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Abstract: Maslinic acid (MA) and oleanolic acid (OA), the main triterpenic acids present in 

olive, have important properties for health and disease prevention. MA selectively inhibits 

cell proliferation of the HT29 human colon-cancer cell line by inducing selective apoptosis. 

For measuring the MA and OA concentration inside the cell and in the culture medium, a 

new HPLC-MS procedure has been developed. With this method, a determination of the 

amount of MA and OA incorporated into HT29 and HepG2 human cancer-cell lines 

incubated with different concentrations of MA corresponding to 50% growth inhibitory 

concentration (IC50), IC50/2, IC50/4, and IC50/8 has been made. The results demonstrate that 

this method is appropriate for determining the MA and OA concentration in different types 

of cultured cells and reveals the specific dynamics of entry of MA into HT29 and HepG2 cells. 
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1. Introduction 

Maslinic acid [MA, (2α,3β)-2,3-dihydroxylolean-12-en-28-oic acid] and oleanolic acid (OA,  

3β-hydroxylolean-12-en-28-oic acid) are two main pentacyclic triterpenic carboxylic acids found in the 

olive tree (Olea europaea) [1]. Pentacyclic triterpenes comprise a group of plant secondary metabolites 

that have important biological properties significant to human health. Recently, MA has been found to 

exert important effects such as growth stimulating [2–6] anti-oxidant [7–11], anti-inflammatory [12], 

anti-microbial and anti-viral [13–15], and even anti-tumoral [16–20]. With respect to the latter, it is of 

great interest that MA selectively inhibits cell proliferation in human colon-cancer HT29 cell line [17] 

by inducing apoptosis [16,17] and interfering with the normal cytoskeleton function [21]. The effects 

that the MA concentration in the cell culture exerts on growth survival has been well characterized and 

the concentration required for 50% growth inhibition (IC50) has also been well determined for different 

types of cells [16,22]. Nevertheless, no data is available on the amount of MA that is incorporated to the 

interior of the cells or the amount that remains in the culture medium. This is because no method to 

determine the concentration of MA in the cells and in the culture medium has been previously established. 

The aim of this work was to develop an experimental method capable of determining the MA and OA 

concentration incorporated into the culture cell and that remaining in cell-culture medium. Reverse-phase 

high-performance liquid chromatography (HPLC) coupled to mass spectrometry (MS) enables the 

accurate detection of low concentrations of MA such as are present within cells. Until now, the methods 

used in different plant samples or other biological samples have been based on HPLC-UV/vis or gas 

chromatography (GC)-MS [1,23–25]. With these procedures the small amounts of MA present in 

cultured cells cannot be precisely determined. 

The procedure described by us on cultured cells incubated with different concentrations of MA 

reveals the dynamics of MA incorporation into cells. This provides information on the cell-transport 

mechanism responsible for MA incorporation into the cells, and enables us to re-formulate the  

cell-survival curves for the different types of cell lines. 

This study was conducted on two cell lines: HT29 an experimental model to study colon 

adenocarcinoma, and HepG2 an experimental model to study hepatic carcinoma. The tumorigenic 

capacity of HT29 cells has been shown in nude mice, in which they form moderately  

well-differentiated adenocarcinomas consistent with primary colon cancer (grade II). Doubling time is 

around 62 h. (ATCC: HTB-37). The line is positive for the expression of oncogenes: p53−, ras+, myc+, 

TGF b−, TGF a+ [16]. 

HepG2, a human hepatoma cell line, is considered a good system to study the in vitro metabolism of 

xenobiotics and liver toxicity [26]. They also constitute a good tool to investigate the cytoprotective, 

genotoxic, and antigenotoxic effects of compounds, to understand hepatocarcinogenesis, and to study 

drug targeting [27,28]. 

