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Abstract

Let J be the set of inner functions whose derivative lies in Nevanlinna

class. In this note, we show that the natural map

F → Inn(F ′) : J /Aut(D)→ Inn /S1

is injective but not surjective. More precisely, we show that that the image

consists of all inner functions of the form BSµ where B is a Blaschke product

and Sµ is the singular factor associated to a measure µ whose support is

contained in a countable union of Beurling-Carleson sets. Our proof is based

on extending the work of D. Kraus and O. Roth on maximal Blaschke products

to allow for singular factors. This answers a question raised by K. Dyakonov.

1 Introduction

Consider the following curious differentiation procedure: to a Blaschke product

F (z) =
d∏
i=1

z − ai
1− aiz

of degree d ≥ 1, one can associate a Blaschke product B of degree d− 1 whose zeros

are located at the critical points of F (that is, at the zeros of F ′). It is a classical

result of M. Heins [10, Section 29] that this correspondence is a bijection, provided
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one considers F modulo post-composition with Möbius transformations (as not to

change its critical set) and B up to rotations (which preserve the zero set).

In this paper, we discuss an infinite degree analogue of this problem posed by

K. Dyakonov in [8, 9]. We need some definitions. An inner function is a holomorphic

self-map of the unit disk such that for almost every θ ∈ [0, 2π), the radial limit

limr→1 F (reiθ) exists and has absolute value 1. Let Inn denote the space of all inner

functions. We will also be concerned with the subclass J of inner functions whose

derivative lies in Nevanlinna class, i.e. which satisfy

lim
r→1

1

2π

∫ 2π

0

log+ |F ′(reiθ)|dθ <∞. (1.1)

Together with Jensen’s formula, (1.1) implies that the set of critical points {ci} of

F satisfies the Blaschke condition
∑

(1 − |ci|) < ∞, and is therefore the zero set of

some Blaschke product, which could be either finite or infinite.

According to the work of Ahern and Clark, if F ′ is a Nevanlinna class function,

then it admits an “inner-outer” decomposition F ′ = InnF ′ · OutF ′, see Lemma

3.2 below. The mapping F → InnF ′ from J to Inn generalizes the construction

outlined for finite Blaschke products above, however, in addition to recording the

critical set of F , InnF ′ may also contain a non-trivial singular factor. This feature

allows us to distinguish different Blaschke products with the same critical set. In

this paper, we prove the following theorem:

Theorem 1.1. Let J be the set of inner functions whose derivative lies in Nevan-

linna class. The natural map

F → Inn(F ′) : J /Aut(D)→ Inn /S1

is injective. The image consists of all inner functions of the form BSµ where B is

a Blaschke product and Sµ is the singular factor associated to a measure µ whose

support is contained in a countable union of Beurling-Carleson sets.

In [8], K. Dyakonov showed that InnF ′ is trivial if and only if F is a Möbius

transformation. After reading Dyakonov’s work, the author realized that a theorem

of D. Kraus can be reformulated as “F → InnF ′ is a bijection from Maximal Blaschke

Products in J to the space of all Blaschke Products.” The main focus of this paper

will be to understand the role of singular factors.
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1.1 Strategy

We now state several propositions which will be used to show Theorem 1.1. These

will be proved in Sections 5 and 6 after we develop the necessary tools.

Lemma 1.2 (Decomposition rule). An inner function BCSµ lies in the image of

F → InnF ′ if and only if its singular part Sµ does.

Therefore, to describe the image of our mapping, it suffices to determine which

singular inner functions Sµ can be represented as Sµ = InnF ′µ with Fµ ∈ J . If

such an Fµ can be found (which is necessarily unique), we say that the measure µ is

constructible.

Lemma 1.3 (Product rule). Suppose measures µj, j = 1, 2, . . . are constructible. If

their sum µ =
∑∞

j=1 µj is finite, then µ is also constructible.

Lemma 1.4 (Division rule). If a measure µ is constructible, then any ν ≤ µ is also

constructible.

Recall that a Beurling-Carleson set is a closed subset of the unit circle of zero

Lebesgue measure whose complement is a union of arcs
⋃
k Ik with

∑
|Ik| log 1

|Ik|
<∞.

To obtain a large supply of constructible measures, we use the following result of

Cullen [3]:

Lemma 1.5. Suppose the support of µ is contained in a Beurling-Carleson set. Then

S ′µ ∈ N .

Since Sµ divides S ′µ, the division rule implies that any measure µ supported on a

Beurling-Carleson set is constructible. By the product rule, any measure supported

on a countable union of Beurling-Carleson sets is also constructible. Theorem 1.1

states that any constructible measure is of this form. Moreover, Theorem 1.1 implies

that Cullen’s theorem is essentially sharp:

Corollary 1.6. Suppose µ is a measure on the unit circle with S ′µ ∈ N . Then, the

support of µ is contained in a countable union of Beurling-Carleson sets.
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On the other side of the spectrum, we have invisible measures. We say that a

finite positive singular measure µ is invisible if for any measure 0 < ν ≤ µ, there

does not exist a function Fν ∈ J with InnF ′ν = Sν . In Section 5, we will show

that any singular measure on the unit circle µ can be uniquely decomposed into a

constructible part and an invisible part: µ = µcon + µinv. To complete the proof of

Theorem 1.1, we give a criterion for a measure to be invisible:

Theorem 1.7. Suppose µ is a measure on the unit circle which does not charge

Beurling-Carleson sets. Then, it is invisible.

The reader may notice that the notion of an invisible measure coincides with

the description of cyclic inner functions in Bergman spaces given independently by

Korenblum [11] and Roberts [19]. To prove Theorem 1.7, we will first show that any

measure µ with modulus of continuity ω(t) ≤ Ct log(1/t) is invisible. To obtain the

full result, we use an iterative scheme based on a clever decomposition of a measure

that does not charge Beurling-Carleson sets into “t log 1/t”-pieces from [19].

