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Using Machine Learning to Uncover 
Hidden Heterogeneities in Survey 
Data
christina M. Ramirez  1,4*, Marisa A. Abrajano2,4 & R. Michael Alvarez3,4

Survey responses in public health surveys are heterogeneous. The quality of a respondent’s answers 
depends on many factors, including cognitive abilities, interview context, and whether the interview 
is in person or self-administered. A largely unexplored issue is how the language used for public health 
survey interviews is associated with the survey response. We introduce a machine learning approach, 
Fuzzy Forests, which we use for model selection. We use the 2013 California Health Interview Survey 
(CHIS) as our training sample and the 2014 CHIS as the test sample. We found that non-English 
language survey responses differ substantially from English responses in reported health outcomes. 
We also found heterogeneity among the Asian languages suggesting that caution should be used when 
interpreting results that compare across these languages. The 2013 Fuzzy Forests model also correctly 
predicted 86% of good health outcomes using 2014 data as the test set. We show that the Fuzzy Forests 
methodology is potentially useful for screening for and understanding other types of survey response 
heterogeneity. This is especially true in high-dimensional and complex surveys.

A growing body of research in the United States notes that a lack of English-language proficiency is associated 
with disparities in health care outcomes1–3. It is clear that in language communities, limited English proficiency 
carries widespread implications for public health outcomes across patients from different racial and ethnic back-
grounds, and for different age cohorts. Given the potential ubiquity of public health outcome disparities in the 
U.S., it is critical that the way that language use is associated with health treatment and outcomes is adequately 
accounted for in analyses of public health surveys.

The typical public health survey, especially those that are conducted in-person or over the telephone 
(“interviewer-assisted”), can be thought of as a conversation between the subject and the interviewer4,5. Like 
any social interaction, the conversation about public health topics between subject and interviewer is suscepti-
ble to a variety of different contextual effects: environmental, inter-personal, and psychological. A male survey 
respondent might answer questions about his health or sexual activity differently when the interviewer is male, 
than if the interviewer is female; likewise, an African-American female survey respondent might provide different 
survey responses about her health or sexual activity to a white female interviewer than to an African-American 
female interviewer (see the review in6). Interview context can also matter when the survey does not involve an 
interviewer. In a self-completion survey, particularly those conducted online, the subject might complete the 
survey while engaged in other tasks, and not be as cognitively engaged in thinking about the survey questions as 
the researcher might desire7. Furthermore, how questions are framed, worded, and ordered are all associated with 
the quality and nature of the survey response5,8.

Heterogeneity in survey responses can take many forms, including differential response variability9 or a lack 
of measurement equivalence10. These same types of survey response issues will arise with respect to language. A 
growing body of research demonstrates the relationship between interview language and survey responses11–14. 
There are numerous ways in which the language of interview can affect a survey response. First, words, concepts, 
and framing of survey questions may take on different meanings when they are translated into various languages. 
Such variations can introduce heterogeneity into the survey response, and thus a respondent taking the survey 
in one language may respond quite differently to it than a respondent taking the survey in another language, as 
a result of these differences in meaning (subtle or not). Second, language may have a direct effect on individual 
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attitudes, and thus a question asked to one respondent in Spanish might invoke a different cognitive or attitudinal 
process than for those asked the same question in English14–16. Finally, a survey questionnaire might be poorly 
translated, so that the meaning of questions or responses may be dissimilar across different versions of the survey 
instrument. All of these processes will introduce significant heterogeneity into the survey response, and if han-
dled inappropriately, will result in misleading or biased inferences from these surveys.

Currently, survey methodologists lack a coherent theory of how language might be associated with attitudes or 
survey responses, despite mounting evidence that the language of interview is related to many survey responses14. 
Without strong theory to guide researchers who are concerned about language-of-interview effects in surveys, 
users of survey datasets do not know whether responses differ based on the language of the interview, nor how 
they may differ. We contend that researchers could use machine learning approaches to determine: (1) whether 
language-of-interview differences are prevalent in the survey data they are using; (2) how to specify those differ-
ences, and; (3) how those differences are associated with substantive inferences that might otherwise be ignored 
when researchers overlook language-of-interview effects. These issues are especially true when a large number of 
potential predictors exist or when these associations may be non-linear or interactive in nature.

