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Abstract 9 

Sleep is a fundamental homeostatic process within the animal kingdom. Although various brain areas 10 
and cell types are involved in the regulation of the sleep-wake cycle, it is still unclear how different 11 
pathways between neural populations contribute to its regulation. Here we address this issue by 12 
investigating the behavior of a simplified network model upon synaptic weight manipulations. Our 13 
model consists of three neural populations connected by excitatory and inhibitory synapses. Activity 14 
in each population is described by a firing-rate model, which determines the state of the network. 15 
Namely wakefulness, rapid eye movement (REM) sleep or non-REM (NREM) sleep. By 16 
systematically manipulating the synaptic weight of every pathway, we show that even this simplified 17 
model exhibits non-trivial behaviors: for example, the wake-promoting population contributes not 18 
just to the induction and maintenance of wakefulness, but also to sleep induction. Although a 19 
recurrent excitatory connection of the REM-promoting population is essential for REM sleep genesis, 20 
this recurrent connection does not necessarily contribute to the maintenance of REM sleep. The 21 
duration of NREM sleep can be shortened or extended by changes in the synaptic strength of the 22 
pathways from the NREM-promoting population. In some cases, there is an optimal range of synaptic 23 
strengths that affect a particular state, implying that the amount of manipulations, not just direction 24 
(i.e., activation or inactivation), needs to be taken into account. These results demonstrate pathway-25 
dependent regulation of sleep dynamics and highlight the importance of systems-level quantitative 26 
approaches for sleep-wake regulatory circuits. 27 

1 Introduction 28 

Global brain states vary dynamically on multiple timescales. Humans typically exhibit a daily cycle 29 
between three major behavioral states: wakefulness, REM sleep and NREM sleep. This daily cycle is 30 
regulated by a circadian rhythm and a homeostatic sleep pressure (Borbély 1982, Achermann and 31 
Borbely 1990). These states alternate on a timescale of several hours called an ultradian rhythm 32 
(Borbély 1982, Archermann and Borbely 2017, Carskadon 2017). Thus, complex interactions 33 
between homeostatic, circadian, and ultradian processes are involved in the sleep-wake cycle 34 
generation. However, it remains elusive how these states are regulated in the brain. 35 

 36 
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Over the past several decades, various cell types, neurotransmitters and neuropeptides have been 37 
identified as part of the sleep-wake regulating circuits within the brain (Saper, Chou et al. 2001, 38 
Brown, Basheer et al. 2012, Luppi, Clement et al. 2013, Weber and Dan 2016, Scammell, Arrigoni et 39 
al. 2017, Herice, Patel et al. 2019). Sleep- or wake-promoting neurons show state-dependent firing 40 
and contribute to the induction and/or maintenance of a particular state (Jouvet 1962, McCarley and 41 
Hobson 1971, Hobson, McCarley et al. 1975, Saper, Chou et al. 2001, Brown, Basheer et al. 2012, 42 
Weber and Dan 2016, Herice, Patel et al. 2019). To gain a better understanding of sleep-wake 43 
regulation, it is fundamental not just to identify and characterize each component of sleep-wake 44 
regulating circuits, but to also investigate how each pathway between neural populations contributes 45 
to state regulation. 46 

Although controlling neural activity has provided mechanistic insights into sleep-wake regulation, 47 
their results are sometimes contradictory: for example, the role of pontine cholinergic neurons in 48 
REM sleep has been debated (Grace, Vanstone et al. 2014, Grace 2015, Grace and Horner 2015, Van 49 
Dort, Zachs et al. 2015). Even recent studies with opto- and chemogenetic approaches do not resolve 50 
this long-standing issue (Van Dort, Zachs et al. 2015, Kroeger, Ferrari et al. 2017). Even though this 51 
discrepancy may be simply due to differences in animal models and experimental techniques, it is 52 
technically challenging to manipulate neurons or specific pathways precisely across different 53 
laboratories.  54 

A computational approach may be a viable alternative for gaining insights into the mechanism of 55 
sleep-wake regulation. Since pioneering work in the 1970s and 80s (McCarley and Hobson 1975, 56 
Borbély 1982, Archermann and Borbely 2017), various computational models have been developed 57 
(Tamakawa, Karashima et al. 2006, Diniz Behn, Brown et al. 2007, Diniz-Behn and Booth 2010, 58 
Robinson, Phillips et al. 2011, Booth and Diniz Behn 2014, Archermann and Borbely 2017, Booth, 59 
Xique et al. 2017, Herice, Patel et al. 2019): conceptually, a homeostatic sleep-dependent process and 60 
a circadian process play a key role in sleep regulation (Borbély 1982, Archermann and Borbely 61 
2017). Reciprocal excitatory-inhibitory connections (McCarley and Hobson 1975, Diniz Behn, 62 
Brown et al. 2007, Diniz-Behn and Booth 2010, Diniz Behn and Booth 2012, Booth, Xique et al. 63 
2017) and mutual inhibitory interactions (Saper, Chou et al. 2001) can be recognized as key network 64 
motifs within sleep-wake regulating circuits. Although their dynamics have been explored (Diniz 65 
Behn and Booth 2012, Diniz Behn, Ananthasubramaniam et al. 2013, Weber 2017), and those 66 
models can replicate sleep architecture of humans and animals (Diniz-Behn and Booth 2010) as well 67 
as state-dependent neural firing (Tamakawa, Karashima et al. 2006), few studies have investigated 68 
how the strength of synaptic connections between wake- and sleep-promoting populations contribute 69 
to sleep dynamics. As controlling neural activity at high spatiotemporal resolution in vivo becomes 70 
feasible experimentally, computational approaches can be considered as complementary approaches 71 
for investigating the role of specific neural pathways in sleep-wake regulation.  72 