We conclude the introduction by spending a moment to check that the map in

Theorem 1.1 is well-defined:

Lemma 1.8. If F ∈ J is an inner function, then for any Möbius transformation

T ∈ AutD, the Frostman shift T ◦ F ∈J and Inn(T ◦ F )′ = InnF ′.

Proof. From the chain rule, we have (T ◦ F )′(z) = T ′(F (z)) · F ′(z). Since log |T ′|
is bounded, T ◦ F ∈ J . The equality also tells us that the inner part Inn(T ◦ F )′

is divisible by InnF ′. Using T−1 in place of T , we see that InnF ′ is divisible by

Inn(T ◦ F )′. Hence, Inn(T ◦ F )′ = InnF ′ agree (up to a unimodular constant).

1.2 Notation

Let m denote the Lebesgue measure on S1, normalized to have unit mass and λD =
|dz|

1−|z|2 be the Poincaré metric on the unit disk. For a holomorphic mapping F : D→
D, we denote the associated conformal metric of constant curvature −4 by

λF :=
|F ′|

1− |F |2
.
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Given a Blaschke sequence C in the unit disk, let BC be the Blaschke product with

zero set C and FC denote the maximal Blaschke product with critical set C. In

order for BC and FC to be uniquely defined, we use the normalizations BC(1) = 1

and FC(0) = 0, F ′C(0) > 0 (or F
(n+1)
C (0) > 0 if C contains 0 with multiplicity n). For

a singular measure µ on the unit circle, we let Sµ be the associated singular inner

function.

2 Background on conformal metrics

Given an at most countable set C in the unit disk (counted with multiplicity), the

machinery of Kraus and Roth [12]–[17] seeks to construct a Blaschke product with

critical set C. If such a Blaschke product does not exist, then the machinery does not

produce anything. If there are Blaschke products with critical set C, the machinery

produces the optimal or maximal Blaschke product FC .

Instead of constructing FC directly, Kraus and Roth construct the conformal

metric F ∗CλD – the pullback of the Poincaré metric on the disk. We give a brief

overview of their construction. Following Heins, an SK-metric λ(z)|dz| is a conformal

pseudometric on a domain U whose density λ : U → [0,∞) is a continuous function

with curvature

kλ = −∆ log λ

λ2
≤ −4,

in the sense of distributions. According to [10, Section 13] or [15, Definition 4.11],

a collection Φ of SK-metrics is a Perron family if it is closed under modifications

and taking maxima. The first condition means that given a round disk D ⊂ U

and a metric λ ∈ Φ, the (unique) SK-metric MDλ which agrees with λ on U \ D
and has curvature −4 in D lies in Φ; while the second condition says that for any

λ1, λ2 ∈ Φ, their pointwise maximum max(λ1, λ2) is also in Φ. Heins proved that

if a Perron family is non-empty, then the supremum of all metrics in Φ is a regular

conformal metric of curvature −4, where regular means “C2 on the complement of

{z ∈ U : λ(z) = 0}.”
We also recall a complementary theorem due to Liouville [14, Theorem C] which

says that if a conformal metric λ(z)|dz| has constant curvature −4 and all its zeros
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ci have integral multiplicities, that is if

lim
z→ci

λ(z)

|z − ci|mi
= Li, for some 1 ≤ mi ∈ Z, 0 < Li <∞,

then λ(z)|dz| is necessarily of the form λF = F ∗λD for some holomorphic function

F : U → D. Furthermore, the function F is unique up to post-composition with a

Möbius transformation.

For a set C in the unit disk, let ΦC be the collection of all conformal metrics

vanishing on C. It clearly verifies the two axioms of being a Perron family on

the domain D \ C. Provided ΦC is non-empty, one obtains a metric of constant

curvature −4 and a holomorphic function FC which vanishes on C to the correct

order. Leveraging the maximality of the metric λFC , Kraus [12] proved that the

outer and singular inner factors of FC are trivial. In other words, FC is a Blaschke

product.

In the case when the critical set C is a Blaschke sequence, Kraus made the

fundamental observation that |BC |λD is an SK-metric which guarantees that the

Perron family ΦC is non-empty. (More generally, given a holomorphic function H

with ‖H‖∞ ≤ 1 and a metric λ of curvature −4, |H| · λ is an SK-metric.)

Further exploiting the lower bound λFC ≥ |BC |λD, Kraus obtained the following

remarkable result [12, Theorem 4.4]:

Theorem 2.1 (Kraus). Suppose C is a Blaschke sequence in the disk and λ is

a metric of constant curvature −4 which vanishes precisely at C with the correct

multiplicity. Then λ = λFC if and only if

lim
r→1

∫
|z|=r

log
λ

λD
dθ = 0. (2.1)

In Section 3, we will use ideas of Ahern and Clark to show that the above theorem

can be alternatively formulated as:

Corollary 2.2. Suppose C is a Blaschke sequence in the disk. An infinite Blaschke

product F ∈ J is the maximal Blaschke product associated to C if and only if the

singular factor of InnF ′ is trivial, i.e. if InnF ′ = BC.
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In order to generalize the arguments of Kraus and Roth to allow for singular

factors, we will need:

Lemma 2.3 (Fundamental Lemma). For any inner function F ∈J ,

λF ≥ | InnF ′|λD. (2.2)

In fact, λF is the smallest metric of constant curvature −4 with this property.

Note that the minimality of the metric λF implies that the map F → InnF ′ from

Theorem 1.1 is injective. As explained above, the inequality (2.2) holds for maximal

Blaschke products. In Section 4, we will deduce the general case by considering finite

approximations.

Using the factorization F ′ = InnF ′ ·OutF ′, one can rewrite (2.2) as

1− |F (z)|
1− |z|

≤ |OutF ′|, (2.3)

which was first proved by Dyakonov in [6, Theorem 2.1] using Julia’s lemma. The

reader may also consult [7, Corollary 2.1] for additional remarks. In view of the above

discussion, the fundamental lemma may be viewed as a refinement of Dyakonov’s

theorem.