2. Results and Discussion 

2.1. Growth Inhibitory Effects of Maslinic/Oleanolic Acid on HT29 and HepG2 Cancer Cells 

We examined the effect of the mixture of MA and OA (98:2, w:w) on the proliferation of HT29 and 

HepG2 cancer-cell lines using the MTT assay. HT29 and HepG2 cells were treated with increasing doses 
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of this mixture. Their viability was determined by formazan dye uptake and expressed as a percentage 

of untreated control-cell proliferation (Figure 1). MA:OA (98:2, w:w) induced a dose-dependent 

decrease in viable formazan-accumulating cells after 72 h of treatment, ranging from 0 to 60 µg/mL and 

0 to 120 µg/mL from HT29 and HepG2, respectively. The concentration required for 50% growth 

inhibition (IC50) was 15.1 ± 1.8 µg/mL (32.1 ± 0.1 µM) for HT29 and 46.8 ± 1.8 µg/mL (99.9 ± 0.1 µM) 

for HepG2. 

 

Figure 1. Growth-inhibitory effects of maslinic acid:oleanolic acid (98:2, w:w) on HT29 and 

HepG2 human cancer cells. Exponentially growing cells were treated with the concentration 

of MA. Cell-growth inhibition was analyzed by the MTT assay. The assays were performed 

using five replicates repeated five times. Results are mean ± SEM. 

These results agree with previous findings of our group [16] and Yap et al. [22] which demonstrate 

that MA inhibits proliferation of HT29, Caco-2, and Raji cells. Moreover, the results of the present work 

constitute the first evidence that MA:OA (98:2, w:w) also inhibits the cell proliferation of the HepG2 

human cell line. This effect extends its anti-proliferative activity to tumor hepatic cell line with the 

peculiarity that the IC50 value is higher for HepG2 than in HT29. These results indicate that the 

sensitivity towards MA:OA varies for different types of cells. A 50% decrease in the viability of HepG2 

cells required concentration more than three-fold higher than that needed to cause the same effect in 

HT29 cells. 
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2.2. Incorporation of MA and OA to the Inner of HT29 and HepG2 Cancer Cells 

In the Experimental Section we describe an appropriate method for quantifying triterpenic acids  

(MA and OA) inside the cell and in the culture medium of HT29 and HepG2 cell cultures.  

We optimised an appropriate extraction method of these compounds and a HPLC-MS procedure  

that enables the quantification of small quantities of triterpenic acids in culture cells. Although  

HPLC-UV/vis [1,23,25], HPLC-MS/MS [29], or GC-MS [30] have been traditionally used for the 

analysis of plant or other samples, this is the first method described for the quantification of MA in  

cell-culture samples. Along the procedure, a little amount of MA and OA is lost due to the nature of a 

multi-stage procedure and the low quantities of these compounds presented in the samples. In this work 

we assume that MA and OA are recovered without been metabolized by the cell. No data about the 

transformation or metabolism of MA and OA by HT29 and HepG2 cells exist. In these types of samples 

the low concentration of triterpenic compounds required an analysis method with a high resolution power. 

The procedure described enabled the precise separation and quantification of the MA and OA 

concentrations in the two types of samples: Cells and culture medium. A lineal relationship was found 

between the concentration of both acids and the peak area. The concentration of the experimental 

samples was between the concentrations used for the calibration curves. The signal level in the samples 

was appropriate for the accurate quantification of both compounds in both types of samples. To have a 

good method for the extracting and quantifying MA inside cells is very important to know fundamental 

aspects of the incorporation and the destination of this compound in the cells. 

Table 1 shows the amount of MA measured in the culture medium and inside the HT29 and HepG2 

cells after incubation with different MA concentrations. For HT29, as the MA amount increased in the 

cell medium from IC50/8 to IC50/2, a significant increase was found in the MA incorporated into the cells. 

