Supporting Information for Stereospecific Overman Rearrangement of Substituted Cyclic Vinyl Bromides: Access to Fully-Substituted α-Amino Ketones

Álvaro Velasco-Rubio, Eric J. Alexy, Makoto Yoritate, Austin C. Wright, and Brian M. Stoltz*

Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States

stoltz@caltech.edu

Table of Contents:

Materials and Methods	
List of Abbreviations	
General Procedure for Overman Rearrangement	SI 3
General Procedure A for the synthesis of 2-bromo-enones	SI 13
General Procedure B for the synthesis of 2-bromo-enones	SI 16
General Procedure for CBS reduction of ketones	SI 18
Product Derivatization	SI 27
X-ray Crystal Structure Info for 8	SI 31
References	SI 43
NMR and IR Spectra of New Compounds	SI 44

Materials and Methods

Unless otherwise stated, reactions were performed in flame-dried glassware under an argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried by passage through an activated alumina column under argon. Reaction progress was monitored by thin-layer chromatography (TLC) or Agilent 1290 UHPLC-MS. TLC was performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and visualized by UV fluorescence quenching, panisaldehyde, or KMnO₄ staining. Silicycle SiliaFlash® P60 Academic Silica gel (particle size 40-63 nm) was used for flash chromatography. The (Z)-enol carbonates were purified by preparative LC on a Teledyne Isco ACCQPrep HP125; column: C-18, 100 Å, 5 µm, ID 20 mm. ¹H NMR spectra were recorded on Varian Inova 500 MHz and Bruker 400 MHz spectrometers and are reported relative to residual CHCl₃ (δ 7.26 ppm). ¹³C NMR spectra were recorded on a Varian Inova 500 MHz spectrometer (125 MHz) and Bruker 400 MHz spectrometers (100 MHz) and are reported relative to CHCl₃ (δ 77.16 ppm). Data for ¹H NMR are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, sept = septuplet, m = multiplet, br s = broad singlet, br d = broad doublet. Data for ${}^{13}C$ NMR are reported in terms of chemical shifts (δ ppm). IR spectra were obtained by use of a Perkin Elmer Spectrum BXII spectrometer or Nicolet 6700 FTIR spectrometer using thin films deposited on NaCl plates and reported in frequency of absorption (cm⁻¹). Optical rotations were measured with a Jasco P-2000 polarimeter operating on the sodium D-line (589 nm), using a 100 mm path-length cell. High resolution mass spectra (HRMS) were obtained from Agilent 6200 Series TOF with an Agilent G1978A Multimode source in electrospray ionization (ESI+), atmospheric pressure chemical ionization (APCI+), or mixed ionization mode (MM: ESI-APCI+). Reagents were purchased from commercial sources and used as received unless otherwise stated.

List of Abbreviations:

ee – enantiomeric excess, SFC – supercritical fluid chromatography, TLC – thin-layer chromatography, IPA – isopropanol

To a stirred solution of the alcohol **2** (0.2 mmol, 1.0 equiv) in THF (1 mL) at -78 °C under a nitrogen atmosphere was added slowly a solution of LiHMDS (40 mg, 0.24 mmol, 1.2 equiv) in THF (1 mL). The mixture was stirred at -78 °C for 30 min before adding a solution of (*E*)-2,2,2-trifluoro-*N*-(4-methoxyphenyl)acetimidoyl chloride¹ (62 mg, 0.26 mmol, 1.3 equiv) in THF (1 mL). The reaction was allowed to reach room temperature and stirred for 30 min. The reaction was then filtered through a silica plug (pretreated with Et₃N) eluting with 10% Et₃N in Et₂O. Following solvent removal in vacuo the crude residue was dissolved in 2 mL of xylenes and K₂CO₃ (28 mg, 0.2 mmol, 1.0 equiv) was added. The reaction was then heated to 130 °C for 18 h, allowed to cool to ambient temperature, and directly purified by silica gel column chromatography to provide the desired product.

(S)-N-(6-bromo-3,4-dihydro-[1,1'-biphenyl]-1(2H)-yl)-2,2,2-trifluoro-N-(4methoxyphenyl)acetamide (3a)

Purified by column chromatography (10% EtOAc in Hexanes) to provide the desired product as an amorphous white solid (41 mg, 45% yield); 96% ee, $[\alpha]_D^{25}$ 181.7 (c 0.70, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.21 (m, 6H), 7.00 (dd, J = 8.9, 2.6 Hz, 1H), 6.80 (dd, J = 8.7, 3.0 Hz, 1H), 6.60 (dd, J = 8.8, 3.0 Hz, 1H), 6.51 (dd, J = 4.9, 3.1 Hz, 1H), 3.77 (s, 3H), 2.88 (d, J = 12.0 Hz, 1H), 2.35 (d, J = 10.1 Hz, 1H), 2.28 – 2.17 (m, 1H), 2.12 – 2.01 (m, 1H), 1.66 – 1.56 (m, 1H), 1.31 – 1.18 (m, 1H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 159.7, 156.6 (q, J = 34.5 Hz), 139.7, 136.0, 132.4, 132.4, 129.6, 128.3, 127.7, 127.2, 124.1, 116.3 (q, J = 289.8 Hz), 113.6, 112.8, 73.1, 55.4, 35.5, 27.62, 18.5; ¹⁹F NMR (282 MHz, Chloroform-*d*) δ –67.1; IR (Neat film, NaCl) 3443, 2931, 1697, 1509, 1250, 1200, 1177, 1035, 760, 732, 698 cm⁻¹; HRMS (MM:

SI4

ESI-APCI+) m/z calc'd for C₂₁H₂₀BrF₃NO₂ [M+H]⁺: 454.0629, found 454.0605; SFC conditions: 10% IPA, Chiralpak OJ-H column, λ =210 nm, t_R (min): minor = 4.68, major = 5.18.

(*S*)-*N*-(1-allyl-2-bromocyclohex-2-en-1-yl)-2,2,2-trifluoro-*N*-(4-methoxyphenyl)acetamide (3b)

Purified by column chromatography (5% Et₂O in hexanes) to provide the desired product as a yellow solid (63 mg, 75% yield); 95% ee, $[\alpha]_D^{25}$ 124.0 (c 0.70, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 (d, *J* = 8.8 Hz, 1H), 7.10 (dd, *J* = 8.7, 2.7 Hz, 1H), 6.88 (ddd, *J* = 22.0, 8.7, 3.0 Hz, 2H), 6.37 (dd, *J* = 5.8, 2.9 Hz, 1H), 5.53 – 5.39 (m, 1H), 5.00 – 4.92 (m, 2H), 3.85 (s, 3H), 2.79 – 2.67 (m, 1H), 2.48 (dd, *J* = 13.7, 5.6 Hz, 1H), 2.41 – 2.25 (m, 1H), 2.19 – 2.02 (m, 2H), 1.95 – 1.74 (m, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 160.2, 156.0 (q, *J* = 34.3 Hz), 134.5, 133.0, 132.7, 132.3, 128.4, 124.9, 118.5, 116.1 (q, *J* = 289.5 Hz), 113.7, 113.5, 67.4, 55.5, 44.0, 33.0, 26.9, 20.5; ¹⁹F NMR (282 MHz, Chloroform-*d*) δ –67.4; IR (Neat film, NaCl) 3076, 2937, 3838, 1703, 1310, 1444, 1252, 1201, 1152, 1032, 922, 838, 739 cm⁻¹; HRMS (MM: ESI-

APCI+) m/z calc'd for C₁₈H₂₀BrF₃NO₂ [M+H]⁺: 418.0629, found 418.0609 ; SFC conditions: 5% IPA, Chiralpak OJ-H column, λ =210 nm, t_R (min): minor = 3.26, major = 3.79.

Procedure for Preparatory Scale Preparation of 3b

A solution of alcohol **2b** (4.62 mmol, 1.0 g) dissolved in 23 mL of THF was cooled to -78 °C in a dry-ice/acetone bath. A solution of LiHMDS (6.06 mmol, 1.440 g) in 20 mL THF was then added slowly, and the resulting mixture stirred at -78 °C for 30 min. A solution of (*E*)-2,2,2trifluoro-*N*-(4-methoxyphenyl)acetimidoyl chloride in 10 mL of THF was then added slowly, and the reaction allowed to slowly warm to room temperature and continued for 30 min. The crude reaction mixture was then filtered through a short silica plug (pretreated with Et₃N) eluting 10% Et₃N in Et₂O. Following solvent removal in vacuo, the crude residue was redissolved in 20 mL xylenes and K₂CO₃ (4.62 mmol, 637 mg) was added. The reaction was then heated to 130 °C for 18 h, allowed to cool to ambient temperature, and directly purified by silica gel column chromatography (5% Et₂O in hexanes) to provide the desired product as a yellow solid (1.6 g, 83% yield)

(*R*)-*N*-(2-bromo-1-ethylcyclohex-2-en-1-yl)-2,2,2-trifluoro-*N*-(4-methoxyphenyl)acetamide (3c)

Purified by column chromatography (10% Et₂O in hexanes) to provide the desired product as a brown oil (69 mg, 85% yield); 96% ee, $[\alpha]_D^{25}$ 137.3 (c 0.70, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.44 (ddd, J = 8.8, 2.6, 1.2 Hz, 1H), 7.08 (dd, J = 8.7, 2.7 Hz, 1H), 6.89 (dd, J = 8.8, 3.0 Hz, 1H), 6.83 (dd, J = 8.7, 3.0 Hz, 1H), 6.40 (dd, J = 5.6, 3.1 Hz, 1H), 3.84 (s, 3H), 2.73 (dddd, J = 13.2, 11.8, 4.6, 1.2 Hz, 1H), 2.42 – 2.33 (m, 1H), 2.16 – 2.05 (m, 2H), 1.91 (dp, J = 14.1, 5.0 Hz, 1H), 1.81 – 1.60 (m, 2H), 1.27 – 1.17 (m, 1H), 0.75 (t, J = 7.5 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 160.0, 156.1 (q, J = 34.2 Hz), 135.0, 132.8, 132.3, 128.5, 125.0, 116.2 (q, J = 289.8 Hz), 113.6, 113.2, 68.2, 55.4, 32.8, 32.5, 26.9, 21.2, 9.4; ¹⁹F NMR (282 MHz, Chloroform-*d*) δ –67.3; IR (Neat film, NaCl) 3390, 2970, 2941, 2838, 1703, 1697, 1505, 1252, 1200, 1179, 1166, 1033, 839, 800, 736, 680, 625 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₇H₂₀BrF₃NO₂ [M+H]⁺: 406.0629, found 406.0632; SFC conditions: 3% IPA, Chiralpak AD-H column, λ =210 nm, t_R (min): minor = 6.03, major = 6.58.

