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ABSTRACT

The process of planet conglomeration, which primarily unfolds in a geometrically thin disc
of gas and dust, is often accompanied by dynamical excitation of the forming planets and
planetesimals. The ensuing orbital crossing can lead to large-scale collisional fragmentation,
populating the system with icy and rocky debris. In a gaseous nebula, such leftover solid
matter tends to spiral down towards the host star due to aerodynamic drag. Along the way,
the inward drifting debris can encounter planets and gravitationally couple to them via mean-
motion resonances, sapping them of their orbital energy and causing them to migrate. Here,
we develop a simple theory for this migration mechanism, which we call ‘aero-resonant
migration” (ARM), in which small planetesimals (10m < s < 10km) undergo orbital decay
due to aerodynamic drag and resonantly shepherd planets ahead of them. Using a combination
of analytical calculations and numerical experiments, we show that ARM is a robust migration
mechanism, able to significantly transport planets on time-scales <1 Myr, and present simple
formulae for the ARM rate.

Key words: planets and satellites: dynamical evolution and stability — planets and satellites:

formation.

1 INTRODUCTION

Classical planetary formation theory, developed before the
widespread detection of exoplanets, has historically treated plan-
etary system formation as an inherently static process. By invoking
the Minimum mass solar nebula (MMSN) — a lower limit to the
amount of material needed within the protoplanetary disc in order
to form all the planets (Weidenschilling 1977; Hayashi 1981) — Solar
system formation scenarios generally assumed that the amount of
solid matter in the system has remained largely unchanged and
that its current radial distribution closely resembles the primordial
one. Under this assumption, planets never strayed far from their
birthplaces.

One of the key realizations that arose from exoplanet charac-
terization is that planetary systems are not static. A large sample
of planets on eccentric orbits (e.g. Wright et al. 2011) hints at dy-
namical restructuring of orbital architectures (Chatterjee et al. 2008;
Juri¢ & Tremaine 2008; Nagasawa & Ida 2011; Beaugé & Nesvorny
2012), while multiplanet systems in which planets sit close to,
though not necessarily in, mean-motion resonances (MMRs; e.g.
Veras & Ford 2012; Fabrycky et al. 2014) suggest a history
of convergent migration in which either planets fail to capture
in MMR (e.g. Matsumoto, Nagasawa & Ida 2012; Baruteau &
Papaloizou 2013; Goldreich & Schlichting 2014), or do capture
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into MMR and later break out due to various effects (e.g. Rein
2012; Batygin & Morbidelli 2013; Chatterjee & Ford 2015). Indeed,
the predominance of compact systems in which several planets
are packed into tight orbits with semimajor axes smaller than that
of Mercury (e.g. Batalha et al. 2013) increasingly points to the
notion that the Solar system is but one outcome of a physically
diverse process of planet formation. Moreover, modern models of
Solar system formation, too, invoke considerable redistribution of
matter during the Solar System’s infancy, suggesting that its orbital
architecture has been dynamically sculpted (see e.g. Morbidelli
et al. 2012 for a review). Finally, the existence of ultrashort-period
planets (Sanchis-Ojeda et al. 2014), which reside inside the star’s
putative magnetospheric cavity, likely also necessitates migration.

To date, a variety of planetary migration mechanisms have
been considered in the literature. These include smooth migration
through the gaseous protoplanetary disc — type I migration for lower
mass planets (Goldreich & Tremaine 1979; Ward 1997), type II for
planets with mass comparable to that of Jupiter (Lin & Papaloizou
1986) and type III for intermediate, Saturn-mass, planets (Masset &
Papaloizou 2003); migration through dynamical interaction with a
disc of remnant planetesimals after gas dispersal, as in the Nice
Model (Tsiganis et al. 2005; Batygin & Brown 2010; Levison
etal. 2011); and late-type migration through dynamical interactions
between planets, or with a distant perturber, collectively known as
high-eccentricity migration (e.g. Beaugé & Nesvorny 2012; Naoz
2016). The relative dominance and specific roles of each of these
processes remains an area of active research.
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In theory, the dominant planet sample, which consists of super-
Earths with masses less than or comparable to Neptune’s, should
be primarily subject to type I migration, in which a slight angular
momentum imbalance between the leading and trailing arms of
a spiral wave raised by the planet causes it to exchange angular
momentum with the disc. However, detailed numerical simulations
have shown that both the magnitude and the direction of type
I migration are extremely sensitive to the entropic structure of
the protoplanetary disc, making it difficult to deterministically
understand its consequences (e.g. Bitsch & Kley 2011; Bitsch et al.
2014, 2015). Here, we show that this population of planets (2Mg
S M, S 30Mg) is also subject to a different smooth migration
mechanism, which we call ‘aero-resonant migration’ (ARM). In
this mechanism, small planetesimals undergoing inward migration
due to aerodynamic drag (AD) from the gaseous disc become
captured into exterior first-order MMRs with the planet. Trapped
in resonance, they continue experiencing AD and act as an energy
sink for the planet. If the total mass of trapped planetesimals is
appreciable, the planet migrates inward.

