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ABSTRACT

In recent years, many γ-ray sources have been identified, yet the unresolved component hosts valuable

information on the faintest emission. In order to extract it, a cross-correlation with gravitational

tracers of matter in the Universe has been shown to be a promising tool. We report here the first

identification of a cross-correlation signal between γ rays and the distribution of mass in the Universe

probed by weak gravitational lensing. We use the Dark Energy Survey Y1 weak lensing catalogue

and the Fermi Large Area Telescope 9-year γ-ray data, obtaining a signal-to-noise ratio of 4.5. The

signal is mostly localised at small angular scales and high γ-ray energies, with a hint of correlation

at extended separation. Blazar emission is likely the origin of the small-scale effect. We investigate

implications of the large-scale component in terms of astrophysical sources and particle dark matter

emission.

1. INTRODUCTION

Astronomy at γ-ray frequencies represents a gold mine for both astrophysics and particle physics. On one hand, the

most violent phenomena in the Universe produce high-energy photons that travel all the way to Earth. Thus, they

bring us information about the physics of rare events such as supernovae, and the behaviour of matter under extreme

conditions, as in pulsars and active galactic nuclei (AGNs). On the other hand, the most elusive form of matter in

the cosmos—dark matter, which represents about 25% of all the Universe’s energy content—is believed to consist

of an exotic fundamental particle, which may annihilate or decay into standard-model particles and thus produce

cosmic messengers including γ-ray photons. In the weakly interacting massive particle (WIMP) scenario, or for any

hypothetical dark matter particle with mass in the GeV range or higher, dark matter particle annihilation/decay

almost necessarily results in photons at γ-ray energies. Therefore, γ-ray astronomy represents a promising means to

investigate the fundamental nature of dark matter. However, the faintness of the expected emission makes it very

difficult to identify such a signal.

Since 2008, the Large Area Telescope (LAT) mounted on the Fermi satellite have been performing the most detailed

observations of the extra-galactic γ-ray sky and resolved 5098 γ-ray sources in the energy range 50 MeV to 1 TeV

(The Fermi-LAT collaboration 2019). Once the point sources and Galactic emission are removed, the remaining γ-ray

photons form the so-called unresolved γ-ray background (UGRB).
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Figure 1. DES Y1 (solid, used in this work) and final (dashed) sky coverage superimposed on the Fermi-LAT γ-ray map
for photons in the 1-10 GeV energy range. The Galactic plane and point-source emissions are clearly visible. The plot is in
McBryde-Thomas flat polar quartic projection.

In Camera et al. (2013), a method to discriminate between non-thermal γ-ray emission due to astrophysical sources

and possible dark matter annihilation/decay in the UGRB was proposed. This method relies on cross-correlations

of UGRB maps with maps of other tracers of the underlying structure on cosmological scales, such as the weak

gravitational lensing effect, or the clustering of galaxies and galaxy clusters (see also Ando et al. 2014; Fornengo et al.

2015). These are direct gravitational probes of matter, most of which is thought to be dark matter. The energy,

redshift and scale dependence of the aforementioned cross-correlations have the potential to disentangle signatures due

to astrophysics from dark matter and provide valuable information on the redshift distribution of the unresolved γ-ray

source populations (see also Camera et al. 2015). Since cross-correlations of the UGRB with gravitational lensing have

been proposed as a probe, several observational attempts have followed (Shirasaki et al. 2014; Shirasaki et al. 2016;

Tröster et al. 2017; Shirasaki et al. 2018), but none so far has detected the signal. Here, we report the first detection

of such a cross-correlation. We used 108-month γ-ray data from Fermi-LAT and first year (Y1) shear measurements

from the Dark Energy Survey (DES). In the following, we describe details of the analysis and discuss the results.

2. RESULTS

The observable we probe is the cross-correlation between the unresolved component of the γ-ray emission and grav-

itational shear. To this aim, the Fermi-LAT data have been pre-processed to produce the relevant energy-dependent

response functions of the detector and full-sky maps of photon intensities in several energy bins. Resolved γ-ray

sources and the bright Galactic plane emission have been masked with energy- and flux-dependent masks, in order to

minimise the sky fraction removal. Furthermore, we have subtracted a model of the Galactic plane emission in the sky

regions outside the masks. Galactic foreground emission does not lead to false detection of a cross-correlation, since it

does not correlate with the large-scale structure measured by gravitational shear, but it increases the variance of the

measurements.

The weak lensing information is extracted by measuring the mean tangential ellipticity of source galaxies in the

DES footprint around pixels weighted by their UGRB flux. We use redshift binning of the shear catalogue in order to

perform a tomographic analysis. As an illustration of the data, Fig. 1 shows the DES footprint and the Fermi-LAT

map for photon energies in the 1-10 GeV interval.

We measure the cross-correlation between the UGRB and gravitational shear through its 2-point angular correlation

function. Specifically, we adopt the following estimator (see also Gruen et al. 2018):

Ξar(θ) = Ξsignal
∆θh,∆Ea,∆zr

− Ξrandom
∆θh,∆Ea,∆zr =

∑
i,j e

r
ij,t I

a
j

R
∑
i,j I

a
j

−
∑
i,j e

r
ij,t I

a
j,random

R
∑
i,j I

a
j,random

, (1)
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Bin number

1 2 3 4 5 6 7 8 9

Emin [GeV] 0.631 1.202 2.290 4.786 9.120 17.38 36.31 69.18 131.8

Emax [GeV] 1.202 2.290 4.786 9.120 17.38 36.31 69.18 131.8 1000.0

θcont (deg) 0.50 0.58 0.36 0.22 0.15 0.12 0.11 0.10 0.10

Table 1. Energy bins over which the analysis is performed and 68% containment angles θcont of the Fermi-LAT point-spread-
functions.
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Figure 2. Measurement and model of the cross-correlation between γ-ray photons and gravitational shear. The points in
both panels show the measured cross-correlation, averaged over all redshift and energy bins, while the fits is done across all
dimensions. The lines refer the best fit results for the phenomenological model (left) and for the physical model (right), averaged
the same way.

where Ξsignal
∆θh,∆Ea,∆zr

is the correlation function in configuration space of the two observables measured in different

angular (∆θh), γ-ray energy (∆Ea) and lensing source galaxy redshift (∆zr) bins. The correlation is obtained by

summing the products of tangential ellipticity of source galaxies i relative to a pixel j, erij,t, multiplied by the Fermi-

LAT photon intensity flux in the a-th energy bin and in pixel j, Iaj . The sum runs over all unmasked pixels j and

all sources i in the redshift bin of the shear catalogue, and it is performed in each of the different photon energy bins

(labelled by a) and source galaxies redshift bins (labelled by r). Lastly, R is the mean response of ellipticity to shear

for sources in the redshift bin, determined by the metacalibration algorithm (Sheldon & Huff 2017; Zuntz et al.

2018) to be between 0.54 and 0.73 for the source galaxy redshift bins used here.

From the correlation function, we remove Ξrandom
∆θh,∆Ea,∆zr

, the measurement of tangential shear around random lines of

sight, i.e. Iaj,random = 1 anywhere within the sky region used for γ-ray measurements in that energy bin and 0 elsewhere.

This reduces additive shear systematic effects, random very-large-scale structures, or chance shear alignments relative

to the mask. The random subtraction, while not affecting the expected signal, lowers the variance at large angular

separations (see e.g. Singh et al. 2017; Gruen et al. 2018).

