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ABSTRACT 

In this study, a peridynamic material model for a polycrystalline ice is utilised to investigate its fracture 
behaviour under dynamic loading condition. First, the material model was validated by considering a single grain, 
double grains and polycrystalline structure under tension loading condition. Peridynamic results are compared 
against finite element analysis results without allowing failure. After validating the material model, dynamic 
analysis of a polycrystalline ice material with two pre-existing cracks under tension loading is performed by 
considering weak and strong grain boundaries with respect to grain interiors. Numerical results show that the 
effect of microstructure is significant for weak grain boundaries. On the other hand, for strong grain boundaries, 
the effect of microstructure is insignificant. The evaluated results have demonstrated that peridynamics can be a 
very good alternative numerical tool for fracture analysis of polycrystalline ice material.  
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1.  INTRODUCTION 

In Arctic regions, the accurate prediction of ice behaviour plays a significant role in the optimum design of 
marine structures and polar ships. The naturally generated ice has usually polycrystalline structure which can be 
characterized by its average grain size, grain morphology, and grain orientation, and is highly dependent on the 
properties of grain boundary which can be associated with microcracks [1-3]. Therefore, it is a great challenge to 
fully understand the behaviour of polycrystalline ice.  

In order to study the behaviour of polycrystalline material, various experiments have been done by using X-
ray analysis [4-5]. However, although the results obtained from experiments provide very useful information for 
the future studies, the expensive cost of equipment and time-consuming procedures of preparation of the material 
limit its wide application. Currently, with the development of high-performance computing, the numerical 
simulations become one of the predominant approaches utilized in the polycrystalline material analysis.  Amongst 
the computational techniques, the cohesive zone model (CZM) within the framework of the finite element method 
(FEM) is one of the most widely used approaches for fracture analysis of polycrystalline systems. A two-
dimensional finite element model was developed by Warner and Molinari [6] to investigate intergranular fracture 
in alumina with the grain interiors modelled as anisotropic elastic material and the grain boundary properties were 
fitted with experimental data. Sfantos and Aliabadi [7] proposed boundary cohesive grain element model to 
simulate the intergranular fracture of SiC. To investigate the transition from an intergranular to a transgranular 
mode of fracture, the extended finite element method (XFEM) was used to model quasi-static crack propagation 
[8]. While to study the fracture of ice, in addition to XFEM and CZM, the discrete element method (DEM) and 
smoothed particle hydrodynamics method (SPH) are used in numerical simulations as well, especially for the ice-
structure interaction. The analysis of ice sheet failure and ice rubble pile formation progress against the inclined 
structure was done by Paavilainen et al. [9-10] in the two dimensional numerical simulation based on the discrete 
element method. Lu et al. [11] and Feng et al. [12] applied a three dimensional finite element model with the use 
of cohesive element method to develop the numerical model for level ice and offshore structures. SPH is utilized 
in the numerical simulation of the bending test of ice beam [13]. For the polycrystalline ice, Gribanov et al. [14] 
implemented the cohesive zone model within an implicit finite element method to simulate the 4-point bending 
test of freshwater ice beam. Furthermore, the same CZM model is utilized by Gribanov et al. [15] to model the 
fracture behaviour of polycrystalline cylindrical samples under uniaxial loading conditions. The numerical results 
capture the observations fracture from the experiment. Although all these approaches provide useful information, 
since they are based on classical continuum mechanics, they inherit certain disadvantages of classical continuum 
mechanics [16]. Specifically, the governing equations of the classical continuum mechanics incorporate spatial 
displacement derivatives which are undefined along the crack surfaces. Moreover, CZM has mesh dependency 
issues. Although this problem can be overcome by using XFEM, its application for 3-Dimensional models is 
challenging. The XFEM is based on the generalized finite element method. It adds a local enrichment function 
with discontinuous displacement to represent the discontinuous area in the domain to be solved. However, for the 
three dimensional model, the progress of enrichment may result in an algebraic system with a large number of 
unknown variables which is difficult to solve. By taking these difficulties into consideration, a non-local meshfree 
method proposed by Silling [17], called peridynamics, can be utilized for the simulation of the polycrystalline ice. 
In this formulation, integral equations are used instead of the partial differential equations. Therefore, it is suitable 
for predicting crack initiation and propagation which may occur spontaneously. Askari et al. [18] and De Meo et 
al. [19] simulated two dimensional polycrystalline fracture in silicon and AISI 4340 steel, respectively, by using 
peridynamics for cubic crystal systems. Furthermore, Ghajari et al. [20] presented a two dimensional bond-based 
peridynamic formulation suitable for hexagonal crystal systems. 