To this end, we utilize a simplified network model (Diniz Behn and Booth 2012, Costa, Born et al. 73 
2016) (Figure 1) and systematically manipulate the strength of every pathway. Because neurons 74 
within the sleep-wake regulating circuits typically project to a wide range of neural populations 75 
(Schwarz and Luo 2015, Scammell, Arrigoni et al. 2017, Herice, Patel et al. 2019), their 76 
contributions to the sleep-wake cycle may also vary depending on the pathway. Therefore, we set out 77 
to test the hypothesis that the sleep-wake cycle is regulated in a pathway-dependent manner.  78 

Although the present model is highly abstract, it captures the following key features of sleep-wake 79 
regulating circuits: while the interaction between neuronal populations in the brainstem and the 80 
hypothalamus governs the sleep-wake regulation, some of the populations can be recognized as 81 
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wake- or sleep-promoting (Brown, Basheer et al. 2012, Luppi, Clement et al. 2013, Luppi, Peyron et 82 
al. 2017, Scammell, Arrigoni et al. 2017, Herice, Patel et al. 2019). To reflect the populations’ state-83 
dependent firing, the model contains three neuronal populations (REM, NREM and Wake). The 84 
activity in these populations defines the state of the network (see Methods).  85 

With respect to connectivity between these populations, Saper et al. proposed that the mutual 86 
inhibition between wake-promoting and sleep-promoting populations acts as a flip-flop switch for the 87 
regulation of transitioning between wakefulness and NREM sleep (Saper, Chou et al. 2001). Hence, 88 
in this model, the outputs from the Wake-promoting and NREM-promoting populations are 89 
considered as inhibitory. Because pontine REM-active cholinergic neurons provide excitatory 90 
connections to the sublaterodorsal nucleus (SLD), a key component of REM sleep-regulating circuits 91 
(Boissard, Gervasoni et al. 2002), the REM-promoting population has a recurrent excitatory 92 
connection. Glutamatergic neurons project rostrally to several wake-promoting nuclei, such as the 93 
intralaminar nuclei of the thalamus and basal forebrain, and the REM population also provides 94 
excitatory outputs onto the Wake population (Boissard, Gervasoni et al. 2002, Lu, Sherman et al. 95 
2006). In addition, because recent studies have shown that GABAergic inputs play a role in REM 96 
sleep induction (Weber, Chung et al. 2015), the REM-promoting population also receives inhibitory 97 
inputs from both the wake-promoting and NREM-promoting populations in this model. Based on this 98 
simplified model, we report that the effects of synaptic weight alterations on sleep architecture are 99 
highly pathway-dependent. We also discuss implications for future biological experiments. 100 

 101 

Figure 1: Architecture of the sleep regulatory network. Three neural populations are connected 102 
with excitatory and inhibitory synapses. Each neural population is named as the state they promote. 103 
The arrows and circles represent excitatory and inhibitory connections, respectively. The synapses 104 
are named with two uppercase and one lowercase letters: first letter of the pre-synaptic population 105 
(where the synapse is from), first letter of the post-synaptic population (where the synapse is going 106 
to) and "e" if it is excitatory or sign "i" if inhibitory. 107 

  108 
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2 Methods 109 

We implemented a computational model of the sleep/wake cycle containing three neuronal 110 
populations whose activity by several differential equations. Numerical simulations were computed 111 
with the Runge-Kutta integration method (4th order), with a time step of 1ms and a simulation 112 
duration of 24h. For these simulations and a part of the data processing, we used the Python 113 
programming language (version 3.6.8). In order to run multiple simulations for all the conditions, we 114 
implemented a script Bash (version 3.2.57). The majority of the data processing, the plots were 115 
performed with R (version 3.5.1) and MATLAB (R2018b, Mathworks). All details about the tools 116 
and libraries used for this work are summarized in Supplementary Table S1. Codes are available at 117 
https://github.com/Sakata-Lab/sleep-model. 118 

2.1 Firing rate formalism 119 

All three populations are promoting the sleep-wake cycle corresponding to their name and are 120 
associated with a specific neurotransmitter. The REM-promoting population releases the excitatory 121 
neurotransmitters RXe whereas the NREM- and Wake-promoting populations release the inhibitory 122 
ones NXi and WXi, respectively.  123 

Firing rate FX of population X is described as follows:  124 

𝑑𝑑𝐹𝐹𝑋𝑋
𝑑𝑑𝑑𝑑

 =  𝐹𝐹𝑋𝑋∞(𝐼𝐼𝑋𝑋) − 𝐹𝐹𝑋𝑋
𝜏𝜏𝑋𝑋

, 125 

where 𝐹𝐹𝑋𝑋∞ is a steady state firing rate function for each population (see below). 𝜏𝜏X is the membrane 126 
time constant of the population X. The synaptic input IX is a weighted sum of neurotransmitter 127 
concentrations released by the pre-synaptic populations Y and is described as follows:  128 

𝐼𝐼𝑊𝑊  =  𝑔𝑔𝑁𝑁𝑊𝑊𝑖𝑖  .𝐶𝐶𝑁𝑁𝑋𝑋𝑖𝑖 + 𝑔𝑔𝑅𝑅𝑊𝑊𝑒𝑒  .𝐶𝐶𝑅𝑅𝑋𝑋𝑒𝑒 +  𝜉𝜉(𝑡𝑡)  129 

𝐼𝐼𝑁𝑁  =  𝑔𝑔𝑊𝑊𝑁𝑁𝑖𝑖  .𝐶𝐶𝑊𝑊𝑋𝑋𝑖𝑖  +  𝜉𝜉(𝑡𝑡)  130 

𝐼𝐼𝑅𝑅  =  𝑔𝑔𝑊𝑊𝑅𝑅𝑖𝑖  .𝐶𝐶𝑊𝑊𝑋𝑋𝑖𝑖 +  𝑔𝑔𝑁𝑁𝑅𝑅𝑖𝑖  .𝐶𝐶𝑁𝑁𝑋𝑋𝑖𝑖  +  𝑔𝑔𝑅𝑅𝑅𝑅𝑒𝑒  .𝐶𝐶𝑅𝑅𝑋𝑋𝑒𝑒  +  𝜉𝜉(𝑡𝑡) , 131 

where CYXe/i represents the neurotransmitter concentration involved in the pathway from population Y 132 
to X with synaptic weight gYXe/i. The parameter ξ(t) provides a weak Gaussian noise (mean of 0.01 Hz 133 
and standard deviation of 0.005 Hz) to mimics the variability of the biological networks. 134 