Accounting for language differences is an especially important problem for studies using public health sur-
veys. While Ponce et al.17 have documented the association between English-language proficiency and public 
health survey responses, the following questions remain unanswered: how does a researcher using a public health 
survey determine whether language differences in survey responses exist? And if such differences do exist, how 
they should be incorporated into survey design, analysis and modeling. The goal of this paper is to provide guid-
ance to the first question, that we hope will then lead to future research to answer the second question.

While all of these artifacts and biases are well-documented in applied survey research, at present survey meth-
odologists and users of public health survey data lack readily established tools to diagnose a survey dataset for 
these biases. Although tools that can correct survey datasets for these biases have been developed recently18,19, this 
is an area of active research. In this paper, we argue that a new machine learning technique, the Fuzzy Forests, is 
a helpful tool that can be used to screen for certain types of survey response biases and heterogeneities in survey 
data. Fuzzy Forests extends Random Forests and is suited for detecting important (and potentially problematic) 
heterogeneities in survey response data. Unlike the more familiar Random Forest, Fuzzy Forests works well for 
variable selection when the features or covariates in the model are highly intercorrelated (which is typically true 
of survey data). Fuzzy Forests creates a weighted correlation network that separates the predictors into modules 
of similar covariates which can be further explored to determine which are the most important covariates within 
each module that are contributing to the outcome of interest. Using this technique can possibly lend insights into 
the associations between the survey questions and the survey response.

In this paper, we examine an important question in public health surveys, the predictors of poor health 
responses. We use Fuzzy Forests to determine whether differences exists in response to assessment’s about 
one’s own health, and how those differences could be included in a statistical model. Specifically, we use survey 
responses from the publicly available 2013 and 2014 California Health Interview Survey (CHIS), which is the 
largest health survey to be conducted in the United States. As we mentioned earlier, our analysis focuses on the 
survey item that asks respondents to evaluate their health, with responses ranging from excellent to poor. Our 
Fuzzy Forests analysis reveals that interview language is an important predictor of reported poor health.

Results
Supplementary Fig. 1 provides the results from the Fuzzy Forests analysis, where we show the relative feature or 
variable importance. We see that Fuzzy Forests, regardless of the module structure selected, found an interesting 
predictor in the 2013 CHIS data for overall general health: “INTVLANG”, or the interview language variable. 
Using various module structures, different values of mtry, and repeating the analysis with different seeds 1000 
times, we found that interview language consistently emerged among the top 20 predictors, and in fact, was 
among a small handful of factors that strongly predicted overall general health. We therefore view this finding 
to be quite robust, and one with important implications for use of the CHIS survey data. We return to this point 
later on in the paper.

Note that stage 1 of the Fuzzy Forests algorithm creates a weighted correlation network of the predictor var-
iables. This is an unsupervised learning step that does not take into consideration the outcome variable. Also, 
the correlation network is weighted such that we obtain approximate scale-free topology. Supplemental Fig. 2 
presents the hierarchical clustering dendogram of the module eigenfactors. The module eigenfactors are obtained 
by the first principle component of each module matrix. Supplemental Tables 1–9 show the variable names and 
labels that constitute each module that was constructed such that we had approximate scale-free topology. The 
modules appear to be clustered by topic. Supplemental Fig. 3 shows the “modplot”, or the percent “important” by 
each module. Modplots can help design future surveys as they show which modules are important in predicting 
the outcome, and thus could be used to design shorter (and less costly) surveys. The modules can also be used 
to help understand the mechanisms behind the results. In this case the Brown (listed in Supplemental Table 3) 
and the Black modules (listed in Supplemental Table 1) had the highest percentage of features that were impor-
tant in predicting the outcome. The Black module had variables related to disability, psychological distress and 
depression while the Brown module had variables that encompass languages spoken, English proficiency, food 
insecurity and welfare status.

Given these results, we conducted further analysis that examines the relationship between overall health status 
and language of interview in the 2013 CHIS data. Figure 1a presents the proportions of survey respondents who 
said they did not have good health (left panel), and the proportions who said they had good health (right panel), 
by language of survey interview. Note that there were too few respondents who completed the 2013 interview in 
Tagalog to include them in this analysis. As Fig. 1a clearly demonstrates, respondents who participated in the 
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English-language survey reported distinct health outcomes, relative to those who were interviewed in another 
language. In particular, those respondents interviewed in Spanish, Vietnamese, or Mandarin were more likely 
than those who were interviewed in English to report bad health outcomes. Importantly, we also see substantial 
heterogeneity across the the Asian languages regarding their health outcomes, suggesting that analysts of these 
data may want to avoid combining responses for those taking the interview in different Asian languages.