When the concentration was equivalent to IC50, the MA incorporated into the cells did not significantly 

differ from that found at the IC50/2 concentration. When the results were expressed as pg of MA 

incorporated per cell, a potential relationship was identified, similar to sigmoid kinetics (Figure 2), with 

an initial stage giving a slow response, a subsequent stage giving a higher response, and a final stage 

giving a saturation response. This indicates a possible cooperation mechanism in the incorporation of 

MA into the HT29 cells. With respect to the amount of MA added to the culture, the percentage of MA 

incorporated into the cells changed from 7% in the case of IC50/8 concentration to 17.2% in the case of 

the IC50/2 concentration. The MA-incorporation curve and the low percentage of MA incorporated into 

HT29 cells suggest that a specific receptor-carrier may exist in the membrane of the cells that at low 

concentrations joins the MA with low affinity, and, as the MA concentration increases, a cooperative 

behavior augments the entry of MA into the cell. The maximum level of transport is determined by the 

number of molecules of receptor-carrier present into the plasma membrane of these types of cells. 



Int. J. Mol. Sci. 2015, 16 21685 

 

 

 

Figure 2. Effect of MA concentration on the incorporation of MA into HT29 culture cells. 

The amount of MA incorporated per cell was determined as the ratio between the amount of 

total MA detected in the cells and the number of cells estimated in culture (1,500,000 cells).  

A potential relationship was found between the MA concentration (x) and the amount 

incorporated into each cell (y), defined by the equation: y = 0.844 x1.007 (r = 0.96, p < 0.05). 

In the case of HepG2, a linear relationship was found between the MA concentration in the culture 

medium and MA incorporated into the cell (Table 1, Figure 3). The percentage of MA incorporated  

into the cells changed from 22.6%, in the case of IC50/2 concentration, to 37.5%, in the case of IC50/8 

concentration. This change would be related to a different type of transport of MA in HepG2 with respect 

to HT29. This is a system that lineally responds to the MA concentration present in the culture medium, 

which does not show saturation signs. These facts agree with a direct diffusion of MA towards lipid bilayer. 

Table 1. Maslinic acid (MA) detected in the medium and inside HT29 and HepG2 cells 

incubated with different MA concentrations *. 

 C+ C- IC50/8 IC50/4 IC50/2 IC50 

HT29  
µg MA added 0 0 22.65 45.3 90.6 181.2 

µg MA in the medium 0 0 17.5 ± 0.7 a 29.8 ± 0.9 b 36.6 ± 1.8 c 117.0 ± 3.5 d 
µg MA inside cells 0 0 1.6 ± 0.1 a 6.5 ± 0.3 b 15.6 ± 0.8 c 18.0 ± 0.9 c 

HepG2  
µg MA added 0 0 75.9 151.8 303.6 607.2 

µg MA in the medium 0 0 56.5 ± 2.3 a 129.0 ± 5.2 b 179.3 ± 7.2 c 407.5 ± 20.4 d 
µg MA inside cells 0 0 28.5 ± 1.4 a 50.4 ± 2.5 b 68.7 ± 3.4 c 149.6 ± 7.5 d 

* Six different experimental groups were made: C+, control with foetal bovine serum; C-, control without foetal 

bovine serum; IC50/8, IC50/4, IC50/2, IC50, refer to cell culture incubated with a MA concentration equivalent to 

IC50/8, IC50/4, IC50/2 and IC50, respectively. Results are means ± SEM of five independent data. Values followed 

by different letters are significant (p < 0.05) different. 

HT29 cells have many characteristics of enterocytes and HepG2 cells have many characteristics of 

hepatocytes. The results of this work demonstrate a different cellular bioavailability and sensitivity to 

MA in both types of cells. Enterocytes have a higher sensitivity for MA and a lower transport capacity 

than do HepG2. These results reflect the need to study the dynamics of MA incorporation into the 
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intestine and liver cells of a whole organism in order to learn more about the bioavailability dynamics 

of MA in both types of tissues. 

Table 2 showed the amount of OA measured in the interior of HT29 and HepG2 cells after incubation 

with different concentrations of 98%-enriched MA solution. The OA detected in the interior of the cells 

comes from the OA present as contamination in the 98%-enriched MA solution. All the OA detected 

was present in the interior of the cells, while no OA was detected in the culture medium. As OA added 

to the culture increased, the amount of OA incorporated into the cell also increased. These results 

demonstrate that method is appropriate to determine the OA concentration in culture cells. 

