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Actuation remains a significant challenge in soft robotics. Actuation by light has impor-

tant advantages: objects can be actuated from a distance, distinct frequencies can be used

to actuate and control distinct modes with minimal interference and significant power can be

transmitted over long distances through corrosion-free, lightweight fiber optic cables. Photo-

chemical processes that directly convert photons to configurational changes are particularly

attractive for actuation. Various researchers have demonstrated light-induced actuation with

liquid crystal elastomers combined with azobenzene photochromes. We present a simple mod-

eling framework and a series of examples that studies actuation by light. Of particular interest

is the generation of cyclic or periodic motion under steady illumination. We show that this

emerges as a result of a coupling between light absorption and deformation. As the structure

absorbs light and deforms, the conditions of illumination change, and this in turn changes the

nature of further deformation. This coupling can be exploited in either closed structures or

with structural instabilities to generate cyclic motion.

Keywords Actuation, Photomechanical materials, Liquid crystal elastomers, Azobenzene, Propul-
sion.

Significance Actuation and propulsion are significant challenges in soft robotics. Supply of power
typically requires a cumbersome tether or heavy on-board power source. Further, one typically needs
to reset the system. In this work, we show that this challenge can be overcome by the use of photo-
mechanical materials and actuation by light. We develop a simple modeling framework which reveals
how steady illumination from a distance can give rise to cyclic motion. Such motion can be exploited
for actuation and propulsion with no need for tether or on-board power source, through the natural
but nonlinear/non-local coupling between deformation and light absorption.
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A major challenge in soft robotics is the integration of sensing, actuation, control, and propul-
sion. In most soft robotic systems, propulsion and controls are enabled through a physical tether or
complex on-board electronics and batteries. A tether simplifies the design but limits the range of
motion of the robot, while on-board controls and power supplies can be heavy and can complicate
the design [1]. Actuation by light through photomechanical processes directly convert photons to
deformation and offers an attractive alternative. It can deliver energy remotely. Further, multiple
frequencies can be used to actuate and sense different modes. Finally, if a tether is an option, then
a significant energy can be delivered through corrosion-free and lightweight fiber-optic cables.

A further challenge arises in propulsion where one needs to generate cyclic motion. Since most
actuation systems actuate one way, there is a need to reset the system [1]. To simplify the control
process, it is desirable to do so by inherent response rather than by pulsing of the external source.
Actuation by light is again attractive because one can use the directionality of the propagation of
light. As the structure absorbs light and deforms, the conditions of illumination change, and this
in turn changes the nature of further deformation. This coupling can be exploited in either closed
structures or with structural instabilities to generate cyclic motion.

These advantages have motivated a recent body of work on developing photomechanical mate-
rials (see [7] for an extensive review). Much of this work has focussed on incorporating azobenzene
photochromes that absorb light and transform between cis and trans configurations into liquid
crystal elastomers whose orientational order is coupled to deformation, following the pioneering
work of Yu et al. [12]. These materials are typically synthesized as thin strips which bend when
illuminated with light of appropriate frequency. Further they can be combined with structural
polymers to provide robustness [4].

Various works have demonstrated the ability to generate cyclic motion under steady illumina-
tion. Yamada et al. [10] demonstrated that a ring of LCE film containing azobenzene derivatives
can roll in the presence of illumination. When wrapped around a series of pulleys, the film can be
used as a light-driven plastic motor system. White et al. [8] developed a high frequency oscillator
from a strip which bends under illumination sufficiently to block the light source and reset. Wei et
al. [9] produced rolling motion in monolithic polymer films where ultraviolet-visible light transforms
the film from flat sheets to spiral ribbons, which then rolls under continuous illumination. Finally,
Gelebart et al. [4] created an oscillatory behavior of a doubly clamped LCE film.

In this paper, we develop a theoretical framework to understand actuation deformation by
light, and study a series of examples motivated by the experiments described above. Modeling
light-mediated actuation is a complex multiphysics process involving three key elements: propa-
gation and absorption of light, chemical transformation and temporal evolution of chromophores
between states, and the large-deformation nonlinear mechanics of deformation. Corbett and Warner
developed a theory of light absorption and actuation in azobenzene containing liquid crystal
elastomers [2], used it to study the large deformation of illuminated thin strips (planar elastica
model) [3]. We build on that work with a focus on cyclic or periodic motion under steady illu-
mination. Our resulting model is quite simple and can be solved numerically in real time on any
personal computer, while capturing a rich range of behaviors. It is highly effective in revealing the
underlying mechanisms, as we demonstrate through examples, and can be used as a tool for the
design and control of this novel type of structures.
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Figure 1: Elastica under illumination.