A proof of concept for ARM was first presented by Batygin &
Laughlin (2015). Here, we use a combination of analytical and
numerical methods to further develop the theory of ARM, and
outline the regime in which it dominates. In Section 2, we present the
set-up and our analytical treatment of the problem. In Section 3, we
present the results of numerical experiments that serve to validate
the conclusions of Section 2. We conclude briefly in Section 4.

2 ARM: ANALYTICAL TREATMENT

2.1 Model set-up and definitions

We consider a gaseous protoplanetary disc around a central star of
mass M,, with a surface density profile ¥ (Mestel 1963) such that

2=m(2).

where a denotes semimajor axis, and X is the disc surface density
at reference semimajor axis ag. Due to radial pressure support, the
gas disc is marginally sub-Keplerian, and we define a parameter x
as

2
Ve = vy [ 1 = 356 = ol — 08, ©)
Uk

where ¢, and vk are the sound and Keplerian speeds, respectively,
and ¢ is the azimuthal unit vector. Typically, x ~ 0.001-0.01.

Embedded in the gaseous disc is a planet of mass n1,, at semimajor
axis ap, and a population of small planetesimals of mass m, radius
s, whose radial density profile initially follows that of the gaseous
disc. The total mass of the planetesimal disc is a factor f smaller
than that of the gas disc; typically, f ~ 0.01. For simplicity, we treat
m and s as adjustable parameters, keeping in mind that the real disc
has a distribution of planetesimals of varying sizes.

We restrict the planetesimals to have s = 10m, such that
their hydrodynamic Reynolds number substantially exceeds unity
(Malhotra 1993). Note that this assumption is only limiting if the
mass fraction of solids in the 10cm < s < 10m range is large.
Under this assumption, the planetesimals experience AD with an
acceleration agr, that is quadratic in velocity and independent of
the gas viscosity (Landau & Lifshitz 1959):

T Cd

2
Adrag = _ﬁs Pgas Vrel Vrel - (3)
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Here, Vo] = V — Vg is the relative velocity between the gas and the
planetesimals, pgs is the gas volume density and Cyq >~ 0.5 is the
drag coefficient.

The effect of the AD acceleration is to cause the planetesimals to
driftinwards, and to damp their eccentricities and inclinations. Since
in this work we are concerned solely with first-order resonances,
which cannot excite inclinations, we set all planetesimal inclinations
to zero. Then, to first order in eccentricity, the migration and
eccentricity damping rates can be expressed as

1 da 2 5
S =in/ie (4)

1 de \ /5 5
2 __1. /5 i 5
e dr Ve X )
where

nC !
T = < szsngava) (6)

is the characteristic damping time-scale. Note that, with the above
assumptions for the disc density, we have t o< a?.

As those planetesimals with initial semimajor axes greater than a;,
drift inwards, they encounter and become captured into an exterior
k: k — 1 MMR with the planet. For the remainder of this section,
we consider the consequences of this capture. Readers that are not
interested in the mathematical details are encouraged to skip the
next two sub-sections and proceed directly to Section 2.4.

2.2 Effect of a single planetesimal in resonance

Consider the resonant interaction between the planet, denoted with
subscript 1, and a single planetesimal, denoted with subscript 2,
with mass m, <« m, trapped in resonance. Since m, K m;, we
assume that ¢; = 0.