We analyse the data in 12 logarithmically-spaced angular bins with radii between 5 and 600 arcmin, 9 photon energy

bins between 0.631 and 103 GeV, and 4 redshift bins defined by 0.20 < 〈z〉 < 0.43, 0.43 < 〈z〉 < 0.63, 0.63 < 〈z〉 < 0.90

and 0.90 < 〈z〉 < 1.30, where 〈z〉 is the estimated expectation value of galaxy redshift from DES. The energy bins used

in the analysis and the corresponding 68% containment angles of the Fermi-LAT PSF are shown in Tab. 1. These

sum up to a total of 432 bins for the cross-correlation measurement. The analysis is performed blindly, i.e. on multiple

variants of the measurements including artificial versions, in order to avoid experimental bias in measurement and

interpretation of the signal. See Appendix E for details.
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The result of the measured cross-correlations, averaged over all energy and redshift bins, is shown in Fig. 2 in terms

of the estimator Ξ(θ) defined in Eq. (1). Note that the data points reported on both panels are the same, although

confronted with different models. A clear positive cross-correlation is observed, especially at small angular separations.

In order to determine the statistical significance of the signal, we test the deviation of the measurement from a null

signal (null hypothesis of pure noise) by means of a phenomenological model, which aims at capturing the general

expected features of the cross-correlation signal without resorting to any specific, detailed modelling of its physical

origin (in section 3 we will instead adopt a physical model to provide insights on the origin of the cross-correlation).

In the halo-model approach, all mass in the large-scale structure of the Universe is associated with virialised dark

matter halos, and the correlation function can thus be decomposed into the so-called 1-halo and a 2-halo terms (‘1h’

and ‘2h’, in formulae hereafter). The former refers to the correlation between two points in the same physical halo; the

latter to the case in which the two points belong to two different halos. Point-like sources contribute at small angular

scales with a 1-halo term, while at large scales they produce a 2-halo term resembling the large-scale structure matter

distribution. In our case, we use the fact that the spatial extent of the 1-halo term is smaller than the beam window

function of the Fermi-LAT. Then a phenomenological model can be constructed as:

Ξarphe(θ) 〈Ia〉 = A1 × E−α1
a × (1 + zr)

β1 × Ξ̂aPSF-like(θ) +A2 × E−α2+2.2
a × (1 + zr)

β2 × Ξ̂ar2h-like(θ) , (2)

where Ea and zr are the central values of the energy (measured in GeV) and redshift bins, and 〈Ia〉 is the measured

photon flux. Ξ̂aPSF-like(θ) is the Legendre transform of the beam window function (or point-spread function, PSF)

integrated in the ath energy bin (in arbitrary units, being merely a template for the 1-halo term due to point-like γ-ray

sources), and Ξ̂ar2h-like(θ) is the Legendre transform of a generic 2-halo (i.e. large-scale) contribution, also convolved

with the Fermi-LAT beam window function. Correlation functions with a hat have flux units, while those without a

hat are normalised to the γ-ray flux as in Eq. 1, and therefore dimensionless. The two normalisations A1 and A2,

spectral indices α1 and α2, and redshift evolution indices β1 and β2 are free parameters of the model.1 Gamma-ray

sources typically have energy spectra that can be well approximated by a power-law, and so it is assumed in Eq. 2.

For simplicity, we also assume a power-law scaling in redshift. Best fits and confidence intervals of the parameters are

found in a Monte Carlo Markov Chain likelihood analysis.

The first statistical method adopted to quantify the presence of a signal, and its significance, against the null

hypothesis relies on the ∆χ2 test statistics, with the chi-squared defined in the usual way, i.e. :

χ2(Pmod) = [Ξdata −Ξth(Pmod)]
T
Γ−1 [Ξdata −Ξth(Pmod)] , (3)

where Ξdata is the data vector, Ξth is the theoretical cross-correlation for the models outlined above, described by the

parameter set Pmod, and Γ is the data covariance matrix, detailed in the Appendix. (All angular, energy, and redshift

bin indexes have been omitted for simplicity of notation.) The ∆χ2 is defined as ∆χ2
mod = χ2

null − χ2(P ?
mod), with

χ2(P ?
mod) computed at the model parameter values P ?

mod that best fit the data, and χ2
null referring to no signal, i.e.

Ξth = 0. The second estimator is the signal-to-noise ratio (see e.g. Becker et al. 2016),

SNR(Pmod) =
ΞT

dataΓ
−1Ξth(Pmod)√

ΞT
th(Pmod)Γ−1Ξth(Pmod)

; (4)

in analogy to ∆χ2
mod, we shall later refer to SNRmod ≡ SNR(P ?

mod).

In Table 2 we present the results on detection significance. The phenomenological model results for the full data

set shows a clear evidence for the presence of a cross-correlation signal, at the level of SNR = 4.5. Since the phe-

nomenological model captures the generic features of the cross-correlation signal, without committing to any specific

physical description, this best assesses that indeed a cross-correlation between gravitational shear and unresolved γ-

rays emission has been observed. In order to investigate the features of the signal in more detail, we repeat the tests by

subdividing the data set according to redshift, energy, and angular separation. Specifically, Low/High-z refers to the

first two and second two redshift bins; Low/High-E bins are defined by being below/above 5 GeV; and Small/Large-θ

separates angular scales below/above 3 times the Fermi-LAT PSF.

From Table 2 we infer that the signal is mostly concentrated at high energies and small angles, with a best-fit for

the spectral index of the PSF-like 1-halo component α1 = 1.63+0.18
−0.26. These results point towards an interpretation in

1 For blazars, we expect an average spectral index of 2.2, which is the reason for the term added to α2.



6

Data set

Full Low-z High-z Low-E High-E Small-θ Large-θ

∆χ2
phe 21.1 16.8 11.1 0.58 26.6 17.6 2.90

SNRphe 4.5 4.1 3.2 0.76 5.1 4.3 1.3

∆χ2
phys 15.7 2.82 11.9 0.77 18.0 10.1 4.81

SNRphys 4.0 1.7 3.5 0.88 4.2 3.2 2.2

Table 2. ∆χ2
mod and SNRmod computed for the phenomenological and physical models, using either the full data set or the

various subsamples discussed in the text. For dark matter in the physical model, we consider the annihilation channel τ+τ−.
For the Low-z case we selected the two first redshift bins, while for the High-z case the last two bins, where the bins are defined
as: 0.20 < 〈z〉 < 0.43, 0.43 < 〈z〉 < 0.63, 0.63 < 〈z〉 < 0.90 and 0.90 < 〈z〉 < 1.30; the Low-E subset is defined for energies below
5 GeV, while the High-E for energies above this value; finally, the Small-θ/Large-θ cases correspond to data points below/above
3 times the Fermi-LAT PSF.

terms of point-like sources with hard energy spectrum, broadly compatible with these sources being blazars. In fact,

the value found for α1 is quite hard for the average intensity of the UGRB (Ackermann et al. 2015a), but compatible

with BL Lac emission, which is the source population expected to be the most relevant in the range of fluxes probed by

this analysis, just below the Fermi-LAT flux sensitivity threshold. This parameter is the one that is best reconstructed

in our analysis, the others being only weakly constrained. Notice that this hard spectral index is in agreement with

recent findings from γ-ray auto-correlation analysis (Ackermann et al. 2018), possibly suggesting that BL Lac objects

below the threshold have harder spectra than those detected individually. Concerning the redshift dependence of the

signal, the statistical significance is almost equally distributed among the lower and higher redshift bins. The allowed

regions for the parameters of the phenomenological model are shown in Fig. 3, while the cross-correlation function for

the best-fit of the phenomenological model are shown in the left panel of Fig. 2: the PSF-like term due to point-like

sources well reproduces the behaviour of the measured cross-correlation up to about 1 deg scale.

3. DISCUSSION

We attempt a physical interpretation of the signal detected in the previous Section, which primarily originates from

small angular scales and high γ-ray energies. Star-forming galaxies and misaligned AGNs are not expected to be able

to produce a sufficiently hard energy spectrum, which points to a dominant blazar component. Particle dark matter

in terms of WIMPs can also provide a hard spectrum, especially if the annihilation channel is predominantly leptonic

or, in the case of a hadronic final state, if the dark matter mass is large (above a few hundred GeV).