Of course, this relationship could arise for numerous reasons, in particular because of differences in socio-
economic status, or other general difficulties in life circumstances, that might be associated with the language 
that these respondents are most comfortable using. For confirmatory analysis, we created an indicator variable 
for chronic conditions such as diabetes, cardiovascular disease and high blood pressure. Subjects were coded 

Figure 1. (a) Health outcomes by interview language. Eng-English, Span-Spanish, Viet-Vietnamese. Kor-
Korean, Mand-Mandarin, Cant-Cantonese. Good health is defined as respondent who reported their general 
overall health was Excellent, Very Good or Good. Not Good health is defined as self-reported fair or poor 
overall general health. (b) Percent of subjects with chronic health conditions by interview language conditioned 
on subject reporting not good health. CVD: Cardiovascular Disease, HBP: High Blood Pressure.
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as having a chronic condition if they had any one or more of those conditions. Figure 1b shows the percent of 
subjects who had either diabetes, cardiovascular disease and/or high blood pressure stratified by interview lan-
guage conditioned on stating that they did not have good health. Interestingly, with the exception of those taking 

Figure 2. Percent of subjects who reported being disabled by interview language conditioned on not having 
good health.

Figure 3. (a) Weighted Logistic Regression MLE parameter estimates and 95% confidence interval using 2013 
CHIS data. (b) Weighted Logistic Regression MLE parameter estimates and 95% confidence interval using 2014 
CHIS data.
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the survey in Korean, respondents taking the survey in Asian languages were less likely to report that they had 
diabetes, cardiovascular disease or high blood pressure given that they stated they were not in good health.

Figure 2 shows the percent of subjects who reported bad health and also reported that they had a condition 
that rendered them disabled. Note that those who took the survey in English and reported that they did not have 
good health were more likely to report being disabled. These estimates once again demonstrate the existence of 
heterogeneity by interview language, as we see that important interview language differences arise in the reported 
disability and chronic conditions by health outcomes. As such, it is important to assess the association between 
interview language and these predictors.

We also performed a more traditional forward and backwards variable selection weighted logistic regres-
sion, as examples of what a researcher uncertain about which variables to include in a model might attempt. 
Techniques like forward and backward variable selection have been used in the public health literature, so they 
provide useful methods to compare with the performance of our Fuzzy Forests model (for examples from the 
public health literature see20–23). However, both approaches were very computationally intensive and time con-
suming, and worse, they produced inconsistent selection of variables. For example, forwards selection produced a 
model with 50 important covariates while backwards selection resulted in model with 209 covariates. In this case, 
importance was defined as having a p-value < 0.01. These findings did not come as a great surprise, since this is 
a known issue with these selection methods. However, while the overlap between the two methods in terms of 
variables selected were not exact, both methods found interview language to be important, further suggesting the 
salience of interview language was not due to random chance. We also note that identification required much less 
computational effort in our Fuzzy Forests model, relative to other estimation techniques.

Next, we conducted a two-stage model and estimated a survey-weighted logistic regression using the top 
predictors of the Fuzzy Forests controlling for age, income (as square root of income), gender identity, and eth-
nicity. Interview language still emerged as highly significant after controlling for potential confounders. These 
estimates provide us with even more confidence that it is an important predictor of reported overall general 
health. Figure 3a shows the parameter estimates, while Table 1 provides the odds ratios for the logistic regression 
estimates. Note that due to instability in the estimates from a sample size of 1, we deleted respondents taking the 
survey in Tagalog.

It is worth noting here, that in Fig. 3a and Table 1 we see evidence that the Fuzzy Forests model does not 
struggle with certain pathologies. For instance, note that we dropped the Tagalog respondents from these tra-
ditional analyses, because there were so few observations for them that logistic regression models were at best 
weakly-identified. We do not report those analyses here. However, including an indicator for taking the 2013 
CHIS interview in Tagalog, with exactly the same logistic regression specification as reported in Fig. 3b produces 
an nonsensical estimate of 7.67, with a standard error of 1.54 (the other coefficients are similar to those reported 
in the text for the model without the Tagalog indicator). Worse still, we are unable to recover a valid odds ratio 
estimate for Tagalog versus English. Our Fuzzy Forests analysis, including the Tagalog respondents, produced 
results that are similar to those reported in the paper. Also note that for some of the language use parameters 
where we lack enough information (e.g. Cantonese and Mandarin speakers), the logistic regression analysis pro-
duces estimates with high variance.

