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ABSTRACT

For the baseline design of future gravitational wave detection interferometers, use of optical cavities with non-
spherical mirrors supporting flat-top (“mesa”) beams, potentially capable of mitigating the thermal noise of
the mirrors, has recently drawn a considerable attention. To reduce the severe tilt-instability problems affect-
ing the originally conceived nearly-flat, “Mexican-hat-shaped” mirror configuration, K. S. Thorne proposed a
nearly-concentric mirror configuration capable of producing the same mesa beam profile on the mirror surfaces.
Subsequently, Bondarescu and Thorne introduced a generalized construction that leads to a one-parameter fam-
ily of “hyperboloidal” beams which allows continuous spanning from the nearly-flat to the nearly-concentric
mesa beam configurations. This paper is concerned with a study of the analytic structure of the above family
of hyperboloidal beams. Capitalizing on certain results from the applied optics literature on flat-top beams,
a physically-insightful and computationally-effective representation is derived in terms of rapidly-converging
Gauss-Laguerre expansions. Moreover, the functional relation between two generic hyperboloidal beams is in-
vestigated. This leads to a generalization (involving fractional Fourier transform operators of complex order)
of some recently discovered duality relations between the nearly-flat and nearly-concentric mesa configurations.
Possible implications and perspectives for the advanced Laser Interferometer Gravitational-wave Observatory
(LIGO) optical cavity design are discussed.
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1. INTRODUCTION

The current baseline design for the Laser Interferometer Gravitational-wave Observatory (LIGO),1 as well as
that for its advanced version,2 is based on the use of Fabry-Perot optical cavities composed of spherical mirrors,
which support standard Gaussian beams (GBs).3 During the past few years, there has been a growing interest
toward the use of non-spherical mirrors as a possible aid for reducing the thermal noise of the mirrors.4 In
particular, it was proposed by D’Ambrosio, O’Shaughnessy and Thorne5 to replace the GB profile with a flat-top
(commonly referred to as “mesa”) profile, for better averaging the thermally-induced mirror surface fluctuations.
They showed that such mesa beams could be synthesized via coherent superposition of minimum-spreading GBs
with parallel optical axes, and could be supported by nearly-flat, “Mexican-hat-shaped” mirrors ∗. A thorough
investigation of the theoretical implications and implementation-related issues6–10 indicated a potential reduction
by a factor three in the thermoelastic noise power and a factor two in the coating Brownian thermal noise power,
without substantial fabrication impediments. A prototype optical cavity is currently being developed, and
experimental tests are under way.11

In gravitational-wave interferometers, a serious concern is posed by the tilt-instability of the cavity mirrors.
In this connection, the inherent tilt-instability of the current (nearly-flat, spherical mirror) LIGO baseline design,
was first pointed out by Sidles and Sigg.12 Subsequently, Savov and Vyatchanin13 found similar effects for the

∗This nickname refers to the shape of the mirror, which resembles a “sombrero” hat.
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nearly-flat mesa (FM) designs. Based on these observations, and on the results by Sidles and Sigg12 concerning
the comparison between nearly-flat and nearly-concentric spherical mirrors, Thorne proposed an alternative
nearly-concentric Mexican-hat-shaped mirror configuration, capable of supporting mesa beams with intensity
distribution at the mirror identical with that of the FM configuration, but featuring a much weaker † tilt-
instability.13 These nearly-concentric mesa (CM) beams are synthesized by coherent superposition of minimum-
spreading GBs with non-parallel optical axes sharing a common point. Quite remarkably, the FM and CM
configurations were found to be connected through a duality relation, first discovered numerically by Savov
and Vyatchanin,13 and subsequently proved analytically by Agresti et al.,14 which allows a one-to-one mapping
between all the corresponding eigenmodes. The geometrical construction underlying FM and CM beams was
further generalized by Bondarescu and Thorne,15 in terms of a family of “hyperboloidal” beams, parameterized
by a “twist-angle” α ∈ [0, π] which allows continuous spanning from the FM (α = 0) to the CM (α = π)
configurations, passing through the standard GB (α = π/2) case. It was suggested in Ref. 15 that the optimal
configuration, in terms of both thermal-noise and tilt-instability reduction, should be found in a neighborhood of
α = π (CM configuration). This renders the family of Bondarescu-Thorne (BT) hyperboloidal beams of potential
interest in the design of advanced gravitational wave intereferometers.