Blazars are compact sources and, for our purposes, they can be considered as point-like—i.e. their size is, on

average, much smaller than the Fermi-LAT PSF. Also the size of the halo hosting blazars rarely exceeds the Fermi-

LAT PSF. This has a consequence that the angular correlation function for the 1-halo term essentially follows from

the detector PSF. Conversely, the relevant dark matter halos have a larger angular extent, and the corresponding

1-halo correlation function thus drops more slowly with angular scale. On very large scales, the correlation functions

of the two components have a similar angular behaviour, since the 2-halo power spectra differ only by the bias terms.

The fact that our signal is detected with high significance only on small scales therefore points towards blazars as the

dominant source. In order to investigate this interpretation, we perform the statistical tests discussed in the previous

Section with a physical model, based on a detailed characterisation of the components expected to produce the cross-

correlation signal: blazars (BLZ), misaligned active galactic nuclei (mAGN), star-forming galaxies (SFG) and possibly

dark matter (DM). The physical cross-correlation function model reads:

Ξarphys(θ) 〈Ia〉 = A1h
BLZ×Ξ̂arBLZ,1h(θ)+A2h

BLZ×Ξ̂arBLZ,2h(θ)+AmAGN×Ξ̂armAGN(θ)+ASFG×Ξ̂arSFG(θ)+ADM×Ξ̂arDM(θ;mDM) .

(5)

The model parameters are: free normalisations for the astrophysical sources, A1h
BLZ, A2h

BLZ, AmAGN, and ASFG; the

mass of the dark matter particle, mDM; its velocity-averaged annihilation rate, 〈σannv〉, expressed in terms of the

“thermal” cross-section 〈σannv〉th = 3×10−26 cm3 s−1 through the normalisation ADM ≡ 〈σannv〉/〈σannv〉th. Note that

for blazars, which represent the astrophysical component expected to dominate the correlation signal at the current

level of unresolved γ-ray emission, we allow the 1-halo and the 2-halo terms to be separately adjusted in the fit against

the data. As for the phenomenological model, all terms depend on both energy and redshift, labelled by indices a and

r, respectively.
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This result are shown in Table 2, where the overall significance of the presence of a signal, the preference for an origin

at high energies and small angular scales are all confirmed. However, since in this case we have specific behaviours

for the correlation functions as dictated by a physical model (different for each component, contrarily to the average

generic case of the phenomenological model), we notice that a mild hint of large scale correlation is present—namely, in

the Large-θ case. We note that both the physical and phenomenological model provide a good fit to the data according

to their χ2 (see Appendix E).

More details of the analysis are shown in Fig. 3, where the triangular plot of the posterior distributions of the model

parameters is reported. The likelihood exhibits a preference for a large 1-halo term of blazars with normalisation

A1h
BLZ = 20+5

−3, while the normalisations of the blazar 2-halo term shows only a (weak) upper bound. The latter picture

is shared also by the other astrophysical sources (SFG and mAGN) which are shown only in the Appendix for brevity.

The blazar-shear cross-correlation on small scales depends on the relation between the blazar γ-ray luminosity and

the host-halo mass, a quantity which is rather uncertain. For our reference model this relation has been taken from

Camera et al. (2015), where it was derived by associating the γ-ray luminosity of blazars to the mass of the supermassive

black hole powering the AGN and then relating the mass of the black hole to the mass of the dark matter halo. This

procedure gives M(L) = 2× 1013M�
[
L/(1047 erg s−1)

]0.23
(1 + z)−0.9, where L is the rest-frame luminosity of blazars

in the energy range 0.1 to 100 GeV. We can therefore translate a value of A1h
BLZ different from unity to a deviation

from the reference M(L) relation. The value we found implies that the average mass of a halo hosting an unresolved

blazar is larger than the one adopted in Camera et al. (2015), and most likely around 1014M�.

The right panel of Fig. 2 shows that the cross-correlation at small angular scales requires a sizeable blazar 1-halo

term. It also illustrates that the best-fit analysis exhibits a mild preference for some power at large scales. This can

be accounted for either by the 2-halo term of blazars or by a DM contribution. The interplay of the angular, energy

and redshift behaviours of the observed signal leads to a small preference for a DM component over a pure blazar

contribution in the assumed model. Misaligned AGNs and star-forming galaxies are disfavoured since they do not

meet the requirement of a hard energy spectrum. Information on the energy and redshift behaviours of the signal are

shown in Appendix F. Notice that the blazar model we are adopting, and which is outlined in Appendix D, is based

on the current understanding of blazars as derived from the Fermi-LAT resolved sources: the small preference in the

fit for a contribution with features compatible with DM might be interpreted as an indication that unresolved blazars

have different properties than the resolved ones.

The results of the fit to the physical model are shown in the right panel of Fig. 3 and in Fig. 4. We find that

for a dark matter particle dominantly annihilating into the leptonic channel τ+τ− the best-fit improves by 2.2σ as

compared to a model where DM is not included. The lack of a degeneracy between dark matter and blazar amplitudes

indicate that the two components are supported by independent features of our cross-correlation data, in particular

the small and large scale behaviour. The best-fit occurs for a dark matter particle of mass mDM = (79 ± 23
27) GeV and

annihilation rate 〈σannv〉 = (15.8 ± 10.4
8.6 )× 〈σannv〉th. In the case of a softer energy spectrum, as the one provided by

a b̄b annihilation channel, the allowed region at 2σ C.L. is simply an upper bound. Nonetheless, this is able to exclude

the natural scale for dark matter annihilation for masses below 50 GeV. Fig. 4 shows our result compared to the ones

obtained with some other indirect detection technique for searching a dark matter particle physics signal in γ rays

(see e.g. Charles et al. 2016, for a review). Our results are at tension with the bounds provided by dwarf spheroidal

galaxies (see e.g. Ackermann et al. 2015b; Albert et al. 2017), although uncertainties in the J-factor modeling of dwarf

spheroidals can weaken the bound by a sizeable factor (Bonnivard et al. 2015; Calore et al. 2018).

Let us remark that the main source of uncertainty concerning the dark matter signal described in this work is our

ignorance on the impact of substructures. Specifically, the minimal halo mass and the amount and distribution of

sub-haloes can significantly change the size of the signal. This, however, is common to all cosmological searches for

a particle dark matter signature. The nominal model we have adopted has been developed in Moliné et al. (2016).

As a comparison, if we adopt the recent development proposed in Hiroshima et al. (2018), based on both N -body

simulations and analytical modelling, the constraint on the annihilation cross-section get shifted to higher annihilation

rates by about one order of magnitude. This is due to a different amplitude of the expected signal, whereas the energy,

redshift, and angular dependencies are only slightly modified, and the predicted cross-correlation function therefore

just needs a larger normalisation, which in turn is directly provided by the annihilation rate.

We conclude by summarizing the major results of this analysis. We present the first detection of the cross-correlation

between the γ-ray sky and the mass distribution in the Universe observed through gravitational lensing shear, with

a significance of SNR = 4.5. The bulk of this signal comes from the 1-halo term of point-like sources with a hard
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Figure 3. Left: Constraints on the normalisation and spectral index parameters of the phenomenological model (the redshift
dependence parameters are unconstrained and not shown in the plot). Right: Constraints on the parameters of the dark matter
and blazar models described in Eq. (5). The blazar model assumes a single population matching the properties of Fermi-
LAT resolved sources. The dark matter model assumes annihilation in the τ+τ− channel. In both panels, 2D contours refer
to the 68% and 95% C.L. regions. The dashed and solid vertical lines in the 1D subplots denote the the 68% and 95% C.L.
constraints of the 1D profile likelihood distributions.

spectrum, most likely dominated by blazars. In addition, we find a hint for a cross-correlation on large scales with

spectral and redshift behaviours that might imply that the population of blazars that are currently unresolved by

Fermi-LAT has different characteristics than those obtained by extrapolation from observations of resolved blazars,

or that an additional contributor to the γ-ray emission is present. The analysis of the cross-correlation of Fermi-LAT

data with the forthcoming Year 3 and Year 5 DES data set, and improvements in modelling of the blazar population

will likely clarify the source of the signal detected in this work, and characterise it more deeply.
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APPENDIX

A. GRAVITATIONAL LENSING DATA

The Dark Energy Survey (DES, Dark Energy Survey Collaboration 2016) is a photometric survey performed with

the Dark Energy Camera (DECam, Flaugher et al. 2015) on the Blanco 4 m telescope at Cerro Tololo Inter-American

Observatory (CTIO) in Chile. DES has observed approximately 5000 deg2 of the Southern sky in five broadband filters,

g, r, i, z, and Y, ranging from 400 to 1060 nm. The primary goal of DES is to study the origin of cosmic acceleration

and the nature of dark energy through four key probes: weak lensing, clustering of the large-scale structure, galaxy

clusters, and type Ia supernovae.

