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ABSTRACT 

The development of an excess of baryons over antibaryons due 

to CP and baryon number violating reactions during the very early 

stages of the big bang is calculated in simple models using the 

Boltzmann equation. 
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There are observational and theoretical indications that the local pre-

ponderance of baryons over antibaryons extends throughout the universe (at 

least since the time when the temperature T ~. J..OO HeV) with an average ratio 

of baryon to photon densities [1] nB/ny = YB ~ 10-9• If baryon number (B) were 

absolutely conserved in all processes, this small baryon excess must have been 

present since the beginning of the universe. However, many grand unified 

gauge models [2] require superheavy particles (typically with masses mx ~ 
1015 GeV = 1 TieV) which mediate baryon- and lepton-number (L) violating 

. 
interactions. Any direct evidence for these must presumably come from an 

observation of proton decay. In the standard hot big bang model [1], the 

temperature T (of light particle species) in the early universe fell with 

time t according to (taking nnits such that {i = c = k = 1) T ~ /~/2t where 

mp = (45/8n3)l/Z mg//~(T) ~ 5 x 1031~ HeV, and mg = G-l/Z ~ l0
19

GeV is the 

Planck mass, while g gives the effective number of particle species in equilibrium 

(~ = ~(1~) for each ultrarelativistic boson (nondegenerate fermion) spin 

·state). At temperatures T ;:: mX, B-violating interactions should have been 

important, and they should probably have destroyed or at least much diminijred 

any initial baryon excess. (This occurs even when, for example, B-L is 

absolutely conserved, since then an initial baryon excess would presumably be 

accon1panied by a lepton excess, so as to maintain the accurate charge neutral-

ity of the universe.) It is interesting (and in·some models necessary) to 

postulate that B-violating interactions in the very early universe could give 

rise to a calculable baryon excess even from an initially synnuetrical state • 
... 

For this to be possible, the rates for reactions producing baryons and anti-

baryons must differ, and hence the interactions r~sponsible must violate CP 

invariance~ We describe here a simple but general method for calculating B 

generation in any specific model.· We clarify and extend previous estimates [3]. 

1 
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Let M(i-+ j) be the amplitude for transitions from the state i to j, 

and let T be the CP conjugate of i (particles-+ antiparticles and spins 

reversed). Then CPT invariance demands M(i-+ j) = M(f -+i), while CP in­

variance would require M(i +j) = M(i + j) = M(j + i). Unitarity [ 4] 

(transitions to and from i must occur with total probability 1) demands 

L I M(i-+ j) 12 
= l j M(j + i) 12 ; combining this with the constraint of CPT 

j j 

invariance yields ( t·he sum over j includes all states and their antistates) 

I jM(j + i) 12 

j 
I jM(j +i)j

2 
• (1) 

j 

In thermal equilibrium (and in the ab.sence of chemical potentials represent-

ing nonzero conserved quantum numbers) all states j of a system with a 

given energy are equally populated. Then the last equality in (1) shows 

that transitions from these states (interactions) must produce i and i in 

equal numbers; thus no excess of particles over antiparticles may develop 

in a system in thermai equilibrium, even if CP is violated. In addition, 

the first equality in (1) shows that the total cross-sections for destroying 

particles and antiparticles must be equal. Since in thermal equilibrium no 

excess of i over i may develop, this implies that any initial excess must 

be destroyed. 

3+ 3 The phase space distribution fi(~) (number per unit cell d p d x [5]) 

for a ~pecies i develops with time (on average) according to a Boltzmann 

transport equation. A closed system with no external influences obeys 

Boltzmann's H theorem (which holds regardless of T (i.e. , CP) invariance 

[6)),so that from any initial state the fi(p) evolve (on average) to their 

equilibrium fonns for which f..,-(p) 
J. 

2 

fi(p), and no baryon excess may survive. 
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However, in an expanding universe, extra terms must be added to the Boltzmann 

equations, and if some participating particles are massive [7), a baryon ex-

cess may be generated; the relaxation time necessary to destroy the excess 

often increases faster than the age of the universe [8). 

Equation (1) requires that the total rates for processes with particle 

and antiparticle initial states be equal. CP violation allows the rates for 

specific conjugate reactions to differ; unitarity nevertheless requires 

(T = i(l-s), sst= sts = 1) [9): 

IM(i+j)j
2

- IMCi+j)j 2 
= 1Tijl 2

- 1Tjil 2 

= 2 Im[(L TTt) T:.]- ICL TTt) .. !2 

n ij Jl n l.J 
(2) 

Hence the fractional difference between conjugate rates must be at least 

O(a) where a is some coupling constant [10). Moreover, the loop diagrams 

giving CP violation must allow physical intermediate states n. (These loop 

corrections must usually also be B-violating to give a difference in rates 

h d 11 f . 1 (-:-) . h i ( ) [11) ) w en summe over a 1na states . J w1t a g ven - B • 