This paper elaborates on the analytic structure of the BT hyperboloidal beams. Our investigation capitalizes
on and generalizes a number of results from the applied optics literature concerning flat-top beams, which have
most likely not come to the attention of the gravitational wave community. Indeed, during the past decade,
flat-top beams have drawn a considerable attention from the applied optics community, and several models have
been proposed and investigated. Prominent among them are the celebrated “supergaussian” beams,3, 16 the
“flattened Gaussian” beams introduced by Gori,17 the “flattened” beams introduced by Sheppard and Saghafi,18

the “flat-topped multi-Gaussian” beams introduced by Tovar,19 and the “flat-topped” beams introduced by
Li.20 In this paper, we first show that the FM and CM beams belong to the class of flattened beams introduced
in Ref. 18, and can therefore be represented in terms of the rapidly-converging GL beam expansions derived
therein. Based on this observation, we then generalize the approach in Ref. 18 to accommodate the more general
family of BT hyperboloidal beams.15 This leads to a generalization (at least for the dominant eigenmode) of
the duality relations discovered in Ref. 14, which involves fractional Fourier transforms of complex order. The
above results, here discussed for the simplest case of the dominant eigenmode, set the stage for the development
of new problem-matched computational tools for the modal analysis of Fabry-Perot optical cavities supporting
general BT hyperboloidal beams.

The remainder of the paper is laid out as follows. Section 2 introduces the problem geometry, and provides a
compact review of background results from Ref. 15 on BT hyperboloidal beams and supporting mirrors. Section
3 contains the analytic derivations concerning the GL expansions and the generalized duality relations, as well
as representative numerical results for validation and calibration. Section 4 contains preliminary conclusions and
recommendations.

2. BACKGROUND: BT HYPERBOLOIDAL BEAMS AND SUPPORTING MIRRORS
In this Section, we briefly review the procedure proposed by Bondarescu and Thorne15 for constructing a family
of “hyperboloidal” beams, which contains as special limiting cases the FM and CM beams. Referring to the
problem geometry illustrated in Fig. 1, we consider a perfectly symmetric Fabry-Perot optical cavity composed
of two nearly-spheroidal mirrors separated by a distance L along the z-axis of a Cartesian (x, y, z) (and associated
cylindrical (r, θ, z)) coordinate system. The transverse coordinates at the waist (z = 0) and mirror (z = L/2)
planes are denoted by r0 ≡ x0x̂+y0ŷ = r0 cos θ0x̂+ r0 sin θ0ŷ and r ≡ xx̂+yŷ = r cos θx̂+ r sin θŷ, respectively.
Here and henceforth, x̂, ŷ and ẑ denote the standard Cartesian unit vectors. Throughout the paper, an implicit
time-harmonic exp(−iωt) dependence is assumed for all field quantities.

The BT construction,15 which generalizes the original idea in Ref. 5, is based on the superposition of
minimum-spreading GBs launched from a circular equivalent aperture of radius R0 at the waist plane (z = 0),
with optical axes pointing along the unit vector

uα =
r0
L

[cos θ0 − cos(θ0 − α)] x̂ +
r0
L

[sin θ0 − sin(θ0 − α)] ŷ + ẑ. (1)

†Actually, even weaker than the nearly-concentric, spherical design (supporting GBs) proposed by Sidles and Sigg.12
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Figure 1. Problem schematic: A perfectly symmetric Fabry-Perot optical cavity composed of two nearly-spheroidal
mirrors separated by a distance L along the z-axis. The transverse coordinates at the waist (z = 0) and mirror (z = L/2)
planes are denoted by r0 and r, respectively. For the α-parameterized family of hyperboloidal beams of interest, the
mirror shape is obtained by adding the perturbation −hα in (8) to the fiducial spheroid in (2).