2.1 Wedge of two metrics

Given two inner functions F,G ∈ J , consider the family ΦF,G of SK-metrics that

are pointwise less than min(λF , λG). This family is not empty: the metric | InnF ′| ·
| InnG′| ·λD is in it, as Lemma 2.3 shows. Taking the supremum of conformal metrics

in ΦF,G, we get a regular conformal metric λF∧G of constant curvature −4. Therefore,

it is the pullback of λD by a holomorphic function which we denote H = F ∧G.

To see that the outer part of H is trivial, i.e. that H is inner, we can use the

clever argument of Kraus [12, Proof of Theorem 1.2]. The relevant equation here is:[
|H ′|

|H| log 1
|H|
· | InnH|

]
· | InnF ′| · | InnG′| ≤ |H ′|

1− |H|2
, (2.4)
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where the expression in the square brackets is bounded above by λD since it is an

SK-metric (see [12, Lemma 2.17]). One finds a contradiction by examining the

behaviour of both sides as z → eiθ radially to a point on the unit circle at which

|OutH(eiθ)| < 1 and | InnH(eiθ)| = | InnF ′(eiθ)| = | InnG′(eiθ)| = 1.

2.2 Hull of a conformal metric

For an SK-metric κ, let Ψκ be the collection of all metrics of constant curvature −4

which are greater than κ and Φκ be the collection of all SK-metrics that are less

than all metrics in Ψκ. Since Φκ is a Perron family, its supremum is a metric κ̂ of

curvature −4. We call κ̂ the hull of κ. From the definition, it is clear that κ̂ is the

smallest metric of curvature −4 which exceeds κ. In this terminology, Lemma 2.3

says that λF is the hull of | InnF ′|λD.

3 Gap of a Nevanlinna function

By definition, the Nevanlinna class N consists of holomorphic functions on the unit

disk for which

sup
0<r<1

1

2π

∫
|z|=r

log+ |f(z)|dθ <∞, (3.1)

see for instance [5]. It is well known that (unless f is identically zero) this condition

is equivalent to the boundedness of

sup
0<r<1

1

2π

∫
|z|=r

∣∣log |f(z)|
∣∣dθ.

Since log |f(z)| is a subharmonic function, limr→1
1
2π

∫
|z|=r log |f(z)|dθ exists and is

finite. However, unlike the Hardy norms, it need not be the case that

lim
r→1

1

2π

∫
|z|=r

log |f(z)|dθ =
1

2π

∫
|z|=1

log |f(z)|dθ,

where in the integral in the right hand side, we consider the radial boundary values

of f which are known to exist a.e. To understand the cause of the discrepancy, we
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consider the canonical decomposition of f = B(S/S1)O into a Blaschke product, a

quotient of singular inner functions and an outer function:

B =
∏
i

− ai
|ai|
· z − ai

1− aiz
,

S/S1 = exp

(
−
∫
S1

ζ + z

ζ − z
dσζ

)
, σ ⊥ m,

O = exp

(∫
S1

ζ + z

ζ − z
log |f(ζ)|dmζ

)
.

Given an interval I on the unit circle, let rI denote its radial projection onto the

circle Sr = {z : |z| = r}. Fubini’s theorem and the dominated converge theorem

show:

Lemma 3.1.

gap(f) :=
1

2π

∫
|z|=1

log |f(z)|dθ − lim
r→1

{
1

2π

∫
|z|=r

log |f(z)|dθ
}

= σ(S1).

More generally, if I is an interval on the unit circle,

gapI(f) :=
1

2π

∫
I

log |f(z)|dθ − lim
r→1

{
1

2π

∫
rI

log |f(z)|dθ
}

= σ(I),

provided the endpoints of I do not charge σ.

3.1 Applications to inner functions

We now apply Lemma 3.1 to study inner functions with derivative in Nevanlinna

class. We first give a slightly different perspective on a classical theorem due to

Ahern and Clark:

Lemma 3.2 (Ahern-Clark). For an inner function F ∈J , its derivative admits a

BSO decomposition. In other words, the singular measure σ(F ′) ≥ 0.

Proof. By Lemma 1.8, it suffices to consider the case when F (0) = 0. Then |F ′(x)| ≥
1 on the unit circle, e.g. see [18, Theorem 4.15]. In view of the fundamental inequality

|F ′(rx)| ≤ 4|F ′(x)|, x ∈ S1, 0 < r < 1,
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of Ahern and Clark [1], the dominated convergence theorem shows∫
I

log+ |F ′(z)|dm− lim
r→1

∫
rI

log+ |F ′(z)|dm = 0,

for any interval I ⊂ S1. However, by Fatou’s lemma, the negative part of the

logarithm can only dissipate and therefore

gapI(F
′) =

∫
I

log |F ′(z)|dm− lim
r→1

∫
rI

log |F ′(z)|dm ≥ 0.

This completes the proof.

The following lemma relates the notions gap(F ′) and λF :

Lemma 3.3. Let I ⊂ S1 be an interval. If F ∈J then

1

2π

∫
I

log |F ′(z)|dθ = lim
r→1

1

2π

∫
rI

log
1− |F (z)|2

1− |z|2
dθ. (3.2)

Proof. From the contraction of the hyperbolic distance dD(F (0), F (z)) ≤ dD(0, z), it

follows that the quotient 1−|F (z)|2
1−|z|2 ≥ cF (0) is bounded below by a positive constant.

By the Schwarz lemma,

1

2π

∫
rI

max
(
log |F ′(z)|, log cF (0)

)
dθ ≤ 1

2π

∫
rI

log
1− |F (z)|2

1− |z|2
dθ.

Applying the dominated convergence theorem like in the proof of Lemma 3.2 gives

the ≤ inequality in (3.2). For the ≥ direction, we average Dyakonov’s inequality

(2.3) over z ∈ rI :

1

2π

∫
rI

log |OutF ′(z)|dθ ≥ 1

2π

∫
rI

log
1− |F (z)|2

1− |z|2
dθ.

The lemma follows after taking r → 1 since log |OutF ′(z)| is the harmonic extension

of log |F ′(z)| considered as a function on the unit circle.