1 Photo-deformable elastica

Consider an inextensible beam or a strip (planar elastica) subjected to illumination as shown in
Figure 1. Let x(s, t) denote the position of centerline point s at time t and θ(s, t) denote the angle
that the tangent to the beam makes with the horizontal axis e1. We assume that the deformation
caused by illumination takes place over a significantly slower time scale than the natural periods of
the beam so that we may assume that the beam is at equilibrium at all times. Therefore, at each
t,

∂f

∂s
(s, t) = 0, (1)

∂m

∂s
(s, t) + (t̂(s, t)× f(s, t)) · e3 = 0 (2)

where t̂(θ(s, t)) = ∂x/∂s(s, t) = cos θ(s, t)e1 + sin θ(s, t)e2 is the unit tangent, f(s, t) is the internal
force transmitted across a cross-section, and m(s, t) is the internal moment about e3.

Since we assume that the beam is inextensible and unshearable, the internal force f is constitu-
tively indeterminate and we only need to specify a constitutive law for the moment m. Following
Corbett and Warner [3], we assume that the beam is made of an elastic material whose spontaneous
or stress-free strain, ε0, changes with time depending on local population of cis molecules. The
longitudinal stress at a point at a position s along the length of the beam, z along the depth of
the beam and at time t is given by Hooke’s law, σ(s, z, t) = E(ε(s, z, t)− ε0(s, z, t)), where ε is the
strain and ε0 is the spontaneous strain. The moment is found by integration through the thickness
as

m(s, t) =

∫ h/2

−h/2
E(ε(s, z, t)− ε0(s, z, t))zdz (3)

with z = 0 taken to be the center of the beam. The strain is related to curvature as in classical
elastica theory1, and the spontaneous strain depends on the built-in curvature κr of the beam (the

1We assume that the neutral axis is unaffected by illumination since the penetration depth is small, as argued
later.
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curvature with no applied load and no illumination) and the concentration nc of the cis molecules:

ε(s, z, t) = κ(s, t)z, (4)

ε0(s, z, t) = κr(s)z − λnc(s, z, t) (5)

where λ is a constant of proportionality linking the longitudinal strain and concentration of cis
molecules. λ > 0 when the cis molecules induce an expansion, while λ < 0 corresponds to an
induced contraction.

Substituting (4) and (5) into (3), we find the constitutive law in the form

m(s, t) =
Eh3

12
(κ(s, t)− κ0(s, t)) (6)

where

κ0(s, t) = κr(s)−
12λ

h3

∫ h/2

−h/2
nc(s, z, t)zdz. (7)

It remains to specify the evolution of the spontaneous curvature in the presence of illumination.
The concentration of cis molecules is increased by photon absorption, and decreased by thermal
decay:

τ
∂nc
∂t

(s, z, t) = −nc(s, z, t) + (1− nc(s, z, t))α1I(s, z, t),

where α1 is a material constant and I(s, z, t) denotes the illumination, i.e., the quantity photons
per unit time arriving at the depth z at time t. In typical materials, nc � 1 is small [7] and we
can simplify the differential equation to

τ
∂nc
∂t

(s, z, t) = −nc(s, z, t) + α1I(s, z, t). (8)

Further, we assume that the illumination changes slowly since deformation is slow, and that the
optical penetration depth d is small since the absorption spectra of the both the cis and trans
states typically overlap and the proportion of cis molecules is small [11, 7]. Then, the illumination
follows Beer’s law,

I(s, z, t) = I
(
s,
h

2
, t

)
exp

(
−h/2− z

d

)
(9)

where z = h/2 is the free surface that is illuminated2 . Combining (7), (8) and (9),

τ
∂κ0
∂t

(s, t) =
12λ

h3

∫ h/2

−h/2
τ
∂nc
∂t

(s, z, t)zdz = −(κ0(s, t)− κr(s)) + αI
(
s,
h

2
, t

)

where α = −12λα1
h3

∫ h/2
−h/2 exp

(
−h/2−z

d

)
zdz is an effective (macroscopic) coupling constant. Finally,

the absorption of light on the surface depends on light intensity I0 and on the relative orientation
of the light and the strip, I

(
s, h2 , t

)
= I0f(θ(s, t) − θI), where θI is the angle of illumination.