(a)

(b)

(c)

Figure 2. Geometrical construction of the BT hyperboloidal beams in (3): Minimum-spreading GBs are launched from
a circular equivalent aperture of radius R0 at the waist plane (z = 0), with optical axes pointing along the unit vector uα

in (1). (a) FM beam (α = 0): Optical axes are the generators of a cylinder. (b) CM beams (α = π): Optical axes are the
generators of a cone. (c) Generic hyperboloidal beams (0 ≤ α ≤ π): Optical axes are the generators of a hyperboloid.
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As shown in Fig. 2, these optical axes are the generators of hyperboloids. The “twist-angle” α in (1) parameterizes
this family of “hyperboloidal” beams, allowing continuous spanning from the FM configuration (α = 0, cylindrical
degenerate, cf. Fig. 2(a)) to the CM configuration (α = π, conical degenerate, cf. Fig. 2(b)). For this family of
beams, the wavefronts at the mirror location are roughly approximated by the “fiducial” spheroids15

z = Sα(r) ≡
√(

L

2

)2

− r2 sin2(α/2) ≈ L

2
− r2 sin2(α/2)

L
, r � L/2, (2)

which degenerate into planar and spherical surfaces in the FM (α = 0) and CM (α = π) case, respectively.
Following Ref. 15, an integral expression (valid under the paraxial approximation) for the (unnormalized) beam
field distribution on these fiducial surfaces can be written as

Uα(r, Sα) = Λ
∫ R0

0

dr0

∫ 2π

0

dθ0r0 exp

[
i
rr0
w2

0

sin θ0 sinα−
(
r2 + r20 − 2rr0 cos θ0

)
2w2

0

(1− i cosα)

]
. (3)

In (3), Λ is an α-independent complex constant, and w0 is the GB spot size at the waist. According to the
minimum-spreading criterion, this spot size is chosen as

w0 =
√
L

k0
, (4)

where k0 = 2π/λ0 denotes the free-space wavenumber (λ0 denoting the free-space wavelength), so that the mirror
plane is located exactly at the Rayleigh distance,3

zR ≡ k0w
2
0

2
=
L

2
. (5)

Note that the expression in (3) is valid only on the fiducial surface z = Sα(r). For α = π/2, the double integral
in (3) can be computed in closed form, yielding a simple Gaussian,15

Uπ/2 = Λ0 exp
(
− r2

2w2
0

)
, (6)

with Λ0 denoting a complex constant. For other values of α, the radial integral in (3) can still be computed
analytically, whereas the angular integral has to be evaluated numerically. It is readily verified from (3) that the
following symmetry relations hold:

U−α = Uα, (7a)
Uπ−α

Λ
=
U∗

α

Λ∗ , (7b)

where ∗ denotes complex conjugation; this sets the minimal meaningful range for the twist-angle α to [0, π].
The relation (7b) can be interpreted in the broader duality framework detailed in Refs. 13,14 (see Section 3.1.1).

From the theory of graded-phase mirrors,21 it is well-known that, in order for an optical cavity to support
a stable beam with a given profile as the fundamental eigenmode, its mirror profile has to match the beam
wavefront. For the BT hyperboloidal beams in (3), this can be achieved by applying a correction

hα(r) =
arg [Uα(r, Sα)]− arg [Uα(0, Sα)]

k0
(8)

to the fiducial spheroidal shape Sα in (2), so that arg[Uα(r, Sα − hα)] = constant. For the FM (α = 0) and CM
(α = π) cases, the correction in (8) reduces to the Mexican-hat-shaped profile in Refs. 6, 7 (see also Fig. 6(a)
below). Moreover, from (7b), the remarkable result

hπ−α(r) = −hα(r) (9)

follows, which can also be interpreted within the above-mentioned duality framework.13, 14
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3. ANALYTIC STRUCTURE OF BT HYPERBOLOIDAL BEAMS