To evaluate the planet migration rate ¢, induced by this single
particle, we use the Hamiltonian formalism of Batygin & Morbidelli
(2013). We start by defining Poincare action-angle variables:

A=mvGMa, r=N+w, @)

F:A(l—\/l—ez)%Aez/Z, y = —w, 8)

where A is the mean anomaly and @ is the longitude of periastron.
We work to first order in eccentricity. Then, the Hamiltonian consists
of a Keplerian and a resonant piece, given by

GzMzm? GzMzm%
2A2 2A3

G*Mmm3 2r
Hey = ——— 2 f@ [ =2 cos (kia — (k — DA 4+ 12). (10)
A2 \/ A

Here, £ is a positive quantity of order unity that weakly depends
on the ratio a,/a,.

Because we are working to first order in eccentricity, we may
expand these Hamiltonians around the nominal resonance location.
All quantities computed at the nominal resonance are denoted with
[ . After much manipulation (see Batygin & Morbidelli 2013), we

arrive at the Hamiltonian

H =n®;+ B1/2P;c08 ¢, an

Hg = —

. ()]
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Here, 1 is a measure of proximity to nominal resonance, ¢, is
the resonant angle, and B is the strength of the resonance. Note
that B < 0. Importantly, the Hamiltonian of equation (11) is
only an appropriate model for resonant dynamics at very low
eccentricity, and does not capture any exotic resonant behaviour.
This is, however, sufficient for the problem at hand.

From this point on, we will drop the subscript 2 for simplicity
but retain the subscript 1 wherever appropriate. Further defining for
convenience the Cartesian variables

x =+2dsing yzx/ﬁcosd), (13)

we then arrive, via Hamilton’s equations, at very simple equations
of motion:

X =B+ny, (14)

y = —nx. (15)

It is now necessary to account for the effect AD. The effect of
AD is to diminish the phase-space area occupied by the particle’s
trajectory to the point where the time derivatives of all the variables
are null. Since semimajor axis decay occurs at a rate slower than
eccentricity decay by a factor of x, we may split this process into
two parts. First we derive the equilibrium eccentricity attained by
the particle at a fixed semimajor axis (or, equivalently, a fixed
proximity parameter 7). Secondly, we will consider the evolution
of n due to semimajor axis decay, and find its equilibrium value.
To first address the question of equilibrium eccentricity, we add
to equations (14) and (15) the AD eccentricity damping term of
equation (5), arriving at

x /5
X=pB+ny— /g +x% (16)
T V38
5
v= -2y 2e 4 g (17)
T V38

We wish to find e and ¢ such that x =y =¢é = ¢ = 0. After
some manipulation, we find

1 B
leq = == >
1 VTA

1 /5
¢eq =T — a gegq + Xz. (19)

Note that this solution only yields positive values of eccentricity
when n < 0 (because 8 < 0).

ARMed (get it?) with e.q and ¢4, we can now derive an equation
for the evolution of 7 due to a from AD. From equation (4), we

18)
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have

dAD 2)( 5 2 2

— ==/ = . 20
a [V g X @0

In order to get 77, we need A and A,. A, will have two contributions:
one that comes directly from the semimajor axis decay due to
AD, and the other that comes through the resonant interaction.
A will only contribute through the resonant interaction. From
equation (20), we have

A — X §2 2
Ao| =—1aL T\ gt @1

Then, from equation (10)

. _ ﬁZ 5

Ai s a- k)[tlflz \V gegq + 1 22)

As| =kLs [3e2 + 52 (23)
res [rln? 87eq ’

Putting this together with equation (12),

7'7=3{k[h] (AL, 2 = (1], (= 1Y + [h], k) F }
282 ! g

5
x4/ gegq + x> (24)

Setting the expression inside curly brackets equal to 0, we find
52
[nly xk

Recall that only the < 0 solution is valid.
Now that we have 7.4, we can finally calculate the semimajor

axis decay rate for the inner planet." Using the solution from the
previous sub-section, we find

Moy = {1, (k — 1 + [n), &} (25)

,li2 _ [n]y kx
n? [kl (k= 12+ [h], K
_ m [n]y kx
lal,? k2 + - [al? (k = 1)
A
~ % (26)

where in the last step we have assumed m < m;. Note that this
implies that e, takes the very simple form

€eq =7 (27)
We may now calculate the rate of semimajor axis decay:

i A k—1\*" 5

B2 H(E) M X 2K e (28)
ai A] k mi [‘C] 8 k

Note here that [t] is evaluated at the nominal resonance location

for the outer particle, i.e. at [a], = ( k )2/ } a;, and thus overall

k—1
. -3/2
a; X ag .

