx.doi.org/10.1093/mnras/200.1.115
http://dx.doi.org/10.1086/341002
http://dx.doi.org/10.3847/0004-637X/831/2/134
http://dx.doi.org/10.1093/pasj/56.4.605


612 S. de Nicola, A. Marconi and G. Longo

APPENDIX A : N OTES ON DISCARDED
G A L A X I E S

Galaxies omitted because of incomplete data. The following objects
were omitted because of the unavailability of photometric measure-
ments in the infrared: Milky Way,8 NGC1194, NGC4526, NGC6264,
NGC6323.

NGC3607: We follow Kormendy & Ho (2013) in omitting this
galaxy because, in this case, not allowing for a DM halo yields
underestimated results because the BH SOI is not well resolved.
NGC4388: The MBH value is uncertain because of the lack of
a systemic maser in this galaxy and because the rotation might
even be non-Keplerian (Kuo et al. 2011). The velocity dispersion
is uncertain since it neglects rotation inside the effective radius
of the pseudo-bulge [see Kormendy & Ho (2013)]. Moreover,
Savorgnan & Graham (2016) report complications due to dust
absorption when deriving the photometry.
NGC2974, NGC3414, NGC4552 (M89), NGC4621 (M59),
NGC5813, NGC5846: These (uncertain) MBHs come from an
unlabelled plot from Cappellari et al. (2008), who do not provide
any information or details about the observations and data analysis.
We thus consider the BH masses unreliable.
NGC3079: We reject the BH mass value because the rotation curve
is flat (Kondratko, Greenhill & Moran 2005). Saglia et al. (2016)
accept the galaxy stating that the estimate agrees with Yamauchi
et al. (2004). However, both authors do not provide an exact MBH

value. This galaxy also shows a steep drop in σ e in the central
regions, probably because of bar streaming motions (Graham &
Scott 2013).
NGC4486B: We follow Saglia et al. (2016), who omit the galaxy
because of the abnormally large BH mass. Indeed, this galaxy is
well known to be an outlier (Gültekin et al. 2009). Moreover, the
MBH value was derived without allowing for a DM halo and comes
from unpublished literature (Saglia et al. 2016).
NGC4736, NGC4826: We reject these (commonly accepted) MBH

estimates because details on the observation are not provided (see
Kormendy et al. 2011).
NGC1300: This galaxy appears to have an uncertain velocity
dispersion. In fact, the value from Saglia et al. (2016) is much
lower than that reported in the sample of van den Bosch (2016).
Using the first value would make this galaxy the largest outlier in
the MBH–σ e relation, while, interestingly, van den Bosch (2016)
reports the second value to be too high.
NGC2787: This galaxy hosts both a classical and a pseudo-bulge.
Since it is unclear what Savorgnan & Graham (2016) model in their
analysis, even if the pseudo-bulge seems to be more prominent
(Kormendy & Ho 2013), we do not trust the photometry and omit
this galaxy.
NGC2960: We omit this galaxy because of its extremely uncertain
morphology. In fact, Saglia et al. (2016) classify the galaxy as an
E2 but give it a T flag value of 3, which would make this galaxy a
pure pseudo-bulge.
IC1481: We follow Saglia et al. (2016) in omitting this galaxy
because of a merger in progress which prevents the determination
of a reliable photometric profile.

8For our own Galaxy, a K-band magnitude value can be found in Kor-
mendy & Ho (2013), whom, however, do not provide effective radii.

APPENDI X B: R ESULTS I NCLUDI NG
PSEUDO-BULGES

This appendix contains the results of the analysis described in
Section 4 including pseudo-bulges, which do not seem to correlate
with their SMBHs (cf. Section 3.1). The covariance matrix for this
case is reported in Table B1. By computing the analogous of Table 6
(Table B2) and of Table 11 (Table B3) we see that, although in this
case the usage of the covariance matrix is not so well justified as
pseudo-bulges form stars and thus have a much broader range of
colours than classical bulges, no significant differences are found.

Table B1. Same as Table 8 using the full sample.

Coefficient Value

σV 0.18 ± 0.01
σ L 0.69 ± 0.03
σRe 0.64 ± 0.04

Table B2. Same as Table B3 using the covariance matrix reported in Table 4.

Fund. / Obs. L Re V MHop MVir UGrav χ2

L α 1.12 1.39 2.67 0.68 0.89 0.59 118.1
ε 0.51 0.54 0.56 0.54 0.52 0.53

Re α 0.69 1.07 1.28 0.43 0.62 0.39 413.4
ε 0.63 0.63 0.66 0.64 0.62 0.63

V α 1.26 1.22 5.07 1.05 1.14 0.82 41.8
ε 0.53 0.63 0.42 0.43 0.49 0.46

MHop α 1.31 1.68 4.28 0.99 1.13 0.79 70.6
ε 0.42 0.45 0.38 0.37 0.39 0.37

MVir α 1.03 1.43 2.78 0.68 0.88 0.58 117.4
ε 0.47 0.46 0.49 0.47 0.46 0.46

UGrav α 1.18 1.59 3.48 0.82 1.02 0.69 66.2
ε 0.42 0.43 0.43 0.40 0.40 0.41

Table B3. Same as Table 9 using the full sample and the variances of
Table B1.

Fund. / Obs. L Re V MHop MVir UGrav χ2

L α 1.12 1.08 3.33 0.78 0.84 0.61 49.7
ε 0.53 0.63 0.71 0.61 0.56 0.57

Re α 0.90 1.07 2.08 0.65 0.76 0.53 189.4
ε 0.70 0.63 0.86 0.73 0.65 0.68

V α 1.01 0.76 5.07 0.97 0.86 0.68 11.4
ε 0.69 0.86 0.42 0.45 0.61 0.53

MHop α 1.14 1.13 4.64 0.99 0.93 0.71 1.7
ε 0.52 0.60 0.40 0.37 0.45 0.39

MVir α 1.10 1.18 3.68 0.83 0.88 0.64 27.8
ε 0.51 0.50 0.61 0.52 0.46 0.47

UGrav α 1.14 1.19 4.18 0.91 0.92 0.69 8.9
ε 0.47 0.51 0.50 0.42 0.41 0.41
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