Capitalizing on the background results summarized in Section 2, in this Section, we develop the analytic GL
representation of general BT hyperboloidal beams (valid at any point in space, within the limit of the paraxial
approximation) as well as of the supporting mirror profiles. Moreover, we generalize the symmetry/duality
relations in (7) and (9) to the most general case involving two arbitrary values of the twist-angle parameter. For
such generalization, we provide functional and optical interpretations, based on fractional Fourier operators of
complex order.

3.1. Field Distribution at Waist

We begin by considering the field distribution at the waist plane (z = 0) for the FM (α = 0) beam,7, 14

U0(r, 0) =
1

πR2
0

∫
r0≤R0

dr0 exp
(
−|r− r0|2

w2
0

)
=

2
R2

0

∫ R0

0

dr0r0I0

(
2rr0
w2

0

)
exp
[
− (r2+r20)

w2
0

]
, (10)

where I0(ξ) denotes a zeroth-order modified Bessel function of the first kind.22

3.1.1. Duality Relations

In Ref. 14, within a broader framework of duality relations, the CM (α = π) beam field distribution at the waist
plane was shown to be related to the FM one in (10) via a Fourier transform operator

Uπ(r, 0)
Hw0←→ U0(r, 0) (11)

which, in view of the assumed cylindrical rotational symmetry, takes the form of the Hankel transform (HT)

Hw0 [F (r)] ≡ 2
w2

0

∫ ∞

0

dr0r0F (r0)J0

(
2rr0
w2

0

)
. (12)

In (12) and henceforth, Jn(ξ) denotes an nth-order Bessel function of the first kind.22 Straightforward application
of the HT (12) to (10) yields, via the convolution theorem,14

Uπ(r, 0) = Hw0 [U0(r, 0)] =
w2

0

rR0
J1

(
2rR0

w2
0

)
exp

(
− r

2

w2
0

)
. (13)

3.1.2. GL Representation

The CM field distribution in (13) is recognized to coincide with the one used in Ref. 18 to generate beams with
a “flattened” far-field profile, for which a GL beam expansion was subsequently derived. Following Ref. 18, the
field distribution in (13) can be expanded as

Uπ(r, 0) =
∞∑

m=0

A(π)
m ψm

(√
2r
w0

)
. (14)

In (14), ψm(ξ) are orthonormal GL basis functions,

ψm(ξ) =
√

2 exp
(
−ξ

2

2

)
Lm(ξ2),

∫ ∞

0

ψp(ξ)ψq(ξ)ξdξ = δpq, (15)

where Ln(ζ) denotes an nth-order Laguerre polynomial,22 and δpq denotes the Kronecker symbol. The expansion
coefficients A(π)

m in (14) are given by18

A(π)
m =

√
2w2

0

R2
0

P

(
m+ 1,

R2
0

2w2
0

)
, (16)
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where P (n, ξ) denotes an incomplete Gamma function.22 The behavior of the expansion coefficients in (16), as a
function of the summation index m, is shown in Fig. 3, for three representative values of the ratio w0/R0: The
A

(π)
m are almost constant for m � R2

0/(2w2
0), and fall off quite abruptly for m � R2

0/(2w2
0) ‡. For the parametric

range of interest for the LIGO design (w0/R0 = 0.25), this results in a rapidly-converging (m < 20) expansion
(14). The corresponding GL expansion for the FM field distribution at the waist plane can be obtained by
exploiting the HT relation in (11). Similar arguments were likewise invoked in Ref. 18, in the form of near-to-
far-field transformations, to generate beams that were flattened at the waist plane (“inverted flattened” beams,
in the notation of Ref. 18). In this framework, one first observes that the GL basis functions in (15) are
eigenfunctions of the HT operator in (12),23

