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A rudimentary seismic network has existed in the United States since the mid 1920' s. 

Many important earthquakes in mid-size range (5 < M < 6), have been recorded by the relatively 

low gain instruments from this network, Galitzin's and Wood-Anderson torsions. Because the 

networks were so sparse, they have not been effectively used. In this report, we have examined 

records collected form the 1946 Walker Pass and 1947 Manix events and conducted a pilot study 

into how these records can be used in conjunction with modern data to understand the 

characteristics of these historic events. 

One well-proven method for assessing old events is to compare existing historic 

recording with observations from modern events (calibration event). The 1962 Walker Pass 

event (ML= 4.9) was studied in detail for this purpose and observations at Pasadena (PAS) and 

Florisent (FLO), Missouri compared with the 1946 mainshock and foreshock (ML = 5.2). This 

comparison yields a Mo = 1.2 x l 025 for the main event with the foreshock estimate lower by 

about a factor of 3 to 5. The mechanisms do not seem to be the same but all three events are 



relatively deep. A comparison of these events with the Manix event recorded at these two 

stations as well as at Weston, MA indicate that the Manix event is considerably larger. 

A detailed modeling effort was conducted on the (PAS) local strong motion recordings of 

the events separately and in conjunction with the bodywaves recorded at FLO. Considerable 

effort was devoted to calibrating the upper-mantle model needed in generating the synthetics at 

FLO. Our best estimate for the Walker Pass mainshock is that it had a strike, dip, and rake of 

(0°, 40°, 70°) with a moment of 1.5 x 1Q25 ergs, and occurred at a depth of 20 km. Results for 

the Manix event proved similar to those reported by Doser (1990); essentially a strike-slip event 

with (65°, 85°, 8), a moment of 3.5 x 1Q25 ergs and a depth of 6 km. 

Introduction 

The science of seismology has burgeoned in recent decades along with the growth of 

advanced numerical processing technologies. The growth of these technologies has not slowed 

in recent times, rather it has accelerated. Yet while processing and analysis technologies 

improve, the irreplaceable historical seismic data which they could be applied to is constantly 

being lost. It is stored in the form of simple paper records which are discarded, misfiled or 

simply decay with time. Earthquakes in a significant tectonic system typically occur decades 

apart, so associations between tectonic structures and earthquakes must be based on analyses of 

both these old paper records and modem digital recordings. The purpose of this report is to 

utilize these significant new analytical methods and technologies in data processing to take 

advantage of some of these historical data sets and, hopefully, demonstrate their usefulness. 

The specific advanced methods we are referring to are new from both a data processing 

and a data analysis standpoint. Yet they have been proven to be reliable in recent times and there 
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is no reason that they should not be used to both preserve and to make the maximum use of the 

de 
historical data base. The data processing technology we propose to take advantage of is an 

automated scanning digitizer which can be used to rapidly and objectively digitize historically 

significant paper records. 
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A rudimentary seismic network has existed in California since the mid 1920's. Much of 

the early data collection was carried out by the Seismological Laboratory of the California 

Institute of Technology in the southern portion, while the Seismographic Station of the 

University of California at Berkeley handled the northern portion. Figure 1 is a map showing the 

location of most of the important events occurring in Southern California since 1932 located by 

these networks. 

These events are obviously related to the tectonic boundary between the North American 

plate and the Pacific plate which is usually considered to be the San Andreas fault. The San 

Bernardino Mountains and the associated thicker crust considered to be firmly attached to the 

North American plate have played a prominent role in deflecting microplates to the West. Thus, 

the recent activity on the eastern side of the San Andreas (Landers sequence), is adding some 

excitement. Nur (through personal communication) thinks that new faults are forming along a 

more northerly direction, essentially the Eastern California Stress Zone. For example, he points 

out that the Manix event (1947) was interpreted by Richter (1958) to be on a northwest striking 

fault rather than the conjugate plane to the northeast as indicated on most fault maps. This event 

has been recently addressed by Doser (1990) and will be studied in this report. Another 

important event along this zone is the 1946 Walker Pass earthquake sequence which we will also 

discuss . 

The Walker Pass region experienced a ML = 5.2 foreshock followed by a ML = 6.3 

mainshock 28 minutes later on March 15, 1946. Figure 2a displays the low-gain recordings 

produced by these events. These events occurred in a region that has not had much activity until 

recently, starting with the Ridge Crest sequence which is 40 km to the east and presently in 

progress. The eastern Sierra frontal fault system, as outlined at the top of figure 1, is not well 

defined at its southern end although it experienced a magnitude 7.7 event in 1872 which 

apparently produced a right lateral rupture of 6m. The 1946 event occurred at a depth of 22 km 

as reported by Richter (1958), but its fault parameters have never been determined. Some events 



to the east, Durwood Meadows, appear to have extensional tectonics, as reported by Jones and 

Dollar ( 1986). 