Parameter Label Point Estimate 95% Wald Confidence Limit

RACEHP2_P1 African American vs White 1.236 0.898 1.702

RACEHP2_P1 American Indian/Alaskan vs White 0.897 0.392 2.054

RACEHP2_P1 Asian vs White 1.643 1.160 2.327

RACEHP2_P1 Latino/a vs White 1.905 1.419 2.557

RACEHP2_P1 Other Single/Multiple Race vs White 1.486 1.059 2.085

SRSEX Female vs Male 0.919 0.775 1.090

SRAGE_P1 Self-Reported Age 1.000 0.994 1.007

INTVLANG Cantonese vs English 2.645 0.775 9.023

INTVLANG Korean vs English 2.441 0.894 6.663

INTVLANG Mandarin vs English 17.610 7.712 40.215

INTVLANG Vietnamese vs English 88.361 29.383 265.715

INTVLANG Spanish vs English 3.298 2.304 4.719

AD53_Difficulty Yes vs No 2.328 1.803 3.006

AD57_Physical Limits Yes vs No 2.052 1.507 2.796

Disabled Yes vs No 1.609 1.241 2.085

DSTRS_P1 Serious Psychological Distress 1.131 1.105 1.157

Chronic Disease Yes vs No 2.520 2.047 3.103

AK22_P Income (sqrt) 0.997 0.996 0.998

ACMDNUM Yearly Doctor visits 1.108 1.076 1.142

BMI_P Body Mass Index 1.037 1.022 1.053

Table 1. Odds Ratios and 95% Wald Confidence Limits for 2013 CHIS Data. Odds Ratios for weighted logistic 
regression.
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Finally, we validated the model using the 2014 CHIS data as our test set. Note that the model was trained using 
only the 2013 data and we correctly predicted good health outcomes 86% of the time using the 2014 CHIS data. 
Similarly, when we ran the survey weighted logistic regression using the same model built from 2013 data and 
tested using the 2014 survey data (see Table 2 and Fig. 3b), the resulting area under the ROC curve 0.858. Both of 
these robustness checks suggest that the model trained on the 2013 data produces a good fit and suggesting that 
the model is generalizable.

Discussion
Using Fuzzy Forests, we found response variations to outcome variables such as general health outcomes by 
interview language. These differences remained robust even after controlling for potential confounders such as 
age, gender, income and ethnicity. Our results, while focused on the associations between interview language 
and health outcomes, suggest that there may be cultural differences in the reporting of health outcomes, as docu-
mented in past research15,16. This should be studied further in subsequent research. Additionally, survey language 
needs to be examined and controlled for in other public health studies that offer respondents the opportunity 
to take a survey in different languages. Particularly in light of the fast-growing Latino population, researchers 
conducting surveys in both English and Spanish should be particularly aware of these cultural distinctions given 
that the Spanish speaking population in the United States is comprised of individuals hailing from more than 
ten different countries, each of whom have their own unique background and culture24. Even the process of 
translating an English survey into Spanish is no easy task — each Spanish speaker will have their own way of 
translating an item, and when concepts are especially complicated or prone to social desirability bias (such as 
health outcomes), the task becomes even more challenging. One potential solution, as suggested in the literature, 
is to use an anchoring vignettes approach25,26. In brief, this method asks survey respondents for a self-assessment 
of the concept being measured. Additionally, they would also be asked to assess several hypothetical individuals 
described by short vignettes on the same scale. Doing so could make it possible to create an interpersonally com-
parable measurement where the self-assessments could function as the “anchor”. One important caveat is that 
these vignettes should be structured such that the hypothesized ideal point should be unchanged when translated 
into different languages. This technique could then be applied to Asian languages.