Hw0

[
ψm

(√
2r
w0

)]
= (−1)mψm

(√
2r
w0

)
. (17)

Equation (17) can be derived as a special case (corresponding, e.g., to letting a = 1, b = 2, ξ = 2r/w0, ζ = r0/w0)
of the identity24∫ ∞

0

ζ exp(−aζ2)Lm(bζ2)J0(ξζ)dζ =
(a− b)m

2am+1
exp

(
− ξ

2

4a

)
Lm

[
bξ2

4a(b− a)
]
, Re(a) ≥ 0. (18)

Application of the HT (12) to (14) then yields, via (17), the corresponding GL expansion for the FM field
distribution in (10), with the following mapping between the expansion coefficients:

A(0)
m = (−1)mA(π)

m . (19)

The above derivations clarify the relationship between the CM and FM beams in Refs. 14, 15 and the GL
expansions for the “flattened” and “inverted flattened” beams in Ref. 18, respectively. A natural question then
arises, as to whether the expansion coefficient mapping in (19) can be generalized to arbitrary values of the
twist-angle α, thereby allowing a GL representation for general BT hyperboloidal beams. Recalling that, from
(6), A(π/2)

m = 0, m > 0, one notes that the mapping

A(α)
m = (− cosα)mA(π)

m (20)

accounts correctly for the three notable cases α = 0 (FM), α = π/2 (GB) and α = π (CM). One is accordingly
led to speculate whether the GL expansion

Uα(r, 0) =
∞∑

m=0

A(α)
m ψm

(√
2r
w0

)
(21)

may hold for arbitrary values of the twist angle α. This turns out to be indeed the case, as checked by numerical
comparison against the BT reference solution in (3) (see Section 3.4 below). The analytic GL expansion in
(21) is obtained here for the first time, to the best of our knowledge, and sets the stage for a generalization, to
arbitrary values of the twist-angle, of the duality relation in (11), whose possible interpretations and implications
are discussed below.

3.1.3. Generalized Duality Relations: Functional and Optical Interpretations

We begin by considering a class of σ-parameterized modified HT operators defined as

H(σ)
w0

[F (r)] ≡ 4
w2

0 (1 + σ)

∫ ∞

0

r0dr0F (r0)J0

[
4rr0
√
σ

w2
0 (1 + σ)

]
exp

[
− (r2 + r20)(1−σ)

w2
0(1 + σ)

]
, σ ≥ −1. (22a)

For σ < −1, the integral in (22a) diverges for the beams of interest here (decaying as O[exp(−r2/w2
0)] in the

waist plane), and the following definition should be used:

H(σ)
w0

[F (r)] ≡ H(−σ)
w0

{
H(1)

w0
[F (r)]

}
= H(1)

w0

{
H(−σ)

w0
[F (r)]

}
, σ < −1. (22b)

‡Quite amusingly, as observed in Ref. 18, their functional form resembles the spatial behavior of the flattened beams
in Ref. 17.
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Figure 3. GL expansion coefficients A
(π)
m in (16) vs. summation index m, for different values of w0/R0. Continuous

curve: w0/R0 = 0.5; Dashed curve: w0/R0 = 0.25; Dotted curve: w0/R0 = 0.1.