In this paper, a two dimensional polycrystalline ice model is proposed within the framework of the bond-based 
peridynamic theory. The peridynamic parameters are obtained by equating the strain energy density of a material 
point with the classical continuum mechanics. The numerical results of the simulation are compared with the 
results obtained from FEM to testify the accuracy of the numerical peridynamic ice model. Finally, using the 
peridynamic polycrystalline ice model, the failure mode of ice under dynamic loading condition is investigated. 

2.  PERIDYNAMIC THEORY 

The peridynamic theory was first introduced by Silling [17] using an integral equation as a reformulation of 
the interactions between material points. A concept of a horizon is introduced in which the material points interact 
through bonds, whereas the interactions disappear outside the horizon. For bond-based peridynamic theory, the 
governing equation of a material point at position x in the reference configuration can be written as 

𝜌ሺ𝐱ሻ𝐮ሷ ሺ𝐱, 𝑡ሻ ൌ ׬ 𝐟ሺ𝐮ሺ𝐱ᇱ, 𝑡ሻ െ 𝐮ሺ𝐱, 𝑡ሻ, 𝐱ᇱ െ 𝐱ሻ𝑑𝑉𝐱ᇲ ൅ 𝐛ሺ𝐱, 𝑡ሻ
ு𝐱

  (1)



where 𝜌 is the mass density of the reference configuration, u represents the displacement vector field, b is the 
body force, and f represents the pairwise force function showing the force per volume squared that the particle 
𝐱ᇱ exerts on particle x. 𝐻𝐗 is the spherical neighbourhood with a radius of 𝛿 centered at material point x, called 
horizon. The relative position vector in the original configuration is denoted by 𝝃 ൌ 𝐱ᇱ െ 𝐱 and the relative 
displacement vector at time t is defined as 𝜼 ൌ 𝐮ሺ𝐱ᇱ, 𝑡ሻ െ 𝐮ሺ𝐱, 𝑡ሻ. 

The peridynamic forces between two material points interacting with each other are equal in magnitude and in 
the opposite directions. These forces are along the direction of the relative position vector in the current 
configuration and can be expressed as 

𝐟ሺ𝜼, 𝝃ሻ ൌ 𝑓ሺ𝜼, 𝝃ሻ 𝜼ା𝝃

‖𝜼ା𝝃‖
  (2)

For a microelastic material, the pairwise force function is derivable from the micropotential function 
𝑤ሺ𝜼, 𝝃ሻ[17] and can be written as 

𝐟ሺ𝜼, 𝝃ሻ ൌ
డ௪

డ𝜼
ሺ𝜼, 𝝃ሻ       ∀𝜼, 𝝃      (3)

For a prototype microelastic brittle material proposed by Silling and Askari [21], the pairwise force function is 
assumed to be dependent on the stretch between material points and can be defined as 

𝐟ሺ𝜼, 𝝃ሻ ൌ 𝑐ሺ𝝃ሻ𝑠ሺ𝜼, 𝝃ሻ 𝜼ା𝝃

‖𝜼ା𝝃‖
  (4)

in which s is the stretch of the bond which can be expressed as 

𝑠ሺ𝜼, 𝝃ሻ ൌ
‖𝜼ା𝝃‖ି‖𝝃‖

‖𝝃‖
    (5)

and c represents the bond constant. By equating the strain energy density of an individual material point from 
peridynamics with classical continuum mechanics, the bond constant c for a 2 Dimensional isotropic material can 
be written as  

𝑐ሺ𝝃ሻ ൌ
଺ா

గఋయ௕ሺଵିఔሻ
    (6)

where E represents the elastic modulus of the material, b is the thickness of the plate, and 𝜈 is the Poisson’s ratio 
which is limited to 1/3 in the bond-based peridynamic model.  

