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Abstract

The main aim of this paper is to investigate the asymptotic stability of hybrid s-
tochastic systems with pantograph delay and non-Gaussian Lévy noise (HSSwPDLNS).
Under the local Lipschitz condition and non-linear growth condition, we investigate the
existence and uniqueness of the solution to HSSwPDLNs. By using the Lyapunov func-
tions and M-matrix theory, we establish some sufficient conditions on the asymptotic
stability and polynomial stability for HSSwPDLNs. Finally, two examples are provided

to illustrate our results.
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1 Introduction

It is well known that the following pantograph differential equations

2(t) = [flz(t),x(qt)), t 20, ¢ €(0,1),
z(0) = o, (1.1)

is a delay differential equations with unbounded delay. Pantograph differential equations (1.1)
arises in different fields of pure and applied mathematics such as dynamical systems, proba-
bility, quantum mechanics and electrodynamics and it possess a wide range of applications.
Due to these important applications, pantograph differential equations (1.1) has been widely
studied by [9] and [11]. On the other hand, taking the environmental disturbances into ac-
count, the pantograph differential equations have been extended into stochastic pantograph

differential equations (SPDEs)

de(t) = f(z(t),z(qt))dt + g(z(t), z(qt))dw(t). (1.2)

Such SPDEs was firstly introduced by Baker and Buckwar [3] and the existence and uniqueness
of the solution have been discussed by [3, 6]. After that, the theory of SPDEs (1.2) has drawn
increasing attention and we refer the reader to Appleby and Buckwar [2], Fan and song [7],

Guo and Li [8], Milosvic [16], Zhang et al. [33] and the references therein.

Actually, SPDEs (1.2) can be regarded as pantograph differential equations perturbed
by a Brownian motion. As a class of Gaussian noise, the Brownian motion is a continuous
stochastic process, which only simulate fluctuations of the mean value in a very small range.
In fact, due to the complexity of the external environment, the interference noise encountered
in practical applications often have non-Gaussian characteristics, which may cause severe
fluctuations. Besides the discrete stochastic factors mentioned above, many practical systems
may experience abrupt changes in their structure and parameters caused by phenomena such as
component failures or repairs, changing subsystem interconnections. Then, hybrid stochastic
system with markovian switching and non-Gaussian Lévy noise has been used to cover these
types of perturbations which can provide a good mathematical model for describing such
discontinuous processes. For a comprehensive and systematic study on hybrid system with
markovian switching and non-Gaussian Lévy noise, we refer to Applebaum [1], Mao and Yuan

[20], Yin and Zhu [31].



As we know, one of the important issues in the study of stochastic system is the analysis
of stability. In many engineering and control problems, many systems are in operation for very
long time, it is very important to determine whether these systems are stable. There is an
intensive literature on the stability of stochastic hybrid system and we mention, for example,
Mao et al. [21, 22, 23, 24, 27, 28], Xi and Yin [25, 32], You et al. [30], Zhu and Cao [35, 36, 37],
Zong et al. [40]. It is worth noting that most existing works of research on the stability
of stochastic hybrid system require that their coefficients are either linear or nonlinear but
bounded by linear functions, which are somewhat restrictive for non-linear stochastic systems,
such as stochastic Lotka—Volterra equation, stochastic interest rate models. Therefore, it is
very interesting and challenging to study the stability of stochastic hybrid system when they
do not satisfy the linear growth condition. In recent years, many scholars have obtained
exponential stability of stochastic hybrid system where their coefficients are highly nonlinear.
For example, Fei et al. [4, 5], Hu et al. [10], Li and Deng [14], Mao et al. [17], Zong et al.
[39].

Motivated by the above discussions, there are some papers on the stability of hybrid
stochastic pantograph differential systems (SPDSs) (see, e.g., [29, 34]). However, the existing
stability research on hybrid SPDSs are about the exponential stability, while little is known
on the moment asymptotic stability and almost sure asymptotic stability. In order to close
this gap, we will make an attempt to investigate the asymptotic behavior of hybrid stochastic

systems with pantograph delay and non-Gaussian Lévy noise

de(t) = [f(x(t),z(qt),r(t))dt + g(x(t), z(qt), r(t))dw(t)
+ /Zh(x(t),x(qt),r(t),v)N(dt,dv). (1.3)

Under non-linear growth condition, we show that (1.3) has a unique solution. By means of
M-matrix theory, we establish the sufficient conditions for the moment asymptotic stability
and almost sure asymptotic stability of the solution to (1.3).

