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Introduction  20 

This document includes supplementary methods, figures and tables, which have been cited in the 21 
main text. 22 

Text S1. Impact of ICF calculation method 23 

As described in Section 2.1 in the main text, we only include in ICF calculation the MODIS 24 
ice pixels within a 20 km radius that vertically overlap with the CALIOP ice cloud layer (Layer 25 
Top Pressure of CALIOP ice cloud layer – 10 hPa ≤ Cloud Top Pressure of MODIS ice pixel ≤ 26 
Layer Base Pressure of CALIOP ice cloud layer), in order to minimize contamination by the 27 
cloud pixels that does not belong to the same cloud layer as detected by CALIOP. Here 10 hPa 28 
corresponds to about 0.25 km at the ice cloud altitude. The ICF calculated using this baseline 29 
method is denoted by “ICF” in Fig. S1. We have conducted a sensitivity test in which all valid ice 30 
cloud pixels within the 20 km radius are accounted for, whether or not they vertically overlap 31 
with the CALIOP ice cloud layer (denoted by “ICF_overlap+nonoverlap” in Fig. S1). The ICF 32 
calculated using the sensitivity method (“ICF_overlap+nonoverlap”) is 0.05 to 0.07 higher than 33 
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the baseline (“ICF”). Nevertheless, the relationships between ICF and AOD are very similar 34 
under these two calculation methods. 35 

Moreover, we performed two sensitivity tests in which ICF is calculated following the 36 
baseline method (“ICF” in Fig. S1), except that 10 km and 5 km radii are used (denoted by 37 
“ICF_10km” and “ICF_5km” in Fig. S1) instead of a 20 km radius. The usage of smaller radii 38 
further increases the likelihood that MODIS ice pixels included in ICF calculations belong to the 39 
same cloud as detected by CALIOP. Fig. S1 illustrates that the magnitude of ICF increases 40 
remarkably as the radius for calculations is reduced. However, the relationship pattern between 41 
ICF and AOD remains unchanged. In this study, we have retained a 20 km radius in order to 42 
investigate the aerosol impact on cloud horizontal development over a relatively large spatial 43 
scale. 44 

In the present study, partly cloudy ice pixels in MODIS are excluded from the ICF 45 
calculations following the method to calculate ICF in MODIS Level 3 product [Hubanks et al., 46 
2016], because the retrievals for partly cloudy pixels are subject to large uncertainties [Platnick et 47 
al., 2015a]. To examine the impact of partly cloudy pixels on the ICF calculations, we performed 48 
a sensitivity test in which partly cloudy pixels (i.e., those with “clear sky restoral flag” of 1 or 3 49 
[Platnick et al., 2015a]) are included, assuming that one partly cloudy pixel accounts for 0.5 50 
overcast pixel (“ICF_pcl” in Fig. S1). The magnitude of ICF calculated with partly cloudy pixels 51 
is 0.01-0.04 larger than that without partly cloudy pixels, but the responses of ICF to aerosols are 52 
similar in these two cases. 53 

Text S2. Discussions about the IWP and IWC retrievals 54 

In this study, the IWP and IWC retrievals are obtained from a CloudSat-CALIOP combined 55 
product (2C-ICE, version P1_R04), which is reported in the same resolution (1.7 km along-track 56 
and 240 m vertically) as other CloudSat retrieval products. To collocate the 2C-ICE product with 57 
the CALIOP 05kmMLay product at a 5 km along-track resolution, we horizontally average the 58 
2C-ICE IWC and IWP retrievals at 1.7 km resolution within the range of a CALIOP 5 km profile. 59 
In the vertical direction, the 2C-ICE IWC data are vertically averaged between the top and bottom 60 
of the ice cloud layer retrieved by CALIOP. The average thickness of ice cloud layers is about 61 
1.3 km, corresponding to 5-6 2C-ICE vertical bins. 62 