To represent failure of a bond, the critical stretch parameter of the bond 𝑠଴ is introduced. According to Silling 
and Askari [21], the critical stretch can be related to the critical energy release rate 𝐺௖ as 

𝑠଴ ൌ ටସగீ೎

ଽாఋ
   

 
(7)

For the polycrystalline ice, the failure mode can be different depending on the strength of the grain boundaries. 
Therefore, a grain boundary coefficient (GBC) is introduced to investigate the fracture of the polycrystalline ice 
as 

GBC ൌ
௦బృా

௦బృ౅
    (8)

where 𝑠଴ୋ୆ and 𝑠଴ୋ୍ stand for the critical stretch of the peridynamic bonds that cross the grain boundaries and the 
critical stretch of the peridynamic bonds associated with the grain interior, respectively.  

3.  ICE PROPERTIES 

Ice is a complex material consisting of fresh water ice, gas, brine, and different types of solid salts, and shows 
dependence on the temperature. A single ice crystal behaves as a strong anisotropic material due to its dislocation 
glide on the basal plane, which is perpendicular to the crystal hexagonal symmetry axis, named as c-axis [22]. 
During the time of the ice growth, environmentally dominated variations as well as the thermal and deformation 
history lead to the formation of different grain structures of ice. The most common grain structures include 
granular, columnar, and discontinuous columnar [23]. In this study, the freshwater columnar grained ice is 
considered. This type of ice is usually found in the lower layers of lakes and rivers. The ice is composed of 
columnar crystals which may elongate through the whole thickness of the level ice along the vertical direction. 
The c-axis of ice crystal are oriented randomly on the plane perpendicular to the direction of the columns. Thus, 
the columnar ice shows transversely isotropic material behaviour.  
  



4.  PERIDYNAMIC MICROMECHANICAL MATERIAL MODEL FOR ICE CRYSTALS  

In this study, a peridynamic micromechanical material model is utilised to represent the behaviour of the 
polycrystalline ice with random crystal orientations. In the polycrystalline structure, each grain is represented 
using bond-based peridynamics and introducing different bond properties along the crystal orientation direction 
and other directions. Thus, the peridynamic bonds are divided into two types as shown in Figure 1. The type 1 
bonds (shown with orange colour) exist in all the directions and describes the interaction between material points 
i and all other material points in the horizon denoted by the peridynamic bond constant c1. Type 2 bonds (shown 
with pink colour) only exist along the crystal orientation direction, θ. Therefore, the effect of the crystal orientation 
can be represented by the bond constant c2. The peridynamic constitutive model for the in-plane interactions 
between two material points can be expressed using Equation (4) by assigning the relevant bond constant value 
depending on the bond orientation with respect to crystal orientation. Thus, the total bond constant parameter c 
can be expressed as [24,30],  

𝑐 ൌ ൜
𝑐ଵ ൅ 𝑐ଶ     for 𝜙 ൌ 𝜃
𝑐ଵ              for 𝜙 ് 𝜃                 (9)

According to Oterkus and Madenci [24], by equating the strain energy densities of a material point based on 
classical continuum mechanics with bond-based peridynamics under simple loading conditions, the peridynamic 
material constants c1 and c2 can be expressed by the reduced stiffness matrix, 𝑄௜௝ as 

𝑐ଵ ൌ
ଶସொభమ

గ௕ఋయ     (10)

𝑐ଶ ൌ
ொభభିொమమ

ఉ
   (11)

where 

𝛽 ൌ
ଵ

ଶ
∑ 𝜉௤௜𝑉௤

௠
௤ୀଵ            

in which m represent the number of bonds along the crystal orientation direction within the horizon 𝛿 of material 
point i. 𝜉௤௜ is the initial length of the bond along the crystal orientation direction between material point q and i, 
𝑉௤ donates the volume of the material point q, and b is the thickness. 