(R)-N-(2-bromo-1-methylcyclohex-2-en-1-yl)-2,2,2-trifluoro-N-(4-

methoxyphenyl)acetamide (3d)

Purified by column chromatography (10% Et₂O in hexanes) to provide the desired product as a colorless oil (75 mg, 95% yield); 97% ee, $[\alpha]_D^{25}$ 77.1 (c 0.50, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.51 (dd, *J* = 8.8, 2.7 Hz, 1H), 7.05 (dd, *J* = 8.7, 2.7 Hz, 1H), 6.91 (dd, *J* = 8.8, 3.0 Hz, 1H), 6.85 (dd, *J* = 8.6, 3.0 Hz, 1H), 6.18 (dd, *J* = 6.5, 2.1 Hz, 1H), 3.84 (s, 3H), 2.86 – 2.75 (m, 1H), 2.34 (dddd, *J* = 17.4, 11.8, 5.6, 2.4 Hz, 1H), 2.14 – 2.06 (m, 1H), 1.97 (dtd, *J* = 12.4, 3.4, 1.6 Hz, 1H), 1.87 (dt, *J* = 10.0, 4.8 Hz, 1H), 1.80 – 1.67 (m, 1H), 1.04 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 160.0, 155.8 (q, *J* = 34.6 Hz), 132.4, 131.7, 131.1, 128.7, 127.2, 116.1 (q, *J* = 289.4 Hz), 113.7, 113.5, 66.3, 56.8, 33.5, 27.1, 26.1; ¹⁹F NMR (282 MHz, Chloroform-*d*) δ –67.7; IR (Neat film, NaCl) 3435m 2941, 2838, 1697, 1510, 1201, 1182, 1149, 1032, 840, 738, 687 cm⁻¹. HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₆H₁₈BrF₃NO₂ [M+H]⁺: 392.0473, found 392.0450 ; SFC conditions: 10% IPA, Chiralpak OJ-H column, λ =210 nm, t_R (min): minor = 3.41, major = 4.11.

(S)-N-(2-bromo-1-phenethylcyclohex-2-en-1-yl)-2,2,2-trifluoro-N-(4-

methoxyphenyl)acetamide (3e)

Purified by column chromatography (Et₂O 10% in hexanes) to provide the desired product as a yellow foam (68 mg, 70% yield); 97 % ee, $[\alpha]_D^{25}$ 123.2 (c 0.70, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.43 (dd, J = 8.2, 2.1 Hz, 1H), 7.24 – 7.18 (m, 2H), 7.18 – 7.10 (m, 2H), 7.00 – 6.94 (m, 2H), 6.93 – 6.86 (m, 1H), 6.83 (dd, J = 8.7, 3.0 Hz, 1H), 6.41 (dd, J = 5.5, 3.1 Hz, 1H), 3.83 (s, 3H), 2.95 – 2.84 (m, 1H), 2.54 (td, J = 12.9, 3.8 Hz, 1H), 2.42 (dddd, J = 18.0, 9.1, 5.8, 3.1 Hz, 1H), 2.31 – 2.13 (m, 4H), 1.96 (td, J = 13.4, 3.9 Hz, 2H), 1.90 – 1.70 (m, 2H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 160.1, 156.2 (q, J = 34.4 Hz), 141.3, 134.9, 132.7, 132.6, 128.4, 128.3, 126.0, 125.4, 116.2 (q, J = 289.8 Hz), 113.8, 113.3, 68.0, 55.5, 41.2, 32.2, 31.3, 27.1, 20.8; ¹⁹F NMR (282 MHz, Chloroform-*d*) δ –67.2; IR (Neat film, NaCl) 3437, 2937, 1697, 1667, 1643, 1509, 1454, 1251, 1201, 1178, 1165, 1149, 1031, 738, 690 cm⁻¹; HRMS (MM: ESI-

SI8

SI9

APCI+) m/z calc'd for C₂₃H₂₄BrF₃NO₂ [M+H]⁺: 482.0942, found 482.0953; SFC conditions: 20% IPA, Chiralpak OJ-H column, λ =210 nm, t_R (min): minor = 2.80, major = 3.64.

methoxyphenyl)acetamide (3f)

Purified by column chromatography (Et₂O 10% in hexanes) to provide the desired product as a off-white solid (70 mg, 70% yield); 97% ee, $[\alpha]_D^{25}$ 222.3 (c 0.70, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.43 (ddd, J = 8.8, 2.7, 1.1 Hz, 1H), 7.13 (dd, J = 8.2, 2.3 Hz, 1H), 7.02 (d, J = 7.7 Hz, 2H), 6.90 – 6.81 (m, 4H), 6.40 (dd, J = 5.5, 3.1 Hz, 1H), 3.83 (s, 3H), 2.92 – 2.84 (m, 1H), 2.54 – 2.37 (m, 2H), 2.29 (s, 3H), 2.26 – 2.14 (m, 3H), 2.01 – 1.69 (m, 4H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 160.1, 156.2 (q, J = 34.3 Hz), 138.3, 135.5, 134.8, 132.8, 132.6, 129.1, 128.4, 128.2, 125.4, 116.2 (q, J = 289.8 Hz), 113.8, 113.3, 68.0, 55.5, 41.3, 32.2, 30.8, 27.1,

20.8; ¹⁹F NMR (282 MHz, Chloroform-*d*) δ –67.2; IR (Neat film, NaCl) 3444, 2937, 1697, 1509, 1198, 1178, 1151, 1164, 1033, 839, 736, 624 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₄H₂₆BrF₃NO₂ [M+H]⁺: 496.1099, found 496.1118; SFC conditions: 10% IPA, Chiralpak OJ-H column, λ = 210 nm, t_R (min): minor = 6.47, major = 6.87.

(*S*)-*N*-(2-bromo-1-(4-fluorophenethyl)cyclohex-2-en-1-yl)-2,2,2-trifluoro-*N*-(4-methoxyphenyl)acetamide (3g)

Purified by column chromatography (Et₂O 10% in hexanes) to provide the desired product as an amorphous solid (75 mg, 75% yield); 97% ee, $[\alpha]_D^{25}$ 118.3 (c 0.70, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 (dd, J = 8.7, 1.5 Hz, 1H), 7.13 (dd, J = 8.8, 2.8 Hz, 1H), 6.95 – 6.78 (m, 6H), 6.41 (dd, J = 5.5, 3.1 Hz, 1H), 3.82 (s, 3H), 2.89 (ddd, J = 13.2, 11.4, 4.2 Hz, 1H), 2.57 – 2.35 (m, 2H), 2.31 – 2.11 (m, 3H), 2.02 – 1.66 (m, 4H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 162.5, 160.1, 160.1, 156.2 (q, J = 34.3 Hz), 137.0, 136.9, 135.1, 132.7, 132.6, 129.7, 129.6,

128.3, 116.2 (q, J = 289.7 Hz), 115.3, 115.1, 113.8, 113.3, 68.0, 55.5, 41.4, 32.2, 30.5, 27.1, 20.7; ¹⁹F NMR (282 MHz, Chloroform-*d*) δ –67.2, -116.1 – -118.8 (m); IR (Neat film, NaCl) 3443, 2936, 1698, 1509, 1252, 1201, 1179, 1154, 1032, 970, 834, 736 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₃H₂₃BrF₄NO₂ [M+H]⁺: 500.0848, found 500.0846; SFC conditions: 10% IPA, Chiralpak OJ-H column, $\lambda = 210$ nm, t_R (min): minor = 4.96, major = 5.98.