The first season of DES observations, from 31st August 2013 to 9th February 2014, resulted in the Y1 data stet

analysed here. Details on DES operation, data collection, and photometry are provided in Diehl et al. (2014) and

Drlica-Wagner et al. (2018). During Y1, DES observed ∼ 1500 deg2 of the wide-area survey footprint with three

to four dithered tilings per filter. The Y1 footprint consisted of two areas: one near the celestial equator including

Stripe 82 (S82, Annis et al. 2014), and a much larger area that was also observed by the South Pole Telescope (SPT,

Carlstrom et al. 2011). In Fig. 1 we show in solid line the DES Y1 sky coverage; the complete sky coverage for the

final survey is shown by the dashed line.

In our analysis we make use of the metacalibration shear catalogue. The details of the algorithm implementation

and various tests of the shear catalogue are described in Zuntz et al. (2018). The metacalibration catalogue

yields a total of 35 million objects and the final number density of the selection is 5.5 galaxies per square arcminute.

metacalibration (Huff & Mandelbaum 2017; Sheldon & Huff 2017) is a method to estimate weak lensing shear,

calibrating associated biases directly from the imaging data, rather than from prior information about galaxy properties

or simulations. metacalibration has been shown to be accurate at the part-per-thousand level in the absence of

blending with other galaxies (Sheldon & Huff 2017), and at the part-per-hundred level for the blending present in DES

Y1 data (Zuntz et al. 2018).

The implementation of metacalibration consists of measuring the two-component ellipticity, e, of a galaxy in

the DES Y1 run by fitting a single Gaussian model to its single-epoch images in the riz bands. The galaxy images

are then artificially distorted with a known shear, γ, and the ellipticity is measured again to construct the response

matrix, Rγ , as the derivative of measured ellipticity w.r.t. shear. Thus, the ellipticity estimator can be written as the

following Taylor expansion: (Huff & Mandelbaum 2017; Sheldon & Huff 2017; Zuntz et al. 2018)

e = e|γ=0 +
∂e

∂γ
Rγ=0γ + . . .

= e|γ=0 +Rγγ + . . . . (A1)

The elements of the response matrix are measured in metacalibration by the numerical derivative:

Rγi,j =
e+
i − e−i
∆γj

, (A2)

where e±i is the measurement of the ith ellipticity component made on an image sheared by ±γj , and ∆γj = 2γj .

It is also necessary to correct for selection effects, i.e. shear biases that may occur when placing a cut on any quantities

that change under shear, such as signal-to-noise ratio. This is accomplished by measuring the mean response of the

estimator to the selection, repeating the selections on quantities measured on sheared images. The mean selection

response matrix is given by:

〈RSi,j 〉 =
〈eS+
i 〉 − 〈eS−i 〉

∆γj
, (A3)

where 〈eS±i 〉 represent the mean of the ellipticities measured on images without artificial shearing, but selected by

properties measured on sheared images. The full response for the mean shear is given by the sum of the shear response

and selection response:

〈R〉 = 〈Rγ〉+ 〈RS〉. (A4)

When measuring a shear statistics, such as mean shear or a shear two-point function, the measurement can be

appropriately corrected for the mean response R = (〈R〉11 + 〈R〉22) /2 to produce a calibrated result.
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DES galaxies were assigned to redshift bins using a re-implementation of the bpz algorithm described in Beńıtez

(2000), which provides an estimate of the redshift probability density pBPZ(zj) of each galaxy j. The assignment is done

based on fluxes measured by metacalibration on the original and sheared images to correct for selection response of

redshift binning. The fluxes in the bands griz of the metacalibration galaxies are used for estimating an expectation

value of 〈z〉 =
∫ z

0
zjdzj pBPZ(zj). Thus, four redshift bins are defined by 0.20 < 〈z〉 < 0.43, 0.43 < 〈z〉 < 0.63,

0.63 < 〈z〉 < 0.90, and 0.90 < 〈z〉 < 1.30. The corresponding four redshift distributions, ni(z), are taken as the

stacked pBPZ(z) of the galaxies, estimated from their improved joint-fit photometry (Drlica-Wagner et al. 2018). All

details about the photometric redshift estimation can be found in Hoyle et al. (2018). In that work, the mean values

of each redshift bin stacked pBPZ(z) are calibrated independently, and they are found to be consistent with the bpz

estimate, with a joint uncertainty of σ〈z〉 ≈ 0.015.

Since the purpose of this work is detection of the cross-correlation between the UGRB and shear, rather than

accurate constraints on cosmological parameters, we do not explicitly account for the systematic uncertainties in shear

and redshift calibration in our analysis. The moderate significance of our measurements and the accuracy of the DES

Y1 calibrations justify this choice.

B. GAMMA-RAY DATA

Fermi-LAT is a γ-ray pair-conversion telescope that has been operating for the last 10 years in space. Due to its

wide energy range (20 MeV to 1 TeV) and its capability of rejecting the background of charged cosmic rays, it is an

excellent instrument to investigate the UGRB. It scans the whole sky every three hours with a remarkable angular

resolution for γ rays (∼ 0.1 deg above 10 GeV).

In this work we used 108 months of data, from mission week 9 to week 476. The photon and exposure maps are

produced with the LAT Science Tools version v10r0p5.2 We selected the Pass8 ultracleanveto class,3 which has

the lowest cosmic-ray contamination and is the most appropriate class for diffuse emission analysis. The Fermi Tools

provide the possibility of choosing different angular resolutions, which are organised in four quartiles, from PSF0 to

PSF3, corresponding to a transition from the worst to the best PSF. In order to have a balance between the photon

count statistics and a good direction reconstruction, we selected the best quartile PSF3 for energies below 1.2 GeV

(where we have the highest photon counts) and PSF1+2+3 for higher energies. The PSF is modelled according the

Fermi-LAT specifications,4 and for each energy bin in our analysis an effective PSF is determined by weighting the

energy-dependent PSF by the intensity energy spectrum of the UGRB.

We produced 100 intensity maps in HEALPix projection with Nside = 1024, evenly spaced in logarithmic scale between

100 MeV and 1 TeV, by dividing the count maps by the exposure and the pixel area. The size of such energy bins is

small enough that the exposure can be approximated by its mean value within the energy bin when deriving the flux.

The resulting flux maps are then re-binned into 9 larger energy bins between 631 MeV to 1 TeV by simply adding up

fluxes from the smaller bins. We discard very low energies because the angular resolution is too poor for our purposes.

Since we are interested only in the UGRB, we benefit from excluding Galactic emission and resolved point sources.

This is achieved by a process of masking and subtracting described below.

B.1. Masking γ-ray data

We build a set of masks according to the following two criteria:

1. Low latitudes, where the Galactic foreground is stronger, are removed by a flat cut excluding the region between

±30 deg of latitude.