 

Figure 3. Effect of MA concentration on the incorporation of MA into HepG2 culture cells. The 

amount of MA incorporated per cell was determined as the ratio between the amount of total 

MA detected into the cells and the number of cells estimated in culture (2,000,000 cells). A linear 

relationship was found between the MA concentration (x) and the amount incorporated to each 

cell (y), defined by the equation: y = 1.516x + 3.11 (r = 0.99, p < 0.05). 

Table 2. Oleanolic acid (OA) detected in the medium and inside of HT29 and HepG2 cells 

incubated with different MA concentrations *. 

 C+ C- IC50/8 IC50/4 IC50/2 IC50 

HT29  
µg OA added 0 0 0.47 0.93 1.85 3.70 

µg OA in the medium 0 0 0 0 0 0 
µg OA inside cells 0 0 0.01 ± 0.01 a 0.50 ± 0.02 b 1.00 ± 0.05 c 2.17 ± 0.11 d 

HepG2       
µg OA added 0 0 1.52 3.04 6.07 12.14 

µg OA in the medium 0 0 0 0 0 0 
µg OA inside cells 0 0 1.16 ± 0.06 a 4.57 ± 0.23 b 7.19 ± 0.35 c 7.88 ± 0.39 c 

* Six different experimental groups were made: C+, control with foetal bovine serum; C−, control without foetal 

bovine serum; IC50/8, IC50/4, IC50/2, IC50, refer to cell culture incubated with a MA concentration equivalent to 

IC50/8; IC50/4, IC50/2; and IC50, respectively. Results are means ± SEM of five independent data. Values followed 

by different letters are significant (p < 0.05) different. 

In this work we described, for the first time, an appropriate HPLC-MS method for determining the 

MA and OA concentration in culture media and inside of cultured cells. The application of this method 

in HT29 and HepG2 reveals the MA and OA availability and the specific dynamics of entry into the cells. 



Int. J. Mol. Sci. 2015, 16 21687 

 

 

3. Experimental Section 

3.1. Materials and Chemicals 

The main chemicals and materials used for cell culture were: Dimethylsulfoxide (DMSO), 

Dulbecco’s modified Eagle’s medium (DMEM), Minimum Essential Medium (MEM), foetal bovine 

serum (FCS), penicillin/streptomycin, phosphate buffered saline (PBS), 3-(4,5-dimethylthiazol-2yl)-2,5-

diphenyltetrazolium bromide (MTT) all purchased from Sigma (St. Louis, MO, USA) culture flasks, and 

well plates (Techno Plastic Products, Trasadingen, Switzerland). 

The MA-enriched extract was kindly donated by Drs. Andrés García-Granados and Andrés Parra, of 

the Department of Organic Chemistry, University of Granada, Spain. It was obtained from olive pomace, 

using the method described in patent number PCT/ES97/000190. It is a powder comprising 98% MA 

and 2% OA, which is stable when stored at 4 °C. MA was dissolved before use at 10 mg/mL in 50% 

DMSO and 50% PBS. DMSO concentration in contact with cells ranged from 0.009% to 0.075% for 

HT29 and from 0.029% to 0.234% for HepG2. Stock solution was frozen and stored at −20 °C. For 

treatments, this solution was diluted in cell-culture medium. OA used as standard was purchased from 

Sigma Chemical Co. (St. Louis, MO, USA). The rest of chemicals and solvents used were obtained of 

the best quality commercial sources. 

3.2. Cell Culture  

Human HT29 (ECACC no. 91072201) and human HepG2 (ECACC no. 85011430) cell lines were 

provided by the cell bank of the University of Granada, Spain. HT29 cells were cultured in DMEM, 

supplemented with 4.5 g/L glucose, 2 mM glutamine, with and without 10% heat-inactivated FCS, 

10,000 units/mL penicillin, and 10 mg/mL of streptomycin. HepG2 cells were cultured in MEM medium, 

supplemented with Eagle’s salts and 2 mM glutamine, at 37 °C in an atmosphere of 5% CO2 and 95% 

of humidity. Subconfluent monolayers of cells were used in all experiments. 

