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Rigidity Influence of Suspended Cable on Free Vi-
bration Modes  

The problem of vibration control of overhead line conductors subjected 
to laminar transverse wind, inducing stationary vibrations by Karmán 
effect is of high importance due to consequences upon these structures 
lifetime and service. We consider the cable model as Euler-Bernoulli 
beam that include the influence of cable rigidity and that respect the 
author condition which detaches the suspended cable model of the 
beam model with viscous, hysteretic or dry friction internal damping 
hypothesis. The original analytical expression of the free vibration 
modes and the resonance frequencies equation for the cable with 
clamped extremities has produced. Some experimental aspects are 
underlined in the paper.  

Keywords: Euler-Bernoulli beam, suspended cable model, vibration 
mode, damping, analytical solution 

1. Introduction  

We consider the cable model derived from the Euler-Bernoulli beam with 
viscous, hysteretic or dry friction internal damping [1]-[12]. The analytical 
expression of the free vibration modes and the resonance frequencies equation for 
the cable with clamped extremities are produced using our hypothesis of the cable 
imposed to Euler-Bernoulli beam, essentially for accurate identification of the cable 
model parameters. The property of any Euler-Bernoulli beam model to be 
substituted, for sufficient high frequencies, by our cable model, is underlined. 
Some relative recent studies in our domain of interest appeared [13], [14]. Our 
experimental research was performed on a specialized stand endowed with the 
overhead conductor using clamped extremities, alone or with a choice of 
Stockbridge dampers, mounted on the extreme zones of the span. The resonance 
frequencies and vibration modes are identified theoretically and also 
experimentally, on the conductor in the stand. The analytical aspects on the 
internal damping terms influence versus frequency, in the cable models, are 
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discussed. A possible equivalence between the internal damping coefficients of the 
cable models, using the described damping hypothesis, is studied, equalizing 
analytical expressions of corresponding damping energies of cable. The formulas of 
equivalence between two possible hypotheses of internal damping coefficients of 
cable are deduced and analyzed.  
 

2 Euler-Bernoulli beam model 

The following equation of free vibrations is considered [1]-[7]: 

 (
2 2 4

*
 2 2 4

 
 ( )   

    

H
H Vi i i i i

L i i i i VH
i

w c w w w
m c k w c T EI q

t t x xω
∂ ∂ ∂ ∂= − + − + + − +∂ ∂ ∂ ∂

    (1)                

The Eq. (1) describes the behavior of the beam, excited by the 

force  ( , )q q x t= , applied transversal on the beam, acting in the point of 

abscissa  x , at the time  t , on viscous damping hypothesis by the constant 

coefficient 
V
ic , on hysteretic damping hypothesis by the constant coefficient of the 

form /H VH
i ic ω  and on dry friction (Coulomb) damping hypothesis, expressed by 

the coefficient
* H

ic . The coefficient 
*H

ic  is piecewise constant, as function of 

time  t , and the sign is such that the sign of the damping force 
* ( , )H

i ic w x t  to be 

opposite to that of the velocity ( , )iw x t =&  ( , ) /iw x t t∂ ∂  at any time  t . Other 

explicit expression of the dry friction force is 
1 ( , ) ( ( , ))H

i i ic w x t sign w x t& , where 

1H
ic  is constant [8]. The first expression of dry friction force is deduced, in our 

case, taking into account the properties that the functions ( , )iw x t  and 

( , ) /iw x t t∂ ∂  are continue and with separable variables.  We denote by 
VH
iω  the 

circular frequency of order i  for damped free vibration, by / / 2VH VH
i if ω π=  the 

resonance frequency of order i  for damped free vibration, by Lm  the mass unit 

length of the beam, by EI  the bending rigidity of the beam, by T  the tension in 

the beam, by ik  the rigidity coefficient of the beam, by ( , )iy x t  corresponding 

vertical displacement of the beam for vibration mode of order i  and by L  the 

length of the beam. 