   

Fig. 1 Horizon of the material point i with a crystal 
orientation of 𝜃 

Fig. 2 The sketch of the bond that cross the grain 
boundary 

For the bond that crosses the grain boundary as shown in Figure 2, since the material point i is associated with 
Grain 2 and material point j is associated with Grain 1, the bond properties differ from the one that are only 
embedded in a single grain. The bond constant c1 is same for the entire plate due to its independence from grain 
orientation. However, for the bond constant c2, it needs to be determined again. According to Oterkus et al. [25] 
in which the thermal conductivity k of the bond that belongs to two different materials is calculated with the length 
of the segment of the bond in each material, written as the following equation (Equation 12), the bond constant of 
the crossing bond which is composed by the particles in two different grains is defined by the similar idea;  

𝑘 ൌ
௟భା௟మ
೗భ
ೖభ

ା
೗మ
ೖమ

                                    (12)

in which l1 represents the segment of the distance between particles xi and xj in material 1, while l2 represents the 
segment in material 2. k1 and k2 stand for the thermal conductivity of material 1 and 2 respectively.  



The equivalent bond constant of the crossing bond which is composed by the particles in two different grains can 
be calculated by using the similar idea. Since each grain of ice is presented as a polygon, it will be computationally 
very expensive to define length of each bond segments. In order to simplify the model, the length of l1 can be 
assumed to be equal to length of l2 and equivalent bond constant, 𝑐ଶ௘௤ can be calculated as  
 

𝑐ଶ௘௤ ൌ
ଶ௞భ௞మ

௞భା௞మ
െ 𝑐ଵ                                            (13) 

 
The parameters 𝑘ଵ and 𝑘ଶ depend on the crystal orientation of the grains. If the crystal orientation in grain 2 
matches with bond orientation between 𝐱௜ and 𝐱௝, then 

𝑘ଵ ൌ 𝑐ଵ                                         (14a) 
𝑘ଶ ൌ 𝑐ଵ ൅ 𝑐ଶሺ𝐱௜ሻ                                         (14b) 

 
If the crystal orientation in grain 1 matches with bond orientation between 𝐱௜ and 𝐱௝, then 

𝑘ଵ ൌ 𝑐ଵ ൅ 𝑐ଶ൫𝐱௝൯                                         (15a) 
𝑘ଶ ൌ 𝑐ଵ                                         (15b) 

 
If the crystal orientations in grain 1 and 2 match with bond orientation between 𝐱௜ and 𝐱௝, then 

𝑘ଵ ൌ 𝑐ଵ ൅ 𝑐ଶ൫𝐱௝൯                                         (16a) 
𝑘ଶ ൌ 𝑐ଵ ൅ 𝑐ଶሺ𝐱௜ሻ                                         (16b) 

 
If the crystal orientations in grain 1 and 2 does not match with bond orientation between 𝐱௜ and 𝐱௝, then 

𝑘ଵ ൌ 𝑐ଵ                                         (17a) 
𝑘ଶ ൌ 𝑐ଵ                                         (17b) 

and  
𝑐ଶ௘௤ ൌ 0                                            (17c) 

5.  NUMERICAL RESULTS AND DISCUSSION 

In this section, three static problems are considered by using bond-based peridynamic polycrystalline ice 
material model described above. The numerical results are compared with the results obtained from FEM in order 
to verify the accuracy of the peridynamic polycrystalline ice model. For the polycrystalline ice simulations, the 
polycrystalline structure is generated by implementing the Voronoi tessellation method. The Voronoi diagram is 
a fundamental geometric structure widely used in the simulation polycrystalline materials, including 
polycrystalline ice [26-27]. For a given set of seeds in a domain, a Voronoi Tessellation is used to divide the 
domain into different Voronoi cells. Each of the cells stands for a single crystal, it includes the particles that 
have shorter distance to the corresponding seed inside the cell than to any other seed.  