2.3 Effect of a collection of N planetesimals in resonance

Having gone through the exercise of deriving the planet’s decay rate
due to the effect of a single particle trapped in resonance, we can

IRecall that A1 o« p2/n%, and ecq o B/
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now easily generalize our calculation to include N approximately
co-orbital particles, each of mass m. One caveat is that, in the
previous section, since m < my, we freely assumed that the planet
eccentricity is null. Here, given that the total mass of the ‘swarm’
of particles can in principle be of order the mass of the planet itself,
this assumption is not a priori valid. Nevertheless, we will make it
and check it a posteriori. By doing so, in essence, we are assuming
that the swarm of particles is azimuthally distributed and they are
thus unable to coherently raise the planet’s eccentricity. The validity
of this assumption will be addressed by the numerical experiments
of Section 3.

In the simplest approximation, the particles interact with the
inner planet but not with each other. At the quantitative level,
this approximation cannot be valid, since the particle ‘swarm’
has appreciable mass and its self-interaction is not guaranteed to
be negligible. As we show below, however, the effects of self-
interaction are secondary — although they affect how long the
particles remain in resonance, and modulate the resonant liberation
amplitudes and eccentricities, the fundamental machinery of ARM
is captured by the sole consideration of the resonant planet—particle
interactions and the AD the particles experience. Thus, while self-
interaction is certainly an important part of any realistic ARM
scenario, it is not essential to quantifying the ARM rate. We address
the effect of self-interaction further in Section 3.2.

Under the above non-interacting assumption, the analysis for each
individual particle proceeds analogously to the analysis presented
in the previous sub-section, up until the equilibrium proximity
parameter needs to be calculated. Because the proximity parameter
is affected not only by the semimajor axis evolution of the outer
particle, but that of the inner planet as well, the number/total mass
of outer particles affects their final equilibrium proximity parameter
(since each of them acts on the inner planet). We can quantify this
as follows.

Due to the fact that A is resonantly affected by each of the outer
particles, we must replace the expression for its evolution given in
equation (22) with

N
. 0H,
A = -
! res ; ory
N 2
B 2
= 1— et 2
;( IGEATRE
NB* /5 ) )
=(1- )[T] 7 geeq + x2. (29)
Then,

. X 2 2 B’
n=3 k[h]z[A]zm - (N[h]l(k_ D™+ [h2 k )

[l
5 2 2
x \/geTx (30)
and
2 B 2 2
Mg = [n]z)(k{N[h]l (k — 1> + [h], k*}. (€20)

Defining, for simplicity,

N\
ME(" > mN. 32)

k mi
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we then find that ¢, takes the simple form

a wo 2% [Sx )
4 _ R XX e 33
a T+pnlrl) 8k tx (33)

This is the primary result of our work; in the next sub-section, we
evaluate its given realistic assumptions for the protoplanetary disc
conditions, and explore its implications.

2.4 Planet migration rate due to ARM

Recall that x is a small parameter of order 0.001 — 0.01 that
quantifies the degree to which the gas disc deviates from a purely
Keplerian flow. We can thus safely say that x> < %%ﬁ (For our
nominal value of x = 0.005, this hold so long as u < 100/k.) In
that case, we may simplify equation (33), and define the ARM rate

of the planet as

1 a y2a 2)( 5 X M yarm
= T o~ (34
IARM a (I+wl2[c]V 8k m

where, to recap, a; is the semimajor axis of the planet, wu is
proportional to the ratio of the particle swarm mass Mgyam (the
total mass of debris trapped in resonance) to planet mass m
(equation 32), k is the resonance number, and [t] is the AD
eccentricity damping rate (equation 6) evaluated at the nominal
resonance location, i.e. at the semimajor axis [a], where n([a])/n; =
(k — 1)/k, n being the mean motion.