The reader may compare the above lemma with [2, Theorem 3].
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3.2 Applications to conformal metrics

Lemma 3.4. Suppose F ∈J is an inner function for which

λF ≥ |BCSµ| · λD. (3.3)

Then, the singular measure σ(F ′) ≤ µ.

Proof. Let I ⊂ S1 be an interval. From the definition of λF ,∫
rI

log
λF

|BCSµ|λD
dm =

∫
rI

log

(
|F ′|(1− |z|2)

1− |F |2

)
dm−

∫
rI

log |BCSµ|dm.

By Lemmas 3.1 and 3.3, as r → 1, this tends to

0 ≤ −σ(F ′)(I) + σ(Sµ)(I),

at least if I is generic (there are extra terms if the endpoints of I charge any of these

singular measures).

Remark. The same conclusion holds under the seemingly weaker assumption λF ≥
|BCSµOh| where

Oh = exp

(∫
S1

ζ + z

ζ − z
h(ζ)dmζ

)
, h : S1 → R,

is an arbitrary outer function: the above computation results in σ(F ′) ≤ µ − h dm.

Since σ(F ′) ⊥ h dm are mutually singular, we have σ(F ′) ≤ µ and h ≤ 0.

Similar considerations show:

Lemma 3.5. If F,G ∈ J and the interval I ⊂ S1 is generic for both σ(F ′) and

σ(G′), then

lim
r→1

∫
|z|=r

log(λF/λG)dm = −σ(F ′)(I) + σ(G′)(I). (3.4)

In particular, if λF ≥ λG then σ(F ′) ≤ σ(G′).

Combining the above lemma with Theorem 2.1 gives Corollary 2.2.

Lemma 3.6. If λG is a metric of curvature −4 such that λG ≥ |H|λD for some

bounded holomorphic function H 6≡ 0, then G ∈J .
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Proof. Since H is a bounded holomorphic function, γ1 = limr→1

∫
rS1 log |H|dm is

finite. The condition λG ≥ |H|λD implies that the zeros of G′ form a Blaschke

sequence, which in turn implies that the integral γ2 = limr→1

∫
rS1 log |G′|dm is also

finite. An inspection of the inequality

0 ≤ lim inf
r→1

∫
rS1

log
λG
|H|λD

dm ≤ −γ1 + γ2 − lim sup
r→1

∫
rS1

log+ |G′|dm

then shows that G′ satisfies the Nevanlinna condition (3.1). It remains to prove that

the outer part of G is trivial, so that G is an inner function. If this were not the case,

then for a positive measure set of directions θ ∈ [0, 2π), lim supr→1 λG(reiθ) would

be finite. However, this contradicts the assumption λG ≥ |H|λD, since by the Lusin-

Privalov theorem, the radial limit of H(reiθ) is non-zero almost everywhere.

3.3 Injectivity and minimality

We now show the injectivity part of Theorem 1.1. If there were two functions F,G ∈
J with InnF ′ = InnG′ = BCSµ, then

λF ≥ λF∧G ≥ |BCSµ| · λD. (3.5)

Lemmas 3.4 and 3.5 imply that (F ∧ G)′ has the same inner part as F ′. From the

definition of curvature, ∆ log(λF/λF∧G) = 4(λ2F − λ2F∧G). Hence log(λF/λF∧G) is

subharmonic and non-negative, yet

lim
r→1

∫
|z|=r

log(λF/λF∧G)dm → 0, (3.6)

which forces log(λF/λF∧G) = 0. We deduce that λF = λF∧G = λG and therefore

F = G up to post-composition with a Möbius transformation by [15, Theorem 5.1].

Minimality is similar. Given an inner function F ∈ J , we now show that λF

is the smallest metric of constant curvature −4 that exceeds | InnF ′|λD. Following

Section 2.2, we consider the hull λ of the metric | InnF ′|λD. The inequalities

λF ≥ λ ≥ | InnF ′|λD (3.7)

reveal that λ has exactly the same zero set as λF (counted with multiplicity). In

particular, all zeros of λ have integral multiplicities. Proceeding like in the proof of

injectivity, we obtain limr→1

∫
|z|=r log(λF/λ)dm → 0 and λ = λF as desired.
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4 Stable approximations

In this section, we study approximations of inner functions by finite and maximal

Blaschke products. We are particularly interested in stable approximations where

the inner-outer decomposition is preserved in the limit:

Definition. Suppose {Fn} ⊂ J is a sequence of inner finctions which converge

uniformly on compact subsets of the disk to an inner function F . We say that Fn is

a (Nevanlinna) stable approximation of F if

InnF ′ = lim
n→∞

InnF ′n, OutF ′ = lim
n→∞

OutF ′n. (4.1)

In general, we have inequalities in one direction:

Theorem 4.1. Suppose {Fn} ⊂J is a sequence of finite Blaschke products which

converge uniformly on compact subsets of the disk to a holomorphic function F :

D → D. Also assume that the Bn = InnF ′n converge to an inner function I. Then

F ∈J and the following inequalities hold:

σ(F ′) ≤ σ(I), (4.2)

| InnF ′| ≥ |I|, (4.3)∫
S1

log |F ′|dm ≤ lim
n→∞

∫
S1

log |F ′n|dm. (4.4)

Furthermore, either all of the above inequalities are equalities or none of them are.

Proof. Step 1. Taking n→∞ in λFn ≥ |Bn|λD gives λF ≥ |I|λD. Lemma 3.6 shows

that F is inner with F ′ ∈ N . For any 0 < r < 1 and interval E ⊂ S1, we have∫
rE

log
λF
λD

dm ≥
∫
rE

log |I|dm.