The reduced stiffness matrix of a single grain can be written as 

ሾ𝑄ሿ ൌ ൥
𝑄ଵଵ 𝑄ଵଶ 0
𝑄ଵଶ 𝑄ଶଶ 0

0 0 𝑄଺଺

൩          (18) 

According to Elvin [28], the stiffness properties of a polycrystalline ice can be specified as 𝑄ଵଵ ൌ 12.624GPa 
and 𝑄ଶଶ ൌ 10.328GPa. 

 

Fig. 3 Single grain for static analysis

5.1  Single grain under uniaxial tension 



The aim of this example is to show the accuracy of the elastic behaviour of the peridynamic columnar ice 
model. The crystal employed in this case has a length of 1.2 mm and a width of 1.2 mm. It is discretized uniformly 
with 200 particles distributed along the horizontal and vertical directions. Three layers of virtual particles are 
added along the bottom edge of the plate and set with zero displacements to constrain the bottom edge of the plate. 
A vertical load of 𝑃 ൌ 600MPa is applied as a body force and exerted to the top edge of the plate as the boundary 
condition as shown in Figure 3. The quasi-static solution is obtained by implementing the adaptive dynamic 
relaxation method. A constant horizon radius of 𝛿 ൌ 1.809 ൈ 10ିହm is used corresponding to 3.015 times of the 
grid spacing as suggested by Madenci and Oterkus [29].   

The comparison of the horizontal and vertical displacements between the numerical results obtained from 
peridynamic and FEM simulations for a single grain with a 45-degree crystal orientation are shown in Figures 4 
and 5. 

   

(a) Comparison of horizontal displacement field for a single grain  

   

(b) Comparison of vertical displacement field for a single grain 

Fig. 4 Comparison of displacement fields between PD and FEM for a single grain 

   

Fig. 5 Comparison of horizontal and vertical displacements along the central axes between PD and FEM for a 
single grain 

It is clear that the numerical results obtained from peridynamic simulation agree well with FEM results for a 
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single ice grain under uniaxial tension loading. Therefore, the accuracy of the micromechanical peridynamic 
model for single grain is successfully verified. 

5.2  Double grain model under uniaxial tension 

In this section, double grain model with crystal orientations of -45 and 45 degrees are considered with a length 
of 2.4 mm and a width of 1.2 mm. The number of particles distributed uniformly along the horizontal and vertical 
directions is 300 and 150, respectively. The bottom edge of the plate is constrained with three layers of virtually 
added particles. The uniaxial tension loading of 𝑃 ൌ 600MPa is applied as body force on the top edge of the plate. 
The horizon radius is defined as 𝛿 ൌ 2.412 ൈ 10ିହ m, i.e. 3.015 times of the grid spacing of ∆𝑥 ൌ 0.008 mm. 

   

(a) Comparison of horizontal displacement field for double grain model 

   

(b) Comparison of vertical displacement field for double grain model 

Fig. 6 Comparison of displacement fields between PD and FEM for double grain model 

Fig. 7 Comparison of horizontal and vertical displacements along the central axes between PD and FEM 
for double grain model 

As depicted in Figure 6 and 7, the results obtained from peridynamic and FEM show good agreement in 
horizontal and vertical displacements for double grain model. 
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5.3  Static Analysis of polycrystalline ice 

The polycrystalline ice modelled in this section consists of 100 randomly oriented grains (as shown in Figure 
8) with the same ice properties used in the former examples. The plate has a length of 12 mm and a width of 12 
mm. The domain is discretized with uniform grids with 200 particles distributed along the horizontal and vertical 
directions. Similar to the previous simulations three layers of virtual particles are set along the bottom edge of the 
plate to constrain the bottom edge. The top edge is subjected to a vertical load of 𝑃 ൌ 600MPa, applied as a body 
load through a volumetric region. The horizon radius is set as 𝛿 ൌ 1.809 ൈ 10ିସ m. 