3.3. Determination of the Effect on HT29 and HepG2 Cell Viability by MTT Assay 

To determine the effects on cell viability, we incubated HT29 and HepG2 cells with different MA 

concentrations for 72 h. The MA concentrations ranged from 0 to 60 µg/mL of medium and from 0 to 

120 µg/mL of medium for HT29 and HepG2 cells, respectively. 

Cell viability was determined by measuring the absorbance of MTT dye staining of living cells, as 

described Matito et al. (2003) [31]. For this assay, 1.5 × 104 HT29 cells/well and 2.0 × 104 HepG2 

cells/well were cultured on 96-well plates. 

Concentrations that inhibited cell growth by 50% (IC50) were calculated based on the survival rate 

compared with untreated cells. Relative cell viability was measured by the absorbance on an ELISA 

plate reader (Tecan Sunrise MR20-301, TECAN, Grödig, Austria) at 550 nm. 

3.4. Extraction of Maslinic and Oleanolic Acid from HT29 and HepG2 Culture Cells and Medium 

HT29 and HepG2 were incubated in a medium containing MA (98% purity) at their IC50, IC50/2, IC50/4, 

IC50/8 concentration values.  
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After treatment, the medium was removed from the plates and kept in Falcon tubes. Cells were 

washed three times with phosphate buffer solution (PBS) and collected with a scraper in 1 mL of PBS. 

This cell solution was placed in previously weighed Eppendorf tubes. The tubes were centrifuged at 

1000× g for 5 min at 4 °C, the supernatant was removed, and the tube containing the cells was again 

weighed. After adding 0.5 mL of lysis buffer containing 20 mM Tris-HCl pH 7.5, 1 mM dithiothreitol 

(DTT), 1 mM ethylenediaminotetracetic acid (EDTA), 2% Triton X100, 0.2 mM phenyl methylsulfonyl 

fluoride (PMSF) and 2% sodium deoxycholate the cell suspension was sonicated for 5 min in water  

and ice. 

Falcon tubes containing the medium and the Eppendorf tubes containing the cells were centrifuged 

at 1000× g for 5 min at 4 °C. One mL of ethyl acetate was added to 0.5 mL of the supernatant of each 

sample. This mixture was vigorously stirred by Vortex for 1 min and centrifuged at 6500× g, for 5 min 

at 20 °C. The upper organic fraction was collected in a 15 mL vial, and the remaining fraction was  

re-extracted five more times. The pool of all the upper organic fractions was desiccated in a rotary 

evaporator (130 mbar and 40 °C). The resulting residue was dissolved in 0.5 mL of methanol, filtered 

through a 0.2 µm syringe membrane and used for the HPLC-MS and HPLC-MS/MS analysis. 

3.5. HPLC-MS and HPLC-MS/MS Analysis 

HPLC-MS and HPLC-MS/MS analysis of MA and OA was performed using a procedure previously 

described 1, with some modifications. A HPLC Agilent Series 1100 (Agilent Technologies, Santa Clara, 

CA, USA) system consisting of vacuum degasser, autosampler, a quaternary pump, a diode-array 

detector, and an Esquire 6000 ion-trap mass spectrometer (Bruker Daltonics, Billerica, MA, USA) 

equipped with an electrospray ionization (ESI) source operating in negative ion mode was used. 

Separation was achieved by isocratic elution using a reverse-phase Spherisorb ODS-2 (Waters 

Corporation, Milford, CT, USA) (25 cm–4.6 mm, 5 μm) column. The injection volume was 2 μL.  

The solvent used for separation was methanol:water with 0.1% formic acid (pH = 3.1) at a proportion of 

92:8 (v:v). A flow rate of 0.8 mL·min−1 and a temperature of 35 °C were used. Ions were detected in an 

ion-charged control (ICC) (target: 2500 ions) with an accumulation time of 170 ms, using the following 

operation parameters: capillary exit voltage (fragmenter): −300.0 V; capillary voltage: 4000 V; nebulizer 

pressure: 60 psig, drying gas: 11 L·min−1, gas temperature: 350 °C. This chromatographic system 

operates with Bruker Daltonics Data Analysis Software (Bruker Daltonics). The fragmentation options 

used for the MS/MS analyses were: Energy 0.8 V, width m/z = 10, and time 40 ms. 

