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Enantioselective Alkynylation of Trifluoromethyl Ketones 
Catalyzed by Cation-Binding Salen Nickel Complexes.  
Dongseong Park, 1,#  Carina I. Jette, 2,#  Jiyun Kim, 1,# Woo-Ok Jung, 1 Yongmin Lee, 3  Jongwoo Park, 4 
Seungyoon Kang, 1 Min Su Han, 1 Brian M. Stoltz, 2,* and  Sukwon Hong1,3,* 

Abstract: Cation-binding salen nickel catalysts were developed for 
the enantioselective alkynylation of trifluoromethyl ketones in high 
yield (up to 99%) and high enantioselectivity (up to 97% ee). The 
reaction proceeds with substoichiometric quantities of base (10-20 
mol% KOt-Bu) and open to air. In the case of trifluoromethyl vinyl 
ketones, excellent chemo-selectivity was observed, generating 1,2-
addition products exclusively over 1,4-addition products.  UV-vis 
analysis revealed the pendant oligo-ether group of the catalyst 
strongly binds to the potassium cation (K+) with 1:1 binding 
stoichiometry (Ka = 6.6 × 105 M-1).     

 Fluorinated organic compounds have proven to be 
exceptionally useful in many areas of organic chemistry, 
including materials, agrochemicals, and pharmaceuticals.1 In 
particular, chiral trifluoromethyl substituted tertiary alcohols and 
related derivatives are important structural motifs present in a 
number of bioactive compounds.2  Of  particular importance is 
Efavirenz, a frequently prescribed HIV reverse transcriptase 
inhibitor (Figure 1a).3 One attractive strategy for the synthesis of 
such stereocenters is the asymmetric alkynylation of 
trifluoromethyl ketones, as this  type of reaction may be catalytic 
in base, resulting in exceptionally mild reaction conditions. 
Furthermore, the newly installed alkyne functional handle may 
be easily converted to a diverse array of functional groups. 
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Figure 1. Enantioselective addition of terminal alkynes to trifluoromethyl ketones.

  
 Since Carreira’s pioneering report,4a several catalysts have 
been developed for the enantioselective  alkynylation of 
aldehydes,4 imines,5 and alkyl ketones.6 In contrast, there are 
fewer reports on the enantioselective alkynylation of 
trifluoromethyl ketones,7,8 as the high reactivity of these electron-
deficient electrophiles has led to significant challenges 
associated with facial selectivity.  Although there have been 
some reports on the enantioselective variant of this 
transformation, they all suffer from significant drawbacks, such 
as high temperatures,7a large excesses of expensive 
reagents,7b,d or the use of precious, second-row transition metals 
as  catalysts (Figure 1b).7c,h-k  
 In an effort to develop a more sustainable method for the 
enantioselective alkynylation of trifluoromethyl ketones, we 
turned our attention to the development of a cooperative catalyst 
involving a Lewis acid and Brønsted base (Figure 1c).9 The use 
of a single catalytic species to activate and bring together both 
the nucleophile and electrophile could lead to a well-defined 
environment for the reactive intermediates, which could enable  
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Table 1. Optimization of Reaction Conditionsa 
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9 L1 NaOt-Bu 50 83 85
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Entry Ligand Base Temp (°C) Yield (%)b % eec

1 L1 KOt-Bu 50 97 84
2 L2 KOt-Bu 50 48 82
3 L3 KOt-Bu 50 86 86
4 L4 KOt-Bu 50 – –

12 L5 KOt-Bu 50 – –

Metal

Ni
Ni
Ni
Ni

Ni

 

 
aReactions were performed on a 0.242 mmol scale. See Supporting Information for 
catalyst synthesis.   bIsolated yields. cThe ee values were determined by HPLC 
analysis. 

 
efficient control over the facial selectivity.10 We envisioned that 
the use of the salen ligand framework with a pendant crown 
ether11,12 which can interact with an alkali metal cation would 
facilitate this form of cooperative catalysis, as the Lewis acid and 
Brønsted base could be held in close proximity by a very rigid 
and specific structure. 