For each population, the steady state firing rate function 𝐹𝐹𝑋𝑋∞ is modelled with the following 135 
equations: 136 

𝐹𝐹𝑊𝑊∞ = 𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚.�0.5. �1 + 𝑡𝑡𝑡𝑡𝑡𝑡ℎ �(𝐼𝐼𝑊𝑊  −  𝛽𝛽𝑊𝑊)
𝛼𝛼𝑊𝑊� ��� 137 

𝐹𝐹𝑅𝑅∞ = 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚.�0.5. �1 + 𝑡𝑡𝑡𝑡𝑡𝑡ℎ �(𝐼𝐼𝑅𝑅  −  𝛽𝛽𝑅𝑅)
𝛼𝛼𝑅𝑅� ��� 138 

𝐹𝐹𝑁𝑁∞ = 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚.�0.5. �1 + 𝑡𝑡𝑡𝑡𝑡𝑡ℎ �(𝐼𝐼𝑁𝑁  −  𝜅𝜅𝑁𝑁 .𝐻𝐻(𝑡𝑡))
𝛼𝛼𝑁𝑁� ���, 139 

https://github.com/Sakata-Lab/sleep-model
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where Wmax, Nmax and Rmax are constant values to set the maximum firing rates of the populations. α 140 
and β are slope and threshold parameters of the hyperbolic tangent function for the population X, 141 
respectively. Because the NREM population is linked to the homeostatic sleep drive, the steady state 142 
firing function also depends on the homeostatic sleep drive variable H(t) (see below). 143 

All parameter values are provided in Supplementary Table S2.  144 

2.2 Homeostatic sleep drive 145 

In the model, the sleep-wake transition is driven by the homeostatic sleep drive H(t). This process 146 
can be described by the following equation:  147 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 =  𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑑𝑑
𝜏𝜏ℎ𝑤𝑤

 .ℋ(𝐹𝐹𝑊𝑊  −  𝜃𝜃𝑊𝑊)  −  𝑑𝑑
𝜏𝜏ℎ𝑠𝑠

 .ℋ(𝜃𝜃𝑊𝑊  −  𝐹𝐹𝑊𝑊) , 148 

where ℋ(z) stands for the Heaviside function, which returns 0 if z < 0 and 1 if z ≥ 0. θW is a constant 149 
to set the sleep drive threshold. Hmax is a constant value to set the maximum value for the homeostatic 150 
force. тhw and тhs are time constants of sleep drive built up during wakefulness and declined during 151 
sleep, respectively. Hence, the homeostatic force value increases during wakefulness due to a high 152 
activity of the wake-promoting population, and decreases during sleep when this activity is lower. 153 

2.3 Action of neurotransmitters 154 

The neurotransmitter concentration CYX(t) from the populations Y to X is described as following: 155 

𝑑𝑑𝐶𝐶𝑌𝑌𝑋𝑋
𝑑𝑑𝑑𝑑

 =  𝐶𝐶𝑌𝑌𝑋𝑋∞(𝐹𝐹𝑌𝑌) − 𝐶𝐶𝑌𝑌𝑋𝑋
𝜏𝜏𝑌𝑌𝑋𝑋

, 156 

where CYX∞ is a saturating function to provide the steady state of the neurotransmitter release from 157 
the population Y to the population X as a function of FY. This function is described as: 158 

𝐶𝐶𝑌𝑌𝑋𝑋𝑖𝑖∞ = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ �𝐹𝐹𝑌𝑌 𝜏𝜏𝑌𝑌𝑋𝑋� �, 159 

where тYX is a time constant. The concentration of each neurotransmitter was normalized between 0 160 
and 1 and is expressed in arbitrary unit (a.u.) (Diniz-Behn and Booth 2010). 161 

2.4 Alterations of synaptic weights in the network 162 

To investigate pathway-dependent regulation of sleep architecture in the network model, we 163 
systematically altered the synaptic weight g in the network as shown in Table 1.  164 

We also simulated a lesion of each pathway by setting g to 0. For each condition, we run 8 165 
simulations. 166 

2.5 Determination of sleep-wake states 167 

The state of the network was determined according to Diniz Behn and Booth (2010): If firing rate of 168 
the Wake-promoting population is above 2 Hz, the state of the network is Wake. If not, the state is 169 
either NREM or REM sleep: if firing rate of the REM-promoting population is above 2 Hz, the state 170 
is REM sleep. If not, the state is NREM sleep. 171 

 172 
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2.6 Statistical analyses  173 

All statistical analyses were performed using R scripts (version 3.5.1). Data are presented as the 174 
means (plain curves) ± s.e.m. (shaded curves). One-way analysis of variance (ANOVA) were used to 175 
analyze the synaptic weights alterations depending on the sleep state or transition. Following the 176 
ANOVA, Tukey post-hoc tests were performed for pairwise comparisons to the control conditions 177 
(no synaptic weights manipulations). P-values less than 0.05 were considered significant. If it is not 178 
the case, the sign "NS" was added on the graphs, otherwise there was a significant difference 179 
compared to the control condition. 180 