Taking r → 1 and using Lemma 3.1 as well as the easy part of Lemma 3.3 shows

−σ(F ′)(E) = −
∫
E

log |F ′|dm+ lim
r→1

∫
rE

log |F ′|dm ≥ −σ(I)(E),

provided the endpoints of E do not charge σ(I) and σ(F ′). This proves the first

inequality (4.2).
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Step 2. Clearly, InnF ′ and I = lim(InnF ′n) have the same zeros in the unit disk

but may have different singular factors. However, it is easy to see that for singular

inner functions, one has the inequality S1 ≤ S2 if and only if σ(S1) ≥ σ(S2). The

“if” direction is obvious, while the “only if” direction follows from the identity

0 ≤ lim
r→1

∫
rE

log |S2/S1|dm = −σ(S2)(E) + σ(S1)(E),

valid for any generic interval E ⊂ S1 whose endpoints do not charge the measures

σ(S1) and σ(S2). This proves (4.3) and shows that the equality cases in (4.2) and

(4.3) coincide.

Since F ′n → F ′ uniformly on compact subsets of the disk, (4.3) is equivalent to the

inequality |OutF ′(z)| ≤
∣∣limn→∞OutF ′n(z)

∣∣. Setting z = 0 and taking logarithms

gives (4.4). However, if (4.4) is an equality, then by the maximum modulus principle,

we must have |OutF ′(z)| =
∣∣limn→∞OutF ′n(z)

∣∣ for all z ∈ D, since outer factors do

not vanish. This completes the proof.

Remark. After we prove the fundamental lemma (Lemma 2.3), the assumption that

the Fn be finite Blaschke products in Theorem 4.1 will no longer be necessary.

For some applications, we need to slightly vary the assumptions in the above

theorem:

Theorem 4.2. In the context of Theorem 4.1, suppose instead that the Bn converge

to a non-zero holomorphic function H : D → D with the inner-outer decomposition

H = I · O. Then, the inequalities (4.2)–(4.4) still hold. The equality case in (4.4)

implies that {Fn} is a stable sequence, in particular, the outer factor O = 1 is trivial

and the Bn converge to an inner function.

The proof of 4.2 is nearly identical to that of Theorem 4.1, so we only sketch

the details. Observe that since ‖H‖∞ ≤ 1, we have |O(z)| ≤ 1 and |I(z)| ≥ |H(z)|
for z ∈ D. Following Step 1 of the proof of Theorem 4.1, we obtain the inequality

λF ≥ |I · O|λD. We may still use Lemma 3.6 to conclude that F ∈J . The remark

after Lemma 3.4 allows us to conclude (4.2) and (4.3) in this more general case as

well. We may weaken (4.3) to | InnF ′| ≥ |H|, which is equivalent to (4.4). This

time, the equality case in (4.4) forces I = H and O = 1.
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Remark. In view of Lemma 3.6, if a sequence of finite Blaschke products Fn converges

to a function F 6∈ N , then H = lim(InnF ′n) must be 0.

Craizer’s argument from [4, Lemma 5.4] shows:

Lemma 4.3. Any inner function F ∈J admits a stable approximation.

Proof. Suppose ξ ∈ D is such that Tξ ◦ F is a Blaschke product, where Tξ = z−ξ
1−ξz .

We may choose a sequence Fn,ξ of finite Blaschke products converging to F so that

Tξ ◦ Fn,ξ is a sequence of partial products of Tξ ◦ F . Then, for any x ∈ S1, we have

|(Tξ ◦ Fn,ξ)′(x)| ≤ |(Tξ ◦ F )′(x)|,

see [18, Corollary 4.13]. It follows that

|(Fn,ξ)′(x)| ≤
[

1 + |ξ|
1− |ξ|

]2
|F ′(x)|,

which leads to the estimate∫
S1

log |F ′n,ξ(x)|dm ≤ 2 log
1 + |ξ|
1− |ξ|

+

∫
S1

log |F ′(x)|dm.

Since we can choose ξ arbitrarily close to 0 (e.g. see [18, Theorem 2.5]), we can

diagonalize to find a sequence Fn converging to F for which

lim sup
n→∞

∫
S1

log |F ′n(x)|dm ≤
∫
S1

log |F ′(x)|dm.

However, by Theorem 4.2, the lower bound is automatic and the sequence {Fn} is

stable.

Remark. Since translation f → Tξ ◦ f is continuous in L1(S1), the above proof shows

that log |F ′n| → log |F ′| converges in the L1-norm.

With the help of a Nevanlinna stable approximation Fn → F , we can deduce

(2.2) by taking n→∞ in λFn ≥ | InnF ′n|λD. Since minimality was proved in Section

3.3, the proof of the fundamental lemma (Lemma 2.3) is complete.

We can endow the space of analytic functions E = {f : f ′ ∈ N} with the strong

stable topology by specifying that fn → f if the fn converge uniformly on compact sets
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to f and log |f ′n| → log |f ′| in the L1(S1)-norm. By the above remark, finite Blaschke

products are dense in J , while Theorem 4.1 implies that the subset J ⊂ E is

closed (see the remark after the theorem). Another possible topology on E is the

weak stable topology where one only requires the weak-∗ convergence of measures

log |f ′n|dm→ log |f ′|dm. The above properties also hold in this topology.

4.1 Example of an unstable approximation

We now give an example of a sequence of finite Blaschke products which is not

Nevanlinna stable. Let Fn be the Blaschke product of degree n + 1 with zeros at

the origin and at zj = ej(2πi/n) · (1 − 1/n2), j = 1, 2, . . . , n. With the normalization

F ′n(0) > 0, the maps Fn converge to the identity since
∑n

j=1(1−|zj|)→ 0 as n→∞.

Recall that for x ∈ S1, one has the formula |F ′n(x)| = 1 +
∑n

j=1 Pzj(x), where Pz is

the Poisson kernel as viewed from z ∈ D, e.g. see [18, Theorem 4.15]. Computations

show ∫
Ij

log |F ′n|dm ≥
∫
Ij

log |1 + Pzj |dm & 1/n

where Ij consists of the points on the unit circle for which the closest zero is zj.

Hence, |OutF ′n(0)| = exp
∫
S1 log |F ′n|dm > c > 1 for some constant c independent

of n ≥ 1. Since the outer parts OutF ′n do not converge to the constant function 1,

neither can the inner parts InnF ′n.

A modification of this construction can be used to show the existence of a sequence

of finite Blaschke products Fn → z (and thus F ′n → 1) for which InnF ′n → Sδ1 and

OutF ′n → 1/Sδ1 .

