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Control task 
Participants completed a control task that required avoidance that was not dependent on 
learning, in order to quantify each subjects’ avoidance ability resulting from non-learning 
related factors. This allowed us to control for general motor-related avoidance ability in further 
analyses and ensured that relationships between our behavioural variables and 
psychopathology were not simply a result of non-learning factors such as reaction time. This 
task was similar to the to the main task, however a group of asteroids was always positioned 
to appear at the same Y position as the subject’s current location. As in the main task, subjects 
had to avoid asteroids, but this was dependent only on the ability to move out of the way of 
oncoming asteroids rather than the ability to learn their position. 

Computational models 
We tested a range of computational models of the behaviour on our task. We focused on 
probabilistic models, termed “asymmetric leaky beta” models due to the fact that they update 
in response to safety and danger asymmetrically, and incorporate a leak parameter to imbue 
them with the flexibility to update estimates in response to incoming information rather than 
assuming safety probabilities are fixed. The basic machinery of this model family, along with 
the full best fitting model, is described in the main text, however here we describe variations 
that we also tested in addition to the reinforcement learning models tested. 

Asymmetric leaky beta 
This is the most basic model, which the other models build upon. This is described in the main 
text and is identical to the winning model but without the softmax transform and stickiness 
function. 

Softmax-transformed asymmetric leaky beta 
This model builds upon the basic model described above by incorporating a softmax 
transform on the estimated optimal position, as described in the main text. 

Variance weighted asymmetric leaky beta 
This model weights the two screen locations based on their variance when calculating the 
optimal Y position. The location with the lowest variance is weighed most highly, as follows. 
Firstly, a variance bias measure was calculated, representing the ratio between the variance 
of the top and bottom zones (labelled X and Y here). 
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This bias measure was then used to weight the safety probability estimates of the two 
options, such that the probability estimate was highest for the option with the lowest 
variance. This weighting was itself dependent on a free modulatory parameter π, to allow the 
amount of variance weighting to differ on an individual subject basis.  
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Upper confidence bound asymmetric leaky beta 
This model also incorporates uncertainty into the position calculation, through an upper 
confidence bound rule. This means that rather than using the mean of the distribution as the 
location’s safety estimate, an upper part of the distribution is used, the exact level of which is 
estimated as free parameter 𝜔.  
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The position is then calculated as follows: 
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Rescorla-Wagner 
We also tested two reinforcement learning models for comparison. The first of these was a 
standard Rescorla-Wagner model (1) which updates safety estimates based on prediction 
errors (δ) weighted by a learning rate (𝛼), which is estimated as a free parameter.  

𝑃t+1
X = 𝑃t

X + 𝛼 ⋅ (outcomeX − 𝑃t
X

) (6) 

Probability estimates are combined in the same way as the beta models and are also then 
passed through a softmax function with a free inverse temperature parameter to decrease 
the likelihood of positions near the centre of the screen. 

Dual learning rate Rescorla-Wagner 
The second reinforcement learning model we tested was an extension of the Rescorla-
Wagner model (2) that allowed better and worse than expected outcomes to have differential 
effects on safety updates by introducing a separate learning rate for each  

𝛿 = 𝑜𝑢𝑡𝑐𝑜𝑚eX − Vt
X (7) 



 

𝑃t+1
X = 𝑃t

X +
α+ ⋅ δ if δ𝑡 > 0
α− ⋅ δ if δ𝑡 < 0

(8) 

Probability estimates are converted to a single position estimate as in the previous models. 

Correspondence between real and model-generated data 
While our winning model provided a better fit to the data than other candidate models, it is 
important to ensure that our model truly produced data that was similar to subjects’ real 
behaviour. We checked this in two ways: First, we calculated the R2 value and Pearson’s 
correlation between the true data and data simulated from our model with the estimated 
parameters for each subject, to ensure that we did indeed achieve a high correspondence 
between model-generated and true data. As these data were heavily skewed, due a small 
number of subjects where the model did not provide a good fit to the data, we report the 
median and interquartile range of the scores across subjects. These were 0.44 (0.26) and 
0.70 (0.16) for R2 and Pearson’s R respectively (Figure S1A), indicating good concordance 
between model-generated and true data. 

Second, we checked that a basic pattern of behaviour that emerged in the true data was also 
present in the model-generated data. Subjects tended to change their position more following 
a dangerous outcome than a safe outcome, as would be expected if they are learning to avoid 
threat (as shown in Figure 2A). We repeated this analysis on our simulated data, and 
observed the same pattern of results (Figure S1B). 