The operator in (22) generalizes the ordinary HT in (12); it is readily verified that it reduces to the ordinary
HT for σ = 1, and to the identity operator for σ = −1. From (18), it then follows § the generalization of the
eigenproblem in (17),

H(σ)
w0

[
ψm

(√
2r
w0

)]
= (−σ)mψm

(√
2r
w0

)
. (23)

Application of the generalized HT (22) to the GL expansion in (21) reveals, via (23), the functional relation
between the field distributions at the waist plane pertaining to two BT hyperboloidal beams characterized by
generic values, α1 and α2, of the twist-angle,

Uα2(r, 0)
H(σ)

w0←→ Uα1(r, 0), σ = −cosα2

cosα1
. (24)

The generalized HT in (24) extends the duality relation in (11) to the most general case, and admits a suggestive
analytic interpretation in terms of (the cylindrical version of) a fractional Fourier operator of complex order.25–27

From the physical point of view, complex-order Fourier transform operators can be interpreted in terms of
propagation through a paraxial optical system described25–27 by a complex ABCD matrix ¶. For (22), the
ABCD matrix can be shown to be

[
A B
C D

]
=

⎡
⎢⎢⎣
i
(1− σ)
2
√
σ

k0w
2
0(1 + σ)
4
√
σ

− (1 + σ)
k0w2

0

√
σ

i
(1− σ)
2
√
σ

⎤
⎥⎥⎦ =

⎡
⎢⎣ cos

(πγ
2

) L

2
sin
(πγ

2

)
− 2
L

sin
(πγ

2

)
cos
(πγ

2

)
⎤
⎥⎦ . (25)

In (25), the parameter γ denotes the complex order of the transform, defined as25

γ ≡ −i 2
π

log

[
A

√
D

A
+ iB

√
−C
B

]
= 1 + i

log(σ)
π

. (26)

The admissible values of the complex order in (26) are illustrated schematically in Fig. 4, over the meaningful
(α1, α2)-range. It is observed that the real part can either be 1 or 0, whereas the imaginary part is generally

§Choosing a = 1, b = 1 + σ, ξ = 2
√

2σr/(w0

√
1 + σ), ζ =

√
2r0/(w0

√
1 + σ).

¶The reader is referred to Refs. 3,25–27 for alternative optical interpretations in terms of propagation through complex
Gaussian ducts, as well as through optical systems composed of self-imaging components and Gaussian apertures.
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Figure 4. Admissible values of the complex order γ (26) of the generalized HT operator in (22) relating the field
distributions of two BT hyperboloidal beams with generic twist-angles, α1 and α2 (cf. (24)). The real part of γ can either
be 1 or 0, whereas the imaginary part is generally nonzero, except along the two diagonals α1 = α2 (σ = −1, γ = 0) and
α1 = π−α2 (σ = 1, γ = 1), where the generalized HT operator in (22) reduces to the identity and ordinary HT operator,
respectively.

nonzero, except along the two diagonals α1 = α2 and α1 = π − α2 where the generalized HT operator in (22)
reduces to the identity and ordinary HT operator, respectively.

We are currently exploring the possibility of extending the above results, limited to the dominant eigenmode,
to higher-order (isotropic and nonisotropic) modes. If successful, such an extension would provide valuable phys-
ical insights and computational savings, unraveling the effects of the twist-angle parameter in the eigenspectrum
(see also the discussion in Section 4).

3.2. Paraxial Field Distribution: GL Beam Representation

From the GL expansion at the waist plane in (21), a paraxially-approximated expression for the field distribution
of a generic BT hyperboloidal beam at any point in space can readily be obtained as

Uα(r, z) =
∞∑

m=0

A(α)
m Ψm (r, z) , (27)

where Ψm (r, z) denote the standard GL beam propagators3

Ψm(r, z) =
w0

w(z)
ψm

[√
2r

w(z)

]
exp

[
i
k0r

2

2R(z)

]
exp {i [k0z − (2m+ 1)Φ(z)]} , (28)

which match the GL basis functions at the waist plane, Ψm(r, 0) = ψm(
√

2r/w0). In (28), w(z), R(z) and Φ(z)
denote the standard GB spot size, wavefront radius of curvature, and Gouy phase, respectively3

w(z) = w0

√
1 +

(
z

zR

)2

, R(z) = z +
z2

R

z
, Φ(z) = arctan

(
z

zR

)
, (29)

with the Rayleigh distance zR defined in (5). The GL beam expansion in (27) represents, together with the
generalized duality relation in (24), the main original result in this paper. We stress that, unlike the expression
in (3), the representation in (27) is valid at any point in space, within the limits of the paraxial approximation.
When evaluated on the fiducial surface z = Sα(r), it yields