As shown in Figure 9 and 10, the numerical results based on the peridynamic theory match well with the results 
obtained from FEM. Only some small difference can be observed in the horizontal displacement field due to the 
approximate properties of the bonds between two different grains.  

 

Fig. 8 The distribution of grains in the polycrystalline ice considered for static analysis 

   

(a) Comparison of horizontal displacement field for polycrystalline ice  

   

(b) Comparison of vertical displacement field for polycrystalline ice 

Fig. 9 Comparison of displacement field between PD and FEM for polycrystalline ice 
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Fig. 10 Comparison of horizontal and vertical displacements along the central axis between PD and FEM for 
polycrystalline ice 

5.4  Dynamic Analysis of polycrystalline ice 

In this section, to investigate the fracture of polycrystalline ice, two pre-existing cracks are set at the top and 
the bottom edges of the plate with a length of 𝑎଴ ൌ1.2 mm. The ploycrystalline ice plate with a dimension of 15 
mm in length and 15 mm in width is considered. 170 randomly oriented grains with average size of 1.15mm are 
distributed inside the ice by using the Voronoi tessellation method, as depicted in Figure 11. According to Elvin 
[28], the average elastic modulus of the 15 mm by 15 mm sample is 9584 MPa, while the energy release rate of 
polycrystalline ice is considered as 𝐺௖ ൌ 2.6182 Pa ⋅ m. To study the crack propagation, a horizontal velocity of 
𝑣଴ ൌ1.5 m/s is added as a boundary condition along the left and right edges of the ice plate in a horizon region, 
as shown in Figure 12. Three virtual layers material points are set along both the left and right edges of the 
polycrystalline ice to apply the loading condition. The virtual layers of the material points are defined as no-fail 
zone due to the requirement of the appropriately transferring the external velocity load to the internal ice plate. To 
perform the time integration, an explicit central difference scheme is introduced with a time step size of 2.0 ൈ
10ିଽ s. A total of 2500 time steps is utilised in the simulation for a total time of 5.0 ൈ 10ି଺s. In this study, three 
different GBC conditions (0.5, 1.0 and 2.0) and five different discretizations of ice model (75 ൈ 75, 100 ൈ
100, 200 ൈ 200, 300 ൈ 300 and 400 ൈ 400 paticles) are employed to analyse the propagation of the initial crack. 
Thus, the radius of horizon which is defined as 𝛿 ൌ 3.015∆𝑥, varies with the discretisation size (corresponding 
to 0.603 mm, 0.45225 mm, 0.226125 mm, 0.15075 mm and 0.1130625 mm). 

 

 

Fig. 11 The distribution of grains in the polycrystalline 
ice (average size of 1.15mm) 

Fig. 12 The loading condition of the dynamic analysis 
of the polycrystalline ice 

(a) t=2.6𝜇m  (b) t=3.2𝜇m (c) t=3.5𝜇m (d) t=4.0𝜇m 
Fig. 13 The fracture of the polycrystalline ice with a horizon size of 0.226125 mm (200ൈ200 particles) 

GBC=0.5 
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As shown in Figure 13, for the polycrystalline ice with an average grain size of 1.15 mm when the GBC is set 
as 0.5 initially, the pre-existing notch propagates and branches along the grain boundary. Then, some small                   
fragmentations occur in the central part of the plate at grain boundaries due to the weakness of the bonds                     
crossing grain boundaries. Under tensile loading, small cracks propagate and finally extend to the whole plate.      
The failure mode shows intergranular fracture pattern. 