The Manix event occurred on April 10, 1947 and was studied originally by Richter 

(1958), and more recently by Doser (1990). The ML= 6.2 event produced left-lateral movement 

on the Manix fault which strikes N70°E at this location. However, the aftershocks appear to be 

along the conjugate plane, N30°W, as mentioned earlier. A similar phenomenon occurred during 

the Big Bear sequence according to Jones and Hough (1993). 

The strong motions recorded for this event are somewhat larger than those from the 

Walker Pass event as displayed in figure 2b. The distances are comparable, roughly 180 km. 

The gains of these instruments are four with a reasonably broadband response, essentially a 

Long-Period Wood-Anderson torsion instrument. Its properties have been discussed at length by 

Thatcher and Hanks (1979) with its delta-function response displayed in figure 3, wa.torsion.lp. 

The high-gain version has a gain of 460 which proves excellent for aftershock studies as they 

demonstrate. Another excellent instrument that has recorded these old events is the Galitzin. Its 

response is quite similar to the long-period WWSSN as displayed in figure 3. Excellent Galitzin 

recording of California events exist at De Bilt, Netherlands, and have been used by many 

researchers, see Bakun and McEvilly (1984). The gains of these instruments range from about 

300 to 800. Other instruments commonly used historically are the Weicherts and Bosch­

Omori' s, see Helm berger et al., (1992). Galitzin records obtained from the Florisant (FLO) 

Missouri Station for the Walker Pass and Manix events are displayed in figure 4. Although they 

are of high quality, they are at upper-mantle triplication distances and difficult to easily interpret. 

Only a few teleseismic records exist for the Manix event as discussed by Doser (1990). 

One of the best set of recordings were written by the Weston Observatory as displayed in figure 

5. The Manix event is roughly three times larger than the 1946 mainshock event on all three 

components. The body wave phases for the 1946 events are too weak to work with 

unfortunately. The SH body phase for the Manix event as indicated is appropriate for a shallow 

strike-slip as modeled by Doser (1990). Since teleseismic modeling of body waves is well 
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developed, we will concentrate our efforts on the local and regional records, that is PAS and 

FLO. 

Event Calibration 

One well-proven method for assessing old events is to compare existing historic data with 

modem data from an event in the same location, see Bent and Helmberger (199la) for example. 

We chose the September 1962 event (ML= 4.9) for this purpose. Both events are located on the 

eastern edge of the southern Sierra Nevada mountains at approximately 35-75°north and 

l 18°west. Pn1 modeling of the WWSSN and LRSM data for the 1962 event is displayed in figure 

6. The inversion procedure is relatively simple in that only a single crustal layer is needed to 

model these long-period Pn and PL waves at ranges 400 to 1200 km, see Wallace and 

Helmberger (1982). The WWSS stations include BKS, DUG, and ALQ. Only Station PLM 

(Palomar) existed during 1962 before the station GSC, and Goldstone was established and may 

not have been calibrated as well as the other stations. From the excellent station coverage we can 

easily recover the fault orientation and moment as given in the figure. However, the depth 

cannot be determined by this method, and we use the teleseismic data for this purpose as 

displayed in figure 7. The depth phases pP and sP become quite apparent, and the depth can be 

well constrained. The epicentral depth of 16 km is obtained, which is significantly deeper than 

listed in seismicity reports, Hileman et al., (1973). 

This event appears to be relatively high stress drop (Duration = .8 sec with its Moment 

Mo= .65 x 1024) compared to other Southern California events, Bent and Helmberger (199lb). 

We can now use the recording of this event at PAS and FLO to compare directly with those from 

the 1946 events and theoretical predictions. 

Modeling Local Seismograms 

As recently reported by Dreger and Helmberger (1993), there are remarkable similarities 

between synthetics generated from a standard Southern California model and waveforms 

recorded on TERRAscope, a broadband station an-ay. The wide dynamic range of these systems 
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provides data for the studies of both small and large earthquakes from a given region which 

allows the isolation of source and propagational features. They find' that only one three­

component record can be enough to establish source parameters in many situations. 