(S)-N-(2-bromo-1-(4-methoxyphenethyl)cyclohex-2-en-1-yl)-2,2,2-trifluoro-N-(4-methoxyphenyl)acetamide (3h)

Purified by column chromatography (CH₂Cl₂ 50% in hexanes) to provide the desired product as a colorless oil (62mg, 60% yield); 98% ee, $[\alpha]_D^{25}$ 85.2 (c 0.70, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 (dd, J = 8.8, 1.5 Hz, 1H), 7.12 (dd, J = 8.7, 2.7 Hz, 1H), 6.94 – 6.79 (m, 4H), 6.79 – 6.70 (m, 2H), 6.40 (dd, J = 5.5, 3.0 Hz, 1H), 3.82 (s, 3H), 3.75 (s, 3H), 2.94 – 2.80

(m, 1H), 2.54 – 2.34 (m, 2H), 2.25 – 2.09 (m, 3H), 2.02 – 1.77 (m, 3H), 1.70 (td, J = 13.2, 4.9 Hz, 1H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 160.1, 157.9, 156.2 (q, J = 34.4 Hz), 134.8, 133.4, 132.8, 132.6, 129.2, 128.4, 125.4, 116.2 (q, J = 289.8 Hz), 113.8, 113.3, 68.0, 55.5, 41.5, 30.4, 20.8; ¹⁹F NMR (282 MHz, Chloroform-*d*) δ -67.2; IR (Neat film, NaCl) 3386, 2934, 2836, 1697, 1513, 1249, 1201, 1178, 1151, 1034, 824, 737 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₄H₂₆BrF₃NO₃ [M+H]⁺: 512.1048, found 512.1056; SFC conditions: 10% IPA, Chiralpak OJ-H column, $\lambda = 210$ nm, t_R (min): minor = 10.76, major = 11.37.

(*S*)-*N*-(2-bromo-1-(4-phenylbut-3-yn-1-yl)cyclohex-2-en-1-yl)-2,2,2-trifluoro-*N*-(4-methoxyphenyl)acetamide (3i)

Purified by column chromatography (15% Et₂O in Hexanes) to provide the desired product as a colorless oil (51 mg, 50% yield); 92% ee, $[\alpha]_D^{25}$ 181.7 (c 0.70, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.47 (ddd, J = 8.8, 3.0, 1.4 Hz, 1H), 7.36 – 7.30 (m, 2H), 7.27 (tq, J = 3.9, 2.1

Hz, 3H), 7.14 (dd, J = 8.7, 2.7 Hz, 1H), 6.94 (dd, J = 8.8, 3.0 Hz, 1H), 6.87 (dd, J = 8.7, 3.0 Hz, 1H), 6.43 (dd, J = 5.5, 3.2 Hz, 1H), 3.86 (s, 3H), 2.84 (ddd, J = 13.4, 11.5, 4.4 Hz, 1H), 2.46 – 2.30 (m, 2H), 2.24 – 2.12 (m, 3H), 2.06 (ddd, J = 13.5, 10.6, 5.1 Hz, 1H), 2.02 – 1.92 (m, 1H), 1.92 – 1.70 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.2, 156.2 (q, J = 34.4 Hz), 135.5, 132.7, 132.4, 131.5, 128.2, 127.8, 124.5, 123.5, 116.2 (q, J = 289.7 Hz), 113.9, 113.5, 88.9, 80.8, 67.5, 55.5, 55.4, 38.1, 32.3, 27.0, 20.7, 15.3; ¹⁹F NMR (282 MHz, Chloroform-*d*) δ -67.2; IR (Neat film, NaCl) 3441, 2937, 2839, 1703, 1698, 1510, 1300, 1252, 1200, 1179, 1152, 1032, 972, 756, 690 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₂₅H₂₄BrF₃NO₂ [M+H]⁺: 506.0942, found 506.0962; SFC conditions: 15% IPA, Chiralpak AD-H column, $\lambda = 210$ nm, t_R (min): minor = 4.51, major =4.98.

General procedure A for the synthesis of the 2-bromo-enones

To a solution of 2-bromo-3-ethoxycyclohex-2-en-1-one² (1.09 g, 5 mmol, 1.0 equiv) in THF (0.1 M) at 0 °C was added slowly the corresponding Grignard (2.0 equiv). The reaction was then

heated to 40 °C and continued until no starting material remained as seen by TLC. The reaction was then quenched with 2M HCl (2.0 equiv) and stirred at room temperature for 2 hours. The reaction was diluted with water and extracted with Et₂O, and the combined organic phases dried over anhydrous Na₂SO₄ and concentrated. The crude product was purified by silica gel column chromatography to yield the desired product.

2-bromo-5,6-dihydro-[1,1'-biphenyl]-3(4*H*)-one (1a)

Purified by column chromatography (10% AcOEt in Hexanes) to provide a white-off solid (1 g, 80% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.46 – 7.29 (m, 5H), 2.79 (t, *J* = 6.0 Hz, 2H), 2.75 – 2.69 (m, 2H), 2.21 – 2.13 (m, 2H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 191.7, 160.8, 140.8, 128.9, 128.4, 126.9, 122.5, 37.8, 35.1, 22.4; IR (Neat film NaCl) 3056, 2957, 2867, 1681, 1588, 1265, 1182, 1130, 983, 785, 755, 700 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₂H₁₂BrO [M+H]⁺: 251.0071, found 251.0069.

3-allyl-2-bromocyclohex-2-en-1-one (1b)

Purified by column chromatography (20% AcOEt in Hexanes) to provide a colorless oil (1.020 g, 95% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 5.78 (td, *J* = 16.8, 16.0, 7.4 Hz, 1H), 5.22 – 5.14 (m, 2H), 3.24 (d, *J* = 6.7 Hz, 2H), 2.59 (t, *J* = 6.6 Hz, 2H), 2.50 (t, *J* = 6.0 Hz, 2H), 1.99 (p, *J* = 5.9 Hz, 2H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 191.3, 161.0, 131.6, 123.1, 118.4, 43.4, 37.8, 32.1, 21.9; IR (Neat film NaCl) 3079, 2949, 2888, 1693, 1598, 1453, 1427, 1416, 1273, 1183, 985, 920, 794 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₉H₁₂BrO [M+H]⁺: 215.0071, found 215.0059.

2-bromo-3-ethylcyclohex-2-en-1-one (1c)

Purified by column chromatography (10% AcOEt in Hexanes) to provide a red oil (707 mg, 70% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 2.60 – 2.54 (m, 2H), 2.54 – 2.41 (m, 4H), 2.04 – 1.95 (m, 2H), 1.13 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 191.4, 165.3, 122.0, 37.8, 32.5, 31.9, 22.0, 11.0; IR (Neat film NaCl) 3436, 2936, 2875, 1693, 1598, 1455k 1461, 1282, 1191, 1170, 1133, 984, 886, 801 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₈H₁₂BrO [M+H]⁺: 203.0071, found 203.0060.

2-bromo-3-methylcyclohex-2-en-1-one (1d)

Purified by column chromatography (10% AcOEt in Hexanes) to provide the desired product a colorless oil (750 mg, 80% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 2.58 – 2.45 (m, 4H), 2.14 (t, J = 0.9 Hz, 3H), 2.02 – 1.90 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 191.0, 160.6, 122.7, 37.6, 34.2, 25.9, 21.8; IR (Neat film NaCl) 2946, 2869, 1681, 1605, 1452, 1426, 1371, 1269, 1194, 1172, 1269, 1194, 1172, 1134, 1039, 978, 909, 793 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₇H₁₀BrO [M+H]⁺: 188.9915, found 188.9907.

2-bromo-3-phenethylcyclohex-2-en-1-one (1e)

Purified by column chromatography (20% AcOEt in Hexanes) to provide the desired product as a white solid (1.110 g, 80% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.33 – 7.28 (m, 2H), 7.25 – 7.21 (m, 3H), 2.92 – 2.85 (m, 2H), 2.83 – 2.74 (m, 2H), 2.62 – 2.53 (m, 2H), 2.39 (t, *J* = 6.1 Hz, 2H), 1.99 – 1.87 (m, 2H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 191.3, 163.1, 140.5,

128.7, 128.5, 126.6, 123.3, 41.3, 37.8, 33.2, 32.9, 22.0; IR (Neat film NaCl) 2932, 2865, 1681, 1598, 1495, 1454, 1269, 1175, 978, 795, 749, 700 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₄H₁₆BrO [M+H]⁺: 279.0384, found 279.0370.

General procedure B for the synthesis of the 2-bromo-enones

A flame-dried flask under nitrogen was charged with magnesium turnings (260 mg, 20 mmol, 2.0 equiv,), the bromo derivative (2 mmol, 0.2 equiv), dibromoethane (0.2 mmol, 0.01 equiv) and 5 mL of THF. The reaction was heated to 50 °C to initiate the Grignard reagent formation. Then, a solution of the bromo derivative (18 mmol, 1.8 equiv) in 15 mL of THF was added to the reaction and the resulting mixture was heated for 30 min. The reaction was then cooled to room temperature and a solution of 2-bromo-3-ethoxycyclohex-2-en-1-one (2.20 g, 10 mmol, 1.0 equiv) in THF (15 mL) was added slowly. The reaction was heated at 50 °C until no starting material remained by TLC. The reaction was allowed to cool to ambient temperature, then quenched with 2M HCl and stirred for 2 h. The reaction was diluted with water and extracted with Et₂O. The combined organic phases were dried over Na₂SO₄ and concentrated. The crude product was purified by silica gel column chromatography to provide the desired product.

2-bromo-3-(4-methylphenethyl)cyclohex-2-en-1-one (1f)

Purified by column chromatography (20% AcOEt in Hexanes) provide the desired product as a white solid (2.248 g, 77% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.11 (s, 4H), 2.87 – 2.72 (m, 4H), 2.60 – 2.54 (m, 2H), 2.40 (t, *J* = 6.0 Hz, 2H), 2.34 (s, 3H), 1.99 – 1.90 (m, 2H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 191.2, 163.2, 137.3, 136.0, 129.3, 128.3, 123.1, 41.3, 37.8, 33.1, 32.4, 21.9, 21.1; IR (Neat film NaCl) 2925, 2866, 1681, 1596, 1514, 1454, 1425, 1269,

1174, 1127, 978, 808 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₅H₁₈BrO [M+H]⁺: 293.0541, found 293.0546.