As we discussed previously, analyzing the CHIS survey can be challenging given its complexity and size. 
Model selection in this case, using typical methods, can be time consuming and burdensome in that best subset 
selection may be intractable in a large data setting. Moreover, backwards and forwards selection yield differing 
sets of significant variables. In our analysis, the more traditional survey weighted logistic yielded different results 
with forwards and backwards selection. Both methods gave a large number of potential predictors, many of which 
were tied as they were given p values < 0.001. This could make it difficult for a researcher to choose among the 
potential predictors. We have demonstrated that Fuzzy Forests offers a relatively fast and computationally feasi-
ble alternative to weighted logistic variable selection and screening. This approach also shows the value in novel 
machine learning methods in complex survey settings in that it shows the network of relatedness of the potential 
predictors. Fuzzy Forests also has value over Random Forests in that it is known that Random Forests variable 
selection is biased under correlation27–29. If the correlation is unknown, Fuzzy Forests can yield relatively unbi-
ased variable importance while yielding insights into the data structure through it correlation network. Knowing 

Parameter Label Point Estimate 95% Wald Confidence Limit

RACEHP2_P1 African American vs White 1.245 0.858 1.808

RACEHP2_P1 American Indian/Alaskan vs White 1.678 0.679 4.148

RACEHP2_P1 Asian vs White 1.622 1.096 2.401

RACEHP2_P1 Latino/a vs White 1.594 1.135 2.239

RACEHP2_P1 Other Single/Multiple Race vs White 1.144 0.776 1.686

SRSEX Female vs Male 0.827 0.669 1.023

SRAGE_P1 Self-Reported Age 1.003 0.996 1.01

INTVLANG Cantonese vs English 8.396 3.958 17.810

INTVLANG Korean vs English 3.041 1.282 7.213

INTVLANG Mandarin vs English 3.262 1.060 10.036

INTVLANG Vietnamese vs English 23.387 12.772 54.516

INTVLANG Spanish vs English 3.351 2.370 4.738

AD53_Difficulty Yes vs No 2.344 1.719 3.197

AD57_Physical Limits Yes vs No 2.010 1.514 2.669

Disabled Yes vs No 1.741 1.318 2.300

DSTRS_P1 Serious Psychological Distress 1.140 1.112 1.169

Chronic Disease Yes vs No 2.467 1.967 3.095

AK22_P Income (sqrt) 0.997 0.996 0.998

ACMDNUM Yearly Doctor visits 1.101 1.069 1.133

BMI_P Body Mass Index 1.064 1.045 1.082

Table 2. Odds Ratios and 95% Wald Confidence Limits for 2014 CHIS Data. Odds Ratios for weighted logistic 
regression using 2014 CHIS data.
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which variables cluster together and which of those are important in prediction can yield insights into the mech-
anisms behind the response and could potentially help drive future surveys. The predictive accuracy in using the 
model trained on 2013 data to predict 2014 outcomes when the percentage of non-English interviews increased 
dramatically also help strengthen the argument that the model is generalizable and there indeed may be a cultural 
effect in interview language questions.

Using a machine learning approach like the Fuzzy Forests is useful when a researcher suspects that survey 
responses to important substantive questions may be quite different due to issues of survey implementation and 
there is concern that there may be correlation among the predictors. To the best of our knowledge, the work 
reported here is the first to use a machine learning approach like the Fuzzy Forests to find and analyze survey 
response heterogeneity that results from survey design issues. While other “fuzzy” estimation approaches have 
been used to study uncertainty in survey responses, those approaches are studying a different and quite specific 
problem, and use very different methodologies than the Fuzzy Forests. For example, Wagner et al. use a “fuzzy 
sets” approach to examine interval-response data from surveys30. Such survey response options are sometimes 
implemented when researchers wish to study respondent uncertainty or ambivalence, which is distinct from the 
the type of response heterogeneity we are studying in the CHIS data based on language-of-interview. For further 
elaboration of uncertainty in survey responses and interval-response data, see9 and31. We believe that machine 
learning tools like the Fuzzy Forests, which combine both unsupervised and supervised learning techniques, offer 
potential for the screening of important variable and the analysis of survey design and implementation effects on 
survey responses; for example, survey mode effects, or race and gender of interviewer effects.