The general procedure is to generate Green's functions for the three fundamental fault 

types; strike-slip (SS), dip-slip (DS), and 45°dip-slip (45.DS). These functions are then 

combined linearly with weighting determined by an assumed set of fault parameters to produce a 

set of synthetic seismograms. The amplitude is determined by the moment. Figure 8 displays a 

set of predictions assuming a source depth of 8 km, a moment of 1. x IQ25 dyne-cm, and the 

standard Southern California model. The motions across each set of traces is normalized to the 

SS tangential motion on the left. Note that the peak motions decay at a rate slightly less than the 

distance. Sets of these Green's functions as a function of depth are stored and used to fit 

observations in a routine fashion, for example see Dreger and Helmberger (1990). 

More recent modeling attempts, Zhao and Helmberger (1994), indicate that whole 

seismograms can be used in source estimation with less difficulty by applying a "cut and paste" 

approach. By applying this method, we compare portions of the synthetics to the data so that the 

precise timing between the first arriving Pn1 portion and the later arriving S-wave is not 

necessary. Figure 9a displays the modeling of the September 16, 1962 event as recorded at PAS 

applying this method. Note that the beginning P-wave portion, Pni. has been removed and 

aligned to the corresponding observations. The best fitting source model denoted by strike, dip, 

and rake is then obtained by least-squared waveform modeling determined by a direct grid 

search, see figure 9b. The upper panel displays the fit predicted from the teleseismic and 

regional modeling study. The results are in reasonable agreement and probably yield about the 

expected accuracy using just a standard model. 

Results for the 1946 event are displayed in figure 10. The lower panel gives the solution 

based on the grid search while the upper panel shows the fits obtained from modeling the FLO 

data as displayed in figure 4 and discussed in the next section. These solutions are similar to the 

1962 event but with a stronger strike-slip component. 
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The Manix event appears to be larger teleseismically as discussed earlier, and this proves 

true locally as well. Figure 11 displays these results with the inversion at the bottom and Doser' s 

solution assumed in the upper panel. The moments agree but the mechanism is quite different. 

Solutions obtained from modeling the FLO data prove to be in agreement with both as discussed 

next. 

Modeling Upper-Mantle Records 

Tangential component (SH polarized) seismograms from over 100 events located in the 

western United States, Gulf of California, and the East Pacific Rise have been studied in detail 

with respect to upper-mantle structure, see for example, Grand and Helmberger (1984), and 

Grand (1994) for 1-D regionalizations and 2-D structures in Helmberger et al., (1985). The 

earthquakes selected were generally strike-slip and only seismograms at the maximum SH 

radiation patterns were used. 

The SH waveform from a strike-slip earthquake does not change much with azimuth 

except at its nodes. This is easily seen in observed motions as displayed in figure 12. This figure 

com pares observations from the Truckee earthquake with synthetics. Two sets of synthetics are 

displayed with the top set corresponding to a depth of 16 km and the bottom set for a depth of 14 

km. The numbers following the synthetics indicate the moments required to fit that particular 

seismogram. The amplitudes of the data are given in (cm) x J0-3 with the instrumental gain 

removed. Most of these records are small, only a few cm on the original records. Nevertheless, 

the surface reflecting sS is very clear along the maximum loop near the station GWC. As one 

approaches the node, the amplitude ratio of sS/S becomes quite sensitive to the dip and rake and 

causes waveform instabilities, see Burdick and Mellman (1976). Away from the node, one sees a 

quite stable behavior in amplitude with SCH being the most anomalous but still less than a factor 

of two off. It appears that this level of accuracy is also possible at upper-mantle ranges as 

demonstrated in figure 13. Note that we have omitted the amplitude of the nodal LRSM station 

(RKON). The SH motions here were modeled assuming a source depth of 4 km, a pure strike­

slip earthquake and the 2-D RMFM (Rocky Mountain Front Model), Helmberger et al., (1985). 
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At* of 3.0 was assumed in this calculation and sS cannot be distinguished from S at these 

periods. The triplications are particularly obvious at ranges less than 19° (400 km triplication) 

and between 24 to 28° (600 km triplication). The waveforms are quite simple near 22°. The 

synthetic at FLO has a problem in that the Green's function is too sharp and the moment estimate 

has the largest error, a factor of three too large. Removing some of the high frequency would 

help solve this disparity but, in general, the amplitudes of the synthetics fit the observations very 

well. 