Let (b) be an "(anti)baryon" with B =(~) t· For simplicity we assume 

here that all particles (including photons) obey Maxwell-Boltzmann statistics 

and have only one spin state. In our first (very simple) model, we consider 

~) l 
CP, B violating 2++2 reactions involving b and a heavy neutral particle cj>; ., 

I 
we take their rates to be (this parametrization ensures unitarity and 

CPT invariance) 

3 
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(3) 

where ~-t O(a) measures the magnitude of CP violation. The number of 

a species i per unit volume ni = J d3;/(2~) 3 
fi(p) decreases with time even 

without collisions in an expanding universe according to (R is the Robertson-

Walker scale factor; dots denote time derivatives) 

dn. 
J_ 

dt 
(4) 

The n. are also changed by collisions; the (average) time development of the 
J_ 

!fl and baryon number (nB' = nb- b) densities is given by the Boltzmann equa-

tions (Y. = n1/n where Y is a massless particle; IM !2 
= O(a

2
)) 

J_ y 0 . 

+ ~(p1)'f"b(p2 )jM(bb+cj>cj>)j
2 - f<P(p1) fcj>(p2)(!MC<PcJ>+bb)j 2 

+ IM(cj>cj>+bb)j 2
)] 

+ 1;-Cp1) 1;Cp2 )(2IM(bb+bb)l 2 + jM(bb+cj>cJ>)I 2
) 

+ f<P(pl) fcj>(p2)(1M<<P<P+bb) 1
2 

- IMC<P<P+ bb) 12
)] 

(Sa) 

(Sb) 

where the operator A: represents suitable integration over initial and final 
(-) 

state momenta, We assume that the b undergo baryon-conserving collisions 
. 3 

with a frequency much higher than the O(a ) rate on which nB changes (as is 

presumahly the case in realistic models). They <1re therefore always in kinetic 

4 
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equilibrium with the rest of the universe, and hence Haxwell-Boltzmann dis-

tributed in phase space: 

(6) 

pis a baryon number chemical potential, which is changed only by B-violat-

ing processes, and would vanish if chemical equilibrium prevailed. Assuming 

YB << 1, one may use momentum conservation in (5) to write f(-)(p1) f(-)(p2) ~ 
b b 

· exp[-(E3+E4)/T) <\::}B) "" f:q(p3)f$q(p4) (~~/B), where f$q(p) = exp(-E/T) is 

the equilibrium distribution of ¢ at temperature T: The equilibrium ¢ number 

density n;q = T3/(2~2 )(m¢/T) 2 
K2 (m¢/T), where K2 is a modified Bessel func-

. eq 3 2 eq I 3/2 t1on [12] (as m¢ + 0, n<P +T /~ ; as T+ 0, n¢ + (m<PT 2~) exp ( -m¢/T)). 

Then substituting the parametrization (3) and performing phase space integra-

tions, (5) becomes 

(7a) 

-
YB ~ ny<oov> { cr,;r,) [Y~- ('l;q)

2
] 

1i7here (o 
0 
v) is the cross-section corresponding to IM.

0 
1
2 averaged over a flux of 

incoming particles in equilibrium energy distributions. Equation (7b) exhibits 

the necessity of deviation from equilibrium for B generation, and the destruc-

tion of YB in equilibrium. 

We now turn to a slightly more realistic but more complicated model in 

5 
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. (-); (-) 
rates ('yX = O(a)) which massive particles X decay to b with 

I 
I 

I M'(X + bb) 12 
1 M (bb + x) 12 

= (1 + n>Yx/2 

I M~(X + bb) 12 

; 
I 

I M(bb -+ X) 12 
(1- n)yx/2 

I 

I MI(X + bb) 12 I M!(bb + X) 12 
(1-:- n)yx/2 

I J_ -- 12 
I 

I MCbb + X) 1
2 

(1+ n)Yx/2 (8) M:<x + bb) 
I ! 

(-) 
Note that if X decay~ preferentially produce b, then CPT invariance 

(-) 
implies that b are preferentially destroyed in inverse processes; thus X 

decays and inverse decays (DID) alone would generate a net B even if all 

particles were in thermal equilibrium, in contravention of the theorem (1) 

[13}. However, the CP violation parameter (n-n) is O(a), and hence changes 

in nB from DID are of the same order as 2+ 2 scattering processes, such as 
(-) 

bb + bb ... It will turn out that s-channel exchange of nearly on-shell X in 
(-) (-) . . 
b b++bb cancels the DID contribution to YB so as to recover YB = 0 in 

thermal equilibrium, ]:n direct analogy with eqs. (5) and (7), and using the 
(-) 

assumption (6), the equation for the evolution of the X · number density 

n(-) - Y(-)n becomes 
.X X y 

(9) 

the corresponding equation for YX is obtained by charge conjugation 
(-) 