2. Sources identified in the list FL8Y are masked. FLY8 5 has been recently released by the Fermi-LAT Collabo-

ration as a preliminary version of the upcoming 4FGL catalogue. It contains 5523 sources. Above 10 GeV, we

mask also the sources which are present in the 3FHL catalogue (Ajello et al. 2017), that is more accurate for

high energy sources. Each source is masked taking into account both its source brightness and the detector PSF

resolution in the specific energy bin. The masking radius R has been defined by:

F g∆E exp

(
− R2

2θ2
∆E

)
>
F g∆E,faintest

5
(B5)

2 https://fermi.gsfc.nasa.gov/ssc/data/analysis/software/
3 See http://www.slac.stanford.edu/exp/glast/groups/canda/lat Performance.htm
4 https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone LAT IRFs/index.html
5 https://fermi.gsfc.nasa.gov/ssc/data/access/lat/fl8y/

https://fermi.gsfc.nasa.gov/ssc/data/analysis/software/
http://www.slac.stanford./glast/groups/canda/lat_Performance.htm
https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_LAT_IRFs/index.html
https://fermi.gsfc.nasa.gov/ssc/data/access/lat/fl8y/
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Figure 5. Masked γ-ray map in the (1.2− 2.3) GeV energy bin before (left) and after (right) the foreground subtraction. The
maps have been downsized to Nside = 128 and smoothed with a Gaussian beam of size σ = 0.4◦ for illustration purposes.

where F g∆E is the integral flux of the source in a given energy bin ∆E, F g∆E,faintest is the flux of the faintest

source in the same energy bin (and once divided by 5 provides an approximate estimate of the noise, i.e., the

faintest source emission is approximately a measure of the 5σ level), and θ∆E is the 68% containment angle in

that energy bin, as provided by the Fermi-LAT PSF.

This strategy aims at masking the Galactic plane and resolved sources over a sufficiently large area, in order to reduce

the chance to have artefacts in the APS produced by source leakage and foreground emission. For further details and

impact of the mask, see also Ackermann et al. (2018).

B.2. Foreground removal

Despite the majority of the Galactic foreground has been removed by cutting out the Galactic plane, still high-

latitudes might contain some contamination that causes noise in our analysis. While galactic emission does not

contribute to the cross-correlation signal with gravitational shear, nevertheless a foreground contamination adds to

the error budget. We therefore performed a galactic foreground subtraction by adopting the template maps provided

by the Fermi-LAT Collaboration with the Galactic emission model gll iem v06.fits6. The foreground template is

projected in HEALPix maps with the same Nside as the intensity maps and in the same 100 energy bins. Each template

map is convolved with the Fermi-LAT PSF and assigned a free normalization. This component is added to a free

constant (representing the UGRB and cosmic-ray contamination) and a Poissonian likelihood fit is performed globally

on all the masked intensity maps. All obtained best-fit normalization parameters are of the order of unity, supporting

a successful description of the foreground emission. The normalised foreground templates are then re-binned into the

9 larger energy bins and subtracted from the corresponding intensity maps.

In Fig. 5, we show an example of the Fermi-LAT γ-ray intensity map in the (1.2-2.3) GeV energy bin with the

application of the mask described above and illustrating the effect of the Galactic foreground subtraction.

C. ESTIMATION OF THE COVARIANCE MATRIX

The covariance matrix is estimated by combining the theoretical Gaussian large-scale structure covariance, sup-

plementing it with realizations of the shape-noise term generated from the data. The latter term is expected to be

dominating the covariance, while the former should be small. To avoid notation conflict between the symbol γ usually

employed for both the weak lensing effect of gravitational shear, and for γ-rays, we shall here simply refer to shear

through indexes r, s, labelling redshift bins, and to the UGRB anisotropies via indexes a, b, labelling energy bins.

In the Gaussian approximation, the generic element of the theoretical harmonic-space covariance matrix Γ̂ reads:

Γ̂ar`,bs`′ =
δK
``′

(2`+ 1)∆`fsky

[
Car` Cbs` +

(
Crs`′ +N rs

)(
Cab` +N ab

)]
. (C6)

6 https://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html

https://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html


15

It represents the covariance between the measurements of two cross-correlation harmonic-space power spectra: one

cross-correlating γ-ray map in energy bin a with shear map in redshift bin r; and another considering γ-ray map

in energy bin b with shear map in redshift bin s. In the Gaussian approximation, these two cross-correlation

power spectra, Car` and Cbs`′ , have a covariance which is diagonal in ``′, and which depends on both the cross-

correlation signals, as well as the γ-ray–γ-ray and shear-shear auto-correlations, i.e. Cab` and Crs`′ . Here, N denote

the noise terms. Note that the noise does not depend on the angular scale. In Eq. (C6) fsky accounts for the

incomplete sky coverage, with fDES
sky = 0.042 denoting the DES footprint (independent of the redshift bin) and

fasky = (0.315, 0.289, 0.404, 0.449, 0.468, 0.475, 0.476, 0.477, 0.477) being the fraction of unmasked pixels of the γ-ray

map in the a-th energy bin. For the cross-correlation estimator with complex masks as we have here, an unambiguous

definition of fsky is not possible. We tested two options: a geometric mean fsky = (faskyf
DES
sky )1/2 and the fsky relative

to the overlap of the DES footprint with the Fermi-LAT unmasked sky. We comment more in the two alternatives

below, but we anticipate that results on the SNR arising from the two choices exhibit only a minor change.

For details on the Gaussian covariance matrix, see Camera et al. (2015, Sect. 5.1). Since our measurements are

performed in real space, we compute the Legendre transform of Eq. (C6) to return the real-space covariance matrix,

Γ, with entries Γarϑ,bsϑ′ .

As mentioned above, the dominant contribution to the covariance is represented by the shape noise term. In the

Gaussian approximation, it takes the form of N rs(Cab` +N ab). In order to estimate this contribution more accurately,

without resorting to theoretical approximations, we produce 2000 realisations of the noise directly from the data in

real space. To this end, we rotate each galaxy in our catalogue by an independent random angle. The shear signal as

measured from these rotated source catalogues represents a random realisation of shape noise (see e.g. Gruen et al.

2018; Hikage et al. 2019; Murata et al. 2018).

We complete the construction of the total covariance by adding a theoretical estimate of the large-scale structure

term, Car` Cbs` +Crs` (Cab` +N ab). We assume it subdominant in the covariance budget, and this is verified a posteriori.

The γ-ray auto-correlation Cab` entering in the theoretical estimate can be well-fitted by a simple model, given by a

power-law plus a constant, i.e. Cab`,mod = Aab`
−αab + CabP (see Ackermann et al. 2018). We fit the three parameters

{Aab, αab, CabP } for each energy bin pair against the measurement of the auto-correlation power spectrum obtained by

running the tool PolSpice as in Ackermann et al. (2018). Finally, the γ-ray noise term, N ab, is computed with the

analytic estimator of Fornasa et al. (2016, Eq. 5).

The shear auto-correlation is derived using the galaxy redshift distributions described in Appendix A, and adopting

ΛCDM cosmology with parameter fiducial values from Planck Collaboration et al. (2015). The model is compatible

with measurements in Troxel et al. (2018a).

The large-scale structure part of the covariance is added to the shape noise term by using the following procedure.

We create a set of 2000 simulated datasets from a multivariate Gaussian distribution with zero mean and covariance

equal to the large-scale structure part of the theoretical covariance. Then, we add this simulated data to the shape

noise realisations discussed above, thus obtaining 2000 samples containing both terms. These 2000 samples are then

used to obtain the covariance matrix. As discussed in Anderson (2009) and Hartlap et al. (2007), the inverse of the

covariance estimated such is a biased estimator of the inverse covariance, with the bias depending on the number of

realisations, number of bins, and parameters of the model chosen to fit the data. We apply the Anderson-Hartlap

correction in order to de-bias the inverse covariance, as done e.g. in Kilbinger et al. (2013, Sect. 3).

In order to validate our procedure, we compare the shape noise term obtained via the simulations with the analogous

term from the theoretical estimate, N rs(Cab` +N ab). In Fig. 6, we show a comparison between the theoretical shape

noise standard deviation and the results from the simulations, in the case of a low-energy bin (left panel) and a

high-energy bin (right panel) combined with the lowest DES redshift bin. We see that the variance obtained with

the two techniques approximately agrees, yet can differ due to complex masking effects present in the data (Troxel

et al. 2018b). When deviations are present, the variance obtained with simulations is typically larger, as expected.