The situation for P is not quite so good in that the PP-P waveforms are quite complicated 

as reported recently, Lefevre and Helmberger (1989). Thus, we will rely on the P-wave study by 

Burdick and Helmberger (1978) and use their T7 upper-mantle model. This 1-D model maps the 

lateral variation of slow TNA (Tectonic North America) into the vertical structure to account for 

the SNA (Stable North America) bias. This was caused by using west coast sources and east 

coast stations. However, this model fits the P-waves better than assuming RMFM and a constant 

Poisson's ratio. 

a) Walker Pass (1962) event 

It would be good to check the above models against the 1962 Walker Pass data at FLO 

but this proved difficult. The problem is noise at these low magnitudes. These records were 

scanned, processed, and replotted in figure 14. The reproduction looks better than the original 

but probably suspect in detail. But it appears that the ratios of SV (WE) to SH (SN) to P (Z) are 

similar to the 1946 foreshock. The SV waveforms are identical and differ in amplitude by a 

factor of 18. This comparison yields a moment estimate of 1.2 x J025 ergs. We think the noise 

is too large to model the P and SH waveforms. The SV waveforms are always difficult to model 

because of the well-known S-PL problems, see Helm berger and Engen (1980). Fortunately, the 

long-period world-wide station was just starting operation with its vertical record displayed in 

the bottom trace of figure 14. An enlargement of the P-wave is given in figure 15 along with a 

synthetic prediction. Actually the FLO record was written by a (30,90) instead of the current 
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(15,100) which accounts for the slightly longer tail portion. The horizontal components were 

unstable on this particular day and not usable. 

b) Walker Pass (1946) event 

The P and SH-waveforms from the 1946 Walker Pass foreshock and mainshock have 

been enlarged from the seismograms presented earlier and displayed in figure 16. The lower half 

of figure 16 presents the synthetics appropriate for the two mechanisms introduced with respect 

to modeling the local PAS recording, see figure 11. The top set of synthetics fit quite well since 

the amplitude ratio of P to SH was obtained by adjusting the fault parameters to produce this 

match; essentially perturbations of the 1962 mechanism. This moment estimate is 1.5 x 1Q25 

ergs. The bottom set correspond to the solution found by the direct inversion of the PAS records. 

This solution does not produce a very good match to the P-wave. Note that the foreshock 

appears to be about one quarter the size of the main event with about the same mechanism. This 

conclusion is quite compatible with both the PAS and Weston observations. 

While there remains some uncertainty about the precise mechanism, the depth appears to 

be well established, as demonstrated in figure 17. This depth sensitivity test shows the strong 

waveform dependence on the surface reflected in phase sS. As displayed earlier in figures 12 

and 13, the separation of S and sS show a particularly strong interference when the epicentral 

depths are greater than 15 km, probably near 20 km. 

c) Manix (1947) event 

The results for the Manix event are presented in figure 18 following the above format. 

The solution proposed by Doser (1990) in the upper set of synthetics does quite well with the 

depth set at 6 km. The observed P-wave signal is somewhat more complicated than the synthetic 

which may be caused by a more complex triplication. The first down swing is produced by 

energy bottoming at depths near 530 km and appears to be early relative to the synthetic. It is 

difficult to account for such details but the main three pulses, P, pP, and sP look quite good. The 

amplitude is slightly large which can be easily fixed by moving the strike to 67°which makes the 
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P-wave nearly nodal. The SH-wave fit is not very good and may be caused by a secondary event 

as suggested by Doser (1990). The time history assumed here, trapezoidal shape, was set at 

(1,1,6) sec as indicated in Doser's one source model. 

The prediction from the best fitting synthetics to PAS are given in the bottom set. This 

solution is not good in that it does not satisfy the SH-polarity and the P-wave is too large. Thus, 

a solution closer to a pure strike-slip is preferred. 

Discussion 

A relatively large number of events have now been recorded by TERRAscope, some near 

sites of historic events. This allows the historic records collected at PAS (1930-1960) on the low 

gain long-period (6-8 sec-torsions) and short-period (low gain Wood-Anderson) to be directly 

compared with modern calibration events. Some of the larger events, M>5, can be seen 

regionally on the old broadband instruments at Berkeley and Florisant (Galitzin's) while still 

larger events, M>6, can be observed teleseismically (i.e., DeBilt). 

To understand these seismograms and separate propagational distortions from source 

properties is relatively easy at teleseismic distances (Helmberger et al., 1992a), but becomes 

more difficult at regional and local distances. Fortunately, the digital systems used in the 

TERRAscope array provide observations that greatly aid in establishing the nature of local wave 

propagation. For example, the wide dynamic range allows motions from small events 

(aftershocks) to be compared with large events at the same site even though the motions can 

differ by several orders of magnitude. Signals at these distances have not suffered mantle 

attenuation and thus the broadband features of this system allow us to see obvious propagational 

effects (headwaves and critical reflections) and detailed source characteristics (near-field and 

source complexity), see Helmberger et al., (1992, 1993). 