Therefore,

τ
∂κ0
∂t

(s, t) + (κ0(s, t)− κr(s)) = αI0f(θ(s, t)− θI). (10)

2Note that the result (10) does not require the exponential profile of Beer’s law, but simply a steady profile,
I(s, z, t) = I0 (s, t) f(z).
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Parameter Typical Value

α1 0.001 [5]

I0 100W/m2 [6]
λ −1/20 [3]
E 0.6− 4 GPa [6]
h 15µm [6]
d 1.5µm [5]
w 1 mm [6]
l 15 mm [6]

Table 1: Estimates of the experimental parameters based on the literature.

If we ignore shadowing, then it is reasonable to assume that the f is the apparent area normal to
light propagation,

f(φ) =

{
cos(φ) if φ ∈ (−π/2, π/2),
0 else.

(11)

Finally, we combine (1), (2), (4) and (6), and non-dimensionalize the resulting equation along
with (10), introducing the scaled arclength S = s/l (where l is the length of the beam), the scaled
time T = t/τ and the scaled curvature K = lκ,

∂

∂S

(
∂θ

∂S
(S, T )−K0(S, T )

)
− Fx cos θ(S, T ) + Fy sin θ(S, T ) = 0, (12)

∂K0

∂T
(S, T ) + (K0(S, T )−Kr(S)) = Λf(θ(S, T )− θI). (13)

Here, the scaled light intensity Λ = αlI0 is the only non-dimensional parameter of the problem and
the components of the internal force Fx, Fy are yet unknown constants. Based on the estimates
given in Table 1, the parameter |Λ| ∼ 2.4 is of order one. To predict how the shape of the beam
evolves with time, we solve these equations (12) and (13) for θ(S, T ) using a numerical method
described in the appendix with specific initial, boundary and illumination conditions.

For future reference, we note that the equilibrium equation (12) can be derived by the Euler-
Lagrange method as the stationarity condition of the energy functional

E [θ] =

∫ 1

0

1

2

∣∣∣∣ ∂θ∂S −K0

∣∣∣∣2 dS. (14)

2 Rolling ring

Our first example is motivated by the work of Yamada et al. [10] on a rolling ring and motor, as
well as that of Wei et al. [9] on a rolling spiral. We consider a closed, initially circular ring on a
rigid horizontal surface, which is illuminated with a steady source at angle θI . The fact that the
ring is closed implies that ∫ 1

0
sin θ(S, T )dS =

∫ 1

0
cos θ(S, T )dS = 0, (15)
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T = 0
T = 11.83
T = 23.68
T = 35.48

Simulations
Analytical Solution
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Figure 2: Rolling ring. (a) Snapshots of an initially circular ring with radius R = 1/(2π) subjected
to illumination at angle θI and of intensity Λ at times T = {0, 11.83, 23.68, 35.48}. The point
that is initially in contact with the ground is marked with a black dot while the center of mass
is the blue dot. (b) Distance travelled by the rolling ring vs. time for various intensities Λ =
{0.01, 0.1, 1, 10}. Note that the a steady velocity is reached in all cases, after an initial transient.
(c) Steady state velocity as a function of illumination angle and intensity. The velocity increases
when the illumination angle moves away from the vertical, but is relatively insensitive to the
intensity of illumination. (d) Scaled change of spontaneous curvature induced by illumination
along the beam for θI = 0.2 (indicated by dot in (c)), for various illumination intensities. This
quantity appears to be largely insensitive to the intensity of illumination. Simulation data is shown
as solid black lines while the analytical solution given by solving Equation (28) is shown as a red
dashed line.
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as well as θ(0, T ) = θ(1, T ). We assume that the ring makes a tangential rolling contact with the
horizontal surface so that X(Sc(T ), T ) = Sc(T ), Y (Sc(T ), T ) = 0 and

θ(Sc(T ), T ) = 0, (16)

where Sc(T ) is the point of contact. We determine this point of contact by assuming overall
mechanical equilibrium of the ring under gravity so that the center of mass of the ring is always
vertically above the point of contact,

Sc(T ) = X(Sc(T ), T ) =

∫ 1

0
X(S, T )dS =

∫ 1

0

(∫ S

0
cos θ(S̃, T )dS̃

)
dS

=

∫ 1

0
(1− S) cos θ(S, T )dS = −

∫ 1

0
S cos θ(S, T )dS.

(17)