Firstly, we search the stabilized free transverse vibrations of the beam without 
damping and with clamped extremities that are of standing waves form: 

 ( , ) ( )sin ( )r r rw x t w x tω ϕ= +                                  (2)  
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In Eq. (2), the notations signify: 2  r rfω π=  is the circular frequency, with rf  

the resonance frequency of the cable in free vibrations without damping; and  ϕ  is 

the phase angle between the initial impulse and displacement. Bellow appears, in 

condition
2 0L r rm kω − > , the following dimensionless notations [3]:  

1
2 2 4 2

2 2 4 ,  ,
2 4r r

TL

EI

α αα δ β 
= = + + 

 
1

2 4 2 4 2
4 2 4( )

 ,  .
2 4

L r r
r r r

m k L

EI

ω α αβ ε β −= = − + + 
 

 

The expressions  ,   ,   ,  r r rα β δ ε  verify the relationships: 

2 2 2 2 4 2 2 4 4 2 2 4        ,  ,  0,  0.r r r r r r r r r r rδ ε α δ ε β δ α δ β ε α ε β− = = − − = + − =     (3) 

The free vibrations of the beam are defined by the following equation, derived 

from equation (1), where  ( )i iw w x= : 

(
4 2

* 2
 4 2

 ) = 0. 
  

H
V Hi i i
i i i i i L i iVH

i

d w d w c
EI T c c k m w

d x d x
ω ω ω

ω
− + + + + −      (4) 

The general solution of the equation (4), for undamped vibrations (defined by 

the values 0.,  0.,V H
i ic c= =  

* 0.H
ic = ),  is of the form: 

1 2 3 4( ) sin( ) cos( ) sinh( ) cosh( ).i i i i i i i i iw x C C C Cε ξ ε ξ ε ξ ε ξ= + + +    (5) 

In solution (5) = x / Lξ  and ,  1,..., 4;  ijC i j N= ∈  are constants. 

  
3. Euler-Bernoulli cable model 

We use the author condition (6), performed by the cable wire in the cases 
studied in the literature, which represents our hypothesis that detaches the cable 
model of the Euler Bernoulli beam model: 

e   0.rδ− ≈                                                 (6) 

The results of the Euler-Bernoulli beam model are applicable only for low 
frequencies of the beam and the results of the cable model are applicable for high 
frequencies because, in this condition, is respected the condition (6), such that the 
beam model is obliged substituted by the Euler-Bernoulli cable model.   
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The solution of Eq. (1) is searched [9]-[11] using the condition (6).                                                      
For the clamped cable, the equation of resonance frequencies is as follows.  

2 2sin 2 cos 0.r r rα ε β ε− =                                       (7) 

The analytical expression of the free vibration modes for undamped free 
vibrations of the cable, in the case of clamped boundary conditions is shown in 
formula (8). 

( )

( ) ( )

e sin cos

1 1
e sin e cos

rr
r r r r

r

r rr
r r

r

w x C
δδ ξ ε ξ ε ξ
ε

δ ξ δ ξδ ε ε
ε

 −= + − −


− −− + 


                      (8) 

The factor  rC , for each 1,2,...r = , is a constant and /x Lξ = .        

Anyone can verify that Euler-Bernoulli beam model can be substituted by our 

cable model for sufficient high frequencies because the value  r r
δ →∞  and 

thus  0r

r
e δ− → . 

We specify the following particular solutions ( )rw x  of the cable model that 

defines Eq. (2) in the case  ( , ) 0,  0,   0,V H
r rq x t c c= = =  

* 0,H
rc =  solutions that 

are also the particular solutions of the beam model: 

-
1 2

3 4

( ) ,   ( ) ,   ,

( ) sin  ,   ( ) cos  .

r r
r r

r r r r

x
w x e w x e

L
w x w x

δ ξ δ ξ ξ

ε ξ ε ξ

= = =

= =
                          (9) 

The relations from (3) can be used to justify the particular solutions (9). 
The vibration mode of undamped vibration, expressed by relations (2) and (8), 

is a solution of Eq. (1), where  ( , ) 0,  0,V
iq x t c= =  0,H

ic =  
* 0,H

ic =  

because  ( )rw x , from (8), is a linear expression of the particular solutions from 

(9). The vibration mode (2) verifies also the imposed boundary conditions.  
In the case of damped free vibrations described by equation (1), one searches 

the solution of the form  ( , ) ( ) ( )i i iw x t X x T t= , where ( )iX x  define a vibrating 

mode of order i  from (8). The equation deduced from Eq. (1) for the unknown 

function  ( )iT t  is as below. 
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2
*

2

* 2 *

( ) ( )
2   ( ) 0.,  

   / / 2 / / / 2,  

      / / ,

VH Hi i
i i i

VH V H VH
i i L i L i

H H
i i i L i L

d T t dT t
c c T t

dt dt

c c m c m

c c m k m

ω
ω

Ω

Ω

+ + =

= +

= + −

                     (10) 

The Eq. (10) is deduced using the formula: 

4 2
2

4 2

( ) ( )
(  ) ( ).

  
i i

i L i i

d X x d X x
EI T m k X x

d x d x
ω− = −                (11)                                                                                    

In Eq. (10)  iω  is circular frequency of free undamped vibration of the cable 

and  VH
iω  is circular frequency of free damped vibration of the cable. 