At upper-mantle distances such as FLO, the propagational corrections are quite complex 

but appear to be manageable as demonstrated in this report. Thus, we can examine the many 

events in the 5 < ML < 6 class at this station where the signal-to-noise ratio is about 5 times 

higher than it is teleseismically. The Manix event is near the telcseismic threshold as can be seen 
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by examining those records presented by Doser (1990). We have examined a few dozen Galitzin 

records from FLO and found them quite readable. Thus, the combination of local records (PAS 

and BKS) and FLO should prove highly useful in establishing the nature of the many historic 

significant events. 
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FIGURES 

Figure 1. Upper map displays the major fault zones in Southern California along with the 
location of the major ruptures. The lower map includes the seismicity prior to the Landers 
earthquake. 

Figure 2. Upper panel displays a copy of the 1946 Walker Pass strong motion recordings as 
observed at Pasadena (gain of 4 ). The lower panel compares these records with those from the 
Manix event at comparable distance, 180 km. Peak amplitudes in cm are indicated above each 
trace. 

Figure 3. Instrumental responses of analog instruments commonly employed in the historical 
dataset, along with their gains and recording speeds. Note the similarity between the Galitzin 
response and the world-wide long-period (WWSSN.lp) which has been in observation for the last 
30 years. 

Figure 4. Comparison of Galitzin recordings obtained from FLO for the Manix and Walker Pass 
events. Peak amplitudes (zero to peak) are indicated above each trace. 

Figure 5. Comparison of Weston recordings of the two events on the NS component which are 
apparently naturally rotated. 

Figure 6. Regional observations of the calibration event, 16 September 1962, against synthetics 
assuming the crustal model discussed in Helmberger and Engen (1978). The numbers above 
each trace indicate the peak amplitude. Note the excellent fits except the PLM (Radial) which 
could be a calibration problem. The moment obtained is .65 x 1Q24 ergs. 

Figure 7. Comparison of the short-period recordings of this event at teleseismic distances, 
eastern stations of the LRSM and WWSS networks as indicated in the map. The delay of the 
phase pP relative to P controls the depth estimate. The amplitude of each trace is indicated 
assuming the Mo obtained from the PnJ fits and adjusting the source time history assumed to be a 
triangle (.4 sec, .4 ). 

Figure 8. Theoretical profiles of strong motion synthetics (long-period torsion with gain of 4) 
for the tangential and radial components assuming the three fundamental fault orientations and 
the standard SC model. 

Figure 9. Upper panel displays the fits obtained by assuming the source mechanism determined 
by the PnJ and teleseismic modeling. The lower panel contains the results by applying the 
source-inversion code directly. 
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Figure 10. Comparison of the Walker Pass strong motion results assuming a source model 
(upper) and lower after inversion. 

Figure 11. Comparison of the Manix strong motion results assuming the Doser model (upper) 
and lower after inversion. 

Figure 12. Comparison of teleseismic SH-waveform observations of the Truckee earthquake 
and synthetics. The upper set of synthetics assumes a depth of 14 km while the lower set 
assumes a depth of 16 km. The numbers behind each observed record indicate the peak 
amplitude in cm (lQ-3). The amplitude on the synthetics are estimates of the moment required to 
fit that particular record. 

Figure 13. Comparison of upper-mantle observations with synthetics showing the complexities 
of triplications, see Burdick and Helm berger (l9xx). 

Figure 14. The upper three traces are the observations of the 1962 Walker Pass event as 
obtained from the Galitzin' s. The bottom trace contains the vertical component of the WWSSN 
system where the P and S waves are quite clear. 

Figure 15. The middle trace displays a blow-up of the long-period observation (bottom trace in 
figure 14). The lower trace displays the short-period observation (WWSSN) on the same time 
scale. The top trace is a synthetic generated by assuming the RMFM, the moment obtained from 
the Pnl fits and a depth of 16 km. 

Figure 16. Comparison of observations and synthetics with amplitude expressed in peak-to-peak 
values. 

Figure 17. Comparison of observed (Walker Pass, 46) and synthetics with various source depths 
in km. 

Figure 18. Comparison of observed P and SH waveforms against two sets of synthetics. Middle 
(Doser), bottom (from the Pass inversion). 
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