On the other hand, the authors [29, 34] imposed the negative exponential function e~ in

the coefficients f and g to obtain the exponential decay of the convergence. However, not all
stochastic systems are exponentially stable, there are also a lot of stochastic systems which
are stable but subject to a lower decay rate other than exponential decay. Consequently,
it appears to be necessary to study other stability, for instance, polynomial or logarithmic

stability. Liu [13] and Mao [18, 19] studied the polynomial stability for stochastic differential
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equations (SDEs) and SDEs with bounded delay. Recently, Appleby and Buckwar [2] investi-
gated the polynomial asymptotic stability of SPDSs with unbounded delay, but the equation
they studied was linear one. In this paper, we will study the polynomial stability of (1.3)
where the coefficients are highly nonlinear. By the Lyapunov functions and the nonnegative
semimartingale convergence theorem, we obtain that the solution of (1.3) is polynomially sta-
ble in pth moment and almost sure polynomially stable. In particular, our results improve

and generalize some works in the existing literature.

The paper is organized as follows. In Section 2, we introduce some notations and hypothe-
ses concerning (1.3), meantime, we establish the existence and uniqueness of solutions to (1.3)
under the nonlinear growth condition; In Section 3, by applying the [t6 formula, stochastic
inequality and M-matrix theory, we study the asymptotic behavior of the solution to (1.3),
including moment asymptotic stability, almost sure asymptotic stability and the polynomial

stability; While in Section 4 we give two examples to illustrate our theory.

2 Preliminaries and the global solution

Throughout this paper, unless otherwise specified, we use the following notation. Let |.| de-
note the Euclidean norm in R". If A is a vector or matrix, its transpose is denoted by A'.
If A is a matrix, its norm ||A]| is defined by ||A|| = sup{|Az| : |z| = 1}. Let t > ¢y > 0 and
D([qto, to]; R™) denote the family of functions ¢ from [qto, to] — R" that are right-continuous
and have limits on the left. D([qto, to]; R™) is equipped with the norm ||| = sup |¢(0)].

qto<0<to

Let D}to ([qto, to]; R™) be the family of all F; -measurable bounded D([gty, to]; R")-valued ran-
dom variables £ = {£(0) : qto < 0 < 1y}.

Let (2, F, P) be a complete probability space with a filtration {F;};>;, satisfying the
usual conditions. Let w = (w(t),t > ty) be an m-dimensional Brownian motion defined on the
probability space (2, F, P), and N be a Poisson random measure defined on [tg, oo) x { R"\{0}}
with compensator N and intensity measure m. We assume that 7 is a Levy measure such
that N(dt,dv) = N(dt,dv) — w(dv)dt and 7(Z) < oo, where Z is a subset of R™\0 that is
the range space of the impulsive jumps. Let r(¢) be a right-continuous Markov chain on the
probability space (€2, F, P) taking values in a finite state space S = {1,2... N} with generator

I' = (7ij)nxn- We assume that Markov chain 7(.) is independent of the Brownian motion w(.)



and Poisson random measures N(.,.). For Z € B(R"\{0}), 0 ¢ Z, consider the nonlinear

hybrid stochastic systems with pantograph delay and non-Gaussian Lévy noise

de(t) = [f(x(t),z(qt),r(t))dt + g(x(t), z(qt), r(t))dw(t)
+ /h(x(t_),a:(qt),r(t’),v)N(dt,dv), t > to, (2.1)

with the initial data {z(t) : q¢to < t < to} =€ € D}to([qtg,tg];R") and r(ty) = ig, where
x(t”) = limgy 2(s) and 0 < ¢ < 1. Here

fRPXR"XS—R" g:R"XR'"xS—>R""and h: R"xR"xSxZ— R".
In this paper, the following hypothesis are imposed on the coefficients f, g and h.

Assumption 2.1 For each integer d > 1, there exists a positive constant kg such that

(@, 7.0 Vlg(z,y,9) — 9(2,5,9)" < kallx — 2[* + ly — 7P,

|f(z,y,7) — f(z
/’ (2,9,6,0) — B, 5,6, 0)Pr(dv) < ka(lz — 2 + [y — 1),

for alli € S and those x,y,z,y € R™ with |x| V |y| V |z| V |y| < d. Moreover, assume that for
alli € S,

10,00 V1g(0,0.0F v [ 150,04, 0)Pr(de) < o0
Z

It is known that Assumption 2.1 only guarantees that (2.1) has a unique maximal local
solution, which may explode to infinity at a finite time. To avoid such a possible explosion, we
need to impose an additional condition in terms of Lyapunov functions. Let C(R™ x S; Ry)
denote the family of continuous functions from R" x S to R, . Also denote by C*(R" x S; R.)
the family of all continuous non-negative functions V' (z,4) defined on R™ x S such that for
each 7 € S, they are continuously twice differentiable in z. Given V € C?*(R" x S; R,), we
define the function LV : R" x R" x S — R by

LV (z,y,i) = Vy(x, i) f(z,y,7) + ;tmce[g (x,y,1)Vex(x,0)g(x,y,1)]

+ /Z[V(:E + h(z,y,i,v),1) — V(x,i)|n(dv) + Z vV (2, ),

where

0V (x,i) OV (z,1) L0V (i)
‘/;j(l‘,l) — ( 8x1 S 8% )7 V;x(l‘,l) - ( aq;zﬁxj )nxn.