5 Understanding the image

In this section, we discuss the image of the map F → InnF ′ and prove the decom-

position, product and division rules from the introduction. We also show that the

map F → InnF ′ is not surjective by exhibiting a large class of invisible measures. A

complete description of the image will be given in the next section.
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5.1 Wedging Fµ with FC

Theorem 5.1. (i) Suppose Fµ ∈ J is an inner function with InnF ′µ = Sµ. Let

Fµ,C = Fµ ∧ FC where C is a Blaschke sequence. Then, InnF ′µ,C = BCSµ.

(ii) Conversely, if Fµ,C ∈ J is an inner function with InnF ′µ,C = BCSµ, then

there exists an inner function Fµ with InnF ′µ = Sµ.

Proof. (i) Since λFC ≥ λFµ,C ≥ |BC |λFµ , the critical set of Fµ,C is precisely C with

the correct multiplicity; while the inequalities λFµ ≥ λFµ,C ≥ |BC |λFµ show that

σ(F ′µ,C) = µ. Hence InnF ′µ,C = BCSµ as desired.

(ii) Suppose Fµ,C ∈ J is an inner function with InnF ′µ,C = BCSµ. Let Fn be

some approximation of Fµ,C by finite Blaschke products (stability is not required in

this proof). For any 0 < r < 1, we can form the sequence of finite Blaschke products

Fn,r by removing the critical points from Fn that lie in the ball {z : |z| < r}, and

considering the maximal Blaschke product with the remaining critical points (with

the normalization Fn,r(0) = 0 and F ′n,r(0) > 0). For each r, we pick a subsequential

limit Fr of Fn,r. We may then extract a further subsequential limit F by taking

r → 1. By construction, we have

|BC |λF ≤ λFµ,C ≤ λF .

Since the limit F cannot be constant, by Hurwitz’ theorem, F has no critical points.

The above inequalities imply σ(F ′) = Sµ and therefore InnF ′ = Sµ.

5.2 Subseqences of stable sequences

In the next lemma, we show that any subsequence of a stable sequence is also stable:

Lemma 5.2. Suppose that FCn → Fµ1+µ2 is a stable sequence. Suppose that C1,n ⊂
Cn is such that BC1,n converges to Sµ1. Then, FC1,n → Fµ1.

Proof. Write Cn = C1,n∪C2,n. From the assumptions, BC1,n → Sµ1 and BC2,n → Sµ2 .

After passing to a subsequence, we can ensure convergence:

FC1,n → Fν1 , ν1 ≤ µ1,
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FC2,n → Fν2 , ν2 ≤ µ2.

The monotonicity of limits follows from Theorem 4.1.

For each n, we have λFCn ≥ |B1,n|λFC2,n
and therefore, after taking n → ∞, we

see that

λFµ1+µ2 ≥ |Sµ1|λFν2 .

As is now standard, we may deduce

µ1 + µ2 ≤ µ1 + ν2

by examining the equation

0 ≤ lim
r→1

∫
rI

log
λFµ1+µ2
|Sµ1|λFν2

dm.

Hence ν2 = µ2 (and similarly ν1 = µ1) as desired.

The above lemma has a number of consequences:

Corollary 5.3. If a measure µ is constructible, i.e. if Fµ exists, then all ν ≤ µ

are also constructible. Combining with Theorem 5.1, we see that the image of the

mapping F → InnF ′ is closed under taking divisors.

Indeed, given a stable approximation FCn to Fµ, it is not difficult to select C1,n ⊂
Cn so that BC1,n → Sν .

Corollary 5.4. If Fµ1 and Fµ2 are constructible, then Fµ1+µ2 is also constructible.

The proof relies on the Solynin-type estimate

λFC1
λFC2

≥ λFC1∪C2
λFC1∩C2

, (5.1)

valid when C1 and C2 are finite subsets of the disk counted with multiplicity. The

proof of (5.1) is essentially that of [16, Lemma 2.8], so we only sketch the details.

Consider the function

u(z) = log+

(
λFC1∪C2

λFC1∩C2

λFC1
λFC2

)
, z ∈ D.
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We claim that it is subharmonic and non-negative in D yet tends to 0 as |z| → 1.

This will show that it is equal to 0 identically. It is clearly non-negative by definition.

To show that u(z) is subharmonic, one can check that ∆u ≥ 0. We refer the reader

to [16, Lemma 2.8] for the computation. For the last statement, note that by Lemma

2.3, for a finite Blaschke product, the quotient λF/λD → 1 uniformly as |z| → 1.

Proof of Corollary 5.4. Choose approximations FC1,n → Fµ1 and FC2,n → Fµ2 by

finite Blaschke products. Making a small perturbation if necessary, we can assume

that the sets C1,n and C2,n are disjoint. Let Cn = C1,n∪C2,n be their union. Passing

to a subsequence, we may assume that FCn → Fµ for some measure µ on the unit

circle. By Solynin’s estimate, we have

log
λD

λFC1,n

+ log
λD

λFC2,n

≤ log
λD
λFCn

. (5.2)

Taking n→∞ gives

log
λD
λFµ1

+ log
λD
λFµ2

≤ log
λD
λFµ

. (5.3)

By examining averages over rI and taking r → 1, we discover that µ ≥ µ1 + µ2.

Applying Corollary 5.3 shows that the measure µ1 + µ2 is constructible.

Corollary 5.5. If S ′µ ∈ N then µ is constructible.

In [3], M. Cullen showed that this is the case when the support of µ is a Beurling-

Carleson set, that is, a closed subset of the unit circle of zero Lebesgue measure

whose complement is a union of arcs
⋃
k Ik with

∑
|Ik| log 1

|Ik|
<∞.

5.3 Invisible measures

Let µ be a finite positive measure on the unit circle, which is singular with respect

to the Lebesgue measure. We say µ is invisible if for any measure 0 < ν ≤ µ, there

does not exist a function Fν ∈J with InnF ′ν = Sν .