We set Kr = 2π and θ(S, 0) = 2πS corresponding to an initially circular ring and solve the
equations (12), (13) subject to the conditions above. Figure 2(a) shows snapshots of the ring for
various angles and intensity of illumination. In each case, the ring deforms as it is illuminated,
in a way which is non-symmetric with respect to the vertical axis and depends on the angle of
illumination. This asymmetry causes the center of mass of the ring to move, which in turn causes
the ring to roll. Figure 2(b) shows the distance travelled by the point of contact as a function of
time under various angles and intensity of illumination. After an initial transient, the ring rolls with
a steady velocity and has an invariant shape. The steady velocity is plotted as a function of the
illumination angle for various illumination intensities in Figure 2(c): it is zero when the illumination
is vertical (θI = 0), which is a consequence of the symmetry, and increases with increasing angle
of illumination θI . Remarkably, the rolling velocity is practically independent of the intensity of
illumination in the range of values of Λ relevant to the experiments and investigated here. To
investigate this further, we plot the scaled deviation in spontaneous curvature (K0 −Kr)/Λ as a
function of arclength in Figure 2(d): this quantity appears to be practically independent of the
intensity of illumination as well. This shows that amount of deformation scales linearly with the
light intensity, while the deformation mode (and, hence, the asymmetry and the rolling velocity) is
largely independent of the intensity.

To understand these features, we analyze steadily rolling solutions, i.e., we seek solutions of the
form θ(S, T ) = Θ(S − V T ) and aim at identifying the rolling velocity V . We set ω = 2π(S − V T )
choosing T = 0 to be a time when the point in contact with the ground is S = Sc(0) = 0. This
implies

Θ(0) = 0. (18)

The rolling condition (17) becomes

0 =

∫ 2π

0
ω cos Θ(ω)dω, (19)

and the evolution equation (13)

− 2πV
dK0

dω
+ (K0 − 2π) = Λf(Θ− θI). (20)

We now assume that the shape of the ring is almost circular so that

Θ(ω) = ω + Θ1(ω), K0(ω) = 2π +K1(ω) (21)
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where |Θ1| � 1 and |K1| � 1 are treated as perturbations. Keeping only terms linear in Θ1,K1,
the equilibrium equation (12) and closure condition (15) become

4π2Θ′′1(ω)− 2πK ′1(ω) + Fy cosω − Fx sinω = 0 ,∫ 2π
0 cos(ω)Θ1(ω)dω =

∫ 2π
0 sin(ω)Θ1(ω)dω = 0 .

(22)

Introducing the Fourier transform f̂(k) =
∫ 2π
0 f(ω) exp(−ikω)dω where k is an integer, we can

solve (20) as

K̂1(k) =
Λf̂I(k)

1− 2iπkV
, (23)

where
fI(ω) = f(ω − θI). (24)

Similarly, we can solve equation (22) in Fourier form as

Θ̂1(±1) = 0 for |k| = 1,

Θ̂1(k) = −i K̂1(k)
2πk for |k| > 2.

(25)

Note that the first equation in (22) yields Fx and Fy in terms of Θ̂1(±1) and K̂1(±1) as well, but
these expressions are not needed.

The horizontal tangency condition (18) reads 0 = Θ(0) = Θ1(0) = 1
2π

∑
k Θ̂1(k) where the sum

runs over all signed integers k. Rearranging the terms in the sum and solving for Θ̂1(0), we find

Θ̂1(0) = −2
∑
k>1

Re Θ̂1(k) (26)

where we have used Θ̂1(−k) + Θ̂1(k) = Θ̂1(k) + Θ̂1(k) = 2 Re Θ̂1(k) since Θ1(ω) is a real function.
Here, z denoting the conjugate of the complex number z.

Equations (23–26) yield the shape in terms of the known illumination parameter Λ and of the
unknown scaled rolling velocity V . The latter can be found by linearizing the rolling condition (19)
as
∫ 2π
0 g(ω)Θ1(ω)dω = 0 where g(ω) = ω sinω. Using Parseval’s identity, this can be rewritten as

1

2π

∑
k

ĝ(k)Θ̂1(−k) = 0, where ĝ(k) =

{
−π

2 (2πik + 1) if |k| = 1 ,
2π
k2−1 if |k| 6= 1 .

(27)

Inserting (25–26) into this equation, we obtain 2
∑

k>2
k2

k2−1 Re Θ̂1(k) = 0 which, in view of (23–25),
yields an implicit equation for the rolling velocity V in terms of the angle of illumination θI ,

Λ ·H(θI , V ) = 0 where H(θI , V ) =
∑
k>2

k

k2 − 1
Im

(
f̂I(k)

1− 2iπkV

)
. (28)

Note that fI and hence H depends on θI , see equation (24).
When θI = 0, fI(ω) = f(ω) is an even function of ω, so that f̂0(k) is real, hence H(0, 0) = 0. It

is also clear from the form of H(θI , V ) that
∂H

∂θI
and

∂H

∂V
are generally non-zero. By the implicit

function theorem, we can solve (28) for V = V (θI), at least for θI small enough. We do so
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numerically; the result is shown in Figure 2(c) as the dashed line, and agrees well with the non-
linear simulations. In Figure 2(d), the distribution of natural curvatures predicted by the linear
theory is compared to the non-linear numerical simulations, and a good agreement is obtained as
well.