Furthermore, our work has implications for survey design, in particular, for the process of developing and 
testing survey instruments. For example, a researcher who wanted to implement a survey in multiple languages 
could pilot test the instrument, and use Fuzzy Forests to test for survey response heterogeneities based on 
language-of-interview. The researcher could then examine the translation process that produced the multilin-
gual questionnaire, audit the training of the interviewers and their language skills, or undertake other analy-
ses to diagnose the source of the linguistic differences in survey response. Alternatively, those who implement 
large-scale survey projects (like the CHIS) could use Fuzzy Forests to find language-based heterogeneities, and 
use the results from those analyses to improve future implementations of these important surveys. Our approach 
could be used to achieve the type of “conceptual equivalence” (where the translated measures are shown to meas-
ure the same underlying theoretical concepts) which was the goal when the CHIS was originally translated into 
multiple languages32,33.

Fuzzy Forests is a novel machine learning algorithm that can automatically and systematically be used for 
screening important variables in complex surveys. This technique can provide insights that may not emerge when 
using more conventional methods. Fuzzy Forests are non-linear and nonparametric. Their construction takes into 
account interactions in a limited fashion, and eliminates the need for specifying them a priori. The final recursive 
feature elimination step allows for interactions between modules to be accounted for in the model. Of course, 
there are several caveats to this process. Random Forests are composed of regression trees, greedy algorithms 
that are not guaranteed to find a global optimum. Numerous tuning parameters exist in Fuzzy Forests, especially 
in the module formation. While our results appear to be robust to changes in the module structure, that is not 
guaranteed in every application. Supplemental Figs 4 and 5 gives the variable importance when using a random 
assignment to the modules as well as the variable importance plot from Random Forests respectively. Note than 
in all of these analyses, INTV (interview language) is among the list of important variables.

Researchers must also ensure that they are building enough trees in their forest, especially when there are 
many parameters. One needs to set the number of trees to ensure, with reasonable certainty, that with the mtry 
selected, each parameter has a chance of entering the model. One must also realize that the relative ranking must 
be taken with a grain of salt. These techniques help elucidate which set of variables are important in terms of 
prediction and also aid in interpretation via the correlation networks. However caution is warranted when using 
any machine learning algorithm, one must ensure that the scientific merit is there and not perform these analysis 
without a reasonable degree of caution for its generalization and due consideration to the tuning parameters.

Our analysis also shows that the application of Fuzzy Forests in the CHIS data uncovered important differ-
ences in public health survey outcome variables, associated with the language used by the interview respondents. 
Substantively, as an increasing number of surveys and polls are allowing respondents to use languages other 
than English to complete the survey, our findings show that researchers using those datasets should be aware 
of language-of-interview differences in their survey and try to control for these differences in their analyses. 

Language

2013 Interviews 2014 Interviews

N Percent N Percent

English 18,689 90.18 17,032 87.27

Spanish 1,707 8.24 1,619 8.30

Vietnamese 54 0.26 348 1.78

Korean 147 0.71 156 0.80

Cantonese 68 0.33 115 0.59

Mandarin 58 0.28 219 1.12

Filipino/Tagalog 1 0.00 27 0.14

Total 20,724 100.00 19,516 100.00

Table 3. Language of Interview in 2013–2014 CHIS data. Data from 2013–2014 CHIS surveys.
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Depending on the nature of the language-of-interview differences, researchers might allow for heterogeneities 
through interaction terms or by using independent estimation models for respondents using different interview 
languages. Additionally, our work adds to a growing body of research on language-of-interview effects in surveys; 
clearly, much more work needs to be done to better understand why language-of-interview effects occur, and 
when they are most likely to cause heterogeneities in survey responses. As survey and poll designs grow ever more 
complex, for example using combinations of contact and interview modes, tools like the Fuzzy Forest could to be 
used by applied researchers to help detect methodological and survey contextual variables and aid in understand-
ing how they are associated with survey responses.

Methods
cHiS. We use data from the publicly available California Health Interview Study (CHIS), a random-digit dial 
telephone survey (with about 20% of the subjects interviewed on mobile phones, 80% on landlines) that provides 
representative data on the state’s non-institutionalized population in all 58 counties in California. Details and 
publicly available data from the CHIS are available online, http://healthpolicy.ucla.edu/chis. The CHIS uses a 
multi-stage sampling design, so that it can achieve geographic coverage across the entire state and across many 
subpopulations (especially racial and ethnic minority groups in California). It is the largest health interview 
survey in the US and provides rich data on the health needs and health care usage of California residents. Given 
the fact that the CHIS contains detailed micro-data on public health, it is used in a large array of research studies, 
including smoking34, epilepsy35, domestic violence among sexual minorities36, childhood asthma37, hereditary 
cancer38, and many other public health issues. Specifically, we use the publicly available data from the 2013 and 
2014 CHIS Adult Surveys, which we treat as independent surveys; where the 2013 data is used for training and 
the 2014 data is used for testing. The 2013–2014 CHIS survey was fielded beginning in February 2013, running 
through the beginning of January 2013, with about half of the subjects interviewed in 2013 and the other half 
interviewed in 2014.