The dependence of the migration rate on px can be understood
intuitively as follows: the more particles there are, the more they act
as a drain on the planet’s orbital energy and increase the migration
rate; thus 1/£arm o . However, when the total planetesimal mass
becomes comparable to the planet mass ( ~ 1), the faster the planet
runs away from the planetesimals, the less deep into resonance they
fall, achieving a smaller equilibrium eccentricity and reducing the
effectiveness of AD in extracting energy from the planet; thus, it
is not surprising, and indeed necessary, that 1/zagm be inversely
correlated with (1 4+ w). In consequence, the ARM rate is a
non-monotonic function of w, and it can be shown that it peaks
exactly at u = 2. Thus, the highest possible migration rate is
achieved at

PENEZE
u=2 or mN=2 (ki) mi, (35

Evaluating equation (34), we get

0 —1 1 + % 3/2 a 5/2 X -3/2
=167k —
Tarw = 167 kyr (2) ( 3 ) (IAU) (o.oos)

» %o - h/r ( s ) P
2000 gecm—2 0.05) \1km/ \ 2 g/cc
MO\ 16 2\

X - — , (36)
Mg 3 k—1

where X is the gas surface density at 1 au, 4/r is the aspect ratio of
the disc, and p is the material density of a planetesimal. Note that
the ARM time-scale is linear in planetesimal size, and is a steep
function of a;.

Fig. 1 presents the time farm.q0 = %tARM that it takes for a planet
of mass M, starting at a semimajor axis ag to be pushed into the sun
by a swarm of 1-km planetesimals of mass My,m trapped in the 3:
2 resonance. As we can plainly see, this is an extremely efficient
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Figure 1. Top: Total time farm,1AU = %tARM that it takes for a planet
of mass M), starting at a semimajor axis of 1 au to be pushed into the
sun by a swarm of 1-km planetesimals of mass Mgyarm trapped in the 3:2
resonance, assuming an MMSN-like protoplanetary disc (see equation 36 for
all nominal parameter values). Evidently, even for the most massive planets,
there exists a large range of planetesimal masses for which the migration
takes significantly less than 1 Myr. Bottom: Same as top, but starting at
0.5 au. Note that just 0.3Mg worth of 1-km planetesimals is enough to push
a 32Mg planet into the sun within 1 Myr.

migration mechanism. While it can be argued that it is difficult to
assemble several Earth masses’ worth of 1-km planetesimals, at
0.5 au even 10-km particles can accomplish the job well within
1 Myr (recall that the ARM time-scale is linear in planetesimal
size).

We may now compare the ARM time-scale to the standard
type I migration scenario, though, as discussed previously, the
magnitude and even direction of type I migration are highly
uncertain. Nevertheless, we use the semi-analytical formulae of
Izidoro et al. (2015) to compute the type I migration time-scale.
Since the ARM rate scales quite gently with the amount of mass in
resonance, for definitiveness we use the minimum ARM time-scale
(equation 36), assuming p = 2 (this will be further justified by the
results of Section 3). Fig. 2 presents a colour plot of the ratio of the
two time-scales, as a function of planet mass and semimajor axis, for
two different planetesimal sizes. For smaller planet masses, ARM
easily dominates inside 1 au. For more massive planets, at s = 1 km
this boundary is pushed inwards to ~0.5 au.

To summarize, we have presented an analytical theory of ARM
and derived the migration time-scale #arpm. Unsurprisingly, migra-
tion is most efficient when the mass of planetesimals in resonance
and the mass of the planet are comparable; in such cases, the
migration is extremely efficient: s = 1km planetesimals are able
to push a planet from 1 au into its sun in just under 70 kyr, with
the time-scale increasing linearly with planetesimal radius. Due
to its steep dependence on semimajor axis (farm O ag/z), ARM

Aero-resonant migration 1865

dominates over type I migration in the inner regions of the disc,
especially for smaller mass planets.

We note that, up until this point, our analysis of ARM has been
entirely analytical, and, as yet, untested. In the next section, we
present a series of numerical N-body experiments that confirm
that the analytical time-scale presented in equation (36) is both
qualitatively and quantitatively accurate.