By adopting the shape noise term directly derived from the data, we ensure that the quoted errors and values for the

goodness of fit are correct.

We compare also the large-scale structure term with the covariance matrix obtained from simulations after rescaling

the latter by Crs` /N rs. Results are in very good agreement, confirming that our choice of the effective parameter

fsky entering Eq. (C6) is consistent. Another value for the fsky parameter that is frequently used in the literature is

the overlap between the two masks. In this case, results would be just slightly modified, with the SNR becoming 4.3

instead of 4.5, as obtained in the main analysis.
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Figure 6. Comparison between the shape-noise standard deviation computed with the theoretical Gaussian approximation
(yellow error bars) and via the simulations (blue error bars) for two energy bins in the first DES redshift bin. We focus only
on angular scales above the Fermi-LAT PSF in the specific energy bin. Left panel: energy bin between 1.2 and 2.3 GeV. Right
panel: energy bin between 131 and 1000 GeV.

D. THEORETICAL MODELS

The harmonic-space (often referred to as ‘angular’) power spectrum of the cross-correlation between a map of γ-rays

in the ath energy bin and a map of gravitational shear in the rth redshift bin can be computed as:

Car` =

∫
dE dz

1

H(z)

W a
gamma(E, z)W r

shear(z)

χ(z)2
Pγδ

[
k =

`

χ(z)
, z

]
, (D7)

where E is the γ-ray energy, and χ(z) is the comoving distance to redshift z, obeying dz/dχ = H(z) with H(z)

the Hubble rate. Formally, the integrals extend over the whole γ-ray energy spectrum and from z = 0 to the

horizon, but the window functions W a
gamma(E, z) and W r

shear(z) implement energy and redshift binning effectively

reducing the integration range (for details, see subsection D.1, subsection D.2, subsubsection D.2.1). Finally, Pγδ is

the three-dimensional cross-power spectrum between a given γ-ray population sourcing the UGRB emission and the

matter density contrast, δ (see subsection D.3). It represents the three-dimensional correlation (in Fourier space)

between what seeds the unresolved γ-ray emission and what sources the gravitational lensing effect, namely matter

inhomogeneities. It is a function of both redshift and physical scale k, the modulus of the physical wavenumber. In

the Limber approximation, k and the angular multipole ` are linked by k = `/χ(z). This approximation is valid for

`� 1, which is the case of the present work.

As mentioned before, the quantity measured from the data is the real-space cross-correlation of UGRB anisotropies

with tangential shear, which is related to the harmonic-space cross-power spectrum of Eq. (D7) by a Legendre trans-

form:

Ξ̂ar(θ) =
∑
`

2`+ 1

4π`(`+ 1)
Car` W a

` P
(2)
` (cos θ), (D8)

with θ being the angular separation on the sky, P
(2)
` the Legendre polynomial of order two, and W a

` the Fermi-LAT

PSF beam function in energy bin a, accounting for the finite resolution of the detector.

D.1. Gravitational lensing window function

The window function describes the mean distribution of the signal along the line of sight, in the given energy or

redshift bin. For the gravitational lensing effect, the window function is given by (see e.g. Bartelmann 2010):

W r
shear(z) =

3

2
H2

0 Ωm(1 + z)χ(z)

∫ ∞
z

dz′
χ(z′)− χ(z)

χ(z′)
nr(z′), (D9)
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where H0 ≡ H(z = 0) is the Hubble constant, Ωm is the matter abundance in the Universe (sum of the dark matter

and the baryon abundances, ΩDM and Ωb), and nr(z) is the redshift distribution of background galaxies in the lensing

data set in bin r. The galaxy distribution depends on the data set and redshift cut, as described in Appendix A.

D.2. WIMP-sourced γ-rays window function

The window function for UGRB anisotropies sourced by annihilations of dark matter particles reads (Ando &

Komatsu 2006; Fornengo & Regis 2014):

W a
gamma,DM(E, z) =

(ΩDMρc)2

4π

〈σannv〉
2m2

DM

(1 + z)
3

∆2(z)
dNann

dE
[E(1 + z)] e−τ [E(1+z),z] , (D10)

where ρc is the critical density of the Universe, mDM is the mass of the dark matter particle, and 〈σannv〉 denotes the

velocity-averaged annihilation cross-section, assumed here to be the same in all dark matter haloes.

Among the other ingredients, we have dNann/dE, indicating the number of photons produced per annihilation as

a function of energy, and setting the γ-ray energy spectrum. We will consider it to be given by the sum of two

contributions: prompt γ-ray production from dark matter annihilations (or decays); and inverse Compton scattering

of dark matter produced electrons and positrons on CMB photons (we compute inverse Compton assuming negligible

magnetic field and no diffusion for the produced electrons and positrons). Results of our analysis will be shown for two

annihilation final states: bb̄ pairs, which yield a relatively soft spectrum of photons and electrons, mostly associated

to hadronisation into pions and their subsequent decay; τ+τ−, which provides a harder spectrum, mostly associated

to final state radiation of photons and decay of the muons produced by τ decay into electrons (with subsequent γ-ray

emission through inverse Compton on CMB), with an additional semi-hadronic decay into pions (Fornengo et al. 2004;

Cembranos et al. 2011; Cirelli et al. 2011).

Then, the optical depth τ in Eq. (D10) accounts for attenuation of γ-rays by the extra-galactic background light, and

is taken from Finke et al. (2010). Finally, the clumping factor ∆2 is related to the fact that the signal of annihilating

dark matter depends on the average of the square of the dark matter density; it is defined as (see e.g. Fornengo &

Regis 2014):

∆2(z) ≡ 〈ρ
2
DM〉
ρ̄2

DM

=

∫ Mmax

Mmin

dM
dnh

dM
(M, z) [1 + bsub(M, z)]×

∫
d3x

ρ2
h(x|M, z)

ρ̄2
DM

, (D11)

where: dnh/dM is the halo mass function (Sheth & Tormen 1999); Mmin is the minimal halo mass, which we fix to

10−6M�; Mmax is the maximal mass of haloes, for which we use 1018M�, although results are insensitive to the precise

value assumed; ρh(x|M, z) is the dark matter density profile of a halo with mass M at redshift z, taken to follow

a Navarro-Frenk-White profile (Navarro et al. 1997); and bsub encodes the ‘boost’ to the halo emission provided by

subhaloes. To characterise the halo profile and the subhalo contribution, we need to specify their mass concentration.

For the main haloes we follow Prada et al. (2012). On the other hand, the description of the concentration parameter

c(M, z) at small masses and for subhaloes is still an open issue and provides a source of uncertainty. Here, we consider
the two most updated analyses, that we name ‘SUB1’ (Moliné et al. 2016), where we assume dnsub/dMsub ∝ M−2

sub

(see also Sánchez-Conde & Prada 2014), and ‘SUB2’ (Hiroshima et al. 2018). They differ by roughly a constant factor

of 10 in the derived final value of the annihilation cross section, as shown in Fig. 4.

D.2.1. Astrophysical γ-ray sources window function

Besides the possible particle dark matter emission, γ-rays in the UGRB are certainly produced by a number of

astrophysical sources. The most relevant γ-ray emitters include: blazars, misaligned active galactic nuclei, and star

forming galaxies. Their window function is given by:

W a
gamma,S(E, z) = χ(z)2

∫ Lmax(Fsens,z)

Lmin

dLΦS(L, z, E)
dNS

dE
(L, z)× e−τ [E(1+z),z] , (D12)

where L is the γ-ray rest-frame luminosity in the energy interval 0.1 to 100 GeV, ΦS is the γ-ray luminosity function

(GLF) of the source class S of astrophysical emitters included in our analysis, and dNS/dE is its observed (unab-

sorbed) energy spectrum. The upper bound, Lmax(Fsens, z), is the luminosity above which an object is resolved in

the FL8Y and 3FHL catalogues, and consequently masked in our analysis. As we are interested in the contribution

from unresolved astrophysical sources, only sources with luminosity smaller than Lmax are included. Conversely, the

minimum luminosity, Lmin, depends on the properties of the source class under consideration.
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We consider a unified blazar model combining BL Lacertae and flat-spectrum radio quasars as a single source class.