  181 
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 182 

3 Results 183 

We utilized the network architecture as reported in previous studies (Diniz Behn and Booth 2012, 184 
Costa, Born et al. 2016). As shown in Figure 1, this model contained three neuronal populations 185 
(labeled REM, NREM and Wake). The activity of these populations was characterized by differential 186 
equations describing the population firing rates which defined the state of the network (see Methods). 187 
These equations have been proved to be components of suitable sleep/wake regulatory computational 188 
models in previous studies (Diniz Behn, Brown et al. 2007, Diniz-Behn and Booth 2010, Diniz Behn 189 
and Booth 2012, Diniz Behn, Ananthasubramaniam et al. 2013, Costa, Born et al. 2016). The 190 
pathways from one population to the other were either excitatory or inhibitory. The concentrations of 191 
excitatory and inhibitory neurotransmitters were directly related to the population firing rates of the 192 
neural populations and a homeostatic sleep drive. Each population also received random Gaussian 193 
noise (Supplementary Figure 1). 194 

3.1 Sleep dynamics under initial conditions 195 

Before manipulating synaptic weights across pathways, we confirmed the sleep-wake cycle in our 196 
model (Figure 2). The initial parameter setting in our model was the same as that in previous reports 197 
(Diniz Behn and Booth 2012, Costa, Born et al. 2016) (Supplementary Table S2). As shown in 198 
Figure 2, this network always started with wakefulness where activity in the Wake-promoting 199 
population was high. As the homeostatic force gradually built up, the Wake-promoting population 200 
dropped its activity and the network entered NREM sleep. During sleep, the homeostatic force 201 
gradually decreased while alternations between NREM sleep and REM sleep appeared before the 202 
network exhibited wakefulness again. As expected, the concentration of neurotransmitters was well 203 
correlated with the firing rate of neural populations.  204 

In the following sections, to assess the effect of synaptic weight alterations on sleep architecture, we 205 
measured the following quantities, all of which are measurable experimentally: 206 

• the total duration of each state (Figure 3 and Supplementary Figure 2) 207 

• the percentage of the time spent in these states (Figures 4A, 5A, 6A) 208 

• the number of episodes (Figures 4B, 5B, 6B),  209 

• the number of transitions between states (Figures 4C, 5C, 6C), and  210 

• the NREM and REM sleep latencies (Figure 7).  211 

In the following sections, we describe how synaptic weight alterations affect sleep architecture in this 212 
network with respect to these measurements. 213 

 214 
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 215 

Figure 2: An example of the sleep-wake cycle generated by the network with the initial parameters. 216 
The firing rate of each population as a function of time. Middle, the concentration of the 217 
neurotransmitters and the homeostatic force. Bottom, a hypnogram which was determined based on 218 
firing rates of the three neural populations.  219 

3.2 Effects of synaptic weight alteration on total sleep-wake duration 220 

To investigate pathway-dependent regulation of sleep, we systematically modified the synaptic 221 
weight across pathways: the modified weight span from 0 to 8 times while g was the initial condition. 222 
We performed 24-hr simulations (n = 8) in each condition. 223 

To assess the overall sleep architecture, we measured the total duration of each state (Figure 3). 224 
While each neural population had two output pathways (Figure 1), the effect of weight alterations on 225 
sleep architecture was highly pathway-dependent: in the case of the outputs from the Wake 226 
population, although stronger weights in the Wake  NREM (WNi) pathway led to longer 227 
wakefulness (F1,7 = 911.4, p < 0.0001, one-way ANOVA), the Wake  REM (WRi) pathway 228 
showed an opposite trend (F1,7 = 88.7, p < 0.0001, one-way ANOVA). The WNi pathway was 229 
necessary to induce Wake whereas the WRi pathway was necessary to induce sleep states. 230 

In the outputs from the NREM populations, stronger weights in the NREM  REM (NRi) 231 
connection led to longer NREM (F1,7 = 14985.8, p < 0.0001, one-way ANOVA) whereas stronger 232 
weights in the NREM  Wake (NWi) connection were associated with longer REM (F1,7 = 2290812, 233 
p < 0.0001, one-way ANOVA).  234 

In the outputs from the REM population, to our surprise, strong recurrent excitatory (RRe) 235 
connection shortened the duration of REM sleep (F1,7 = 189.2, p < 0.0001, one-way ANOVA). 236 
Rather, weaker weighting in the REM  Wake (RWe) connection promoted longer REM sleep (F1,7 237 
= 94156.8, p < 0.0001, one-way ANOVA). Thus, the effects of synaptic weight alterations on overall 238 
sleep architecture were highly pathway-dependent. We also assessed how simultaneous alterations of 239 
two output pathways from each neural population affect sleep dynamics (Supplementary Figure 3) 240 
(see below Section 3.8 for comprehensive simultaneous alterations). The outcomes deviated from 241 
those of individual pathway manipulations, suggesting pathway-dependent regulation in the sleep 242 
dynamics. In the next sections, we explore detailed sleep architecture of this model with varied 243 
synaptic weights.  244 
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 245 

Figure 3: Total duration of each sleep state for different synaptic weights. Each bar graph 246 
represents the total duration of each state as a function of synaptic weights. The variable g 247 
represents the synaptic weight for the control condition. Each value is an average duration of each 248 
state from 8 simulations.  249 

3.3 Alterations of REM population output pathways and overall sleep architecture 250 

How does the output from the REM population contribute in the sleep architecture? To address this, 251 
we quantified the effect of synaptic weight alterations in the REM population outputs on the sleep 252 
architecture, with respect to the percentage of time spent in each state (Figure 4A), the number of 253 
episodes (Figure 4B), and the number of state transitions (Figure 4C).  254 

When we manipulated the synaptic weight in the RRe pathway (light blue in Figure 4), the 255 
percentage of NREM sleep decreased as a function of the synaptic weight (F1,7 = 1.93e5, p < 0.0001, 256 
one-way ANOVA) whereas the percentage of Wake increased (F1,7 = 8.63e5, p < 0.0001, one-way 257 
ANOVA) (Figure 4A). We observed only small changes in the percentage of REM sleep. The 258 
number of all episodes were generally reduced (Figure 4B): it was similar for NREM sleep no matter 259 
the synaptic weights (F1,7 = 4.78e2, p < 0.0001, one-way ANOVA), but we observed a smaller 260 
reduction in REM sleep and Wake episodes for stronger weights (F1,7 = 5.6 and F1,7 = 5.4 261 
respectively, p < 0.0001 for both, one-way ANOVA). These results correlated with a similar 262 
reduction in the number of transitions between the states (Figure 4C). Thus, the manipulation of the 263 
RRe pathway stabilized the network state. 264 