The characteristic equation attached to Eq. (10) is as follows: 

2 *
 + 2 0,VH H

i i i iZ c Z cΩ+ =                                   (12)                               

If ( )2* H VH
i ic cΩ ≤  or ( )22 *( ) /VH H

i i i i Lc k c mω ≤ + −   then the general solution 

of Eq. (10) is:  

1 2
1 2(  )    e   ei iZ t Z t

iT t C C= +                                (13) 

The solution (13) does not describe our physical model. It is necessary to take 

into account the inequality ( )2* H VH
i ic cΩ >  or ( )22 *  / /H VH

i i L i L ic m k m cω + − >  .  

In the above case there exists the solution described below. 

{ }

( )( )
 

1 2

1
2 22 *

 

( ) sin cos ,  

/ , 1, 2,...

VH
ic t VH VH

i i i i i

VH H VH
i i i L i

T t e C t C t

c m c i

ω ω

ω ω

−= +

= + − =
                   (14) 

If the initial conditions for searched solution of the form 

( , ) ( ) ( ) i i iw x t X x T t= (with fixed index  i ) for Eq. (1) (where  ( , ) 0.q x t = ) are 

chosen as ( , ) ,i o o oiw x t D=  
 

( , ) ,
 

i
o o oi

w
x t V

t

∂ =
∂

 where ( )iX x  is a vibrating mode 

defined by formula (8), then we take the expression of the vibration mode as 
follows.  
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} ( ){ }

 (   )
0

1
2 22 *

 

 ( )
( , ) ( ) sin ( )

 ( )

cos ( ) ,  / , 1, 2,...

VH
i oc t t VH VHi oi oi

i i iVH VH
i o i i

VH VH H VH
oi i o i i i L i

X x D V
w x t e c t t

X x

D t t c m c i

ω
ω ω

ω ω ω

− − 
= + − +



+ − = + − =

  

 

For 0 0t =  and 0 0v = , we can write: 

}( , ) ( ) sin cos , 1,2,...
 ( )

VH
i

VH
c t VH VHoi i

i i i iVH
i o i

D c
w x t X x e t t i

X x
ω ω

ω
− 

= × + =


  (15) 

The following notation and formulas are used in the relation (15): 

2 2 2 *

2 2 2 *

    / ctg( ),  arcctg( / ),

 (0, ), sin ( )= ( ) /( / ),
2

       cos ( )= (c ) /( / )

VH VH VH VH
i i i i i i

VH H
i i i i i L

VH H
i i i i L

c c

c m

c m

ω α α ω
πα α ω ω

α ω

= =

∈ +

+

              

Hence, the form deduced for the function ( )iT t  is: 

2 * 1/ 2
* * ( / )

( ) sin( ), 1, 2,...;  
 ( )

VH
i

H
c tH VH H oi i i L

i i i i i VH
i o i

D c m
T t D e t i D

X x

ωω α
ω

− +
= + = =   (16) 

The function
( )

 idT t

dt
, deduced from (15), has the form: 

 *( )
sin( ), 1,2,...

VH
ic tH VHi

i i

dT t
D e t i

dt
ω−= − =                    (17) 

Between the parameters of the mathematical model of the cable the following 

condition of compatibility arises for  1, 2,...i = : 

2*
2 2

 ( ) ,
2 2

H V H
VH i i i i
i i VH

L L L L i

k c c c

m m m m
ω ω

ω

   = − + − +  
   

 

The condition of compatibility has also the following form: 

2 4 2 2 *

2 2 2

4 ( ) (4 4 4

( ) )( ) 2 ( ) =0.

VH H
L i L i L i L i

V VH V H VH H
i i i i i i

m m m k m c

c c c c

ω ω
ω ω

− − + −

− + +
                    (18) 
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The infinite set of coefficients 
*,  ,  ,V H H

i i ic c c   1, 2,...i = (with possibility of 

repetition), is supposed to be bounded. 
The formulas (14) and (16) specify that the influence of the hysteretic and dry 

friction damping are negligible for vibration mode, if this mode is sufficient high, 

because  / / 2,VH V
i i Lc c m≈  and 

VH
i iω ω≈ , for sufficient high frequencies. 