One of CHIS’s goals is to achieve widespread coverage of California’s ethnically and racially diverse popula-
tion. In fact, ethnic and racial minorities now comprise the majority of state’s population– Latinos are the largest 
at 38.8%, followed by Asian at 14.7% and Blacks at 6.5%. The CHIS utilizes different approaches in its sampling 
scheme to try to ensure widespread coverage of racial and ethnic minority groups, in particular by offering the 
survey in a multitude of languages, other than English: Spanish, Vietnamese, Korean, Cantonese, Mandarin, and 
Filipino/Tagalog. That the CHIS allows respondents to complete the interview in so many different non-English 
languages makes it an excellent laboratory for the study of language effects in large surveys. Table 3 provides 
summary statistics on language-of-interview in the 2013 and 2014 CHIS. In the 2013 data, the sample included 
20,724 respondents: 90.18% of those respondents completed the interview in English. That same year, 8.24% of 
the interviews were completed in Spanish (1,707 interviews), with 328 interviews completed in an Asian lan-
guage (1.58%). The 2014 data had slightly fewer total interviews (19,516), and fewer English-language interviews 
(87.27%). There were 1,619 Spanish interviews in the 2014 data (8.30%), and 865 Asian interviews (an increase in 
Asian interviews to 4.43%). While we would have preferred a larger number of non-English interviews in order 
to study variability in survey responses, the 2013–2014 CHIS data contains an ample number of non-English 
responses for our analysis.

The CHIS data are observational, and thus we must rely on the available features in the public-release datasets. 
To ensure that our analysis is estimating language differences in health outcome responses in these survey data, 
and not demographic population differences, we use a wide array of demographic and behavioral features from 
the CHIS. By including population and other health behavior features in the Fuzzy Forests model (as we describe 
below), we increase our confidence in our model’s ability to estimate language differences in the health outcomes 
that we analyze.

The data are de-identified and publicly available for download. The use of these data has been approved by 
the UCLA Institutional Review Board (IRB 18-001941), and by the Caltech Institutional Review Board (IRB 
18-0849). All of the terms of use of these data have been met.

We use the fuzzyforest package in R to estimate the Fuzzy Forests results reported in the paper. We use SAS 
Version 9.3 Proc Surveylogistic to estimate the weighted logistic regression results reported here.

fuzzy forests. As data becomes easier to generate, many fields are faced with an overabundance of informa-
tion39. In many cases there may be many more parameters than observations, and in a majority of applications 
these parameters are correlated (sometimes strongly correlated). With the recent development of sophisticated 
variable selection models, researchers now often use these methods to see which variables are important in pre-
dicting their outcome of interest. For a thorough review of variable selection models, see Chapter 3 in40. Variable 
selection has been used in many diverse fields to select features that increase predictive accuracy while reducing 
noise. One popular method of variable selection is the LASSO (least absolute shrinkage and selection operator). 
LASSO imposes a constraint, λ, on the size of the regression coefficients β in ordinary least squares (OLS regres-
sion). That is, LASSO imposes a constraint on the absolute value of the sum of the β’s, the higher the value of λ 
the more the coefficients are shrunk towards zero. The value of λ is often determined through cross-validation. 
In that way, LASSO is performing variable selection. Ridge regression is similar but it does not force the β’s to be 
zero. Under correlation, LASSO tends to randomly pick one from a set of highly correlated variables and sets the 
others towards zero. Further, the coefficients may not be unique under correlation. This may be undesirable when 
you want to produce a stable list of variables that are driving the signal when some of those variables might be cor-
related41,42. These models also require the user to specify the model a priori including any possible interactions.