Uα(r, Sα) ≈ (1 − i)
2

exp
[
ik0

(
L

2
+
r2 cosα

2L

)] ∞∑
m=0

(−i)mA(α)
m ψm

(
r

w0

)
, (30)
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where the approximation Sα ≈ L/2 has been used in (29). It is easily verified that (30) satisfies the phase-
conjugation symmetry relation in (7b). Moreover, by comparing (30) to (21), and recalling (24), one can easily
derive a generalized duality relation for the field distributions on the fiducial surfaces, in terms of the generalized
(complex-order) HT in (22),

Uα2(r, Sα2)

exp
(
i
k0r

2cosα2

2L

) H(σ)√
2w0←→ Uα1(r, Sα1)

exp
(
i
k0r

2cosα1

2L

) , σ = −cosα2

cosα1
. (31)

The relation in (31) (which is similar to that in (24), apart for the phase factors and a scaling by a factor
√

2 in
the GB spot size) generalizes completely the symmetry relations in (7).

3.3. Mirror Profile

The correction to be applied to the fiducial spheroidal mirror shape Sα in (2) is finally obtained by substituting
(30) into (8),

hα(r) ≈ 1
k0

arg

⎡
⎢⎢⎢⎢⎣exp

(
i
k0r

2cosα
2L

) ∞∑
m=0

(−i)mA(α)
m ψm

(
r

w0

)
∞∑

m=0

(−i)mA(α)
m

⎤
⎥⎥⎥⎥⎦.

(32)

It is readily verified that, in view of (17), the correction profile in (32) satisfies the duality relation in (9).
Truncation of the infinite series in (32) is not an issue, as further discussed below.

3.4. Representative Results

In order to validate and calibrate the proposed GL representations, we now move on to illustrating some rep-
resentative numerical results. In all examples below, all the relevant parameters were chosen as in Refs. 7, 15.
More specifically: L = 4km (length of the optical cavity, cf. Fig. 1), λ0 = 1064nm (wavelength of the laser
beam), w0 =

√
Lλ0/(2π) = 2.603cm (GB spot size at waist), R0 = 4w0 = 10.4cm (radius of the equivalent

aperture distribution at the waist plane). For the truncation of the GL series involved, a simple criterion was
utilized, requiring that the magnitude of the last retained M -th term is less than 0.1% of that of the leading
term, ∣∣∣∣∣A

(α)
M

A
(α)
0

∣∣∣∣∣ < 10−3. (33)

For the cases α = 0, π (see the dashed curve in Fig. 3), this yields M = 18. In view of the coefficient mapping in
(19), the convergence becomes faster as α approaches the critical value of π/2 (pure GB, for which one obtains
only one nonzero coefficient).

As a reference solution, we considered the BT integral representation in (3), where the radial integral was
computed analytically, and the angular integration was performed numerically utilizing the adaptive quadrature
routines of Mathematica R©.28 Some representative results for the field distribution are shown in Fig. 5. Specifi-
cally, Fig. 5(a) shows the GL-computed (via (30)) intensity distribution on the fiducial surface, for various values
of the twist-angle α, illustrating the gradual transition from Gaussian (α = π/2) to mesa (α = 0, π) profile. To
quantify the agreement with the reference solution, Fig. 5(b) shows the relative error

δUα(r) =

∣∣∣∣∣Uα(r) − U (BT )
α (r)

U
(BT )
α (r)

∣∣∣∣∣ , (34)

where the superfix (BT ) denotes the BT representation in (3) (where the complex constant Λ is determined by
enforcing the matching with the GL expansion at r = 0). The error (34) never exceeds 0.1%, over the region of
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Figure 5. BT hyperboloidal beam field distribution evaluated on the fiducial surface z = Sα(r), for different values
of the twist-angle parameter α. Optical cavity parameters: L = 4km, λ0 = 1064nm, w0 =