The algorithm used to generate the 2C-ICE product enables the retrieval of ice cloud 63 
properties in three cloud regions: (1) a lidar-only region consisting of high tenuous clouds 64 
detected only by CALIOP, (2) a radar/lidar overlapped region where CloudSat and CALIOP both 65 
sense the presence of cloud, and (3) a radar-only region in which CALIOP signal has been fully 66 
attenuated but CloudSat continues to return data [Mace and Deng, 2015]. This study focuses on 67 
single-layer ice-only clouds, which are primarily optically thin cirrus clouds that seldom fully 68 
attenuate the CALIOP lidar signal. For this reason, among the samples used in our analysis, 65%, 69 
33%, and 2% are located in the lidar-only, radar-lidar overlapped, and radar-only regions, 70 
respectively. As the 2C-ICE and CALIOP products both incorporate lidar measurements, their 71 
sensitivities to ice crystal size should be similar. For this reason, it appears reasonable to collocate 72 
the 2C-ICE and CALIOP products. 73 

We did not use IWP from CALIOP because the CALIOP IWC (and hence IWP) retrieval is 74 
a provisional data product. “Provisional” means that only limited comparisons with independent 75 
sources have been made and artifacts have not been fully fixed, thus more validation is still 76 
needed. Also, CALIOP IWC is calculated as a simple parameterized function of the CALIOP-77 
retrieved extinction coefficients [NASA CALIPSO team, 2012a]: 78 

IWC = 𝐶0 (
𝜎

1000
)
𝐶1

 79 

where  is the 532 nm volume extinction coefficient in km-1, and C0 = 119 g m-3 and C1 = 1.22 are 80 
coefficients derived from an observed empirical relationship between lidar extinction and in situ 81 
measurements of cloud particle properties. For this reason, the IWP-aerosol relationships will 82 
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obviously be very similar to the COT-aerosol relationships, therefore it makes little sense to 83 
include CALIOP IWC/IWP.  84 

In contrast, the usage of IWC/IWP from the 2C-ICE CloudSat-CALIOP combined retrieval 85 
product could serve as an independent support for the relationships between COT and aerosols 86 
found in this study. We believe that the IWC retrieval from the 2C-ICE product is better than that 87 
from the CALIOP product because of two reasons. First, 33% of the samples used in our analysis 88 
are located in the radar-lidar overlapped regions, in which the IWC retrievals from 2C-ICE 89 
incorporate both lidar and radar measurements. Second, even in the lidar-only region, the 2C-ICE 90 
product makes use of a more sophisticated retrieval algorithm based on an optimal estimation 91 
framework [Mace and Deng, 2015]. In this framework, the relationships between the vertical 92 
profiles of the ice cloud microphysical properties (IWC, effective radius, etc.) and lidar attenuated 93 
backscattering coefficients are developed and a look-up table is subsequently built. Then, the ice 94 
cloud microphysical properties are optimized based on the measured attenuated backscattering 95 
coefficients. 96 

Text S3. Evaluating the effects of meteorological covariation 97 

We have examined the responses of column AOD to ten meteorological parameters that 98 
may significantly affect the formation and evolution of ice clouds (as listed in Table S3) in our 99 
previous study [Zhao et al., 2018], and found that AOD does not show large changes in response 100 
to variation in any of the ten meteorological parameters (see Fig. S3 in [Zhao et al., 2018]). Here 101 
we have repeated this analysis for layered AOD in case of in-situ formed ice clouds, and the 102 
results are illustrated in Fig. S3. Similar to the results for column AOD, we find that layer AOD 103 
does not have large changes in response to variation in any meteorological parameter. 104 
Particularly, there are indeed some positive correlations between layer AOD and relative 105 
humidity averaged between 100 hPa and 440 hPa (RH100-440hPa). However, layer AOD only 106 
increases by about 10% from the smallest to the largest RH100-440hPa bin. The magnitude of change 107 
is significantly smaller than the relationships between COT (or ICF, cloud thickness) and layer 108 
AOD in case of in-situ formed ice clouds (Fig. 1d in main text). 109 