Lemma 5.6. Either the map F → InnF ′ is surjective or there exists an invisible

measure.
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Proof. Suppose Fµ is not constructible. Since the hull of the metric |Sµ| · λD defined

in Section 2.2 cannot vanish anywhere, it must be of the form λFν for some measure

ν. (Lemma 3.6 explains why Fν must be an inner function.) Applying Lemma 3.4,

we see that ν < µ since equality cannot hold. From the product rule (Corollary

5.4), it follows that the measure µ− ν is invisible. More precisely, if σ ≤ µ− ν was

constructible, then λFv > λFµ−σ/2 > |Sµ| · λD would contradict the definiton of ν.

Actually, the above argument shows a little more:

Theorem 5.7. A measure µ is invisible if and only if the hull of |Sµ| · λD is the

Poincaré metric. More generally, any measure µ can be uniquely decomposed into a

constructible part and an invisible part: µ = µcon + µinv, in which case, the hull of

|Sµ| · λD is λFµcon .

We are now in a position to prove the countable version of the product rule

(Lemma 1.3). Suppose we are given countably many constructible measures µj,

j = 1, 2, . . . such that their their sum µ =
∑∞

j=1 µj is a finite measure. We claim

that µ is constructible. According to Theorem 5.7, the hull of |Sµ| · λD is of the

form λFν for some measure ν ≤ µ. However, from Corollary 5.4, we know that

µ̃j = µ1 + µ2 + · · · + µj is constructible. This shows that ν ≥ µ̃j for any j, which

forces ν = µ.

5.4 A criterion for invisibility

In this section, we only consider conformal metrics with strictly positive densities,

that is, genuine metrics instead of pseudometrics. Given a positive continuous func-

tion u on Sr = {z : |z| = r}, 0 < r < 1, let Λr[u] denote the unique conformal metric

of curvature −4 on Dr = {z : |z| < r} which agrees with u on Sr. For the existence

and uniqueness of Λr[u], we refer the reader to [10, Section 12] or [15, Appendix].

For a non-vanishing SK-metric λ, we will sometimes write Λ[λ] = λ̂ for the minimal

metric of curvature −4 that exceeds λ.

Lemma 5.8. The operation u → Λr[u] is monotone in u, that is, if u ≥ v then

Λr[u] ≥ Λr[v].
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To see this, note that the function h = log+(Λr[v]/Λr[u]) is non-negative, sub-

harmonic and identically zero on Sr. As usual, to check that h is subharmonic, we

use the definition of curvature:

∆h = (4Λr[v]2 − 4Λr[u]2) · χv>u ≥ 0.

A similar argument shows:

Lemma 5.9. Let λ be a non-vanishing conformal metric on the unit disk of curvature

at most −4. For 0 < r < 1, the metric Λr[λ(reiθ)] is the minimal metric of curvature

−4 that exceeds λ on Dr. The family of metrics Λr[λ(reiθ)] is non-decreasing in r,

and the limit

λ̂ = Λ[λ] = lim
r→1

Λr[λ(reiθ)] (5.4)

is the minimal metric of curvature −4 that exceeds λ on D.

In general, it is difficult to evaluate Λr[u] explicitly. In the next lemma, we do so

when u is a constant function.

Lemma 5.10. Given any 0 < c ≤ 1, there exists a unique 0 < r′ ≤ r so that

Λr[c · λD] = L∗λD where L(z) = r′

r
· z is the linear map Dr → Dr′.

The lemma follows by observing that the metrics (Lr′)
∗λD are increasing in r′, so

there is a unique value of r′ to make the boundary values agree.

Corollary 5.11. We have

lim
C→∞

[
lim
r→1

Λr[C]

λD

]
→ 1,

uniformly on compact subsets of the unit disk.

With these preparations, we can now prove:

Theorem 5.12. Suppose µ is a singular measure on the unit circle which satisfies

µ(I) ≤ C|I| log |1/I| for any interval I ⊂ S1 and some constant C > 0. Then, µ is

invisible.
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Proof. From the product rule (Corollary 5.4), it is easy to see that a measure µ is

invisible if and only if ε · µ is for any ε > 0. This allows us to assume that µ(I) ≤
ε|I| log |1/I| which implies that the Poisson extension Pµ(z) ≤ ε(A log 1

1−|z| +B) for

some constants A and B. Hence, |Sµ|λD →∞ as |z| → 1. The theorem now follows

from the monotonicity principle (Lemma 5.8) and Corollary 5.11.

6 Roberts decompositions

In this section, we show that if µ does not charge Beurling-Carleson sets, then it

is invisible, that is, any measure 0 < ν ≤ µ cannot be in the image of the map

F → InnF ′. To upgrade the argument of Section 5.4, we will use the following

theorem which is implicit in the work of Roberts [19]:

Theorem 6.1. Suppose µ is a measure on the unit circle which does not charge

Beurling-Carleson sets. Given a real number c > 0 and integer j0 ≥ 1, µ can be

expressed as a countable sum

µ =
∞∑
j=1

µj, (6.1)

where each µj enjoys an estimate on the modulus of continuity:

ωµj(1/nj) ≤
c

nj
· log nj, nj := 22j+j0 . (6.2)

Here, ωµ(t) = supI⊂S1 µ(I), with the supremum taken over all intervals of length t.

It will be important for us that the measure µ admits infinitely many decomposi-

tions with different parameters c and j0, where c can be made arbitrarily small and

j0 arbitrarily large.

Sketch of proof. For each j = 1, 2, . . . , we can define a partition Pj of the unit circle

into nj equal arcs. Since nj divides nj+1, each next partition can be chosen to be

a refinement of the previous one. Given any measure µ on the unit circle, Roberts

defines the notion of the grating of µ with respect to the sequence of partitions (Pj).

This procedure decomposes µ =
∑∞

j=1 µj + ν so that (6.2) holds for each j, with
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the residual measure ν supported on the union of a Beurling-Carleson set and a

countable set.