The GLF and energy spectrum are taken from Ajello et al. (2015) where they are derived from a fit to the properties

of resolved blazars in the third Fermi-LAT catalogue (Acero et al. 2015). In the case of misaligned AGNs, we follow

Di Mauro et al. (2013), who built the GLF from the radio luminosity function of misaligned AGNs. We consider

their best-fitting relation between the γ-ray and radio luminosities L -Lr,core and assume a power-law spectrum with

index αmAGN = 2.37. To derive the GLF of star-forming galaxies, we start from the infrared luminosity function of

Gruppioni et al. (2013) (adding up spiral, starburst, and SF-AGN populations of their Table 8). Then we relate γ-ray

and infrared luminosities using the best-fitting L-LIR relation from Ackermann et al. (2012). The energy spectrum is

taken to be a power-law with spectral index αSFG = 2.7.

D.3. Three-dimensional seed power spectra

To compute the three-dimensional cross-power spectrum Pγδ between the clustering of a given population of γ-ray

emitters and the matter density field, we follow the halo model formalism (for a review, see e.g. Cooray & Sheth 2002),

and write Pγδ = P 1h
γδ + P 2h

γδ . Below derive the 1- and 2-halo terms for the various cases, following (Fornengo et al.

2015).

D.3.1. Dark matter γ-ray sources

The 3D cross power spectrum between γ-ray emission from particle dark matter and matter density is given by:

P 1h
γDMδ(k, z) =

∫ Mmax

Mmin

dM
dnh

dM
(M, z) v̂γDM

(k|M, z) ûδ(k|M, z) (D13)

P 2h
γDMδ(k, z) =

[∫ Mmax

Mmin

dM
dnh

dM
(M, z) bh(M, z) v̂γDM

(k|M, z)

][∫ Mmax

Mmin

dM
dnh

dM
(M, z) bh(M, z)ûδ(k|M, z)

]
P lin(k, z),

(D14)

where P lin is the linear matter power spectrum, bh is the linear bias (taken from the model of Sheth & Tormen 1999),

and ûδ(k|M, z) is the Fourier transform of the matter halo density profile, i.e. ρh(x|M, z)/ρ̄DM. The Fourier transform

of the γ-ray emission profile from annihilating dark matter is described by v̂γDM
(k|M, z), and it is related to the square

of the dark matter density profile. For its precise form, see Appendix of Cuoco et al. (2015).

D.3.2. Astrophysical γ-ray sources

The cross-correlation of the matter density with astrophysical γ-ray sources is given by the 3D power spectrum:

P 1h
γSδ(k, z) =

∫ Lmax

Lmin

dL ΦS(L, z)
〈fS〉

dF

dE
(L, z) ûδ [k|M(L, z), z] (D15)

P 2h
γSδ(k, z) =

[∫ Lmax

Lmin

dL bS(L, z) ΦS(L, z)
〈fS〉

dF

dE
(L, z)

][∫ Mmax

Mmin

dM
dn

dM
bh(M, z)ûδ(k|M, z)

]
P lin(k, z), (D16)

where bS is the bias of γ-ray astrophysical sources with respect to the matter density, for which we adopt bS(L, z) =

bh[M(L, z)]. That is, a source with luminosity L has the same bias bh as a halo with mass M , with the relation M(L, z)
between the mass of the host halo M and the luminosity of the hosted object L taken from Camera et al. (2015). The

mean flux 〈fS〉 is defined as 〈fS〉 =
∫

dLdF/dEΦS.

E. BLINDING AND UNBLIDING PROCEDURE

The analysis has been performed by adopting a blinding technique, which relied on the execution of the cross-

correlation analysis on several variants of data – some true and some artificial. For both γ-rays and gravitational

lensing we adopted 3 data variants, one of which was the true one. After the data were created, they were randomly

assigned symbolic names. The analysis was then performed on all 9 combinations of data, without knowing which was

the true version.

The aim of the blinding was to ensure that our analysis would not falsely detect a signal. Criteria to test the blind

analysis were defined beforehand. After recording the results of the blind analysis and agreeing on its interpretation,

the symbolic name assignments were revealed.

The construction of the versions of the data and the unblinding procedure is discussed below.
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E.1. Blinded γ-ray maps

The γ-ray maps adopted in the blind analysis are:

• G0: The true Fermi-LAT γ-ray maps.

• G1: Poissonian random map with a constant expected photon count over all the unmasked pixels, i.e. in each

pixel of the map we extract a random number from a Poissonian distribution with fixed mean. The mean was

computed by taking the average counts of the real maps in the unmasked pixels in each energy bin, and then

multiplying it by a factor of 10 in order to simulate improved statistics. The produced counts maps are then

transformed into flux maps by the usual procedure of dividing them by the mean detector exposure in each

energy bin and by the pixel area.

• G2: Random reshuffle of all unmasked pixels of the real map in each energy bin.

Once produced, the three sets of maps have been blindly and randomly assigned names A, B and C and the

association stored.

E.2. Blinded shear maps

The shear signals adopted in the blind analysis are:

• K0: The true DES tangential component of galaxy shapes (this is the shear component for which we are looking

for the cross-correlation signal when combined with the Fermi maps).

• K1: The cross-component of galaxy shapes (which instead should yield pure shape noise and a null detection

when correlated with the Fermi maps).

• K2: A linear combination of this null signal and the cross-correlation signal of redMaGiC galaxies at redshift

z = 0.2 − 0.45 (Prat et al. 2018), with the linear combination coefficients chosen such that the signal should

be neither plainly visible nor certainly undetectable. Since the correlation between redMaGiC galaxies and

gravitational shear is significant, this mock data set is meant to inject in our analysis a situation potentially (but

not necessarily) leading to what could be seen as a detection.

Once produced, the three sets of maps have been blindly and randomly assigned names X, Y and Z and the association

stored.

E.3. Blind analysis and unblinding procedure

The nine versions of cross-correlations results were all processed and vetted, with no team member aware of which

combination represented the true data vector. We proceeded to the unblinding only once a number of (previously

defined) criteria where satisfied: essentially, we needed to have at least one set for each γ-ray map compatible with

noise (because of K1) and one with some (possibly weak) signal (because of K2). This has been done by evaluating the

χ2 differences defined in Section 2 as the statistical estimator. In order to evaluate the statistical significance of the

obtained ∆χ2, we derived the distribution of various cases from multivariate Gaussian realizations. In the following,

we summarise the main and most relevant results.

The ∆χ2 between null signal and models for all the combinations analyzed are reported in Table 3, for both the

phenomenological and physical models. By looking at the phenomenological model analysis, the table shows that the

majority of cases have a very low ∆χ2, as expected from the combination of the data sets discussed in the previous

Sections. Specifically, for each of the versions of the blinded γ-ray maps, at least one of the three shear data vectors is

consistent with pure shape noise. Two cases exhibit a somewhat large ∆χ2: AZ and CX. There are two possibilities

in the subsets data combination that could provide such a situation: the combination of any version of the γ-ray map

with the redMaGiC galaxy signal or the combination of the true Fermi and the true DES data, if a signal is in fact

present (combination G0-K0).