Remarkably, the intensity of illumination Λ factors out in equation (28) selecting the rolling
velocity, so that V depends on θI but not on Λ in this linear theory: this explains why the rolling
velocity is largely independent of Λ in the non-linear simulations.

3 Waves in doubly clamped beams

The second example we study is motivated by the experiments of Gelebart et al. [4]. These ex-
periments were done on a twisted nematic strip – where the nematic directors are aligned along
the length of strip on one surface called the planar face and normal to the beam face on the other
surface homeotropic face. The goal is to induce contraction on one face and expansion on the other
in order to maximize the magnitude of the photo-bending coupling |λ|. Exposing the planar face
to light makes λ < 0 while exposing the homeotropic face to light makes λ > 0. In view of the
analysis done in Section 1, Λ ∝ α ∝ −λ, so illuminating the planar (respectively, homeotropic) face
corresponds to Λ > 0 (resp. Λ < 0) in our model. Illumination, either due to the direct effect or
due to temperature rise or both, reduces the nematic order causing a contraction by (r/r0)

2/3 when
illuminated on the planar face and an extension by (r0/r)

1/3 when illuminated on the homeotropic
face where r (respectively r0) is the anisotropy parameter in the illuminated (respectively ambient)
state. Since r < r0, for fixed unscaled illumination intensity I0, we expect the resulting photo-strain
and spontaneous curvature coefficients 0 ≤ Λp ≈ −2Λh, where Λp is the coefficient when illuminated
on the planar side and Λh when illuminated on the homeotropic side. This distinction between Λp
and Λh is caused by the small penetration depth only activating the trans to cis isomerization on
the illuminated side; therefore, it is only the nematic orientation on the illuminated surface that
matters. We study the results of our model first, and compare to the experimental observations
next.

We first consider the case Λ > 0. We take a strip that is flat in the absence of any light or
stress, so that Kr = 0. We use the same scaled quantities as earlier, and the scaled length of the
strip is 1. We clamp the two ends at a distance lf < 1 from each other, corresponding to boundary
conditions

θ(0, T ) = θ(1, T ) = 0,

∫ 1

0
sin θ(S, T )dS = 0 ,

∫ 1

0
cos θ(S, T )dS = lf . (29)

Since lf < 1, the beam buckles and there are two equivalent fundamental buckled modes – buckled
up and down. We choose one of the two states, say the buckled up state for definiteness, although
the results are independent of this choice. We illuminate the strip with a light source that is
spatially uniform and at an angle (θI 6= 0) as shown in Figure 3(a). We solve the equations (12–13)
subject to the boundary conditions (29).

Figure 3(a-e) show a typical simulation result. After an initial transient, we find that the beam
goes into a periodic motion alternating between the up and down buckled shapes, see Figure 3(a).
At the start of the cycle, we have an up-bump at the left side of the strip (state A). Illumination
moves it to the right initially rapidly but slowing down and becoming very slow as it reaches the right
end (B). It then suddenly changes shape and a down bump appears on the left(C). Subsequently,

9



0 0.4 0.8-0.4-0.8

A

B

C

D
A

B C

D

A

B

C

D

0-0.4-0.8 0.4 0.8

0

1

2

-1

-2

A B/C D

c) d) e)

A B C D

Cyclic Behavior

Time: 2.426 Time: 4.077 Time: 4.082 Time: 5.478

T
A B/C D

f)

0

2

4

6

0 0.5 1 1.5

0.4

0.2

0

-0.2

-0.4

y

0 0.8
x

0.4

0.4

0.2

0

-0.2

-0.4

y

0 0.8
x

0.4

0.4

0.2

0

-0.2

-0.4

y

0 0.8
x

0.4

0.4

0.2

0

-0.2

-0.4

y

0 0.8
x

0.4

a)

0.8

0.4

0

-0.4

-0.8
0 0.01 0.02-0.01-0.02 0

20

40

60

0 4 8

0.2

0

0.4

0.6

0.8

1b)

Time [T]
2 6 10

A
rc

 L
en

g
th

 [
S
]