2-bromo-3-(4-fluorophenethyl)cyclohex-2-en-1-one (1g)

Purified by column chromatography (20% AcOEt in Hexanes) to provide the desired product as white solid (2.368 g, 80% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.22 – 7.12 (m, 2H), 7.03 – 6.93 (m, 2H), 2.85 (dd, *J* = 9.6, 6.6 Hz, 2H), 2.79 – 2.70 (m, 2H), 2.62 – 2.50 (m, 2H), 2.39 (t, *J* = 6.0 Hz, 2H), 1.98 – 1.89 (m, 2H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 191.1, 162.6, 161.6 (d, *J* = 244.3 Hz), 136.0 (d, *J* = 3.2 Hz), 129.8 (d, *J* = 7.8 Hz), 123.3, 115.4 (d, *J* = 21.2 Hz), 41.2, 37.7, 33.1, 31.9, 21.9; ¹⁹F NMR (282 MHz, Chloroform-*d*) δ -116.56 (tt, *J* = 8.7, 5.4 Hz); IR (Neat Film NaCl) 2932, 2868, 1693, 1681, 1599, 1512, 1505, 1222, 979, 824, 805, 771 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₄H₁₅BrFO [M+H]⁺: 297.0290, found 297.0304.

2-bromo-3-(4-methoxyphenethyl)cyclohex-2-en-1-one (1h)

Purified by column chromatography (25% AcOEt in Hexanes) to provide the desired product as a white solid (3.0 g, 65% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.18 – 7.09 (m, 2H), 6.90 – 6.74 (m, 2H), 3.80 (s, 3H), 2.86 – 2.80 (m, 2H), 2.75 (ddd, *J* = 8.6, 6.6, 1.3 Hz, 2H), 2.60 – 2.54 (m, 2H), 2.38 (t, *J* = 6.0 Hz, 2H), 1.99 – 1.89 (m, 2H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 191.23, 163.23, 158.22, 132.41, 129.32, 123.09, 113.97, 55.30, 41.42, 37.75, 33.12, 31.91, 21.93; IR (Neat film NaCl) 2933, 2834, 1681, 1597, 1513,1454, 1426, 1246, 1176, 1034, 978, 822, 801 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₅H₁₈BrO₂ [M+H]⁺: 309.0490, found 309.0500.

2-bromo-3-(4-phenylbut-3-yn-1-yl)cyclohex-2-en-1-one (1i)³

Purified by column chromatography (20% AcOEt in Hexanes) to provide the desired product as a colorless oil (1.5 g, 50% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.35 (qd, *J* = 3.8, 1.6 Hz, 2H), 7.29 – 7.24 (m, 3H), 2.78 (dd, *J* = 7.5, 5.7 Hz, 2H), 2.71 (td, *J* = 6.8, 1.4 Hz, 2H), 2.63 (t, *J* = 6.0 Hz, 2H), 2.58 (dd, *J* = 7.4, 6.0 Hz, 2H), 2.06 – 1.96 (m, 2H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 191.1, 162.0, 131.5, 128.3, 128.0, 123.7, 123.3, 87.8, 81.9, 37.8, 37.8, 33.2, 21.9, 17.0; IR (Neat film NaCl) 2942, 2866, 1681, 1597, 1441, 1271, 1175, 978, 757, 689 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₆H₁₆BrO [M+H]⁺: 303.0384, found 303.0387

General procedure for CBS reduction of ketones

To a stirred solution of (R)- α , α -Diphenylprolinol (0.2 equiv) in THF (0.1 M) was added trimethyl borate (0.24 equiv) and the resulting mixture was stirred for 1 h at room temperature. Then, borane N,N-diethylaniline complex (1.2 equiv) was added and the reaction was cooled to 0 °C. After 10 min of stirring at this temperature, a solution of **1** in THF (0.5 M) was added slowly over 3 hours. Following completion of the addition, the reaction was quenched with 2 M HCl and extracted with Et₂O. The combined organic layers were dried over Na₂SO₄ and concentrated. The crude mixture was purified by column chromatography to provide the desired alcohol.

(S)-2-bromo-3,4,5,6-tetrahydro-[1,1'-biphenyl]-3-ol (2a)

Purified by column chromatography (20% EtOAc in Hexanes) to provide the desired product as a white solid (250 mg, 99% yield); 99% ee, $[\alpha]_D^{25}$ -61.8 (c 0.70, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.38 (tt, *J* = 7.6, 1.4 Hz, 2H), 7.34 – 7.29 (m, 1H), 7.26 – 7.22 (m, 2H), 4.44 (ddt, *J* = 4.8, 2.8, 1.5 Hz, 1H), 2.68 (s, 1H), 2.51 – 2.33 (m, 2H), 2.08 – 1.89 (m, 3H), 1.85 – 1.73 (m, 1H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 142.3, 141.7, 128.3, 127.7, 127.5, 123.6, 71.1, 34.5, 31.8, 18.6; IR (Neat film NaCl) 3382, 2930, 1489, 1441, 1331, 1064, 990, 756, 697 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₂H₁₄BrO [M-OH]⁺: 235.0117, found 235.0125; SFC conditions: 15% IPA, Chiralpak IC column, $\lambda = 210$ nm, t_R (min): minor = 3.90, major = 4.74.

(S)-3-allyl-2-bromocyclohex-2-en-1-ol (2b)

Purified by column chromatography (20% EtOAc in Hexanes) to provide the desired product as a colorless oil (195 mg, 90% yield); 97% ee, $[\alpha]_D^{25}$ -102.1 (c 0.70, CHCl₃); ¹H NMR (500 MHz,

Chloroform-*d*) δ 5.75 (ddt, J = 16.8, 10.0, 6.7 Hz, 1H), 5.18 – 5.00 (m, 2H), 4.28 (t, J = 4.6 Hz, 1H), 2.96 (ddtd, J = 6.7, 4.7, 1.5, 0.7 Hz, 2H), 2.21 – 2.02 (m, 2H), 1.95 – 1.84 (m, 2H), 1.83 – 1.72 (m, 1H), 1.69 – 1.53 (m, 1H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 138.5, 133.6, 123.6, 116.7, 71.1, 41.6, 32.0, 31.3, 18.3; IR (Neat film, NaCl) 3382, 2932, 1636, 1447, 1335, 1170, 1075, 993, 971, 917, 798, 699 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₉H₁₂Br [M-OH]⁺: 199.0117, found 199.0126; SFC conditions: 10% IPA, Chiralpak IC column, $\lambda = 210$ nm, t_R (min): minor = 3.60, major = 4.05.

(S)-2-bromo-3-ethylcyclohex-2-en-1-ol (2c)

Purified by column chromatography (20% EtOAc in Hexanes) to provide the desired product as a white solid (203 mg, 99% yield); 97% ee, $[\alpha]_D^{25}$ -90.2 (c 0.70, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 4.23 (t, *J* = 4.6 Hz, 1H), 2.42 (s, 1H), 2.22 – 2.04 (m, 4H), 1.88 – 1.82 (m, 2H), 1.81 – 1.68 (m, 1H), 1.65 – 1.56 (m, 1H), 0.99 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 142.1, 122.0, 71.1, 32.1, 30.9, 30.4, 18.4, 11.4; IR (Neat film, NaCl) 3366, 2934, 2872, 1651, 1455, 1337, 1166, 1077, 978, 914, 801, 725 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₈H₁₂Br [M-OH]⁺: 187.0117, found 187.0123; Chiral GC: 120 °C Isotherm, GTA column, FID detector, t_R (min): minor = 14.52, major = 15.77.

OH Br Me

(S)-2-bromo-3-methylcyclohex-2-en-1-ol (2d)

Purified by column chromatography (20% EtOAc in Hexanes) to provide the desired product as a white solid (189 mg, 99% yield); 98% ee, $[\alpha]_D^{25}$ -100.5 (c 0.70, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 4.27 (tq, *J* = 4.6, 1.3 Hz, 1H), 2.25 – 2.03 (m, 3H), 1.92 – 1.86 (m, 2H), 1.86 – 1.83 (m, 3H), 1.83 – 1.75 (m, 1H), 1.67 – 1.60 (m, 1H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 137.1, 122.5, 71.0, 33.3, 32.0, 23.5, 18.2; IR (Neat film, NaCl) 3334, 2936, 2864, 1654, 1438, 1337, 1166, 1078, 1010, 978, 794 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₇H₁₀Br [M-OH]⁺: 172.9960, found 172.9965; Chiral GC: 120 °C Isotherm, GTA column, FID detector, t_R (min): minor = 11.10, major = 12.84.