Besides, we have calculated the partial correlation between AOD and ice cloud properties 110 
following the method used in Engstrom and Ekman [2010], in order to exclude the impact of 111 
meteorological covariation at reanalysis data resolution. The partial correlation is a measure of 112 
the linear dependence between two variables where the influence from possible controlling 113 
variables (meteorological parameters in this case) is removed [Engstrom and Ekman, 2010; 114 
Hardle and Simar, 2015; Johnson and Wichern, 2007; PSU, 2017]. Let X denote a vector of 115 
meteorological parameters, the effects of which we would like to eliminate. The partial 116 
correlation between AOD and COT (or ICF, cloud thickness), eliminating the effects of X, is: 117 

𝜌𝐴𝑂𝐷−𝐶𝑂𝑇.𝑋 =
𝜎𝐴𝑂𝐷−𝐶𝑂𝑇.𝑋
𝜎𝐴𝑂𝐷.𝑋𝜎𝐶𝑂𝑇.𝑋

 118 

where 𝜎𝐴𝑂𝐷−𝐶𝑂𝑇.𝑋 is the conditional covariance between AOD and COT, eliminating the 119 
effects of X; 𝜎𝐴𝑂𝐷.𝑋 is the square root of the conditional variance of AOD, eliminating the effects 120 
of X; 𝜎𝐶𝑂𝑇.𝑋 is the square root of the conditional variance of COT, eliminating the effects of X. 121 
More details of the calculation method for partial correlation are described in several 122 
mathematical textbooks [Hardle and Simar, 2015; Johnson and Wichern, 2007; PSU, 2017]. 123 

Here we calculate the partial correlations with the effects of 10 meteorological parameters 124 
(listed in Table S3) removed simultaneously, and compare with the total correlations. We also 125 
perform two additional groups of calculations in which only the effects of RH100-440hPa and the 126 
vertical velocity at 300 hPa (VV300) are eliminated, respectively. The results are summarized in 127 
Table S4. Note that we computed the total and partial correlations between column AOD and ice 128 
cloud properties for all ice cloud types, as well as those between layer AOD and ice cloud 129 
properties for in-situ formed ice clouds. We do not perform partial relation calculations for 130 
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convection-generated ice clouds since the responses of ice cloud properties to AOD are not 131 
monotonic in this case. 132 

For all cases, the total and partial correlations are generally similar. In the cases where the 133 
partial correlation is smaller than the total correlation, which means that meteorological 134 
covariation could partly explain the aerosol-cloud relationship, the difference between the partial 135 
and total correlations are all within 24%. In particular, the partial correlations between layer AOD 136 
and ICF/cloud thickness/COT of in-situ ice clouds with the effect of RH100-440hPa eliminated are 137 
21%/2%/0% smaller than the corresponding total correlations. Therefore, the comparison 138 
between total and partial relations indicates that the meteorological covariations at reanalysis data 139 
resolution does not appear to be major causes for the relationships between aerosols and ice cloud 140 
properties, though they can indeed play some minor roles in certain situations. 141 

Note that reanalysis data may not be sufficiently representative of the real atmosphere to 142 
completely remove the effects of meteorological covariation on the aerosol-cloud relationships 143 
[Gryspeerdt et al., 2016]. In particular, the relative humidity shows a strong small- to mesoscale 144 
variability that could be important for the aerosol swelling and cloud formation and cannot be 145 
constrained by reanalysis products with resolutions of tens of kilometers [Gryspeerdt et al., 146 
2016]. The quantitative assessment of the meteorological covariation at smaller scales is a very 147 
complicated and difficult task that merits further in-depth study. 148 

Text S4. Effect of contaminations in AOD and cloud retrievals 149 

A cloud contamination in AOD retrievals [Kaufman et al., 2005] could cause an artificial 150 
positive correlation between AOD and ice cloud properties. Such contamination is more likely to 151 
occur for high AOD retrievals. Nevertheless, strong positive correlations between AOD and cloud 152 
thickness/COT/ICF mainly occur at small AOD range, while the correlations are quite weak 153 
(even slightly negative) at higher AOD range (Fig. 1a). 154 