�
Lλ0/(2π) = 2.603cm,

and R0 = 4w0 = 10.4cm. (a) Intensity distribution computed via (30), using the truncation criterion in (33). (b)
Relative error in (34). Continuous curve: α = 0, π(M = 18); Dashed curve α = 0.1π, 0.9π(M = 17); Dotted curve:
α = 0.2π, 0.8π(M = 14); Dotted-dashed curve: α = 0.5π(M = 0).

significant field intensity (and drops below numerical precision for the α = π/2 pure GB case). This is consistent
with the truncation criterion in (33), which can therefore be used to control the accuracy.

The results pertaining to the mirror profiles are shown Fig. 6. Specifically, Fig. 6(a) shows the corrections hα

computed via (32), illustrating the gradual transition from the spherical (α = π/2) to the Mexican-hat (α = 0, π)
mirror profile. Figure 6(b) shows the absolute error

∆hα(r) =
∣∣∣hα(r) − h(BT )

α (r)
∣∣∣ (35)

with respect to the reference solution. The error (35) never exceeds 10−4λ0 over the significantly illuminated
portion of the mirror. For the LIGO design (λ0 = 1064nm), this corresponds to errors ∼0.1nm, well within the
typical fabrication tolerances.

4. CONCLUSIONS AND RECOMMENDATIONS

In this paper, the analytic structure of a family of hyperboloidal beams, introduced by Bondarescu and Thorne15

as a generalization of the mesa beams supported by Mexican-hat-shaped mirrors, has been investigated. Rapidly
converging expansions in terms of GL beams have been first introduced for the “extremal” cases of FM and CM
beams, capitalizing on results from Ref. 18. The representation has been then extended to the more general
BT hyperboloidal beams in Ref. 15, leading to a complete generalization (for the dominant eigenmode) of the
duality relations introduced in Ref. 14, based on fractional Fourier transforms of complex order. The above
results, numerically validated and calibrated against a reference solution independently-generated from Ref. 15,
provide a physically-insightful and computationally-effective parameterization of the beam and mirror profiles.
It is hoped that they may help addressing the optimization of the advanced LIGO optical cavities in a broader
perspective. In this framework, current and future research directions include:

i) Thorough parametric analysis of the family of BT hyperboloidal beams, as well as of other classes of flat-top
beams,3, 16, 17, 19, 20 aimed at finding optimal design criteria in terms of thermal-noise and tilt-instability
reduction.
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Figure 6. Nearly-spheroidal mirror profiles supporting the BT hyperboloidal beams in Fig. 5. (a) Correction hα to
the fiducial spheroid Sα in (2), computed via (32), using the truncation criterion in (33). (b) Absolute error in (35).
Continuous curve: α = π(M = 18); Dashed curve: α = 0.9π(M = 17); Dotted curve: α = 0.8π(M = 14); Dotted-
dashed curve: α = 0.5π(M = 0). The correction profiles pertaining to α = 0, 0.1π, 0.2π (not shown) differ merely by sign
from those pertaining to α = π, 0.9π, 0.8π, respectively (cf. (9)).

ii) Development of semi-analytic, problem-matched techniques for the computation of higher-order eigenmodes
in nearly-spheroidal-mirror optical cavities supporting general BT hyperboloidal beams. These techniques
should take advantage from global GL expansions, as compared to local discretization schemes presently in
use.8, 29

iii) Full extension of the duality relations in Ref. 14 to the family of BT hyperboloidal beams and supporting
mirrors. Such an extension, demonstrated here for the dominant eigenmode, should be based on the
“complexification” of the order of the involved Fourier transform operators. Finding such a one-to-one
mapping between eigenmodes with arbitrary values of the twist-angle parameter would provide important
physical insight and computational advantages.
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