3 ARM: NUMERICAL EXPERIMENTS

We use the N-body code MERCURY6 (Chambers 1999) to simulate
the resonant interaction between a planet and a swarm of exterior
planetesimals. To the standard MERCURY6 equations, we add a user-
defined acceleration that applies the effect of AD to planetesimals
(equation 3), calculated using the exact same disc parameters as
those of equation (36). Out of necessity, we employ the superparticle
approximation, using a few hundred relatively higher mass particles
as a proxy for a swarm of tiny planetesimals. The acceleration
gy applied to each particle is that of a s = 1km, p = 2gcc™!
planetesimal (since the AD time-scale is linear in the planetesimal
radius and density, migration time-scales due to planetesimals of
other sizes can be simply extrapolated). In addition, we damp the
planet’s eccentricity and inclination on time-scales fe = fyaye/0.78
and ; = ty,,./0.544, respectively, where

M M n\*
Tyave = (70) ( © ) (7) n—l’ 37
M, Poasad? r

as is standard for a planet embedded in a gaseous disc (e.g. Izidoro
et al. 2015).

3.1 Migration time-scale

We initialize a planet (of varying mass) at 1au, and a swarm
of test particles (of varying total mass) just outside the nominal
3:2 resonance location. The particles interact with the planet but
not with each other. We integrate the system using the hybrid
symplectic/Bulirsch—Stoer integrator with an initial time-step of
3 d. We stop the integration when the planet reaches the inner edge
of the disc, which we define to be at a = 0.1 au, and record the
total migration time from 1 au, as well as the migration time from
0.5 au. Since our goal is primarily to get confirmation of the main
analytical results of Section 2, we do not carry out a full statistical
treatment of the experiment; each combination of M}, and My qrm/M,,
is simulated only once. Fig. 3 presents the results.

Fig. 3 should be compared with Fig. 1 of Section 2. First, we
note the qualitative similarity: just as predicted by our analytical
calculation, the migration time-scale has a minimum. The location
of the minimum is not exactly as theorized (for the 3:2 resonance,
w1 = 2 would correspond t0 Myam = 2.6M,), and depends slightly
on planet mass. In general, the location of the minimum appears to
be more forgiving: less mass is required to attain the maximum
migration rate than we supposed. Quantitatively, the numerical
experiments are also in good agreement with the model: the
minimum migration time-scales are essentially identical, and a 10-
fold variation in My,m/M,, results in only a mild, factor of 2—3
change in the migration time-scale.

We thus conclude that the numerical experiments corroborate
the analytical findings of Section 2, exhibiting both qualitative and
quantitative agreement. Having confirmed the mild dependence of
the migration time-scale on the particle to planet mass ratio, we
also feel justified in using the minimum ARM time-scale in our
comparison of the ARM and type I time-scales (Fig. 2).

MNRAS 490, 1861-1869 (2019)
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Figure 2. Ratio of the minimum ARM time-scale (equation 36) to the typical type I migration time-scale as a function of planet mass and planet semimajor
axis, for s = 1 km particles (left) and s = 0.1km particles (right). The black line traces the curve where the two time-scales are equal. Due to the steep
dependence of fArM On semi-major axis, it easily dominates in the inner Solar system (inside ~0.5 au).
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Figure 3. ARM time-scales versus the ratio of total planetesimal mass
Mwarm to planet mass M, based on numerical N-body integrations (see text
for description). Top: starting from 1 au. Bottom: starting from 0.5 au.

3.2 Azimuthal distribution of planetesimals in resonance

A trivial objection that can be envisioned against ARM is the
following: if there are several Earth masses of planetesimals trapped
in a resonance together, why do they not form a planet? After all,
the ARM mechanism depends on the planetesimals remaining small
and separate, so that they experience significant AD and essentially
act as a ‘parachute’ for the planet. Collapse into a planet of their
own is, then, the most obvious failure mode.

Planet formation, by definition, requires self-interaction between
particles. We therefore consider another numerical experiment,
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in which the planetesimals’ mutual gravitational interactions are
taken into account. Because we are employing the superparticle
approximation, the result of this experiment is necessarily suspect,
but we do believe that it can be, at the very least, suggestive.