To assess the efficacy of this type of cooperative 
catalyst we first synthesized and tested a number of ligand 
frameworks possessing oligo-ethers of varying length. We were 
pleased to find that ligand L1, with a binapthyl backbone and 
methoxyethane side chains, in combination with a Ni Lewis Acid 
and KOt-Bu Brønsted Base, furnished the desired product in 
excellent yields and ee (Table 1, entry 1). Interestingly, we found 
that although oligo-ether chain length did not have a significant  
effect on the ee, it did have an effect on the yield.  Switching to a 
ligand possessing methoxy substituents (L2), or extending the 
chain length (L3) resulted in less efficient catalysts (entries 2 
and 3). It is also important to note that the presence of a 
coordinating ether moiety was critical for reactivity, as a tert-

butyl substituent at this position completely shut down the 
reaction (entry 4, L4). We found Ni(II) to be the optimal Lewis 
Acid; switching to Co or Zn led to a significant drop in ee, and Pd 
led to complete loss of reactivity (entries 5-7). 
 Next, we assessed the importance of the counter-ion on the 
tert-butoxide base. The highest enantioselectivity and yield was 
observed with KOt-Bu; both LiOt-Bu and NaOt-Bu led to a slight 
reduction in yield and ee (entry 1 vs entries 8 and 9). When the 
reaction temperature was lowered from 50 °C to 25 °C, the ee 
was increased to 89% ee (entry 10). Lowering the temperature 
even further to –10 °C, however, led to the complete loss of 
reactivity (entry 11). 

Having investigated all other parameters, we returned 
to our ligand, focusing on examining the effect of different steric 
and electronic modifications on the backbone. We found that the 
binapthyl backbone was crucial for reactivity: when a ligand 
possessing a cyclohexyl backbone was used instead, no product 
was observed (entry 12). In agreement with the work of Wang 
and co-workers13 we found that the introduction of bromide 
substituents on the salicyl arenes led to a slight improvement in 
the ee (entries 13 and 14). Using the 6-Bromo-Salen ligand (L7), 
the product was obtained in 93% yield and 93% ee at 25 °C 
under air (entry 15).  

 
Table 2: Substrate Scope with Aryl Trifluoromethyl Ketonesa 

HO CF3

Ph

HO CF3

Ph

HO CF3

Ph
Cl Br

HO CF3

Ph
Me

HO CF3

Ph
MeO

HO CF3

Ph

HO CF3 HO CF3

Br

Br OMe

93% yield
93% ee

HO CF3

Ph
F

94% yield
89% ee

97% yield
89% ee

93% yield
91% ee

86% yield
94% ee

86% yieldb

96% ee
86% yieldb

97% ee
93% yield

89% ee

HO CF3

F

98% yield
91% ee

HO CF3

F
88% yield

89% ee

Cl

HO CF3

Me
94% yield

90% ee

+

R2

H

R2

2a-h1a-h 3

HO CF3

Ph

70% yieldb

87% ee

F

HO CF3

89% yield
89% ee

HO CF3

93% yieldb

92% ee

MeO

HO CF3

Me
71% yieldb

96% ee

MeO

3ab 3ac 3ad

3ae 3af 3cb

3ee 3eg

99% yield
93% ee

3aa 3ca3ba 3da

3ea 3fa 3ga 3ha

HO CF3

95% yieldb

80% ee

3eh

Cl

R1 CF3

O

R1

CF3HO
L7-Ni (5 mol %)

KOt-Bu (20 mol %)

4Å MS, THF (0.48M)
25 °C, 24 h

1 equiv 4 equiv

  
(a) Isolated yields on 0.242 mmol scale. Enantiomeric excess was determined by 
HPLC analysis. (b) Isolated yield after 48 h.  
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With the optimized reaction conditions in hand, we 
explored the substrate scope of the asymmetric alkynylation 
(Table 2).  We found that electrophiles possessing both electron-
donating substituents (3aa, 3ea, 3fa) and electron-withdrawing 
substituents (3ba, 3ca, 3da) at the para-position of the arene 
were well-tolerated, resulting in the desired products in up to a 
97% ee and 97% yield. Although substitution at the meta-
position of the aryl ring was also tolerated (3ga), ortho-
substitution did lead to a drop in reactivity (3ha). We noted that 
generally, the yields for electron-deficient trifluoromethylketones 
were slightly higher than with electron-rich substrates, with the 
latter requiring extended reaction times.  However, we did note 
that the ee’s for electron-rich substrates were consistently higher 
than their electron-deficient counter-parts.  
 We found that the nature of the alkyne had a less 
pronounced effect on the overall outcome of the reaction, and 
alkynes possessing both electron-withdrawing (3ab, 3ac, 3cb) 
and electron-donating substituents (3ad, 3ae, 3ee) at the para-
position of the aryl substituent were well-tolerated. Furthermore, 
we were pleased to see that a bulky napthyl substituent (3af) 
and a cyclopropyl substituent (3eg and 3eh) also led to product 
formation in good yields and ee.  
 