Random Forests (RF)43, a popular machine learning technique, can handle situations where the number 
of parameters greatly exceed the number of observations. It is also non-linear and non-parametric. Variable 
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selection is not an integral part of the model development but is rather a consequence of the model building pro-
cedure. Importance is often assessed by examining the mean decrease in predictive accuracy when a variable is 
randomly permuted, thus distorting its signal to the outcome variable, and compared to its original form leaving 
all other variables unchanged. The idea is that if a variable is truly important to prediction, then the average accu-
racy should be diminished when that variables’ relationship with the outcome is destroyed. It is important to note 
that the accuracy is determined using the out-of-bag samples and averaged across all bootstrap samples. Further 
adding to its popularity, RF predictive accuracy often beats LASSO’s, especially when the features are correlated 
and the relationships among them non-linear. However, Random Forest (RF) variable selection is known to be 
biased when there is high correlation among the covariates27. When a dataset contains both correlated and inde-
pendent variables, the RF variable importance tends to rank the correlated variables higher than the independent 
variables; when there are a large number of variables, the independent variables are often assessed with little to no 
variable importance when there are a large number of covariates.

Fuzzy Forests is a novel machine learning algorithm that extends Random Forests and was specifically 
designed for feature (variable) selection when the features are highly correlated29,44. Fuzzy Forests are thus 
well-suited for high dimensional problems, where multicollinearity is an issue. Furthermore, Fuzzy Forests do 
not assume normality, and can be used where features or variables have interactive or nonlinear relationships with 
respect to the outcome of interest.

Fuzzy Forests works in two steps: first, a screening step where the features are clustered into modules by simi-
larities in their correlation structure such that features within each module are highly correlated and the modules 
are roughly independent from each other; second, a recursive feature elimination random forest selection step 
where the important features are selected from each module. Then, all the surviving features are placed in a final 
recursive feature elimination step. Supplemental Fig. 2 gives a graphical representation of Fuzzy Forests. Fuzzy 
Forests allows for two implementations of correlation or network structure: (1) Weighted Correlation Network 
Analysis (WGCNA), which allows the data to specify the modules (using the wff call); or (2) the analyst can spec-
ify the correlation modules themselves, if they have an a priori reason to justify the correlation modules (using the 
ff call). The latter function may be useful in surveys, like CHIS, that cluster questions of similar content by section.

CHIS contains a large number of features with possibly unknown interactions between these potentially cor-
related covariates and the outcome variables. As module formation is itself a tuning parameter, with WGCNA 
especially, we tried many different module structures (including random assignment and networks), and found 
similar end results for each approach. Ultimately we formed modules with a power of 7 to form approximate 
scale-free topology. We merged any module with more than 50 percent similarity. Supplemental Tables 1–9 list 
the variables that were included in each module, while Supplemental Table 10 lists the different sections of the 
CHIS surveys. Within each module, we used recursive feature selection to determine the top thirty five percent 
best predictor covariates in each module. The survivors from each module were then placed into a single recursive 
feature elimination forest and the top twenty predictors selected. We also tried numerous values for the number 
of variables for splitting at tree nodes (the mtry parameter), and found similar results for the different values we 
specified.

In this application, we used the outcome variable “General Health Outcome”, defined on a five-point scale: 
Excellent, Very Good, Good, Fair, and Poor. In the survey, this is survey item AB1. We then created a binary 
variable for good health outcomes which was coded as 1 if the person responded “Excellent, Very Good or Good” 
and 0 otherwise. We included all variables as potential predictors. Note that we drop respondents who took the 
CHIS in Tagalog, as in our validation analysis using logistic regression their inclusion leads to weakly-identified 
parameters.

Using the module structure created by constructing a weighted correlation network, we found the top twenty 
parameters for “good health outcomes” by Fuzzy Forests. We chose different random seeds and repeated the pro-
cess 1,000 times. For validation, we put the model into a traditional logistic regression with the survey weights 
and adjusted for known confounding variables such as age, sex, bad health outcomes (a binary indicator that 
equals 1 if a patient has been diagnosed with, taken medication for, or ever visited the Emergency Room for car-
diovascular disease, high blood pressure or (inclusive or) diabetes), difficulties in everyday life feeding/dressing or 
mentally, income and ethnicity. For further validation, we trained a Fuzzy Forests with the 2013 CHIS data only, 
and tested the model using the 2014 CHIS data as the test set.

Data availability
The data are available at the CHIS website http://healthpolicy.ucla.edu/chis/data/Pages/GetCHISData.aspx. 
The code required for replicating the results reported in this paper is available at: https://github.com/OHDSI/
FuzzyForest.
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