Also, we conducted a sensitivity analysis following Koren et al. [2010]. In the sensitivity 155 
case, AOD is calculated using 10 km×10 km AOD retrievals that report less than 20% cloud 156 
fraction within the 10 km×10 km area. Koren et al. [2010] suggested that the 20% cloud fraction 157 
cut-off corresponds to an average distance of 5 km between a pixel used by the AOD retrieval 158 
and an identified cloudy pixel. There is no guarantee that this procedure eliminates all possible 159 
cloud contamination, but most of the pixels likely to be cloud contaminated are filtered out 160 
[Koren et al., 2010]. Figure. S4 illustrates the changes in ICF, cloud thickness, and COT with 161 
aerosols in the base and sensitivity cases. The responses of all three cloud properties to AOD are 162 
very similar under the base and sensitivity cases, although the magnitude of changes is slightly 163 
smaller in the sensitivity case. For this reason, the contamination of AOD retrievals by clouds 164 
does not seem to be a major cause for the aerosol-cloud relationships. 165 

Text S5. Impact of retrieval uncertainties 166 

The CALIPSO team has performed a detailed assessment of uncertainties in individual 167 
COT retrievals [NASA CALIPSO team, 2010], which has been incorporated in the 05kmMLay 168 
product used in this study. The assessment assumed that all uncertainties were random and 169 
uncorrelated. Although this is not always strictly true, it was considered adequate for estimating 170 
the influences of main uncertainties [NASA CALIPSO team, 2010]. Following this assumption, 171 
we use the propagation of uncertainty formula to estimate the retrieval uncertainty in average 172 
COT within each AOD bin in Figs. 1 and 2. The results show that the COT retrieval uncertainties 173 
are less than 0.003 for all AOD bins in Fig. 1a that illustrates overall changes in COT with 174 
reference to AOD. The uncertainties are less than 0.012 in all other figures that show COT 175 
changes for individual ice cloud types and/or meteorological ranges. The magnitude of retrieval 176 
uncertainty is significantly smaller than the COT trends in response to AOD. While we have 177 
considered all error sources as random uncertainties following NASA CALIPSO team [2010], it 178 
should be noted that some of them might be systematic errors. For example, a systematic 179 
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overestimation in lidar ratio adopted in the retrieval algorithm could subsequently lead to an 180 
overestimation in retrieved COT. However, the possible systematic retrieval errors have not yet 181 
been quantified by any previous study. 182 

For ICF and the cloud thickness, the retrieval products used in this study do not provide 183 
uncertainty assessment. It is very difficult to quantitatively evaluate retrieval uncertainties. The 184 
ICF is calculated using the ratio of the number of MODIS ice-phase pixels to the number of all 185 
pixels within a 20 km radius of a CALIOP profile. The ICF uncertainty would depend on the 186 
reliability in determining the existence and phase of clouds in individual MODIS pixels. We only 187 
included in the ICF calculation the pixels whose “primary cloud retrieval outcome” is successful, 188 
which would reduce uncertainty in cloudy pixel identification. Furthermore, we have tested a 189 
number of ICF calculation methods involving different thresholds for selecting ice pixels, as 190 
detailed in Text S1. These results indicate that the responses of ICF to aerosols are similar for all 191 
calculation methods, implying that these responses are unlikely explained by retrieval errors or 192 
calculation methods. Similar to ICF, the uncertainty in cloud thickness retrieval depends on the 193 
confidence in the determination of cloud existence, especially near cloud top and bottom where 194 
the cloud becomes relatively thin. If we assume that two 30 m vertical bins are randomly 195 
misclassified at the top and bottom of a cloud, the retrieval uncertainties of average cloud 196 
thickness within AOD bins used in Figs. 1-2 are estimated to be less than 4 m, much smaller than 197 
the magnitude of cloud thickness trends in response to aerosols. 198 

For AOD, comparison studies with AERONET have estimated the accuracy of MODIS 199 
AOD retrievals to be about ±0.05 ± 0.15 × AOD over land and ±0.03 ± 0.05 × AOD over ocean 200 
[Levy et al., 2010; Remer et al., 2005]. This error magnitude could result in some samples being 201 
put into a neighboring AOD bin in Figs. 1 and 2, but should not noticeably affect the overall 202 
responses of ice cloud properties to AOD changes from the smallest to the largest bins.  203 
  204 
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 205 
Figure S1. Responses of ICF of all ice cloud types calculated using different methods to 206 