When we manipulated the synaptic weight in the RWe pathway (dark blue in Figure 4), the 265 
percentage of REM sleep decreased as a function of the synaptic weight (F1,7 = 9.31e5, p < 0.0001, 266 
one-way ANOVA) whereas the percentage of NREM sleep increased (F1,7 = 1.26e5, p < 0.0001, one-267 
way ANOVA)  (Figure 4A). The weaker weight in the RWe pathway extended the duration of REM 268 
sleep (F1,7 = 9.31e5, p < 0.0001, one-way ANOVA). Although the time spent in REM sleep 269 
decreased with g*2 (F1,7 = 9.31e5, p < 0.0001, one-way ANOVA with post-hoc Tukey HSD test), the 270 
number of REM episodes (F1,7 = 6.9, p < 0.0001, one-way ANOVA) (Figure 4B) and transitions 271 
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(Figure 4C) increased. Hence stronger RWe pathway caused a fragmented sleep-wake cycle 272 
although g*4 and g*8 provided a different picture, suggesting an optimal range of synaptic strengths 273 
to induce the fragmentation of the sleep-wake cycle. Therefore, effects of alterations of REM 274 
population output pathways on sleep architecture were highly pathway-dependent. 275 

 276 

Figure 4: Effects of synaptic weight alterations of the REM population on sleep architecture. The 277 
percentage of time spent in each state (A), the number of episodes (B), and the number of state 278 
transitions (C) as a function of synaptic weights. Each profile was based on eight 24 hr simulations. 279 
Data presents mean ± s.e.m. Light blue, RRe pathway; dark blue, RWe pathway. NS, non-significant 280 
(one-way ANOVA). 281 

3.4 Alterations of NREM population output pathways and sleep architecture 282 

What are the effects of variation in the outputs from the NREM population in the sleep architecture 283 
and genesis? Here, we also examined how alterations of the output strengths from the NREM 284 
population contributed to sleep/wake transition, with respect to the percentage of time spent in each 285 
state (Figure 5A), the number of episodes (Figure 5B), and the number of state transitions (Figure 286 
5C).  287 
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Strengthening the NRi pathway (light green in Figure 5) increased the percentage of time spent in 288 
NREM (F1,7 = 6.93e5, p < 0.0001, one-way ANOVA) and decreased that in REM (F1,7 = 4.62e5, p < 289 
0.0001, one-way ANOVA) and Wake (F1,7 = 7.67e5, p < 0.0001, one-way ANOVA) (Figure 5A). 290 
This was associated with the reduction in state transitions (Figures 5B and C), meaning state 291 
stabilization. On the other hand, weakening the pathway increased the number of sleep episodes (F1,7 292 
= 9.20e2, p < 0.0001, one-way ANOVA) and transitions (Figures 5B and C), meaning 293 
fragmentation. 294 

Strengthening the NWi pathway (green in Figure 5) increased the percentage of time spent in REM 295 
sleep (F1,7 = 7.13e5, p < 0.0001, one-way ANOVA) and decreased that in NREM (F1,7 = 4.88e5, p < 296 
0.0001, one-way ANOVA)  and Wake (F1,7 = 7.37e5, p < 0.0001, one-way ANOVA) (Figure 5A). 297 
Weakening this pathway eliminated sleep episodes completely, meaning that this pathway is essential 298 
for sleep genesis.  299 

 300 

Figure 5: Effects of synaptic weight alterations of the NREM population on sleep architecture. 301 
The percentage of time spent in each state (A), the number of episodes (B), and the number of state 302 
transitions (C) as a function of synaptic weights. Each profile was based on eight 24 hr simulations. 303 
Data presents mean ± s.e.m. Light green, NRi pathway; green, NWi pathway. NS, non-significant 304 
(one-way ANOVA). 305 
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3.5 Alterations of Wake population output pathways and sleep architecture 306 

We also examined how alterations of the output strengths from the Wake population contributed to 307 
sleep architecture, with respect to the percentage of time spent in each state (Figure 6A), the number 308 
of episodes (Figure 6B), and the number of state transitions (Figure 6C).  309 

 310 

Figure 6: Effects of synaptic weight alterations of the Wake population on sleep architecture. The 311 
percentage of time spent in each state (A), the number of episodes (B), and the number of state 312 
transitions (C) as a function of synaptic weights. Each profile was based on eight 24 hr simulations. 313 
Data presents mean ± s.e.m. Orange, WNi pathway; brown, WRi pathway. NS, non-significant (one-314 
way ANOVA). 315 

When we manipulated the synaptic weights in the WNi pathway (orange in Figure 6), the percentage 316 
of Wake increased as the synaptic weight increased (F1,7 = 1.34e4, p < 0.0001, one-way ANOVA) 317 
(Figure 6A). On the other hand, as the synaptic weight decreased, the more the number of episodes 318 
increased across three states (F1,7 = 9750.7 for REM, F1,7 = 8.12e3 for NREM, F1,7 = 3.14e2 for 319 
Wake, p < 0.0001 for all, one-way ANOVA) (Figure 6B), with longer sleep states (F1,7 = 1.41e4, p < 320 
0.0001, one-way ANOVA) (Figure 6A). 321 



  Network model of sleep-wake cycle 

 
13 

Contrary to these, when we increased the synaptic weight in the WRi pathway (brown in Figure 6), 322 
the percentage of Wake decreased (F1,7 = 5.72e5, p < 0.0001, one-way ANOVA) (Figure 6A). There 323 
was an optimal range to increase the numbers of sleep episodes (F1,7 = 1.27e3, p < 0.0001, one-way 324 
ANOVA) (Figure 6B). Again, the effects of alterations of Wake population output pathways on 325 
sleep architecture were pathway-dependent. 326 