0

2

4

6

8

Figure 3: Waves in a strip for Λ > 0. (a) Snapshots of an initially flat strip clamped in a buckled
state (lf = 0.95) and subjected to illumination with Λ = 10, θI = π/4. After an initial transient,
it goes into a periodic motion. (b) Evolution of the light-induced spontaneous curvature K0 of
the strip. The peaks are marked with a black curve and the troughs are marked with a red
curve. Note that the evolution becomes periodic but is quite complex with an alternation of
slow (quasi-static) and fast (dynamic) motions. (c) Shape vs. spontaneous curvature descriptors
as defined in Equation (30). (d) Incremental stiffness (lowest eigenvalue of the stiffness matrix)
vs. spontaneous curvature descriptor. (e) Phase plot revealing the oscillation cycles after an initial
transient. (f) Frequency of flapping as a function of illumination angle for various illumination
angles.
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the down-bump moves to the right initially rapidly but slowing down and becoming very slow as
it reaches the right end (D). It then changes shape suddenly to the starting point of the up-bump
on the left, and the cycle repeats.

The evolution of the light-induced spontaneous curvature as a function of time and position is
shown in Figure 3(b). After an initial transient, we see that the spontaneous curvature reaches
a steady periodic cycle. We also see that the spontaneous curvature does not change during the
sudden change from states B to C (and from D to A). This is emphasized in Figure 3(c) which plots
one particular Fourier component γ(T ) of the deflection, against one particular Fourier component
β(T ) of the natural curvature,

γ(T ) =

∫ 1

0
sin(2πS)Y (S, T )dS , β(T ) =

∫ 1

0
sin(2πS)K0(S, T )dS. (30)

We call these quantities the descriptors of the deformation and curvature, respectively. This sug-
gests that the sudden changes from state B to C, and from D to A, correspond to a snap-through
bifurcation, from one equilibrium solution of the elastica to another one. For some fixed time T
and spontaneous curvature distribution K0(S, T ), the equilibrium equation (12) may have multiple
solutions (equivalently, E has multiple stationary points). Stable solutions are those for which the
second variation is positive definite. With the aim to confirm the snap-through scenario, we study
the lowest eigenvalue associated with the second variation δ2E of the energy. It is plotted from the
numerical solution, as a function of β in Figure 3(d). We see that this eigenvalue is positive at
the start of the cycle at A (the solution with the up-bump) but decreases as we go from A to B.
The jump at B occurs when the eigenvalue is becoming negative and the solution loses stability. It
arrives on an other solution C having a down-bump, which appears to be elastically stable, i.e., has
a positive lowest eigenvalue. Again, the lowest eigenvalue begins to decrease as we go from C to D
and passes through zero at D.

This reveals the mechanism of the cyclic motion. At any time, there are two possible solutions,
one with an up-bump and one with a down-bump. If the solution with the up-bump has the bump
on right, the solution with the down-bump has the bump on the left and vice-versa. The evolution
of light-induced spontaneous curvature always forces the bump to the right, i.e., away from the
light source. At some point it loses stability and has to snap to the other solution. The periodic
cycles are represented in the phase space (β, β̇) in Figure 3(e). Immediately after a snap-through,
the evolution speed |β̇| is high. As the instability is approached, the magnitude of |β̇| decreases
until nearly zero. This coincides with the snap through and once the system snaps to the new
configuration, |β̇| jumps to a large value again, and the other half of the cycle proceeds similarly.

We repeat this calculation for various illumination angles and illumination intensities, and the
results are summarized in Figure 3(f). At any given intensity, there is a window of illumination
angles at which periodic flapping solutions are observed. Outside this window, a stationary solution
is reached, which can be the up-bump or the down-bump depending on the initial conditions. This
window becomes wider when the light intensity is increased. Further, at any given orientation, we
see that the frequency of the limit cycle increases with intensity.

We now turn to the case when Λ < 0. As can be seen in Figure 4(a), the system again alternates
between up and down buckled states. In this case, however, the bulge propagates from right to left
(opposite from the case where Λ > 0). It can be seen in (c)–(e) that the descriptors give different
paths through the phase space when compared to the case where Λ > 0. This shows that flipping
the sign of Λ does not simply amount to reverse the arrow of time. Interestingly, even though
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Figure 4: Waves in a strip for Λ < 0. Same as in Figure 3 except with Λ = −10.

the deformation mode differs, the flapping frequency (f) does not change significantly between the
positive and negative cases.