AOD changes. 207 
 208 
 209 

   

(d) (e) (f) 

   
(j) (k) (l) 
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(d) (e) (f) 

   
(j) (k) (l) 

Figure S2. The same as Fig. 2 in the main text but for pressure vertical velocity at 300 210 

hPa (VV300). Negative VV300 values indicate net upward air motion, whereas positive 211 

VV300 values indicate net subsidence.  212 
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(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

  

  

(i) (j)   
Figure S3. Changes in layer AOD mixed with in-situ formed iced clouds as a function of 213 

meteorological parameters: (a) RH100-440hPa, (b) convective available potential energy, (c) 214 

middle cloud layer temperature, (d) vertical velocity at 500 hPa (VV500), (e) VV300, (f) 215 

U-components of wind speed at 200 hPa, (g) U-components of wind speed at 1000 hPa, 216 

(h) V-components of wind speed at 200 hPa, (i) V-components of wind speed at 1000 217 

hPa, (j) and vertical wind shear at potential vorticity surface of 2 × 10-6 deg K m2 kg-1 s-1. 218 

The error bars represent the standard errors (/√N), in which  is the standard deviation 219 

and N is the number of samples. The error bars in some panels are very small and 220 

therefore invisible. 221 

 222 
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(a) (b) 

Figure S4. Changes in (a) ICF and (b) cloud thickness and COT with aerosols in the base 223 

case and a sensitivity case (denoted by a suffix of “cloudscreen”) in which AOD 224 

retrievals with high cloud fraction (>20%) are filtered.  225 
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Table S1. Datasets used in this study. 226 
Satellite/ 

Sensor 

Product Variable Horizontal 

resolution 

Aqua/MODIS MYD04 (Level 2, 

Collection 6) [Levy et 

al., 2015] 

Column AOD 10 km × 

10 km 

 MYD06 (Level 2, 

Collection 6) [Platnick et 

al., 2015b] 

Primary cloud retrieval outcome and 

cloud phase (determined by the 

“cloud optical property” algorithm) 

1 km × 1 

km 

CALIPSO/ 

CALIOP 

05kmMLay (Level 2, 

V4.10) [NASA CALIPSO 

team, 2012b] 

Aerosol/cloud layer number, layer 

aerosol/cloud optical depth, layer 

top/base height (cloud thickness is 

derived from the difference between 

the two), layer base temperature, 

middle layer temperature, feature 

classification flags (containing the 

“aerosol type” and “cloud type” 

flags), extinction QC, and CAD score 

5 km 

along-

track 

 05kmAPro (Level 2, 

V4.10) [NASA CALIPSO 

team, 2012a] 

Vertically resolved relative humidity* 5 km 

along-

track 

CloudSat/CPR 2C-ICE (Level 2, Version 

P1_R04) [Mace and 

Deng, 2015] 

Ice water path, vertically resolved ice 

water content 

1.7 km 

along-

track 

-- NCEP ds083.2 [National 

Centers for 

Environmental 

Prediction/National 

Weather 

Service/NOAA/U.S. 

Department of 

Commerce, 2000] 

Vertically resolved wind speed & 

pressure vertical velocity; wind 

shear; convective available potential 

energy 

1º × 1º 

* The relative humidity in the 05kmAPro product was adapted from the GEOS-5 data product 227 
provided to the CALIPSO project by the GMAO Data Assimilation System.  228 
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Table S2. Changes in ice cloud properties from the lowest third to the highest third AOD 229 

subsets. 230 
Cloud type Cloud property Mean of the 

lowest 

subset 

Mean of the 

highest 

subset 

Absolute 

change 

Fractional 

change 

All types Cloud thickness 1.174 1.305 0.131 11.2% 

 COT 0.341 0.445 0.104 30.7% 

 ICF 0.426 0.475 0.049 11.5% 

Convective Cloud thickness 1.429 1.543 0.114 8.0% 

 COT 0.732 0.813 0.080 10.9% 

 ICF 0.508 0.533 0.025 5.0% 

In-situ Cloud thickness 1.409 1.996 0.587 41.6% 

 COT 0.247 0.525 0.278 112.8% 

 ICF 0.335 0.457 0.122 36.5% 

Note: considering the different criteria for the selection of valid data points for all, convective, and in-231 
situ ice cloud types (the former two requires valid column AOD from MODIS and the last type 232 
requires valid layer AOD from CALIOP), the weighted-average cloud properties of convective and in-233 
situ ice clouds may not equal the properties of all ice cloud types. 234 
 235 
Table S3. Correlation coefficients between major ice cloud properties and the 236 

meteorological variables that can affect the development of ice clouds. 237 

 