3.6 Effects of synaptic modifications on the sleep latency 327 

We also measured the latency of NREM and REM (Figures 7): the former is the latency of the first 328 
NREM episode since the beginning of the simulation whereas the latter is the latency of the first 329 
REM episode since the onset of the first NREM episode.  330 

 331 

Figure 7: Effects of synaptic weight alterations on sleep latency. Bar graphs represent mean 332 
latency for NREM (left) and REM (right) as a function of synaptic weights in modifications of RRe 333 
(A), RWe (B), NRi (C), NWi (D), WNi (E) and WRi pathways (F). Error bars, s.e.m.; ø, no 334 
occurrence of the state. 335 

Strengthening the RRe pathway decreased the REM latency (F7,56 = 7.22e5, p < 0.0001, one-way 336 
ANOVA) (Figure 7A) whereas strengthening the RWe pathway increased the REM latency at g*2 337 
(F7,56 = 1.11e5, p < 0.0001, one-way ANOVA with post-hoc Tukey HSD test) (Figure 7B). As 338 
expected, we did not observe any effect on the NREM latency by the manipulation of either pathway 339 
(Figures 7A and B). Thus, the output pathways from the REM population contributed only to the 340 
REM latency. 341 
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Weakening the NRi pathway decreased the REM latency (F7,56 = 4.43e5, p < 0.0001, one-way 342 
ANOVA) whereas the NREM latency was not changed (Figure 7C). Strengthening the NWi 343 
pathway decreased the NREM latency (F7,56 = 9,63e7, p < 0.0001, one-way ANOVA) whereas the 344 
REM latency was also reduced and remained consistent across different weights (F7,56 = 5.33e5, p < 345 
0.0001, one-way ANOVA) (Figure 7D). Thus, the output pathways from the NREM population 346 
exhibited complex contributions to the NREM and REM latencies depending on output pathways. 347 

Finally, weakening the WNi pathway decreased the NREM latency (F7,56 = 1.53e8, p < 0.0001, one-348 
way ANOVA) whereas the REM latency was not affected as long as sleep was induced (Figure 7E). 349 
While strengthening the WRi pathway did not affect the NREM latency, the REM latency increased 350 
at g*2 (F7,56 = 8.29e5, p < 0.0001, one-way ANOVA with post-hoc Tukey HSD test). Thus, the 351 
output pathways from the Wake population contributed to the latency of sleep state which was 352 
directly influenced.     353 

3.7 Effects of synaptic modifications on the dynamics of population activity  354 

Investigating the effect of synaptic modifications on the sleep architecture (Figures 4-6) and sleep 355 
latency (Figure 7), we noticed at least two non-trivial responses of the system. First, the strength of 356 
the RRe pathway did not correlate with the duration of REM sleep (Figure 4). Second, the stronger 357 
NWi pathway led to longer REM sleep, rather than longer NREM sleep (Figure 5).  358 

To gain insight into the underlying mechanism, we analyzed the firing rate dynamics of three 359 
populations (Figure 8). With respect to the manipulation of the RRe pathway (Figure 8A), in the 360 
default condition, the firing rate of the REM-promoting population quickly decreased. This was due 361 
to the inhibitory effect from the WRi pathway as the firing rate of the Wake-promoting population 362 
increased. However, when the strength of the RRe pathway increased, the firing rate of the REM-363 
promoting population kept high along with increasing the firing rate of the Wake-promoting 364 
population. Therefore, by definition, the system entered and kept Wake. Thus, increasing the strength 365 
of the RRe pathway led to a pathological state where both the REM-promoting and Wake-promoting 366 
populations stay active. 367 

With respect to the manipulation of the NWi pathway (Figure 8B), when the strength of the NWi 368 
pathway increased, the firing rate of the Wake-promoting population remained low and decreased 369 
due to the inhibitory effect of the NWi pathway. This resulted in the saturated firing rate of the REM-370 
promoting population and therefore longer REM sleep. From these two analyses, an optimal range of 371 
activation in the Wake-promoting population plays a key role in the regulation of REM sleep.    372 
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 373 

Figure 8: Effects of synaptic modifications on the dynamics of population activity. (A) 374 
Modifications of RRe pathway. (B) Modifications of NWi pathway. In each plot, the firing rate 375 
dynamics of three populations are shown in three-dimensional space. Line colors indicate types of 376 
synaptic modifications. Every 30-min time point is marked and their sizes represent time points of the 377 
simulation. Right panels show the magnified traces.   378 

3.8 Joint alterations of two output pathways from each population and sleep architecture 379 

Finally, to gain further insight into the role of each pathway in the behavior of this model, we 380 
manipulated the strength of the two output pathways from each population (Figure 9). Two types of 381 
joint manipulations could increase the total duration of REM sleep: first, the stronger RRe pathway 382 
with the weaker RWe pathway increased the duration of REM sleep (Figure 9A). This was 383 
consistent with the intuition obtained above (Figure 8A). Second, the weaker NRi pathway with the 384 
stronger NWi pathway also increased the duration of REM sleep (Figure 9B). To increase the total 385 
duration of NREM sleep, in addition to the weaker RRe pathway or stronger inhibitory synapses 386 
from the NREM-promoting population, the stronger WRi pathway with the weaker WNi pathway 387 
also lead to longer NREM sleep (Figure 9C). These results indicate that the balance between two 388 
outputs is crucial to determine the sleep architecture.     389 
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 390 

Figure 9: Effects of joint manipulation of two output pathways on the percentage of vigilance 391 
states. (A) The manipulation of output pathways from the REM-promoting population. Each pie chart 392 
shows the percentage of three vigilance states at a certain joint manipulation. (B) The manipulation 393 
of output pathways from the NREM-promoting population. (C) The manipulation of output pathways 394 
from the Wake-promoting population.   395 