 
(a)t=3.2𝜇m  (b) t=3.5𝜇m (c) t=4.0𝜇m (d) t=5.0𝜇m 

Fig. 14 The fracture of the polycrystalline ice with the horizon size of 0.226125 mm (200ൈ200 particles) 
GBC=1.0 

 
It is clearly seen in Figures 14 and 15 for GBC=1.0 and GBC=2.0, since the grain boundaries are not regarded 

as the weak parts of the polycrystalline ice, the propagation of the pre-existing crack is independent of the grain 
boundaries. The crack propagates through the grains and extend to the whole plate along the vertical direction.     
Thus, the failure mode is transgranular. 

 
(a) t=3.2𝜇m (b) t=3.5𝜇m (c) t=4.0𝜇m (d) t=5.0𝜇m 

Fig. 15  The fracture of the polycrystalline ice with the horizon size of 0.226125 mm (200ൈ200 particles) 
GBC=2.0

Figure 16 shows the comparison of the fracture of polycrystalline ice with different GBC and various 
discretization sizes. For GBC=0.5, it can be seen clearly in the figure that the polycrystalline ice plate with larger 
horizon size and less material points inside, displays more serious damage, with more small cracks and 
fragmentations. For the horizon size equal to 0.603mm, 0.45225mm, the major crack propagates and extends 
across the whole plate, while for the horizon radius of 0.1130625mm, only few small cracks occur in the ice plate, 
and the initial notch propagates and branches along the nearest grain boundary. However, with all different horizon 
sizes, the failure modes of the polycrystalline ice show intergranular and the failure patterns are similar. For 
GBC=1.0 and GBC=2.0, the ice plate with larger horizon size and fewer material points fails to capture the right 
propagation pattern of the major crack. Some small cracks occur at the boundary of the grains. Nevertheless, when 
the horizon radius is smaller than 0.226125 mm, the fracture pattern shows convergent behavior, with major cracks 
only propagate through the grain. The results also show that the effect of the microstructure, i.e. grains, is 
important if the grain boundaries are weaker than the grain interiors whereas the effect of microstructure is 
insignificant for strong grain boundaries. 

   



 

 

 

 

 
(a) GBC=0.5  (b) GBC=1.0 (c) GBC=2.0 

Fig. 16 The comparison of the fracture of polycrystalline ice with different GBC conditions (from 
left to right, valued as 0.5, 1.0 and 2.0) and different horizon size. (from top to the bottom, valued as 

0.603 mm, 0.45225 mm, 0.226125 mm, 0.15075 mm and 0.1130625 mm.) 



6.  CONCLUSION 

This paper presents a study of implementing the bond-based peridynamic theory, in which the equation of          
motion is an integral formulation rather than partial differential equation and is able to simulate the                            
polycrystalline ice under uniaxial loading condition. In the simulations, freshwater columnar ice is considered as 
a transversely isotropic material. All grains in the ice are oriented randomly on the horizontal plane and                      
modelled by using Voronoi tessellation method. The peridynamic parameters for the polycrystalline ice are               
calculated by equating the strain energy density of an individual material point based on classical continuum          
mechanics with peridynamics. The displacement fields along horizontal and vertical directions obtained from the 
numerical simulations are compared with the ones obtained from FEM showing good agreement between                  
peridynamic and FEM results. Thus, the accuracy of the peridynamic polycrystalline ice model is successfully       
verified. In addition, the fracture of polycrystalline ice with different horizon sizes is also studied in this paper.   
With the GBC=0.5, the failure mode is intergranular, which means that the initial crack and small fragmentations 
propagate and branch along the grain boundaries. On the other hand, for the GBC=1.0 and GBC=2.0, the major   
failure mode is transgranular. The initial notches propagate through the grain and extend across the whole plate. 
From these results, it can be concluded that the effect of the microstructure, i.e. grains, is important if the grain                  
boundaries are weaker than the grain interiors whereas the effect of microstructure is insignificant for strong             
grain boundaries. 
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