Typical chromatograms for standard MA are shown in Figure 4. This compound is characterized by 

a retention time of 5.80 ± 0.01 min (Panel A). HPLC-MS analysis showed a peak of m/z = 471.0 

corresponding with the negative ion of MA (Panel B). The HPLC-MS/MS analysis showed major ions 

of m/z = 423, 393, 405 (Panel C). 

Typical chromatograms for standard OA are shown in Figure 5. This compound is characterized by 

a retention time of 7.8 ± 0.01 min (Panel A). HPLC-MS analysis showed a peak of m/z = 455.0 

corresponding with the negative ion of OA (Panel B). The HPLC-MS/MS analysis showed major ions 

of m/z = 407, 405, 391, 282.9, 254.8 (Panel C). 

Due to their chromatographic behavior, MA and OA can be detected and quantified on the basis of 

retention time and the presence of 471 and 455 ion and their integrated areas, respectively. Standard 
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calibration curves were constructed with 10 concentrations of MA (from 0.0005 to 0.01 mg·mL−1) and 

OA (from 0.01 to 0.05 mg·mL−1) standards. The equations formulated relating concentration  

(x, mg·mL−1) and peak areas (y, arbitrary units) were: y = 1,242,217,322x + 178,692 for MA;  

y = 537,528,522x + 2,449,795 for OA. In all cases r2 was higher than 0.98. 

 

Figure 4. HPLC-UV/vis (A); HPLC-MS (B); and HPLC-MS/MS (C) of maslinic acid  

(MA, mol mass: 472). Two microlitres of sample was subjected to HPLC with a Spherisorb 

ODS-2 column that was eluted with methanol-water. Panel A shows the chromatogram for 

reading the absorbance at 210 nm; Panel B shows the MS1 spectrum of MA peak; Panel C 

shows the MS2 spectrum for m/z = 471. 
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Figure 5. HPLC-UV (A); HPLC-MS (B); and HPLC-MS/MS (C) of oleanolic acid (OA, 

mol mass: 456). Two microlitres of sample was subjected to HPLC with a Spherisorb ODS-2 

column that was eluted with methanol-water. Panel A shows the chromatogram for reading 

the absorbance at 210 nm; Panel B shows the MS1 spectrum of OA peak; Panel C shows the 

ion 455 MS2 spectrum. 

We used HPLC-MS to determine the concentrations of MA and OA in cultured HT29 and HepG2 

cell samples and medium. Thus, the presence and concentration of MA and OA in both types of samples 

was determined based on the peak area of m/z = 471 and 455 ion, respectively. Figure 6 shows the typical 

chromatograms of treated HT29 and HepG2 cell extracts. In this figure the chromatograms obtained for 

m/z = 471.1 and 455.1 ions are shown. The presence of the 455.1 ion is due to the presence of OA 

contained in the MA standard used. 
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Figure 6. HPLC-MS analysis of HT29 and HepG2 cell extracts after incubation  

with maslinic acid (98% purity) at a concentration equivalent to IC50 and IC50/4, respectively. 

The chromatograms for m/z = 471 (MA) and 455 (OA) ions are shown on separate lines.  

The concentrations of MA and OA detected in HT29 were 8.38 and 0.92 µg/mL, 

respectively. The concentrations of MA and OA detected in HepG2 were 16.71 and  

0.89 µg/mL, respectively. 

3.6. Statistical Treatment 

The results are expressed as mean ± SEM. Data were analysed by one-way analysis of variance. 

Differences between means were analyzed by an unpaired Student’s t-test. Linear correlations were 

determined by least-squares regression analysis. The criterion of significance was taken as p < 0.05. 
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