Cloud 

thickness COT ICF 

Relative humidity averaged between 100 hPa and 

440 hPa 0.196 -0.016 0.153 

Middle cloud layer temperature 0.032 0.249 -0.065 

Convective available potential energy 0.083 0.034 0.145 

Pressure vertical velocity at 500 hPa -0.017 -0.066 -0.072 

Pressure vertical velocity at 300 hPa -0.054 -0.080 -0.104 

U-component of wind speed at 200 hPa -0.092 0.033 -0.086 

U-component of wind speed at 1000 hPa -0.013 0.029 -0.050 

V-component of wind speed at 200 hPa -0.027 0.020 0.050 

V-component of wind speed at 1000 hPa 0.034 0.023 -0.003 

Vertical wind shear -0.022 0.004 0.015 

Note: The numbers in bold indicate correlations coefficients greater than ±5%; the italic numbers are 238 
not statistically significant at the 0.01 level based on the Student’s t-test.239 
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Table S4. Total correlations between column/layer AOD and ice cloud properties and the corresponding partial correlations with the 240 

effects of certain meteorological parameters eliminated. The numbers in brackets are 95% confidence intervals. 241 

Cloud 

properties 

Total 

correlation  
p-value 

Partial correlation 

eliminating effects 

of 10 parameters 

p-value 

Partial correlation 

eliminating effect 

of RH100-440hPa 

p-value 

Partial correlation 

eliminating the 

effects of VV300 

p-value 

Column AOD vs. all ice cloud types 

ICF 
0.031  
(0.023, 
0.040) 

< 0.001 
0.043  
(0.034, 0.052) 

< 0.001 0.040  
(0.032, 0.049) 

< 0.001 0.031  
(0.022, 0.039) 

< 0.001 

Cloud 

thickness 

0.031  
(0.027, 
0.035) 

< 0.001 
0.043  
(0.039, 0.047) 

< 0.001 0.042  
(0.039, 0.046) 

< 0.001 0.030  
(0.026, 0.034) 

< 0.001 

COT 
0.097  
(0.094, 
0.102) 

< 0.001 
0.085  
(0.081, 0.090) 

< 0.001 0.097  
(0.093, 0.101) 

< 0.001 0.095  
(0.092, 0.100) 

< 0.001 

Layer AOD vs. in-situ formed ice clouds 

ICF 
0.168  
(0.150, 
0.195) 

< 0.001 
0.128  
(0.109, 0.153) 

< 0.001 0.132  
(0.113, 0.157) 

< 0.001 0.166  
(0.148, 0.193) 

< 0.001 

Cloud 

thickness 

0.252  
(0.249, 
0.261) 

< 0.001 
0.245  
(0.241, 0.253) 

< 0.001 0.246  
(0.242, 0.254) 

< 0.001 0.251  
(0.247, 0.259) 

< 0.001 

COT 
0.204  
(0.200, 
0.211) 

< 0.001 
0.193  
(0.189, 0.200) 

< 0.001 0.204  
(0.200, 0.210) 

< 0.001 0.202  
(0.198, 0.209) 

< 0.001 

 242 



 

 

1 

 

References 243 
Engstrom, A., and A. M. L. Ekman (2010), Impact of meteorological factors on the correlation 244 

between aerosol optical depth and cloud fraction, Geophys Res Lett, 37. 245 
Gryspeerdt, E., J. Quaas, and N. Bellouin (2016), Constraining the aerosol influence on cloud 246 

fraction, J Geophys Res-Atmos, 121(7), 3566-3583. 247 
Hardle, W. K., and L. Simar (2015), Applied Multivariate Statistical Analysis, fourth edition, 248 