By looking at the physical case results, we notice that the largest ∆χ2’s occur for the same subsets, however with a

reduced significance. Let’s comment that in this part of the analysis, for the physical case we used a reference model

(further discussed in the next Section) which assumes for simplicity the normalisation of the 1-halo and 2-halo terms

for blazars to be equal (A1h
BLZ = A2h

BLZ) and which refers to a DM particle annihilating into hadronic states, specifically
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Map combination

AX AY AZ BX BY BZ CX CY CZ

∆χ2
phe 1.17 0.27 29.3 4.09 0.26 0.60 21.1 1.27 1.90

∆χ2
phys −0.06 0.04 2.58 3.09 −0.02 3.33 9.91 0.15 1.72

Table 3. ∆χ2
mod computed for the physical and phenomenological models with respect to the null hypothesis for the various

combinations of the blind analysis. Only the combination of true γ-ray and shear data (CX) and the low-noise mock γ-ray
map with an injected artificial shear signal (AZ) show a large preference for the model vs the null hypothesis (no signal). The
physical models adopted in the blind analysis the reference model discussed in Section F.

into a b̄b pair. The null χ2 distribution and the distribution of expected ∆χ2 for the reference physical model are

reported in Fig. 7. They are obtained by drawing from a multivariate Gaussian with mean given by the reference

model and covariance given by the same covariance used in the data analysis. The null χ2 distribution peaks around

430. The ∆χ2 distribution is rather broad and implies that ∆χ2 of all variants reported in Table 3 are potentially

compatible with the true case, since their ∆χ2 is well inside the distribution in Fig. 7. The peak of the distribution

indicates that the expected ∆χ2 for the reference model is around 15.

The unblinding revealed the following identifications: A −→ G1, B −→ G2, C −→ G0, X −→ K0, Y −→ K1, Z −→ K2.

The injected signal was rather small, and therefore not easily identifiable. Moreover, being a signal due to the cross-

correlation between the galaxy distribution and gravitational shear, it does not have to be compatible with our physical

models (constructed specifically for the cross-correlation with γ-rays), while instead it could be well described by the

phenomenological model (since it contains a generic 1-halo and 2-halo terms).

From all these considerations, we see first of all that the results shown in Table 3 are fully compatible with expec-

tations: there is no “spurious” detection, while the presence of a signal occurs only for those cases for which this is

potentially possible. In fact, the CX case (the one corresponding to the combination of the true Fermi and DES data)

is the only one that presents a high ∆χ2 for both the phenomenological and physical model. The ∆χ2 is larger in the

case of the phenomenological model since the latter has more freedom to adapt to data. CY and CZ are compatible

with null signal. The smallness of the injected signal in Z makes this case essentially indistinguishable from pure noise.

Finally, the null χ2 for CX is 350.6 is compatible with the expectations of the distribution of Fig. 7.

None of the combinations involving A and B maps present a statistically significant ∆χ2 either with respect to the

physical or the phenomenological model, except for the phenomenological fit for the AZ case. We remind that map

A is built from Poissonian γ-ray noise with enhanced photon count statistics. The latter means that the size of the

errors is significantly reduced, and now the “small” injected signal is enough to provide a significant detection. On

the other hand, the “artificial” nature of the signal is revealed by the fact that the physical model is not able to fit

it. The freedom we left to the phenomenological model is instead large enough to make it able to include the signal of

cross-correlation with galaxies.

In the next Section we outline the specifications of the reference model used for the blind analysis.

F. REFERENCE MODEL

In the pipeline of the analysis before unblinding, we adopted a physical model with blazars, mAGN, SFG and DM

annihilating into a b̄b pair, with a common normalization for the 1-halo and 2-halo terms for blazars, i.e., A1h
BLZ = A2h

BLZ.

This was the first obvious options, since it adopts a nominal model for the blazar terms and minimises the number of

free parameters. As seen from the triangle plot in Fig. 9, the parameter scan for the CX case provides upper bounds

for the three astrophysical components and a hint for the presence of a DM signal is found at the 2.2σ C.L., with

best-fit parameters mχ = 447 GeV and normalization of the annihilation cross section relative to the natural scale

ADM = 56. Overall, the statistical significance of this reference physical model is SNR = 3.1, with ∆χ2= 9.9.

In the right panel of Fig. 9, we show the cross-correlation signal for the best fit of this reference physical model,

compared to the data points. While large scales are well fitted by the model, a clear lack of power is present at

small angular scales. From Fig. 2 we instead know that in the phenomenological model, the PSF-like 1-halo term

can account for the measured CCF at small scales properly. This implies that the reference model, in its simplest

formulation, is excessively limiting the ability to adapt to the data: a larger 1-halo term is needed.

Considering that the data require a hard-spectrum, not compatible with astrophysical components other than blazars,

we improve the modelling by allowing the 1-halo and 2-halo terms for blazars to be independently normalised. In this

case, the small scale correlation is well fitted, and a peak in the posterior distribution for the 1-halo blazar component
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Figure 7. Distribution of the expected χ2 (left) and ∆χ2 (right) for the reference physical model used in the Monte Carlo
Markov Chain analysis during the blind phase. The normalization of the components in the model were chosen in order to
reproduce the total UGRB emission. The meaning of the plot is to show the expectations for the null χ2 with the way of
estimating the covariance used in this work, and for the ∆χ2 of the true case for the purpose of blinded tests. The ∆χ2 should
be compared to the values reported in the second line of Table 3.

arises (see Fig. 3). This improves the SNR from to 3.1 to 3.5, while the dark matter component loses some of its

significance with respect to the original reference case.

We have also investigated variations of the dark matter model in terms of considering different annihilation channels,

as it is usually done in dark matter analyses. We found a preference for leptonic annihilation, with the preferred option

being annihilation into τ -lepton pairs: this increases the global SNR to 4.0, with a preference for the presence of a

dark matter signal at the 2.2σ confidence level. This is the model that we report in the main text. In the case the

DM component is not included, we obtain ∆χ2 = 8.7, as compared to ∆χ2 = 15.7 for the case with DM.

To have a better impression on the physical behaviours, we plot the energy and redshift dependence of the cross-

correlation signal in Fig. 8. The average along the angular and redshift (energy) directions of each point of the energy

(redshift) spectrum is performed by computing a matched filter amplitude A = ΞTΓ−1Ξ̄M/(Ξ̄
T
MΓ−1Ξ̄M), where Ξ̄M is

given by a sample model that we choose to be flat in energy and redshift, while scaling as 1/θ in angle, to approximately

reproduce the expected signal, and Ξ is either the measured data or the best-fit models introduced in the main text.

The error on A is given by σ2
A = (Γ−1Ξ̄M)TΓ(Γ−1Ξ̄M)/(Ξ̄T

MΓ−1Ξ̄M)2. From Fig. 8 one can appreciate the small but

noticeable differences in the energy and redshift scalings of the different physical components (theoretical models) that

have been discussed in Section 3.

Concerning the blazar 1-halo component, this depends on the relation between the blazar luminosity and the host-

halo mass, as can be seen in Eq. D16. In the reference model used for the blind analysis this relation has been

taken from (Camera et al. 2015), where it was derived by linking the γ-ray luminosity of a blazar to the mass of the

supermassive black hole powering the AGN and then relating the mass of the black hole to the mass of the DM halo.

Combining these pieces together, this peocedure gives M(L) = 2 × 1013M� (L/1047erg s−1)0.23(1 + z)−0.9, where L
is the rest-frame luminosity of blazars in the energy range 0.1 to 100 GeV. Assuming this relation to be a power-law

and fixing the redshift dependence as in the reference model (since, as we already mentioned, it is weakly constrained

by data, and we therefore do not gain meaningful insight from the fit), the left panel in Fig. 10 explores which M(L)

relation would be needed in order to reproduce the 1-halo term of our refined model. The plot shows the best-fit

relation and its 68% C.L. contours in the plane (α,M0) for a relation M(L) = M0 (L/1047erg s−1)α(1 + z)−0.9. Our

results suggest the average mass of a halo hosting a blazar is larger than the one adopted in (Camera et al. 2015), and

most likely around 1014M�. In the right panel, we show with a few examples that modifying the M(L) relation has a

dramatic impact on the the 1-halo power spectrum, while it only mildly affects the 2-halo term.
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