To define µ1, consider all intervals in the partition P1. Define an interval to

be light if µ(I) ≤ (c/n1) · log n1 and heavy otherwise. On a light interval, take

µ1 = µ, while on a heavy interval, let µ1 be a multiple of µ so that the mass

µ1(I) = (c/n1) · log n1. Clearly, µ1 < µ. Consider the difference µ − µ1 and grate

it with respect to partition P2 to form the measure µ2, then consider µ − µ1 − µ2

and grate it with respect to P3 to form µ3, and so on. Continuing in this way, we

obtain a sequence of measures µ1, µ2, . . . where each next measure is supported on

the heavy intervals of the previous generation.

By construction, the bound (6.2) holds for all j. Inspection reveals that the

residual measure ν is supported on the set of points which lie in heavy intervals at

every stage. Up to a countable set, this coincides with S1 \L , where L is the union

of the light intervals of any generation. (This countable set consists of points on

the unit circle which are endpoints of two different light intervals.) In [19, Proof of

Theorem 2], Roberts gave a simple computation using the relation log nj+1 = 2 log nj

to show that S1 \L is a Beurling-Carleson set.

Now, if µ does not charge Beurling-Carleson sets, it does not charge points so it

cannot charge countable sets, which forces the residual measure to be 0.

The estimate (6.2) on the modulus of continuity is easily seen to be equivalent

to an estimate on the Poisson extension:

|Pµj | ≤ c′ · log
1

1− |z|2
, z ∈ B(0, 1− 1/nj). (6.3)

Here, the constant c′ can be taken to be cc1 for some c1 > 0. This is stated in [19,

Lemma 2.2].

We will also need a simple lemma on conformal metrics:

Lemma 6.2. (i) For any two singular measures µ1 and µ2 on the unit circle,

Λ
[
|Sµ1| · Λ

[
|Sµ2 |λD

]]
= Λ

[
|Sµ1 ||Sµ2| · λD

]
.

(ii) More generally,

Λ
[
|Sµ1| · . . .Λ

[
|Sµj−1

| · Λ[|Sµj |λD]
]
. . .
]

= Λ
[
|Sµ1 ||Sµ2| · · · |Sµj | · λD

]
.
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(iii) For µ =
∑∞

j=1 µj, we have

lim
n→∞

Λ
[
|Sµ1| · . . .Λ

[
|Sµj−1

| · Λ[|Sµj |λD]
]
. . .
]

= Λ
[
|Sµ|λD

]
.

Proof. (i) The ≥ direction follows from the monotonicity of Λ. For the ≤ direction,

it suffices to show that

|Sµ1| · Λ
[
|Sµ2|λD

]
≤ Λ

[
|Sµ1||Sµ2| · λD

]
or

|Sµ1| · Λr

[
|Sµ2|λD

]
≤ Λr

[
|Sµ1||Sµ2 | · λD

]
for any 0 < r < 1, cf. Lemma 5.9. To this end, we form the function

ur = log+

( |Sµ1 | · Λr

[
|Sµ2 |λD

]
Λr

[
|Sµ1||Sµ2| · λD

])
defined on Dr = {z : |z| < r}. Since it is subharmonic and vanishes on Sr = ∂Dr, it

must be identically 0. This proves the ≤ direction.

(ii) follows after applying (i) j − 1 times.

(iii) Let µ̃j = µ1 + µ2 + · · ·+ µj. By part (i), we have

|Sµ−µ̃j | · Λ
[
|Sµ̃j |λD

]
≤ Λ

[
|Sµ|λD

]
≤ Λ

[
|Sµ̃j |λD

]
.

Since |Sµ−µ̃j | → 1, it follows that Λ
[
|Sµ̃j |λD

]
are decreasing and converge to Λ

[
|Sµ|λD

]
.

The quantities on the left side also decrease to their limit. Therefore, the limits must

coincide.

With these preparations, we can now show Theorem 1.7:

Proof of Theorem 1.7. Step 1. Let µ = µj be the Roberts decomposition (6.1) with

parameters c and j0 to be chosen later. In view of the invisibility criterion (Theorem

5.7), it suffices to show that

λj := Λ1−1/n1

[
|Sµ1| · . . .Λ1−1/nj−1

[
|Sµj−1

| · Λ1−1/nj
[
|Sµj | · λD

]]
. . .

]
(6.4)
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is close to the hyperbolic metric at the origin, uniform in j ≥ 1. Indeed, by the

monotonicity properties of Λ, we have

λj ≤ Λ

[
|Sµ1| · . . .Λ

[
|Sµj−1

| · Λ
[
|Sµj | · λD

]]
. . .

]
, (6.5)

so that if λj is close to λD, then so must

Λ
[
|Sµ1||Sµ2 | · · · |Sµn|λD

]
.

Step 2. The estimate on the modulus of continuity of µj implies that |Sµj |λD ≥
λ
4/5
D on the circle S1−1/nj . Here, we use the fact that we can choose c′ < 1/10 in

(6.3). We claim that this implies that

Λ1−1/nj
[
|Sµj |λD

]
≥ (1/2)λD, on S1−1/nj−1

. (6.6)

Assuming (6.6), we have

|Sµj−1
| · Λ1−1/nj

[
|Sµj |λD

]
≥ λ

4/5
D , on S1−1/nj−1

.

We could then inductively show that λj ≥ (1/2)λD on S1−1/n1 . By Corollary 5.11,

this would mean that λj is very close to λD at the origin, provided n1 is large (this

is where we use that j0 can be made arbitrarily large.)

Step 3. Thus, we need to show that Λ1−1/nj
[
|Sµj |λD

]
≥ (1/2) · λD on S1−1/nj−1

.

Define ε > 0 by 1−1/nj = 1− ε so that 1−1/nj−1 = 1− ε1/2. There exists a unique

0 < ` < 1 so that Λ1−1/nj
[
λ
4/5
D
]

= L∗λD where L(z) = `z. Inspection shows that

1− ` � ε4/5. Therefore,

Λ1−1/nj
[
|Sµj |λD

]
≥ Λ1−1/nj

[
λ
4/5
D
]

=
`

1− |`z|2
≥ (1/2) · λD, on S1−1/nj−1

as desired.
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