Springer, Berlin, Germany. 249 
Hubanks, P., S. Platnick, M. King, and B. Ridgway (2016), MODIS Atmosphere L3 Gridded 250 

Product Algorithm Theoretical Basis Document (ATBD) & Users Guide. 251 
Johnson, R. A., and D. W. Wichern (2007), Applied Multivariate Statistical Analysis, sixth 252 

edition, Pearson Education Inc., New Jersey, U.S.A. 253 
Kaufman, Y. J., I. Koren, L. A. Remer, D. Rosenfeld, and Y. Rudich (2005), The effect of smoke, 254 

dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean, P Natl 255 
Acad Sci USA, 102(32), 11207-11212. 256 

Koren, I., G. Feingold, and L. A. Remer (2010), The invigoration of deep convective clouds over 257 
the Atlantic: aerosol effect, meteorology or retrieval artifact?, Atmos Chem Phys, 10, 8855–258 
8872. 259 

Levy, R. C., C. Hsu, A. Sayer, S. Mattoo, and J. Lee (2015), MODIS Atmosphere L2 Aerosol 260 
Product. doi:10.5067/MODIS/MYD04_L2.006, NASA MODIS Adaptive Processing 261 
System, Goddard Space Flight Center. 262 

Levy, R. C., L. A. Remer, R. G. Kleidman, S. Mattoo, C. Ichoku, R. Kahn, and T. F. Eck (2010), 263 
Global evaluation of the Collection 5 MODIS dark-target aerosol products over land, Atmos 264 
Chem Phys, 10(21), 10399-10420. 265 

Mace, G. G., and M. Deng (2015), Level 2C CloudSat-CALIPSO Combined Ice Cloud Property 266 
Retrieval Product Process Description Document, available at 267 
http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2C-268 
ICE_PDICD.P1_R04.20151104.pdf. 269 

NASA CALIPSO team (2010), Uncertainty Analysis for Particulate Backscatter, Extinction and 270 
Optical Depth Retrievals reported in the CALIPSO Level 2, Version 3 Data Release. 271 

NASA CALIPSO team (2012a), CALIPSO Quality Statements: Lidar Level 2 Cloud and Aerosol 272 
Profile Products Version Releases: 3.01, 3.02. 273 

NASA CALIPSO team (2012b), CALIPSO Quality Statements Lidar Level 2 Cloud and Aerosol 274 
Layer Products Version Releases: 3.01, 3.02. 275 

National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. 276 
Department of Commerce (2000), NCEP FNL Operational Model Global Tropospheric 277 
Analyses, continuing from July 1999. doi: 10.5065/D6M043C6, Research Data Archive at 278 
the National Center for Atmospheric Research, Computational and Information Systems 279 
Laboratory. 280 

Platnick, S., M. D. King, and K. G. Meyer (2015a), MODIS cloud optical properties: user guide 281 
for the collection 6 level-2 MOD06/MYD06 product and associated level-3 datasets. 282 

Platnick, S., S. Ackerman, M. King, G. Wind, K. Meyer, P. Menzel, R. Frey, R. Holz, B. Baum, 283 
and P. Yang (2015b), MODIS atmosphere L2 cloud product (06_L2). doi: 284 
10.5067/MODIS/MYD06_L2.006, NASA MODIS Adaptive Processing System, Goddard 285 
Space Flight Center. 286 

PSU (2017), STAT 505 - Applied Multivariate Statistical Analysis, available at 287 
https://onlinecourses.science.psu.edu/stat505/node/. 288 

Remer, L. A., et al. (2005), The MODIS aerosol algorithm, products, and validation, J Atmos Sci, 289 
62(4), 947-973. 290 

Zhao, B., et al. (2018), Impact of aerosols on ice crystal size, Atmos Chem Phys, 18, 1065-1078. 291 
 292 

http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2C-ICE_PDICD.P1_R04.20151104.pdf
http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2C-ICE_PDICD.P1_R04.20151104.pdf