(S)-2-bromo-3-phenethylcyclohex-2-en-1-ol (2e)

Purified by column chromatography (20% EtOAc in Hexanes) to provide the desired product as a white solid (278 mg, 99% yield); 97% ee, $[\alpha]_D^{25}$ -50.2 (c 0.70, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.31 (t, *J* = 7.6 Hz, 2H), 7.23 (dd, *J* = 8.0, 3.1 Hz, 3H), 4.31 – 4.26 (m, 1H), 2.80 – 2.73 (m, 2H), 2.49 (ddt, *J* = 13.6, 7.3, 3.4 Hz, 2H), 2.35 (s, 1H), 2.20 – 2.02 (m, 2H), 1.88 (dd, *J* = 7.9, 4.5 Hz, 2H), 1.83 – 1.71 (m, 1H), 1.63 (dt, *J* = 13.6, 5.1 Hz, 1H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 141.4, 140.2, 128.4, 128.4, 126.1, 123.5, 71.1, 39.3, 33.3, 32.0, 31.9, 18.3; IR (Neat film, NaCl) 3390, 2934, 2863, 1495, 1454, 1335, 1077, 972, 748, 699cm⁻¹; HRMS (MM: ESI-APCI+) *m*/*z* calc'd for C₁₄H₁₆Br [M-OH]⁺: 263.0430, found 263.0420; SFC conditions: 15% IPA, Chiralpak OJ-H column, λ = 210 nm, t_R (min): minor = 5.03, major = 5.43.

(S)-2-bromo-3-(4-methylphenethyl)cyclohex-2-en-1-ol (2f)

Purified by column chromatography (20% EtOAc in Hexanes) to provide the desired product as a white solid (292 mg, 99% yield); 94% ee, $[\alpha]_D^{25}$ -59.4 (c 0.70, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.19 (s, 3H), 4.35 (t, *J* = 4.6 Hz, 1H), 2.86 – 2.71 (m, 2H), 2.55 (tdq, *J* = 11.3, 7.8, 3.5 Hz, 3H), 2.41 (s, 3H), 2.30 – 2.07 (m, 2H), 2.01 – 1.89 (m, 2H), 1.84 (dddd, *J* = 14.1, 10.4, 8.5, 5.3 Hz, 1H), 1.75 – 1.65 (m, 1H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 140.3, 138.4, 135.5, 129.1, 128.3, 123.4, 71.2, 39.5, 32.9, 32.1, 31.9, 21.1, 18.4; IR (Neat film, NaCl) 3392, 2932, 2863, 1514, 1454, 1334, 1249, 1163, 1076, 806, 610 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₅H₁₈Br [M-OH]⁺: 277.0586, found 277.0574; SFC conditions: 10% IPA, Chiralpak OJ-H column, λ = 210 nm, t_R (min): minor = 7.79, major = 8.70.

(S)-2-bromo-3-(4-fluorophenethyl)cyclohex-2-en-1-ol (2g)

Purified by column chromatography (20% AcOEt in Hexanes) to provide the desired product as a white solid (296 mg, 99% yield); 97% ee, $[\alpha]_D^{25}$ -59.9 (c 0.70, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.19 – 7.13 (m, 2H), 7.00 – 6.94 (m, 2H), 4.27 (t, *J* = 4.7 Hz, 1H), 2.72 (ddd, *J* = 9.0, 6.9, 2.5 Hz, 2H), 2.53 – 2.39 (m, 2H), 2.26 (s, 1H), 2.18 – 1.99 (m, 2H), 1.92 – 1.83 (m, 2H), 1.76 (dtt, *J* = 16.7, 8.4, 5.4 Hz, 1H), 1.70 – 1.54 (m, 1H); ¹³C NMR (101 MHz, Chloroform*d*) δ 161.4 (d, *J* = 243.7 Hz), 139.9, 136.9 (d, *J* = 3.3 Hz), 129.8 (d, *J* = 7.8 Hz), 123.7, 115.1 (d, *J* = 21.2 Hz), 71.1, 39.3, 32.4, 31.9, 31.9, 18.3; ¹⁹F NMR (282 MHz, Chloroform-*d*) δ -117.34 (tt, *J* = 8.9, 5.4 Hz); IR (Neat film, NaCl) 3392, 2932, 2864, 1600, 1509, 1221, 1157, 1076, 973, 825 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₄H₁₅BrF [M-OH]⁺: 281.0336, found 281.0327; SFC conditions: 10% IPA, Chiralpak OJ-H column, λ =210, t_R (min): minor = 4.73, major = 5.63.

(S)-2-bromo-3-(4-methoxyphenethyl)cyclohex-2-en-1-ol (2h)

Purified by column chromatography (20% AcOEt in Hexanes) to provide the desired product as a white solid (308 mg, 99% yield); 96% ee, $[\alpha]_D^{25}$ -59.9 (c 0.70, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.19 – 7.08 (m, 2H), 6.91 – 6.67 (m, 2H), 4.27 (t, *J* = 4.6 Hz, 1H), 3.80 (s, 3H), 2.75 – 2.67 (m, 2H), 2.50 – 2.40 (m, 2H), 2.35 (s, 1H), 2.19 – 2.00 (m, 2H), 1.92 – 1.84 (m, 2H), 1.76 (dtt, *J* = 19.6, 8.7, 5.3 Hz, 1H), 1.68 – 1.56 (m, 1H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 158.0, 140.3, 133.5, 129.4, 123.5, 113.9, 71.2, 55.4, 39.6, 32.5, 32.1, 32.0, 18.4; IR (Neat film, NaCl) 3380, 2935, 2863, 1611, 1511, 1454, 1243, 1174, 1033, 972, 818, 728 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₅H₁₈BrO [M-OH]⁺: 293.0535, found 293.0527; SFC conditions: 20 % IPA, Chiralpak OJ-H column, λ = 210 nm, t_R (min): minor = 4.72, major = 5.45.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	40
1	4.723	MM	0.1043	135.37074	21.64034	1.9378
2	5.447	MM	0.1246	6850.41064	916.15576	98.0622

(S)-2-bromo-3-(4-phenylbut-3-yn-1-yl)cyclohex-2-en-1-ol (2i)

Purified by column chromatography (20% Et₂O in Hexanes) to provide the desired product as a brown oil (213 mg, 70% yield); 91% ee, $[\alpha]_D^{25}$ -62.8 (c 0.70, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.42 – 7.36 (m, 2H), 7.31 – 7.26 (m, 3H), 4.29 (t, *J* = 4.7 Hz, 1H), 2.59 (ddd, *J* = 7.1, 6.3, 3.1 Hz, 2H), 2.52 (dd, *J* = 8.7, 7.0 Hz, 2H), 2.30 (dtd, *J* = 17.2, 5.1, 1.2 Hz, 2H), 2.25 – 2.19 (m, 1H), 1.91 (dt, *J* = 9.5, 4.6 Hz, 2H), 1.87 – 1.76 (m, 1H), 1.71 – 1.61 (m, 1H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 139.3, 131.5, 128.3, 127.7, 124.2, 123.7, 89.0, 81.2, 71.1, 36.2, 32.0, 32.0, 18.3, 17.3; IR (Neat film, NaCl) 3432, 2933, 2864, 2364, 1681, 1597, 1489, 1442, 1335, 1272, 1175, 1076, 977, 757, 692 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₆H₁₆Br [M-OH]⁺: 287.0430, found 287.0437; SFC conditions: 20% IPA, Chiralpak AD-H column, $\lambda = 210$ nm, t_R (min): minor = 6.35, major = 7.31.

Product Derivatization

(S)-N-(1-allyl-2-bromocyclohex-2-en-1-yl)-4-methoxyaniline (4)⁴

To a stirred solution of **3b** (209 mg, 0.5 mmol) in 10:1 *i*PrOH/H₂O (2.5 mL) was added NaBH₄ (115 mg, 3 mmol) and the resulting mixture stirred for 16 h at 25 °C. The crude reaction was diluted with H₂O and extracted with CH₂Cl₂. The combined organic layers were washed with brine and dried with MgSO₄ and concentrated. The crude product was purified by silica gel column chromatography (2:1 CH₂Cl₂/hexanes) to afford the desired product as a brown oil (120 mg, 75% yield). $[\alpha]_D^{25}$ -18.1 (c 0.70, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 6.81 – 6.72 (m, 4H), 6.31 (dd, *J* = 4.9, 3.5 Hz, 1H), 5.88 (dddd, *J* = 16.5, 10.2, 8.7, 6.1 Hz, 1H), 5.29 – 5.18 (m, 2H), 3.75 (s, 3H), 3.57 (d, *J* = 7.5 Hz, 1H), 2.61 – 2.42 (m, 2H), 2.26 – 1.99 (m, 3H), 1.89 – 1.51 (m, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 153.5, 138.9, 133.3, 132.9, 119.8, 119.7, 114.4, 59.5, 55.6, 44.5, 30.8, 27.6, 19.7; IR (Neat film, NaCl) 3493, 2621, 1636, 1512, 1258, 937, 738 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₆H₂₁BrNO [M+H]⁺ 322.0801, found 322.0794.

(S)-1-allyl-2-bromocyclohex-2-en-1-aminium Chloride (5)⁴

A solution of PMP-protected amine 4 (65 mg, 0.2 mmol) in 6.0 mL MeCN was cooled in an icebath and treated with a solution of CAN (275 mg, 0.5 mmol, 2.5 equiv) in water (6 mL) dropwise. The reaction allowed to warm to 25 °C and stirred for 3 h. The crude reaction was diluted with water, washed with Et₂O, and the organic layer discarded. The aqueous layer was basified to pH 10 with a saturated Na₂CO₃ solution and extracted with Et₂O. The combined organic layers were dried with MgSO₄ and treated with a 1 M HCl solution in Et₂O, and concentrated to afford the hydrochloride salt of the product as a white solid (40 mg, 80% yield). $[\alpha]_D^{25}$ 51.0 (c 0.70, CHCl₃); ¹H NMR (500 MHz, Methanol-*d*₄) δ 6.51 (t, *J* = 4.1 Hz, 1H), 5.73 (dddd, *J* = 16.6, 10.1, 8.1, 6.3 Hz, 1H), 5.33 – 5.20 (m, 2H), 2.69 (dd, *J* = 14.0, 6.3 Hz, 1H), 2.56 (dd, *J* = 14.0, 8.1 Hz, 1H), 2.26 – 2.04 (m, 3H), 2.04 – 1.91 (m, 2H), 1.84 – 1.67 (m, 2H); ¹³C NMR (100 MHz, Methanol-*d*₄) δ 138.3, 129.9, 121.3, 120.7, 58.2, 41.6, 32.2, 27.2, 17.2; IR (Neat film, NaCl) 2933, 2863, 1603 1515, 1447, 361, 984, 925, 761, 681 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₉H₁₅BrN [M-Cl]⁺, 216.0382, found 216.0372.