 
Table 3. Substrate scope with Trifluoromethyl Vinyl 
Ketonesa 
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(a) Isolated yields on 0.2 mmol scale. enantiomeric excess was determined by SFC 
analysis.   

 
 

 Gratifyingly, we found that vinyl trifluoromethyl ketones were 
also tolerated under slightly modified reaction conditions (See 
Supporting Information for more details). Substrates possessing 
aryl rings with substituents at the para (5ba, 5ca, 5da, 5ea), 
meta (5ga), and even ortho (5ha and 5ia) positions were all 
well-tolerated. We were also pleased to see that a tert-butyl 
ester-containing substrate (5fa) and a diene (5na) fared well 
under these mild reaction conditions. Even substrates 
possessing heteroaromatic substituents such as a furan (5aj), 
thiophene (5ak), and indole (5al) led to product formation in 
excellent ee.  

To investigate the binding behavior between L7-Ni and 
K+, we carried out metal ion titration studies by UV-vis 
absorption spectroscopy.14 Upon addition of KOt-Bu to a solution 
of L7-Ni, the UV-vis absorption spectra exhibited characteristic 
peaks at 350, 403, and 350 nm with two clear isosbestic points 
at 376 and 460 nm, as shown in Figure 4a. The absorbance at 
403 nm for L7-Ni/K+ tended to proportionally increase with KOt-
Bu concentration up to 20 µM, and then reached saturation 
region. Job plot analysis (Figure 4b) was in good agreement 
with the titration study, clearly confirming that L7-Ni binds to K+ 
through 1:1 binding stoichiometry. From the titration data based 
on the 1:1 binding model, the association constant (Ka) for 
binding of L7-Ni and K+ ions was calculated to be 6.6 × 105 M-1 
using non-linear regression analysis by DynaFit (see Supporting 
Information). 

Figure 4. (a) UV-Vis spectra of L7-Ni (20 µM) in the presence of varying amounts of 
KOt-Bu (0 ~ 70 µM) in THF. Inset: Plot of absorbance at 403 nm versus 
concentration of KOt-Bu. (b) Job plot for binding mode between L7-Ni and K+ ions in 
THF. Aobs: Absorbance of L7-Ni at 403 nm with varying amounts of KOt-Bu; [L7-Ni] + 
[KOt-Bu] = 40 µM, Acon.: Absorbance of L7-Ni (40 to 0 µM) at 403 nm without KOt-
Bu. 
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  In summary, we have developed cation-binding salen 
Ni catalysts for enantioselective  alkynylation of trifluoromethyl 
ketones. The cation-binding NiII/K+ heterobimetallic catalyst 
plays a key role in promoting the alkynylation with 
substoichiometric base and open to air, resulting in high 
enantioselectivity (up to 97% ee) and yield (up to 99%). 
Additionally, we confirmed a 1:1 binding stoichiometry of the 
designed catalyst with K+ by UV-vis absorption spectroscopy. 
Further study of plausible mechanism and extension of reaction 
scope are ongoing. 
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Ni-catalyzed Enantioselective Alkynylation via Bifunctional Catalysis:

 
 

COMMUNICATION 
 
 

Cation-binding salen nickel catalysts were developed for the enantioselective alkynylation of trifluoromethyl 
ketones in high yield (up to 99%) and high enantioselectivity (up to 97% ee). The reaction proceeds with 
substoichiometric quantities of base (10-20 mol% KOt-Bu) and open to air. UV-vis analysis revealed the pendant 
oligo-ether group of the catalyst strongly binds to the potassium cation (K+) with 1:1 binding stoichiometry (Ka = 
6.6 × 105 M-1). 
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