  396 
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 397 

4 Discussion 398 

In this study, we have introduced a modeling framework to investigate the dynamics of the sleep-399 
wake cycle and the effects of internal network manipulations (i.e., synaptic weight variations) on its 400 
regulation. We have implemented a simple computational model with 3 interconnected neural 401 
populations (Figure 1), each one promoting a different state of the sleep-wake cycle (wakefulness, 402 
REM and NREM sleep). We have comprehensively assessed how the manipulation of synaptic 403 
weight affects the dynamics of the sleep-wake cycle in our model. We found that effects of synaptic 404 
weight alterations on the sleep dynamics depend on the pathway where the synapse belongs (Figures 405 
2-9). For example, the manipulation of the two outputs from the Wake-promoting population showed 406 
opposite outcomes: one was lengthening the wakefulness state whereas the other was shortening it. 407 
Thus, the sleep-wake dynamics is regulated in a pathway-dependent manner.   408 

4.1 Implications of the current study 409 

In previous studies, the performances of network models have been explored (Diniz Behn and Booth 410 
2012, Diniz Behn, Ananthasubramaniam et al. 2013, Weber 2017) and these models can replicate 411 
sleep dynamics (Diniz-Behn and Booth 2010) as well as state-dependent neural firing (Tamakawa, 412 
Karashima et al. 2006). However, few studies have reported how the strength of synaptic connections 413 
between wake- and sleep-promoting populations contribute to the sleep architectures. The present or 414 
similar studies may lead to at least two directions: first, this type of simulations may provide insight 415 
into the underlying mechanisms of inter-species differences in sleep dynamics as well as pathological 416 
sleep conditions in humans. Second, given the advent of recent technological advance, such as 417 
optogenetics and chemogenetics, addressing this issue in silico may provide insight into the design of 418 
new experiments.  419 

For example, the REM-promoting population in the current model presumably represents pontine 420 
cholinergic populations. Experimentally, the involvement of pontine cholinergic populations in the 421 
initiation and maintenance of REM sleep has been actively debated (Grace and Horner 2015): lesion 422 
and pharmacological studies have provided inconsistent and contradictory results (Amatruda, Black 423 
et al. 1975, Webster and Jones 1988, Boissard, Gervasoni et al. 2002, Grace, Vanstone et al. 2014). 424 
Even recent chemogenetic and optogenetic experiments also provided conflicting observations (Van 425 
Dort, Zachs et al. 2015, Kroeger, Ferrari et al. 2017): chemogenetic activation has no effect on REM 426 
sleep whereas optogenetic activation can trigger REM sleep. Our observations (Figures 4, 8, and 9) 427 
demonstrated that the activation of both pathways had little effect on REM sleep whereas a more 428 
specific manipulation can increase the duration of REM sleep (Figure 9). These results suggest that 429 
the complex balance of the synaptic strength between the RRe and RWe pathways may determine the 430 
duration of REM sleep. Therefore, it would be interesting to adopt pathway-specific manipulations of 431 
cholinergic activity to reconcile this issue in future.  432 

Another intriguing observation is that measuring the latency of sleep states provided relatively 433 
intuitive outcomes. For example, strengthening the RRe pathway could reduce the REM latency 434 
without increasing the duration of REM sleep (Figure 7A), consistent with recent experimental 435 
observations (Carrera-Cañas, Garzón et al. 2019). Strengthening the NWi pathways also reduced the 436 
NREM latency (Figure 7D). Thus, measuring the latency to change states may provide insights into 437 
the role of the manipulated pathway in sleep regulation. 438 
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Another general implication can be derived from the results that the pathways which are not directly 439 
connected to the REM population can contribute to the duration of REM sleep. It is possible that any 440 
manipulations can make distal impacts, resulting in unexpected state alternations. This effect is called 441 
“Diaschisis” or “shocked throughout”, describing the sudden loss of function in another portion of 442 
the brain through being linked with a distal, (directly) affected brain region (Carrera and Tononi 443 
2014, Otchy, Wolff et al. 2015). This implies that experimental observations may need to be interpret 444 
with care. Our simulations directly demonstrated such indirect effects even in our simple model.  445 

4.2 Limitations and possible improvements 446 

One of the major limitations in the present study is that the network model did not fully capture 447 
biological sleep-wake regulation. For example, the duration of REM sleep episodes typically 448 
increases during the sleep period. Our model did not implement such a homeostatic regulation of 449 
REM sleep. Therefore, some of our observations do not necessarily predict the behavior of biological 450 
circuits. To address these issues, it would be important to extend the network size to reflect more 451 
biological observations (Tamakawa, Karashima et al. 2006). For example, the reciprocal interaction 452 
present in our model between Wake and REM promoting populations has been hypothesized to be a 453 
part of the REM sleep regulation, which can be under the control of a circadian modulation (Lu, 454 
Sherman et al. 2006, Sapin, Lapray et al. 2009, Costa, Born et al. 2016). The model presented here 455 
does include an homeostatic sleep drive through the NREM-promoting population, but does not have 456 
any circadian modulation, which is known to be another important sleep drive (Fuller, Gooley et al. 457 
2006, Scammell, Arrigoni et al. 2017, Weber, Do et al. 2018, Herice, Patel et al. 2019). These effects 458 
could be implemented into the model by adding some corresponding populations such as the 459 
suprachiasmatic nucleus (SCN), which heavily influences the sleep/wake transitions (Fleshner, Booth 460 
et al. 2011, Booth and Diniz Behn 2014). 461 

In addition to the extension of the network, it would be interesting to refine the formalism of the 462 
model. Indeed, in this study we focused on the activity of the neural populations and network 463 
dynamics rather than on the activity of single neurons. Such a model with a more detailed formalism 464 
(with spiking neurons for example) would be attractive but its implementation would require more 465 
parameters derived from experimental work. More quantitative experimental data are certainly 466 
required to create even more realistic networks (Herice, Patel et al. 2019).  467 