(*S*)-2,2,2-trifluoro-*N*-(4-methoxyphenyl)-*N*-(2-oxo-1-phenethylcyclohexyl)acetamide (6)⁵ A vial was charged with Co(acac)₂ (90 mg, 0.35 mmol, 1.00 equiv) and the vial was evacuated and backfilled with oxygen three times. Isopropanol was then added (2 mL) followed by starting material **3e** (170 mg, 0.35 mmol, 1.00 equiv) and Et₃SiH (280 µL, 1.75 mmol, 5 equiv). The resulting mixture was heated to 50 °C for 2 h under a balloon of oxygen. The crude reaction mixture was directly concentrated and purified by silica gel column chromatography (20% EtOAc/hexanes) to provide the desired product as a colorless oil (110 mg, 75% yield). $[\alpha]_D^{25}$ 72.1 (c 1.0, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 – 7.43 (m, 1H), 7.30 – 7.09 (m, 4H), 6.95 (ddd, *J* = 13.1, 8.7, 2.9 Hz, 2H), 6.81 (dt, *J* = 6.3, 1.4 Hz, 2H), 3.86 (s, 3H), 2.73 (dtd, J = 15.9, 4.5, 1.8 Hz, 1H), 2.51 - 2.34 (m, 2H), 2.33 - 1.85 (m, 8H), 1.85 - 1.58 (m, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 205.0, 160.4, 157.3 (q, J = 35.1 Hz), 140.9, 132.4, 131.8, 128.5, 128.1, 127.7, 126.2, 122.3, 116.3 (q, J = 288.3 Hz), 114.0, 113.9, 72.0, 55.6, 40.1, 36.5, 36.1, 30.4, 25.1, 22.6; IR (Neat film, NaCl) 2945, 1720, 1962, 1510, 1300, 1252, 1185, 1203, 1155, 1032, 737, 703 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₂₃H₂₅F₃NO₃ [M+H]⁺: 420.1786, found 420.1796.

2,2,2-trifluoro-*N*-((1*S*,3*S*)-3-hydroxy-2-oxo-1-phenethylcyclohexyl)-*N*-(4-methoxyphenyl)acetamide (7)

To a solution of **3e** (96 mg, 0.2 mmol, 1 equiv) in wet CH₂Cl₂ (0.1 M) was added pyridine (40 μ L, 0.5 mmol, 2.5 equiv). This solution was then cooled to -78 °C and O₃ was bubbled through until no starting material remained by TLC (~ 1 h). O₂ was then bubbled through the solution for 10 min and the reaction was allowed to warm up to 25 °C. After 3 h at 25 °C, the product was purified by column chromatography (20% to 50% EtOAc/hexanes) to provide the desired product as a white foam (75 mg, 85% yield). [α]_D²⁵ 88.3 (c 1, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 (d, *J* = 8.6 Hz, 1H), 7.18 (dt, *J* = 14.1, 7.8 Hz, 4H), 7.02 – 6.89 (m, 2H), 6.87 – 6.67 (m, 2H), 4.23 (dd, *J* = 11.9, 6.3 Hz, 1H), 3.86 (s, 3H), 3.60 (s, 1H), 2.50 – 2.29 (m, 3H), 2.16 (d, *J* = 34.0 Hz, 2H), 2.04 (d, *J* = 12.2 Hz, 1H), 2.00 – 1.73 (m, 4H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 205.4, 160.5, 157.2 (q, *J* = 35.1 Hz), 140.2, 132.5, 132.1, 128.5, 128.0, 126.3, 116.2 (q, *J* = 288.5 Hz), 114.1, 113.9, 74.2, 72.5, 55.5, 36.4, 35.3, 30.2, 19.7; ¹⁹F NMR (282 MHz, Chloroform-*d*) δ -67.4; IR (Neat film, NaCl) 3469, 2939, 1723, 1693, 1509, 1455, 1251, 1201, 1184, 1154, 1030, 759, 701 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₃H₂₅F₃NO₄ [M+H]⁺: 436.1735, found 436.1733.

(2S,6S)-6-hydroxy-2-((4-methoxyphenyl)amino)-2-phenethylcyclohexan-1-one (8)

A solution of **3e** (96 mg, 0.2 mmol, 1.00 equiv) in wet MeOH (0.1 M) was cooled to -78 °C and O₃ was bubbled through until no starting material remained by TLC (~30 min). O₂ was then bubbled through for 10 min and DMS (55 µL, 0.6 mmol, 3 equiv) was added. The reaction was allowed to warm up to 25 °C and stirred overnight. The reaction was washed with a saturated solution of NH₄Cl and extracted with CH₂Cl₂. The crude product was purified by column chromatography (20% to 50% EtOAc/hexanes) to provide the desired product as an amorphous brown solid (55 mg, 80% yield). $[\alpha]_D^{25}$ 50.2 (c 1, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.25 – 7.21 (m, 2H), 7.19 – 7.14 (m, 1H), 6.98 – 6.93 (m, 2H), 6.82 – 6.74 (m, 4H), 4.47 (dd, *J* = 12.3, 6.8 Hz, 1H), 3.78 (s, 3H), 2.73 – 2.62 (m, 1H), 2.57 – 2.44 (m, 2H), 2.32 (ddd, *J* = 14.2, 12.2, 4.6 Hz, 1H), 2.25 – 2.08 (m, 2H), 1.89 – 1.77 (m, 3H), 1.55 (dddd, *J* = 12.6, 10.6, 8.7, 5.5 Hz, 1H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 212.1, 153.5, 141.0, 138.1, 128.5, 128.3, 126.2, 120.1, 114.6, 72.9, 66.9, 55.7, 40.9, 37.1, 37.0, 29.5, 19.2; IR (Neat film, NaCl) 3374, 2948, 1711, 1510, 1454, 1237, 1035, 826, 700 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₁H₂₆NO₃ [M+H]⁺: 340.1912, found 340.1923.

N-((1*S*,3*S*)-3-bromo-2-oxo-1-phenethylcyclohexyl)-2,2,2-trifluoro-*N*-(4methoxyphenyl)acetamide (9)

To a solution of **3e** (96 mg, 0.2 mmol, 1.00 equiv) in H₂O (0.55 mL), acetonitrile (1.25 mL), and EtOAc (1.25 mL) was added sodium periodate (NaIO₄, 274 mg, 1.28 mmol, 6.40 equiv) and ruthenium(III) trichloride (RuCl₃, 4 μ L, 0.1 M solution in H₂O, 0.02 equiv). The reaction mixture was then stirred at room temperature for 18 h, at which time consumption of starting material was complete as determined by TLC analysis. The crude reaction mixture was washed with a saturated solution of NaHCO₃ and the aqueous layer extracted with EtOAc. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated. The crude

product was purified by column chromatography (20% EtOAc/hexanes) to provide the desired product as a white foam (60 mg, 60% yield). $[\alpha]_D^{25}$ 50.2 (c 1.0, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.55 (ddd, J = 8.7, 2.7, 1.1 Hz, 1H), 7.23 – 7.10 (m, 4H), 6.99 (ddd, J = 21.4, 8.7, 3.0 Hz, 2H), 6.85 – 6.74 (m, 2H), 4.80 (d, J = 1.3 Hz, 1H), 3.89 (s, 3H), 2.69 (ddq, J = 14.5, 10.7, 3.5 Hz, 1H), 2.49 – 2.36 (m, 2H), 2.31 – 2.16 (m, 3H), 2.02 (dtt, J = 13.9, 8.3, 2.8 Hz, 2H), 1.85 (s, 1H), 1.80 (ddd, J = 15.3, 10.8, 5.9 Hz, 1H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 196.6, 160.6, 157.6 (q, J = 35.8 Hz), 141.0, 132.4, 131.4, 128.4, 128.2, 126.8, 126.1, 116.1 (q, J = 287.9 Hz), 114.3, 113.9, 71.3, 55.7, 51.3, 38.7, 37.2, 34.3, 30.5, 18.9; ¹⁹F NMR (282 MHz, Chloroform-*d*) δ –67.5; IR (Neat film, NaCl) 3493, 2942, 1716, 1682, 1509, 1455, 1254, 1206, 1184, 1165, 1031, 752 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₂₃H₂₄BrF₃NO₃ [M+H]⁺: 498.0891, found 498.0891.

X-Ray Crystal Structure for 8 (V19265)

An X-ray crystal structure of compound 8 (V19265) was grown by vapor diffusion.

Figure S1. X-Ray Coordinate of compound 8 (V19265)

Table 1. Crystal data and structure refinement for V19265.