We now compare the experimental observations of Gelebart et al. [4]. When illuminated on the
homeotropic phase, Λ = Λh < 0: after an initial transient, the strip begins a periodic motion with
the wave moving from right to left predicted in Figure 4. When illuminated on the planar face where
Λ = Λp > 0, the wave moves from left to right as predicted in Figure 3. They also observed that the
frequency of oscillation when illuminating the homeotropic face is lower as compared to the planar
face, holding all other parameters fixed. Again, this is consistent with the predictions in Figures
4(f) and 3(f) since |Λp| > |Λh| for fixed I0. Further, this wave-like motion is observed only in a
finite range of illumination angles and, for fixed illumination intensity, the range when illuminating
the planar side is larger than that of the homeotropic side as predicted because |Λp| > |Λh|. All
these results are in good agreement with the experimental observations.
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Supplementary Material

A Computational Model

The numerical method is motivated by the discrete elastic rod model1. We partition the beam into
N −1 segments Si = (Si, Si+1), i = 1, . . . , N −1 which are all equal in arc-length by introducing N
nodes: the ith node is at arc-length Si = (i−1)L/(N−1). We introduce the angle θi, i = 1, . . . , N−1
to be the angle that the segment Si makes to the horizontal as our main kinematic variable. We
can then obtain the current position of the nth node by exploiting the inextensibility condition as
follows:

xn = x1 +

n∑
i=2

(Si − Si−1)
(
cos θi−1e1 + sin θi−1e2

)
.

The curvature is carried at the nodes and defined as κi = θi − θi−1 so that the total bending
energy of the beam (discrete equivalent to (14)) is given by

EB[θ] =

N−1∑
i=2

1

2
Ji(θ

i − θi−1 − κ0i )2 (31)

where Ji is a bending modulus and κ0i is the discrete natural curvature at the ith node.
We obtain the equilibrium equation (discrete equivalent to (12)) by taking the variation of EB

with respect to θj :

∂EB
∂θj

= Jj(θ
j − θj−1 − κ0j )− Jj+1(θ

j+1 − θj − κ0j+1) = 0. (32)

Given the spontaneous curvatures {κ0j}, we solve these equations for {θj} subject to appropriate
boundary conditions. In order to improve the stability and convergence, it is convenient to have
the Hessian,

∂2EB
∂θj∂θk

= −Jjδjk + (Jj + Jj+1)δ
j
k − Jj+1δ

j+1
k .

It remains to specify the spontaneous curvature. This evolves according to (13) whose discrete
version is given by the set of ordinary differential equations:

dκ0i
dt

+ κ0i = Λf(θi − θI), (33)

where f(θi − θI) is as defined in Equation 13 and θi = (ave)(θi, θi−1) is defined as the angle of the
tangent of the ith node.

Equation (33) is discretized in time using an explicit Newton time stepping algorithm. Time
dependent solutions are obtained by alternating the elastic relaxation in equation (32) and evolving
of natural curvatures κ0i based on equation (33) over a time step.

1Miklós Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grinspun. Discrete elastic rods.
ACM Transactions on Graphics, 27(3):63:1 – 63:12, August 2008.
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A.1 Elastic Ring

In Section 2, we analyzed rolling rings. They can be simulated by adapting the general numerical
procedure outlined above as follows. The closure of the ring is imposed by the following constraints:

θ1 = 0 x1 = xN−1 x2 = xN

The first of these can be implemented explicitly by freezing that degree of freedom and represents
that the point of contact is tangent to the surface.

The last two enforce the closure constraint. The system is initialized by assuming a constant
curvature which makes the last two nodes coincident with the first two. Then the system is relaxed
by minimizing the energy while imposing the constraints. In order to stabilize the point of contact
when the system is circular, a small amount of gravity is initially added and removed once the
natural curvature deviates from its initial state.

The algorithm for calculating the translation and rotation of the system is as follows. Initially,
the point of contact is defined to be the first and second nodes (second to last and last due
to constraints). Then, given a natural curvature, κ0j , the energy is minimized to find the new
configuration. The natural curvature is then updated using the explicit forward Euler scheme
according to (33). Then, using a small window near the first and second nodes (which wraps
around to nodes on the far end of the beam), the closest node to the calculated center of mass
is found. Then, the nodes on either side of that node are tested to find the closest to the center
of mass. This then forms an ordered pair of nodes (xi,xi+1) which defines the segment closest to
the center of mass. Then, by shifting the minimized curvature θi → θ1, θi+1 → θ2, etc in a cyclic
manner (so the quantities at end points get wrapped around the beam). Similar transformations
are done to the natural curvature (κ0i → κ0N−1, κ