Another limitation to the present work is that we manipulated the synaptic strength during the entire 468 
simulation period. In biological experiments, however, manipulations can be transient, such as in 469 
optogenetic experiments (Adamantidis, Zhang et al. 2007, Van Dort, Zachs et al. 2015, Weber, 470 
Chung et al. 2015). It would be interesting to manipulate synaptic weights transiently in the network 471 
model.  472 

Relating to this point, it may be also interesting to reconsider the definition of the state in the model. 473 
In particular, if the activity of each neural population is manipulated, the current definition (see 474 
Methods) cannot be adopted because the activity of each population itself defines the state. To 475 
address this issue, it would be interesting to connect the modeled sleep-wake regulating circuit to 476 
cortical circuits and muscle units, through which the state of the system can be defined based on the 477 
activity of the cortical circuits or muscle units as in biological experiments. This direction will 478 
become an important topic to better understand how subcortical sleep-regulating circuits and cortical 479 
circuits interact with each other across the sleep-wake cycle and how recent closed-loop stimulation 480 
approaches affect neural circuit dynamics as well as connectivity (Marshall, Helgadottir et al. 2006, 481 
Ngo, Seibold et al. 2019).  482 
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4.3 Conclusion 483 

In conclusion, utilizing a simple network model of the sleep-wake cycle, we found pathway-484 
dependent effects of synaptic weight manipulations on sleep architecture. Given the fact that even the 485 
simple network model can provide complex behaviors, designing in vivo experiments and 486 
interpreting the outcomes require careful considerations about the complexity of sleep-wake 487 
regulating circuits. A similar computational approach could complement to make specific predictions 488 
for in vivo experiments.   489 
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 624 

Figure legends 625 

Figure 1: Architecture of the sleep regulatory network. Three neural populations are connected 626 
with excitatory and inhibitory synapses. Each neural population is named as the state they promote. 627 
The arrows and circles represent excitatory and inhibitory connections, respectively. The synapses 628 
are named with two uppercase and one lowercase letters: first letter of the pre-synaptic population 629 
(where the synapse is from), first letter of the post-synaptic population (where the synapse is going 630 
to) and "e" if it is excitatory or sign "i" if inhibitory. 631 

Figure 2: An example of the sleep-wake cycle generated by the network with the initial 632 
parameters. The firing rate of each population as a function of time. Middle, the concentration of the 633 
neurotransmitters and the homeostatic force. Bottom, a hypnogram which was determined based on 634 
firing rates of the three neural populations.  635 

Figure 3: Total duration of each sleep state for different synaptic weights. Each bar graph 636 
represents the total duration of each state as a function of synaptic weights. The variable g represents 637 
the synaptic weight for the control condition. Each value is an average duration of each state from 8 638 
simulations.  639 

Figure 4: Effects of synaptic weight alterations of the REM population on sleep architecture. 640 
The percentage of time spent in each state (A), the number of episodes (B), and the number of state 641 
transitions (C) as a function of synaptic weights. Each profile was based on eight 24 hr simulations. 642 
Data presents mean ± s.e.m. Light blue, RRe pathway; dark blue, RWe pathway. NS, non-significant 643 
(one-way ANOVA). 644 

Figure 5: Effects of synaptic weight alterations of the NREM population on sleep architecture. 645 
The percentage of time spent in each state (A), the number of episodes (B), and the number of state 646 
transitions (C) as a function of synaptic weights. Each profile was based on eight 24 hr simulations. 647 
Data presents mean ± s.e.m. Light green, NRi pathway; green, NWi pathway. NS, non-significant 648 
(one-way ANOVA). 649 

Figure 6: Effects of synaptic weight alterations of the Wake population on sleep architecture. 650 
The percentage of time spent in each state (A), the number of episodes (B), and the number of state 651 
transitions (C) as a function of synaptic weights. Each profile was based on eight 24 hr simulations. 652 
Data presents mean ± s.e.m. Orange, WNi pathway; brown, WRi pathway. NS, non-significant (one-653 
way ANOVA). 654 

Figure 7: Effects of synaptic weight alterations on sleep latency. Bar graphs represent mean 655 
latency for NREM (left) and REM (right) as a function of synaptic weights in modifications of RRe 656 
(A), RWe (B), NRi (C), NWi (D), WNi (E) and WRi pathways (F). Error bars, s.e.m.; ø, no 657 
occurrence of the state. 658 

Figure 8: Effects of synaptic modifications on the dynamics of population activity. (A) 659 
Modifications of RRe pathway. (B) Modifications of NWi pathway. In each plot, the firing rate 660 
dynamics of three populations are shown in three-dimensional space. Line colors indicate types of 661 
synaptic modifications. Every 30-min time point is marked and their sizes represent time points of 662 
the simulation. Right panels show the magnified traces. 663 
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Figure 9: Effects of joint manipulation of two output pathways on the percentage of vigilance 664 
states. (A) The manipulation of output pathways from REM-promoting population. Each pie chart 665 
shows the percentage of three vigilance states at a certain joint manipulation. (B) The manipulation 666 
of output pathways from NREM-promoting population. (C) The manipulation of output pathways 667 
from Wake-promoting population.   668 

 669 

Tables 670 

Table 1: Synaptic weights for the different alterations. Initials values can be found in the 671 
Supplementary Table S2 with the model parameters 672 

Conditions Eighth Quarter Half   Double Quadruple Octuple 

Symbols g/8 g/4 g/2 g*2   g*4 g*8 

RRe 0.2   0.4 0.8   3.2   6.4   12.8 

RWe 0.125  0.25 0.5 2.0 4.0 8 

WNi -0.25 -0.5 -1.0 -4.0 -8.0 -16.0 

WRi -0.5 -1.0 -2.0 -8.0 -16.0 -32.0 

NRi -0.1625 -0.325 -0.65 -2.6 -5.2 -10.4 

NWi -0.21 -0.42 -0.84 -3.36 -6.72 -13.44 

 673 

 674 

 675 

 676 
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