Empirical formula	C21 H25 N O3
Formula weight	339.42
Temperature	100(2) K
Wavelength	1.54178 Å

Crystal system	Orthorhombic		
Space group	P212121		
Unit cell dimensions	a = 5.9218(7) Å	a= 90°.	
	b = 7.5604(10) Å	b= 90°.	
	c = 41.115(6) Å	g = 90°.	
Volume	1840.8(4) Å ³		
Ζ	4		
Density (calculated)	1.225 Mg/m ³		
Absorption coefficient	0.650 mm ⁻¹		
F(000)	728		
Crystal size	0.300 x 0.100 x 0.100 mm ³		
Theta range for data collection	4.301 to 79.710°.		
Index ranges	-5<=h<=7, -8<=k<=9, -51<=l<=50		
Reflections collected	19853		
Independent reflections	3921 [R(int) = 0.0518]		
Completeness to theta = 67.679°	99.9 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7451 and 0.6491		
Refinement method	Full-matrix least-squares	on F ²	
Data / restraints / parameters	3921 / 2 / 233		
Goodness-of-fit on F ²	1.032		
Final R indices [I>2sigma(I)]	R1 = 0.0307, wR2 = 0.07	14	
R indices (all data)	R1 = 0.0340, wR2 = 0.072	31	
Absolute structure parameter	-0.02(8)		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.184 and -0.169 e.Å ⁻³		

Table 2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2x 103) for V19265. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	Х	У	Z	U(eq)	
	2004(2)	1002(2)	2021(1)	17(1)	
N(1)	2984(2)	4882(2)	3921(1)	16(1)	
C(1)	4851(2)	5030(2)	4154(1)	14(1)	
C(2)	3912(3)	5870(2)	4466(1)	15(1)	
O(1)	1984(2)	6407(2)	4486(1)	20(1)	
C(3)	5573(3)	5965(2)	4746(1)	19(1)	
O(2)	4536(2)	6809(2)	5013(1)	24(1)	
C(4)	6395(3)	4103(2)	4829(1)	23(1)	
C(5)	7396(3)	3169(2)	4532(1)	21(1)	
C(6)	5718(3)	3171(2)	4249(1)	18(1)	
C(7)	3311(2)	4934(2)	3581(1)	15(1)	
C(8)	5057(3)	4034(2)	3423(1)	17(1)	
C(9)	5305(3)	4126(2)	3086(1)	18(1)	
C(10)	3762(3)	5069(2)	2900(1)	19(1)	
O(3)	3866(2)	5233(2)	2566(1)	26(1)	
C(13)	5968(3)	4833(3)	2416(1)	29(1)	
C(11)	1965(3)	5913(2)	3053(1)	20(1)	
C(12)	1766(3)	5864(2)	3389(1)	18(1)	
C(14)	6760(2)	6244(2)	4026(1)	15(1)	
C(15)	5972(3)	8156(2)	3974(1)	19(1)	
C(16)	7559(3)	9143(2)	3752(1)	17(1)	
C(17)	7148(3)	9212(2)	3419(1)	20(1)	
C(18)	8634(3)	10088(2)	3211(1)	22(1)	
C(19)	10541(3)	10910(2)	3336(1)	22(1)	
C(20)	10992(3)	10823(2)	3668(1)	22(1)	
C(21)	9512(3)	9938(2)	3874(1)	19(1)	

N(1)-C(7)	1.4128(18)
N(1)-C(1)	1.4668(19)
N(1)-H(1N)	0.894(18)
C(1)-C(2)	1.534(2)
C(1)-C(6)	1.546(2)
C(1)-C(14)	1.548(2)
C(2)-O(1)	1.214(2)
C(2)-C(3)	1.518(2)
C(3)-O(2)	1.4111(19)
C(3)-C(4)	1.528(2)
C(3)-H(3)	1.0000
O(2)-H(2O)	0.87(2)
C(4)-C(5)	1.529(2)
C(4)-H(4A)	0.9900
C(4)-H(4B)	0.9900
C(5)-C(6)	1.532(2)
C(5)-H(5A)	0.9900
C(5)-H(5B)	0.9900
C(6)-H(6A)	0.9900
C(6)-H(6B)	0.9900
C(7)-C(8)	1.398(2)
C(7)-C(12)	1.399(2)
C(8)-C(9)	1.396(2)
C(8)-H(8)	0.9500
C(9)-C(10)	1.388(2)
C(9)-H(9)	0.9500
C(10)-O(3)	1.3786(18)
C(10)-C(11)	1.392(2)
O(3)-C(13)	1.421(2)
C(13)-H(13A)	0.9800
C(13)-H(13B)	0.9800
C(13)-H(13C)	0.9800
C(11)-C(12)	1.387(2)
C(11)-H(11)	0.9500

Table 3. Bond lengths [Å] and angles [°] for V19265.

C(12)-H(12)	0.9500
C(14)-C(15)	1.535(2)
C(14)-H(14A)	0.9900
C(14)-H(14B)	0.9900
C(15)-C(16)	1.507(2)
C(15)-H(15A)	0.9900
C(15)-H(15B)	0.9900
C(16)-C(17)	1.395(2)
C(16)-C(21)	1.396(2)
C(17)-C(18)	1.394(2)
С(17)-Н(17)	0.9500
C(18)-C(19)	1.388(3)
C(18)-H(18)	0.9500
C(19)-C(20)	1.389(2)
C(19)-H(19)	0.9500
C(20)-C(21)	1.392(2)
C(20)-H(20)	0.9500
C(21)-H(21)	0.9500
C(7)-N(1)-C(1)	122 78(12)
C(7)-N(1)-C(1)	122.76(12) 110.0(13)
C(1)-N(1)-H(1N)	110.0(13) 111.4(14)
N(1)-C(1)-C(2)	107.64(12)
N(1) - C(1) - C(6)	107.04(12) 110.24(12)
C(2)-C(1)-C(6)	106.67(12)
N(1)-C(1)-C(14)	111 97(12)
C(2)-C(1)-C(14)	107 59(12)
C(6)-C(1)-C(14)	112.43(12)
O(1)-C(2)-C(3)	122.75(12)
O(1)-C(2)-C(1)	122.50(13)
C(3)-C(2)-C(1)	114 75(13)
O(2)-C(3)-C(2)	109.31(13)
O(2)-C(3)-C(4)	112.41(13)
C(2)-C(3)-C(4)	109.45(13)
O(2)-C(3)-H(3)	108.5
C(2)-C(3)-H(3)	108 5

C(4)-C(3)-H(3)	108.5
C(3)-O(2)-H(2O)	107.7(17)
C(3)-C(4)-C(5)	111.77(13)
C(3)-C(4)-H(4A)	109.3
C(5)-C(4)-H(4A)	109.3
C(3)-C(4)-H(4B)	109.3
C(5)-C(4)-H(4B)	109.3
H(4A)-C(4)-H(4B)	107.9
C(4)-C(5)-C(6)	110.78(13)
C(4)-C(5)-H(5A)	109.5
C(6)-C(5)-H(5A)	109.5
C(4)-C(5)-H(5B)	109.5
C(6)-C(5)-H(5B)	109.5
H(5A)-C(5)-H(5B)	108.1
C(5)-C(6)-C(1)	114.11(13)
C(5)-C(6)-H(6A)	108.7
C(1)-C(6)-H(6A)	108.7
C(5)-C(6)-H(6B)	108.7
C(1)-C(6)-H(6B)	108.7
H(6A)-C(6)-H(6B)	107.6
C(8)-C(7)-C(12)	117.76(13)
C(8)-C(7)-N(1)	123.25(14)
C(12)-C(7)-N(1)	118.93(13)
C(9)-C(8)-C(7)	121.04(14)
C(9)-C(8)-H(8)	119.5
C(7)-C(8)-H(8)	119.5
C(10)-C(9)-C(8)	120.19(14)
С(10)-С(9)-Н(9)	119.9
C(8)-C(9)-H(9)	119.9
O(3)-C(10)-C(9)	124.37(15)
O(3)-C(10)-C(11)	116.30(14)
C(9)-C(10)-C(11)	119.34(14)
C(10)-O(3)-C(13)	116.80(13)
O(3)-C(13)-H(13A)	109.5
O(3)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
109.5	

109.5	
109.5	
120.21(15)	
119.9	
119.9	
121.38(14)	
119.3	
119.3	
112.59(12)	
109.1	
109.1	
109.1	
109.1	
107.8	
111.21(12)	
109.4	
109.4	
109.4	
109.4	
108.0	
118.79(14)	
120.31(14)	
120.85(14)	
120.69(15)	
119.7	
119.7	
119.91(15)	
120.0	
120.0	
119.96(15)	
120.0	
120.0	
120.02(15)	
120.0	
120.0	