We consider 320 particles, with a total mass of 2Mg, in 3:2
resonance with a 10Mg planet. The particles are initially spread
out azimuthally; in the frame of reference co-rotating with the
planet’s mean motion, they occupy a single resonant orbit but
are each at a different phase. We then run two integrations: one
which accounts for their self-interactions, and one that does not.
Fig. 4 presents three snapshots from the early stages of that
integration. Perhaps somewhat counter-intuitively, self-gravitation
of the particle swarm impedes conglomeration. That is, test particles
collapse to a point relatively quickly; this is, essentially, because
they raise the eccentricity of the planet, and then assume a state
where both of their resonant angles are liberating, which uniquely
constrains both the shape and the phase of their orbits. On the
other hand, in the integration that takes mutual particle interactions
into account, no significant change in the particles’ orbits has
occurred. Evidently, and rather unexpectedly, in this case the mutual
interactions have a stabilizing effect on the system.

Throughout the subsequent integration, the mutually interacting
particles do not exhibit any clumping behaviour. Fig. 5 shows a
later snapshot of the same N-body integration as that presented in
Fig. 4 (bottom). Here, the particle orbits have relaxed into a more
disordered state, occupying a thicker torus of space, yet the particles
remain azimuthally dispersed. This state persists throughout the
remainder of the integration. Due to this relaxation, we find that the
migration time-scale increases slightly, by a factor of about ~1.4.
Assuming that this is typical, the conclusions of Section 2 are off
by at most a factor of (1), and thus remain valid.

Note that, even though the self-interaction of particles appears
to keep them azimuthally distributed, some particle collisions still
inevitably happen. We treat these collisions as coagulations (the
final product is a single particle with the same density as the
colliding particles, and mass equal to the their total mass) in order
to approximately preserve the total mass in resonance, even though
they are not necessarily so. Of the initial 320 particles, about 50
remain by the time migration is halted at the disc’s inner edge. We
are not claiming therefore that collisional coagulation is entirely
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Figure 4. Three snapshots from two N-body integrations, one that treats planetesimals as test particles (top), and one that considers the self-gravitating
interactions between them (bottom). In each case, 320 particles (the black points) totaling 2Mg, are initialized in 3:2 resonance with a 10M,, planet (blue).
Each snapshot is presented in a reference frame co-rotating with the planet. Left: The particles are initially spread out along a single resonant orbit (red). The
initial conditions for the two integrations are identical. Middle: By t = 8 kyr, the test particle orbits (top, shown in colour) have become disordered and the test
particles have begun to collect together. The self-gravitating particles remain spread out. Right: By t = 16 kyr, the test particles have collapsed to a single point
(black) on a single resonant orbit (red), while the self-gravitating particles are still azimuthally spread out.

1.5 T T T T prevented; rather, we simply point out that self-interaction may
prevent particles in resonance from collecting azimuthally and
having their collision rates further enhanced in that way.

A complete and realistic treatment of the collisional interactions
of particles inside the resonance is beyond the scope of this work.
However, we note that bodies of radius 10°~10°cm are at the
minimum of the catastrophic destruction curve (Leinhardt & Stewart
2009) and only require a specific energy of Q ~ 10°~107 ergs g™!
to continue their downward decay within the collisional cascade.
Notably, if we adopt a velocity dispersion of ~0.01vg at 1au,
typical impacts between ~1km bodies will yield Q ~ (0.01v)*/2
~ 5 x 10%ergsg~!, well in excess of the catastrophic destruction
curve. That is to say, it is unclear (and perhaps even unlikely) that
collisional grinding within the resonance would lead to coagulation
at all. A more relevant picture may be one where collisions allow
planetesimals to exit the resonance and either get re-captured (if
the change in semimajor axis is positive) or skip inwards to the
next (higher index) resonance (if the change in semimajor axis is
negative). Naturally, this recycling of material cannot last forever,
and there is no doubt that long-range ARM necessitates a prolonged
flux of external, inward-drifting debris. However, the key point here
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Figure 5. A later snapshot (1 = 42 kyr) of the N-body integration that takes

into account mutual interaction between planetesimals (Fig. 4, bottom),
shown in the co-rotating frame of the planet (blue). Here, the particle orbits
(various colours) have become more disordered, but the particles (the black
points) are still azimuthally spread.

is that coagulation within resonance is far from an assured outcome
of the ARM process.

In this work, we have not carried out a careful investigation of the
analytic machinery that underlies the azimuthal randomization of
resonant debris through self-interactions. Moreover, because we are
severely limited in the number of self-interacting particles we can
simulate, the particle masses we consider here are approximately
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half that of the moon, yet we apply AD to them as though
they were 1-km particles. We therefore cannot claim to have
attained convergence in terms of resolution, and cannot rule out the
possibility that the stabilizing effect we observe may be artificial in
nature, caused by, e.g. the enhanced self-stirring the superparticles
experience.