 
Figure S1. Correspondence between simulated and true data. A) Distributions of R2 and R values across subjects, 
showing a high correspondence between the real and simulated data. The inset plot in the first panel shows the 
full distribution of R2 scores (which can take any value below or equal to 1), including a small number of subjects 
with poor model fit, while the main figure shows the values between -1 and 1. B) Magnitude of position changes 

following dangerous and safe outcomes in simulated data, showing that simulated subjects tend to change 
position to a greater extent in response to danger than safety, as seen in data from real subjects. 

A reduced set of questions for measuring transdiagnostic 
factors 
We wished to investigate relationships with three transdiagnostic factors developed by Gillan 
et al., (2016). However, to reduce the number of questions used to determine scores on these 
three factors for each subject, and hence the time taken to complete the task, we used a data-
driven approach to select the most important questions for determining factor scores. To 
achieve this, we used lasso regularised regression to predict each subject’s factor score from 
responses to individual questions in data from the study by Rouault et al (3). Performing this 
analysis with a range of values of the hyperparameter C, which governs the degree of 
regularisation, produced a model that included varying numbers of questions as predictors. The 
ability of these models to predict the true factor scores was assessed using five-fold cross 
validation, whereby the model was trained on 80% of the data and tested on the remaining 
20%, with this procedure repeated across combinations of training and test data and the 
prediction R2 averaged across these five folds. Plotting this across values of C, and numbers of 
retained questions, allowed us to select a point at which we were able to achieve satisfactory 
accuracy with an acceptable number of questions. This resulted in a set of 63 retained 

 

 



questions out of an initial 225 (Figure S2A, Table S1), which resulted in R2 values of .91, .81, 
and .89 for the three factors (Figure S2B).  

 
Figure S2. Result of question reduction procedure, finding a reduced set of questions that allow prediction of 

subject scores on the three transdiagnostic factors identified by Gillan et al. (2016). A) Weights of the retained 
questions in the regularised logistic regression model, demonstrating which questions are predictive of each 

factor. B) True factor scores from the study by Rouault et al. (2018) plotted against the cross-validated predicted 
factor scores from our model, demonstrating a high degree of accuracy. C) Distributions of factor scores in the data 

from the current study. 

 

  

 

 

 



Table S1. Questions included in the reduced set of items used to approximate scores on the three factors derived 
by Gillan et al., 2016 (4). 

Measure Item numbers 

Zung Depression Scale (5) 11, 12, 13, 14, 16, 17, 18, 20 

State Trait Anxiety Inventory 
(trait subscale) (6) 

1, 3, 5, 8, 9, 10, 12, 13, 16, 20 

Obsessive Compulsive 
Inventory (Revised) (7) 

1, 2, 4, 6, 7, 9, 11, 12, 13, 16, 18,  

Liebowitz Social Anxiety Scale 
(8) 

2, 7, 8, 10, 11, 12, 14, 15, 16, 18, 20, 23, 24 

Barratt Impulsivity Scale (9) 1, 6, 9, 13, 14, 15, 17, 20, 22, 25, 26 

Alcohol Use Disorder 
Identification Test (10) 1 

Eating Attitudes Test (11) 1, 11, 12, 14 

Apathy Evaluation Scale (12) 2, 7, 17, 18 

 

Subjects with clinical levels of anxiety 
Although we did not aim to recruit subjects with clinically-significant symptoms of anxiety, 
given the high prevalence of anxiety disorders it would not be unexpected to find subjects 
with such levels of anxiety in a large general population sample. We did not use any measure 
designed to diagnose anxiety disorders, and as such is impossible to determine for certain 
how many subjects would meet diagnostic criteria. However, it is possible to use approximate 
thresholds on other measures to provide an indication of the proportion of the sample who 
may have clinically significant anxiety symptoms. For our measure of trait anxiety, the STICSA 
(13), such a threshold has been identified by van Dam et al., (14). This study indicated that a 
score of 43 on the scale was able to distinguish individuals diagnosed with anxiety disorders 
from healthy controls with 74% accuracy. In our data, 144 of our 400 subjects (36%) scored 
above this threshold (Figure S3), indicating that a substantial proportion of our sample are 
likely to be experiencing clinically significant symptoms of anxiety. 



 
Figure S3. Proportion of subjects scoring above a threshold indicating likely presence of a clinical anxiety disorder 
determined by van Dam et al. (14). The dotted line indicates the threshold of 43 on the STICSA trait scale, while 

the histogram bars coloured pink represent subjects scoring above this threshold. 
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