However, the influence of viscous damping is maintained. This property of the 
cable is confirmed experimentally too.  

The formula (14) can be used also for performing the objective function, 

referred to unknown parameters 
* ,  ,  ,  ,  ,H H V

i i i iEI k c c c  and expressed by 

theoretical and experimental way.  
We use cable displacements and the weighted least square method to identify 

the specified parameters. The expression of the objective function is as below.  

{ }2* exp

, ,

 ( , , , ) ( , ) ( , )V H H cof c
i i i i i i

i x t

f EI c c c w w x t w x t= −∑                  (19) 

The theoretical ( , )c
iw x t  and experimental 

exp ( , )iw x t  displacements, 

theoretical calculated or measured in some points of abscises  x , also for some 

moments of time and for some frequencies, in the domain of interest, and the 

weight exp 21./( ( , ))cof
i iw w x t=  assure the objective function dimensionless. 

For performing of the parameters we used the model of cable defined by Eq. 

(1) on the hypothesis of viscous free damping ( 0,H
ic =  

* 0H
ic = ) only. The 

searched parameters are the bending rigidity,  EI , of the cable and the coefficient, 
Vc , of viscous damping referred to some frequencies in the domain of interest. 

The experimental values are measured by using an experimental stand with single 

overhead cable. The span is  33L m= , the ends of the cable are well fixed, 

1333T N= , and  0.757 /Lm kg m= . 

The analyzed frequencies, according to experimental values, 

are 9 15 11.89 ,   19.5 ,f Hz f Hz= =  19 24.98f Hz= . The points 1 0.089 x m=    

2 2.00 ,x m= 3 16.20 x m=  are used. The moments of time correspond to the 

main values of the displacements. The values of the bending 

rigidity,
2  (40 )EI Nm  and of viscous damping,  (2.675 / )Vc Ns m , are 

determined by the minimization of the function (19) adapted to this case [15]-[18]. 
The diagram of the damped displacement of the cable for the resonance 

frequency of 19.5 Hz , in the point of abscissa 16.2 x m=  on the cable span, is 

plotted in Fig. 1.  
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Figure 1. The diagram of damped displacement for resonance frequency  

4. Possible equivalence between damping coefficients of cable 

In this paragraph, the cases of cable with only dry friction, viscous or 
hysteretic internal damping are separately studied and the possible equivalence 
between damping coefficients of the cable by equalizing the absolute values of the 
energies dissipated by the damping forces of the cable is analyzed.  

Cable with dry friction internal damping 

In this case the equilibrium equation is:  

                 
2 2 4

*
 2 2 4

 ( )   
   

Hi i i
L i i i

w w w
m c k w T EI q

t x x

∂ ∂ ∂= − + + − +
∂ ∂ ∂

                (20) 

The free vibrations of the cable, with initial conditions ( ,0) ,i o oiw x D=  

  ( ,0) 0.i ow x =& , are:                 

( )
*

2* * 2
 

 ( )
( , ) cos  ;  0, 1, 2,...

 ( )

H
H Hi i i

i oi i i i
i o L L

X x k c
w x t D t i

X x m m
ω ω ω= = − + > = (21)  

The damping force of the cable is here of the form 
* ( , )H

i ic w x t =  

* = ( ) ( )H
i i ic X x T t , where ( )iX x  is defined through relation (8) and ( )iT t  through 

relation (21). The sign of the term
* H

ic , constant on piecewise, is such that the 
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expression
* ( , ) ( , ) 0H

i i ic w x t w x t <& . There are denoted 
* *

0 H H
i ic c= , 1 *2 H

i

T
π
ω

= , 

2 12T T= , 3 13T T= , 4 1 *

2
4

H
i

T T
π

ω
= = . The sign of

* H
ic  is positive for 1[0, )t T∈ ∪  

2 3[ , )T T∪  and negative on the complementary time interval from the time interval 

cycle
*

4 [0, ) [0, (2 / ))H
iT π ω= . 

The corresponding dissipated energy of the cable, per cycle of vibration, 
referred to the above damping force, has the value below:  

         

( ) ( )4* * 2 2 2 * 2

0 0 0
( )( ( ) / ) ( ) 2 ( ) / ( )

T L LH H H
i i i i i o i io i oE c T t dT t dt X x dx dt D X x dx c X x= −∫ ∫ ∫

 
Cable with viscous internal damping 

In this case the equilibrium equation is:    

            

2 2 4

 2 2 4

 
  

    

Vi i i i
L i i i

w w w w
m k w c T EI q

tt x x

∂ ∂ ∂ ∂= − − + − +
∂∂ ∂ ∂

         (22) 

The free vibrations of the cable, in initial conditions ( ,0) ,o ow x D=  

( ,0) 0.ow x =& , are:  
    

       

( ) ( )

 

2 22
 

( , ) ( ) sin cos , 1, 2,...
 ( )

      / / 2,  / 0.