(Y +-r Y-, Y + -Y , n +-r n), The (rX) in (9) is the total X decay width 
X .. X B B 

multiplied by the time dilation factor mX/EX and averaged over the equilib-

rium X energy distribution [14]. The baryon concentration evolves according 

to 

6 
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2Y Yeq} 
B X 

-2-A34 {feq(p +p HIM'(bb+bb)) 2 
ny 12 X 1 2 · 

-1M' (bb+bb)l 2} 

where the first term is from DID (and does not separately vanish when 

Y(-) = Y~q), while th~ second two terms arise from 2+2 scatterings. The 
X , 

DID term accounts for sequential inverse decay and decay processes involving 
(-) 

real X: these are therefore subtracted from the true 2+2 scattering terms 

by writing IM'(i+j)j
2

= JM.(i+j)j
2

- JMRIX(i+j)l
2

, whereMRI/i+j) is the 

amplitude for i +j due to on-shell s channel X exchange. In the nar~ow X 

width approximation, lA1arx(i+j)l
2 

rv IM(i+ (~\1 2 
IMC<;c>+j)l

2
/rX; the pres­

ence of the rX denominator renders it O(a). According to the theorem (1), 

the CP violati7;1g difference of total rates lM(bb +bb)l 2
- !M(bb+bb)j 2 

= O(a3). 

Hence lM'(bb+bb)l
2

- IM'(bb+bb)l
2 

= l~x(bb-l-bb)l 2 - IMRIX(bb+bb)l
2 + O(a

3
) 

2 · - eq = O(a ), and the second term in eq. (10) becomes -2(fX)(n-n)YX, thereby 

elegantly cancelling the first term in thermal equilibrium. Finally, there-

fore, 

The differential equations (10) and (11) must now be solved with 

the initial condition YX(t=O) = Y~q(O), and possibly an initial baryon density 

7 
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YB. Figure 1 shows the.so1utions with guesses for parameters based on 

the SU(S) model [2] (m = 1615 GeV and 1014 GeV; a~ 1/40 (vector decays), X . 
-3 (-) 

or 10 (scalar decays)). If all X initially in thermal equilibrium de-

cayed with no back reactions, the YB generated would be simply n-n. For 

small a or large ~/rnp this upper limit is approached. (At small x = mX/T, 

series solution of equations (10) and (11) gives (YX + ~)/2 ~ 1-
5 ax /20; 

- 5 2 
YB ~ (n-n)ax /20, where a= mpfX/mX.) For {YX-Y )/2 ~ (n-Tj)a

2
x

8/160; 
X 

T << ~· baryon number is destroyed by 2 + 2 reactions with cr rv a
2

T
2 /~ 

roughly like YB(T) rv·exp[a2rnpT3/m~] [15], so that. YB +constant as T + 0, 

but if ~ is small, the final YB is much diminished from its value at higher 

T. The YB generated is always roughly linearly proportional to n-n, 

but is a sensitive function of mX/rnp and a; for realistic values of these 

parameters, a numerical solution is probably essential. 

According to equation (11), any baryon excess existing at the Planck 

time tp = 1/rnp should be diminished by inverse decays at T >> mX so that 
. 2 

YB(t)/YB(tp) "'exp[~a~rnp/T ]; any initial YB should be reduced by a factor 

"'exp[- rnp/mX] before.CP violating processes can generate YB at T ~ mX. 

B-violating 2 +2 scatterings at temperatures mp > T > IDj should reduce an 

initial YB by a factor '"~~exp[-mp JmX (vcr) dT]. One might expect that 

rnp 
( vcr) rv a 2 Jroi at high energies due to t-channel vector X exchange; however, 

the effective ( vcr) presumably relevant for the Boltzmann equation is rather 

(vcreff)"' a2/A.~ where the Debye screening length AD"' [/32a T]-
1

. In this 

appro:J):imation 2 +2 and higher multiplicity collisions are probably no more 

effective at destroying an initial YB than are inverse decays. 

We conclude therefore that B-violating reactions in the very early 

universe might well destroy any init~al baryon number existing around 

the Planck time (1/rnp), requiring subsequent Band CP-violating interactions 

8 
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to generate the obser:red baryon asynunetry. The methods described here {16] 

allow a calculation of the resulting baryon excess in any specific model; 

the simple examples considered suggest that the observed YB should place 

stringent constraints on parameters of the model. 
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Figure Captio~ 

The devellllipment of baryon nmnber density (solid curves) as a function 

of inverse temperature in the model of eq. (11) for various choices of 

parameters (unless otherwise indicated, a = 1/40 and mX = 1 ITeV:: 10
15 

GeV 

[17]). The dashed and dotted curves give (YX + Y )/2 and 
X 

(YX- YX}/2, respectively. In all cases we have taken the CP viola-

- -6 tion parameter. n - n = 10 • 
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