C(20)-C(21)-C(16)	120.60(14)
C(20)-C(21)-H(21)	119.7
C(16)-C(21)-H(21)	119.7

	U11	U ²²	U33	U23	U13	U12	
N(1)	13(1)	20(1)	14(1)	-2(1)	1(1)	-1(1)	
C(1)	13(1)	15(1)	14(1)	-1(1)	0(1)	-1(1)	
C(2)	15(1)	15(1)	16(1)	0(1)	2(1)	-4(1)	
O(1)	14(1)	28(1)	17(1)	-5(1)	1(1)	1(1)	
C(3)	16(1)	25(1)	15(1)	-6(1)	1(1)	1(1)	
O(2)	18(1)	36(1)	18(1)	-14(1)	-1(1)	0(1)	
C(4)	27(1)	28(1)	15(1)	-1(1)	-2(1)	4(1)	
C(5)	24(1)	21(1)	18(1)	1(1)	-3(1)	4(1)	
C(6)	22(1)	16(1)	16(1)	-1(1)	0(1)	1(1)	
C(7)	17(1)	15(1)	14(1)	-1(1)	1(1)	-2(1)	
C(8)	17(1)	16(1)	18(1)	0(1)	0(1)	1(1)	
C(9)	20(1)	16(1)	18(1)	-3(1)	3(1)	1(1)	
C(10)	22(1)	22(1)	13(1)	-1(1)	1(1)	-3(1)	
O(3)	28(1)	37(1)	13(1)	0(1)	2(1)	4(1)	
C(13)	32(1)	38(1)	16(1)	0(1)	7(1)	2(1)	
C(11)	20(1)	23(1)	18(1)	2(1)	-1(1)	2(1)	
C(12)	14(1)	20(1)	18(1)	-2(1)	2(1)	1(1)	
C(14)	12(1)	15(1)	16(1)	0(1)	1(1)	-2(1)	
C(15)	16(1)	16(1)	25(1)	0(1)	4(1)	0(1)	
C(16)	18(1)	12(1)	22(1)	0(1)	4(1)	2(1)	
C(17)	18(1)	18(1)	25(1)	0(1)	-2(1)	0(1)	
C(18)	26(1)	20(1)	20(1)	2(1)	-1(1)	3(1)	
C(19)	24(1)	16(1)	27(1)	2(1)	7(1)	0(1)	
C(20)	21(1)	17(1)	28(1)	-3(1)	1(1)	-4(1)	
C(21)	21(1)	16(1)	19(1)	-2(1)	1(1)	-1(1)	

Table 4. Anisotropic displacement parameters ($Å^2x \ 10^3$) for V19265. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^{*} \ b^{*} \ U^{12}]$

	Х	У	Z	U(eq)	
	1820(20)	5580(20)	2077(5)	24	
H(1N)	6001	5580(50)	3977(3)	24	
H(3)	5500(40)	7210(20)	4070	22	
H(20)	5114	7310(30)	3127(0) 4014	20	
$\Pi(4\mathbf{A})$	3114 7554	3399	4914	20	
H(4B)	/334	4170	3002	28	
H(5A)	//82	1934	4590	25	
H(5B)	8802	3///	4466	25	
H(6A)	4409	2423	4308	21	
H(6B)	6454	2630	4057	21	
H(8)	6091	3350	3547	20	
H(9)	6533	3541	2983	22	
H(13A)	7164	5541	2517	43	
H(13B)	5885	5108	2184	43	
H(13C)	6305	3573	2445	43	
H(11)	870	6524	2927	24	
H(12)	555	6475	3491	21	
H(14A)	8024	6237	4184	18	
H(14B)	7333	5765	3818	18	
H(15A)	4439	8152	3878	23	
H(15B)	5891	8770	4186	23	
H(17)	5840	8657	3332	24	
H(18)	8343	10122	2984	27	
H(19)	11536	11532	3196	27	
H(20)	12310	11368	3753	26	
H(21)	9834	9875	4100	20	

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for V19265.

C(7)-N(1)-C(1)-C(2)	150.99(14)
C(7)-N(1)-C(1)-C(6)	-93.03(17)
C(7)-N(1)-C(1)-C(14)	32.94(19)
N(1)-C(1)-C(2)-O(1)	-5.1(2)
C(6)-C(1)-C(2)-O(1)	-123.39(16)
C(14)-C(1)-C(2)-O(1)	115.76(16)
N(1)-C(1)-C(2)-C(3)	174.48(13)
C(6)-C(1)-C(2)-C(3)	56.17(16)
C(14)-C(1)-C(2)-C(3)	-64.68(16)
O(1)-C(2)-C(3)-O(2)	-2.2(2)
C(1)-C(2)-C(3)-O(2)	178.20(13)
O(1)-C(2)-C(3)-C(4)	121.28(17)
C(1)-C(2)-C(3)-C(4)	-58.28(17)
O(2)-C(3)-C(4)-C(5)	176.86(14)
C(2)-C(3)-C(4)-C(5)	55.20(17)
C(3)-C(4)-C(5)-C(6)	-54.08(18)
C(4)-C(5)-C(6)-C(1)	54.73(18)
N(1)-C(1)-C(6)-C(5)	-170.37(12)
C(2)-C(1)-C(6)-C(5)	-53.78(16)
C(14)-C(1)-C(6)-C(5)	63.92(16)
C(1)-N(1)-C(7)-C(8)	43.0(2)
C(1)-N(1)-C(7)-C(12)	-139.76(15)
C(12)-C(7)-C(8)-C(9)	2.7(2)
N(1)-C(7)-C(8)-C(9)	179.92(14)
C(7)-C(8)-C(9)-C(10)	-2.3(2)
C(8)-C(9)-C(10)-O(3)	-179.95(15)
C(8)-C(9)-C(10)-C(11)	-0.3(2)
C(9)-C(10)-O(3)-C(13)	-17.7(2)
C(11)-C(10)-O(3)-C(13)	162.65(16)
O(3)-C(10)-C(11)-C(12)	-178.00(15)
C(9)-C(10)-C(11)-C(12)	2.3(3)
C(10)-C(11)-C(12)-C(7)	-1.9(3)
C(8)-C(7)-C(12)-C(11)	-0.7(2)
N(1)-C(7)-C(12)-C(11)	-178.00(15)

Table 6. Torsion angles [°] for V19265.

N(1)-C(1)-C(14)-C(15)	62.65(16)
C(2)-C(1)-C(14)-C(15)	-55.43(16)
C(6)-C(1)-C(14)-C(15)	-172.59(12)
C(1)-C(14)-C(15)-C(16)	-161.29(12)
C(14)-C(15)-C(16)-C(17)	93.17(17)
C(14)-C(15)-C(16)-C(21)	-84.11(18)
C(21)-C(16)-C(17)-C(18)	-1.2(2)
C(15)-C(16)-C(17)-C(18)	-178.53(15)
C(16)-C(17)-C(18)-C(19)	-0.4(2)
C(17)-C(18)-C(19)-C(20)	1.5(3)
C(18)-C(19)-C(20)-C(21)	-1.1(3)
C(19)-C(20)-C(21)-C(16)	-0.5(2)
C(17)-C(16)-C(21)-C(20)	1.6(2)
C(15)-C(16)-C(21)-C(20)	178.93(15)

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
N(1)-H(1N)O(1)	0.894(18)	2.19(2)	2.6591(16)	112.5(16)	
C(3)-H(3)O(2)#1	1.00	2.31	3.053(2)	129.9	
O(2)-H(2O)O(1)#1	0.87(2)	2.04(2)	2.8566(16)	157(2)	
O(2)-H(2O)O(2)#1	0.87(2)	2.50(2)	3.1420(10)	132(2)	
C(13)-H(13C)O(3)#2	0.98	2.53	3.480(3)	163.8	
C(14)-H(14A)O(1)#3	0.99	2.66	3.6265(19)	166.6	

Table 7. Hydrogen bonds for V19265 [Å and °].

References

1. Johnson, P. L.; Renga, J. M.; Galliford, C. V.; Whiteker, G. T.; Giampietro, N. C., *Org. Lett.* **2015**, 17, 2905.

2. Hu, Y.-J.; Fan, J.-H.; Li, S.; Zhao, J.; Li, C.-C., Org. Lett. 2018, 20, 5905.

3. a) Hazra, C. K.; Jeong, J.; Kim, H.; Baik, M.-H.; Park, S.; Chang, S., *Angew. Chem. Int. Ed.* **2018**, *57*, 2692. b) Persich, P.; Llaveria, J.; Lhermet, R.; de Haro, T.; Stade, R.; Kondoh, A.; Fürstner, A., *Chem. Eur. J.* **2013**, *19*, 13047.

4. Fischer, D. F.; Xin, Z.-Q.; Peters, R., Angew. Chem. Int. Ed. 2007, 46, 7704.

5. Ma, X.; Herzon, S. B., J. Org. Chem. 2016, 81, 8673.

SI44

¹⁹F NMR (282 MHz, CDCl₃) of compound **3a**.

SI47

¹⁹F NMR (282 MHz, CDCl₃) of compound **3b**.

¹⁹F NMR (282 MHz, CDCl₃) of compound **3c**.

 $^{19}\mathrm{F}$ NMR (282 MHz, CDCl₃) of compound **3d**.

ë of

SI56

8

¹⁹F NMR (282 MHz, CDCl₃) of compound **3e**.

¹⁹F NMR (282 MHz, CDCl₃) of compound **3f**.

¹⁹F NMR (282 MHz, CDCl₃) of compound **3g**.

SI65

¹⁹F NMR (282 MHz, CDCl₃) of compound **3h**.

¹⁹F NMR (282 MHz, CDCl₃) of compound **3i**.

¹⁹F NMR (282 MHz, CDCl₃) of compound **1g**.

¹³C NMR (100 MHz, CDCl₃) of compound **1i**.

Infrared spectrum (Thin Film, NaCl) of compound 2d.

 ^{13}C NMR (100 MHz, CDCl₃) of compound **2f**.

¹⁹F NMR (282 MHz, CDCl₃) of compound **2g**.

SI109

¹⁹F NMR (100 MHz, CDCl₃) of compound **9**.