VH
i

VH
c t VH VHoi i

i i i iV
i o i

VH V V VH
i i L i i i L i

D c
w x t X x e t t i

X x

c c m k m c

ω ω
ω

ω ω

−  
= × + = 

 

= = − − >

 (23)  

The damping force of the cable is here of the form 

 ( , ) ( ) ( )V V
i i i i ic w x t c X x T t= && , where ( )iX x  is defined by the relation (8) and ( )iT t  

through the relation (23). The corresponding dissipated energy of the cable, per 
cycle of vibration, referred to the above damping force, has the value below: 

  ( ) ( )2 2 2 4 2

0
( ) 1 / ( ) / 2;  / .

LV R VH V
i o i i L i o i iE D X x dx m e X x R cπω ω−= × − =∫   (24)          

For sufficiently high frequency we can approximate ( )41 4Re Rπ π−− ≈  and 

V
i iω ω≈   so that is respected the below relation. 
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      ( )2 2 2

0
( ) / ( ).

LV V
i i i o i i oE c D X x dx X xπ ω≈ ∫                         (25) 

Cable with hysteretic internal damping  

In this case the equilibrium equation is:  

              

2 2 4

 2 2 4

 
  .

    

H
i i i i i

L i i H
i

w c w w w
m k w T EI q

t t x xω
∂ ∂ ∂ ∂= − − + − +
∂ ∂ ∂ ∂

        (26) 

The free vibrations of the cable, in initial conditions ( ,0) ,i o oiw x D=  

( ,0) 0.i ow x =& , are: 

   

( ) ( )

 

2 22
 

( , ) ( ) sin cos , 1, 2,...
 ( )

      / / / 2,  / 0.

VH
i

VH
c t VH VHoi i

i i i iH
i o i

VH H H H VH
i i i L i i i L i

D c
w x t X x e t t i

X x

c c m k m c

ω ω
ω

ω ω ω

−  
= × + = 

 

= = − − >

  (27)  

The damping force of the cable is here of the form 

 ( , )  ( ) ( )
H H
i i

i i iH H
i i

c c
w x t X x T t

ω ω
= && , where the function  ( )iX x   is defined by the 

relation (8) and ( )iT t  through the relation (27). The corresponding dissipated 

energy of the cable, per cycle of vibration, referred to the above damping force, 
has the value below: 

      ( ) ( )2 2 2 4 2

0
( ) 1 / ( ) / 2;  / .

LH R VH H
i o i i L i o i iE D X x dx m e X x R cπω ω−= × − =∫    (28)          

For sufficiently high frequency we can approximate ( )41 4Re Rπ π−− ≈  and 

H
i iω ω≈   so that: 

        ( )2 2 2

0
( ) / ( ).

LH H
i i o i i oE c D X x dx X xπ≈ ∫                           (29) 

The possible equivalence between internal damping coefficients of cable, in 
free vibration mode, is easily established for sufficiently high frequencies. The 
corresponding relations are as below.  

   
* * ;  ;   .

2 2

H
H V V H Hi
io i i i io i

i

c
c c c c c

π πω
ω

= = =                         (30) 
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For low frequencies, the equivalence is established by solving the 
transcendental algebraic equation, in the case when the solution exists. 

5. Conclusion 

The original analytical results, concerning the definition of the cable in viscous, 
hysteretic or dry friction internal damping hypothesis, using our cable model 
detached from the Euler-Bernoulli beam model, permit us to perform the analytical 
vibration modes of the cable, using a large number of model parameters that 
include the cable rigidity. 

We remark analytically that there is the possibility for the suspended cable to 
consider simultaneously influence of viscous, hysteretic and dry friction internal 
damping, where the hysteretic and dry friction damping are negligible for a 
sufficiently high vibration mode of the cable while the influence of viscous damping 
is maintained. The simple algebraic relations of equivalence between internal 
damping coefficients of the cable are established for sufficiently high frequencies. 
For low frequencies, numerical methods for solving transcendental algebraic 
equations are needed.  
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