0
i+1 → κ02). Note that these transformations are

done in such a way that the ordering of the nodes is preserved and wrapped. At this point, the
updated points of contact are now the 1st and 2nd nodes and the algorithm can be repeated to
integrate the system in time. This solves for the rotation of the system while the translation can be
found by using the rolling contact condition. Using the convention before, we had set x1 = 0. We
can set this to be the relative position where the true position of node i is defined as x̃i = xSc + xi
where xSc is the position of the point of contact. xSc is found using the rolling condition. Let xkSc

be the position of the point of contact at time step k and i be the shift necessary to establish that
the point of contact is vertically aligned with the center of mass. Then,

xk+1
Sc

=

{
xkSc

+ (Si − S1)E1 if i ∈ [1, Ns]

xkSc
+ (Si − SN−1)E1 if i ∈ [N −Ns,N − 1] ,

where Ns is a small window (usually set to N/20). If i is not in the range of values defined above,
then the time discretization is made finer in order to ensure that the rotations induced in each
time step correlate with a small translation. The results for various angles of incidence of light and
intensities are given in Movie S1 in the supplementary material. The ”velocity” of the system is
then found by finding the distance the point of contact travels over a small time window. Steady
state velocities are found by iterating the time stepping procedure until the velocity reaches a
steady value.
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A.2 Doubly Clamped Beam

The doubly clamped system can be solved by setting up the following constraints

θ1 = 0 θN−1 = 0 xN = lfe1

where lf < L is the distance between the two endpoints. As before, the first of these two con-
straints can be implemented explicitly by freezing those degrees of freedom and requires no special
treatment, while the latter two constraints need to be implemented in the optimization engine. The
initial solution is obtained numerically by decreasing lf from 1 to its actual value in small steps.
The system is integrated in time by alternating between relaxing the elastic energy and updating
the natural curvature using an explicit Newton time stepping method. The results for various
angles of incidence of light and intensities are given in Movie S2 in the supplementary material.

B Equilibrium and Stability Analysis

Investigation of the snapping instabilities from Section 3 requires obtaining the second variation of
the energy E(θ) in the presence of m constraints ci(θ) = 0, i = 1, 2, ...,m, where θ ∈ Rn is the set
of degrees of freedom. Denote the feasible set C = {θ ∈ Rns.t. ci(θ) = 0}. We are interested in
solutions θ̄ ∈ C ⊂ Rn such that

E
(
θ̄ + εu+

1

2
ε2w

)
≥ E(θ̄) , ∀u,w ∈ Rn

satisfying θ̄+εu+ 1
2ε

2w ∈ C, with ε→ 0. Expanding each of these out to first order and simplifying
gives,

∇E(θ̄) · u = 0 ,

∇ci(θ̄) · u = 0 .

where ∇ denotes the gradient operator relative to the degrees of freedom of the function ((∇E)i =
∂E
∂θi

). This gives the equilibrium condition,

∇E(θ̄) +

m∑
i=1

λi∇ci(θ̄) = 0,

where the parameters λi are Lagrange multipliers.
For stability, we require that any perturbation which satisfies the constraints will increase the

energy. To do this, we expand our system to second order in ε and simplify:

u · ∇2E(θ̄)u+∇E(θ̄) · w ≥ 0 ,

u · ∇2ci(θ̄)u+∇ci(θ̄) · w = 0 ,

where ∇2 is the Hessian operator which returns the symmetric matrix of second derivatives. Using
the equilibrium condition, we have

∇E(θ̄) · w = −
m∑
i=1

λi∇ci(θ̄) · w = u ·
m∑
i=1

λi∇2ci(θ̄)u .
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Plugging this into the above inequality, we have the stability condition that

u ·

(
∇2E(θ̄) +

m∑
i=1

λi∇2ci(θ̄)

)
u ≥ 0 ,

for all u such that
∇ci(θ̄) · u = 0 .

To determine whether a configuration satisfies this condition, we want to project Rn onto the space
tangent to the constraints. This is done by a Gram-Schmidt process where

v1 =
∇c1(θ̄)
‖∇c1(θ̄)‖

,

vk =
∇ck(θ̄)−

∑k−1
i=1 (∇ck(θ̄) · vi)vi

‖∇ck(θ̄)−
∑k−1

i=1 (∇ck(θ̄) · vi)vi‖
,

P = I −
m∑
i=1

vi ⊗ vi .

The stability analysis then boils down to calculating the eigenvalues of P
(
∇2E(θ̄) +

∑m
i=1 λi∇2ci(θ̄)

)
P .

Due to the projection, there will be m zero eigenvalues and stability is implied when all other eigen-
values are greater than zero. This analysis determines if there exists feasible paths which locally
lowers the energy; therefore, the existence of a non-positive eigenvalue implies a loss of stability of
the configuration.
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