We speculate, however, that the effect is qualitatively more subtle.
In particular, it is likely that due to the stochastic potential of the
particles, the liberation amplitudes of the resonant harmonics never
reach zero, which prevents the planetary eccentricity from being
coherently excited. Indeed, it is the fact that e, = O that prevents
the particles from coagulating, rather than chaotic scattering among
debris. Thus, gravitational self-stirring need not actually randomize
the particles directly — all that is necessary is to stochastically
enhance the phase-space area around the co-rotation resonance
equilibrium point such that it engulfs the origin of the phase-space
portrait. Moreover, because the resonant equilibrium eccentricity
of the planet is close to zero anyway, only a mild perturbation is
needed to set the resonant angle in circulation. Consequently, as
long as e, = 0, the results should hold. The conditions under which
this state can be maintained are not obvious, however, and more
detailed theoretical work is required in order to determine whether
this tendency of self-interacting particles trapped in resonance not
to clump together is indeed physical.

We note that if this turns out not to be the case, a number of
physical effects may be invoked instead. For example, turbulence
in the disc may prevent the planetesimal congregation through
a similar process. Alternatively, external collisions may cause a
proto-protoplanet to break up again. Or the particles may encounter
each other at speeds high enough to be destructive rather than
constructive. Yet another possibility is that as larger particles are
built up, they may escape the resonance, and be replaced by fresh
AD-driven inflowing debris. At worst, the efficacy and rate of ARM
may become uncertain, possibly subject to a few tunable parameters.

4 CONCLUSIONS

In this work, we have developed the theory of ARM, a smooth
disc migration mechanism for small planets 2Mg S M, S 30Mg)
in which small planetesimals (10m < s < 10km) undergo orbital
decay due to AD and resonantly shepherd planets ahead of them. In
approaching this problem, we have purposely avoided the specifics
of any particular scenario that might lead to ARM. Instead, our aim
has been simply to characterize the relevant physical process from
analytical and numerical grounds.

We find ARM to be a robust migration mechanism, able to operate
in a large section of parameter space. While the maximum migration
rate requires that the mass of planetesimals in resonance be similar
to that of the planet, the scaling is forgiving; 2Mg, of planetesimals
can shepherd a 10Mg planet nearly as effectively as 10Mg of
planetesimals. Due to its steep dependence on semimajor axis, ARM
operates most efficiently in the inner part of the protoplanetary disc
(0.5 au). In this region, for small planet masses, ARM’s efficiency
is similar to that of type I migration.

We find that self-interaction between the planetesimals trapped
in resonance may play a surprisingly important role in facilitating
ARM. In our numerical experiments — which admittedly employ
the superparticle approximation and are thus merely suggestive —
we have discovered that, contrary to what may be naively expected,
self-interacting particles trapped in resonance do not tend to clump
together. Instead, they remain azimuthally spread out, thus defeating
the most obvious objection to ARM — to wit, if there are several
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Earth masses of solids trapped in a resonance, why do they not
form a planet? Self-interaction, it seems, may be the key to the
answer.

Moving forward, several avenues of research relating to ARM,
and applications thereof, may be pursued. The most obvious of these
is further inquiry into the above-mentioned effect of self-interaction.
Hot on its heels is the question of how much particle mass can be
realistically accumulated in a resonance, on what time-scales, and
what distribution of sizes the particles would have — and how these
considerations affect the efficiency of ARM. On the application
front, perhaps the most exciting puzzle is that of ultrashort-period
planets. These planets reside in the magnetospheric cavity of their
host star, and thus likely could not have formed there. However, they
could have been driven there by a process related to ARM during
episodic peaks of accretion rates of the host stars.

To conclude, given an appreciable mass of small planetesimals in
resonance, the ARM time-scale is short enough that this mechanism
is capable of driving significant planet migration during the lifetime
of the protoplanetary disc. While more work is required to assess the
particulars of the process, such as the importance of self-interaction
between particles trapped in resonance, it is nevertheless clear that
ARM may play an important role in shaping planetary system
architectures.
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