Assumption 2.2 There are two functions V € C*(R" x S;Ry) and U € C(R™; R,), as well

as positive constants p, Ky, Ky, ¢1, co, such that
clzelP < V(x,i) < colzfP, V(x,i) € R" xS (2.2)
and
LV (z,y,1) < Ki(L+ |2[" + |y[") = U(z) + KU (y) (2.3)
for all (z,y,i) € R™ x R" x §S.

Lemma 2.3 Under Assumptions 2.1, there exists a unique mazimal local solution x(t) on

t € [to,000) to (2.1), where 0 is the explosion time.

Proof. Fix any initial data £ € D_brto([qto, to]; R™) and let ko be the bound for £. For each
integer k > ko, x,y € R", i € S and v € Z, define

k k
fk(xayvi) = f<|x‘ a ) ’y‘k{j

| NE |yl ANk )

y7i>7 gk(l‘a?/»@) :g< )
|| || |yl

and

4 x| ANk Nk .
hk(fa?J,Z,U):h(’ | a‘y’|y| ) 77})7

where we set (|z| A k/|z|)x = 0 when x = 0. Then, by Assumption 2.2, we observe that

|z]

fi(x,y,1), ge(z,y,i) and hg(z,y,i,v) satisfy the global Lipschitz condition and the linear

growth condition. Therefore, there exists a unique solution z(t) on ¢ > ¢y to the equation
duelt) = fulwn(t), wlat), r(0)dt + gelan(t), zilgt), r(t))duw ()
+ /Zhk(xk(t_),xk(qt),r(t_),v)N(dt, dv)
with the initial data {zx(t) : qto <t < to} = £. Define the stopping time
o, = inf{t > to : |zx(t)| > k}.
It is not difficult to show that
zr(t) = zpa(t) if to <t < oy.

This implies that oy, is increasing in k. Let 0., = limg_,o, 0x. The property above also enables

us to define z(t) for t € [gly, o) as follows
z(t) = xp(t) if qto <t < oy.

It is clear that x(t) is a unique solution to (2.1) for ¢ € [gty,0x). The proof is therefore

complete. O



Theorem 2.4 Let Assumptions 2.1 and 2.2 hold. Then for any given initial data &, there is
a unique global solution x(t) to (2.1) ont € [ty,00). Moreover, the solution has the properties
that .

Elz(t)|P < oo and E/ U(x(s))ds < oo (2.4)

to
for any t > tq.

Proof. By Lemma 2.3, Assumption 2.1 guarantees the existence of the unique maximal local
solution x(t) on t € [ty, 0o ), Where 04 is the explosion time. Let ky be the bound for £. For

each integer k > kg, define the stopping time
T = inf{t € [to,000) : |2(t)| > k}.

Clearly, 7 is increasing as k — 00. Set Too = limy_oo Tk, Whence 7, < 04 a.s. Note if we can
show that 7., = oo a.s., then o, = 00 a.s. So we just need to show that 7., = oo a.s. To
complete the proof, we need to show that P(7., = co0) = 1. By the It6 formula and condition

(2.3), we can derive that

V(a(t) r (1))
:V@%Mwm+/LWM$MMJ@MS

to

b [ Vil oo, ) (s o)

Vx
+ /Z [V(a:(sf) + h(xz(s™),z(gs),r(s),v),1r(s7)) — V(m(s’),r(s’))] N(dt, dv)

t

< Vi(x(to),r(to)) +/ <K1(1 + |z (s)|P + |x(gs)|P) — U(z(s)) + KgU(l’((]S)))dS

to

+/t (2(s),7(s))g(x(s), 2(gs), 7(s))dw(s)

Vx
+ /Z [V(x(s_) + h(z(s7),z(gs),r(s7),v),r(s7)) — V(x(s_),r(s_))] N(dt, dv)(2.5)

t

for t € [ty, Too). Now, we shall show that 7., > %’ a.s. For any k > kg and t € [to,%’], by

taking expectations, we have

EV(x(te Nt), (T A L))
= BVl o) + B [ (K@ ()P + eas)) — Ula(s)) + Kol (x(gs)) )ds

to



+ E/Tk Va(az(s),7(s))g(x(s), z(gs),r(s))dw(s)
+ E/Tk / + h(x(s7), z(gs),r(s7),v),r(s7)) = V(x(s7),r(s7)) | N(dt, dv).
(2.6)

Since |z(s)| < k for all s < t A7y, by the continuity of V' and the local linear growth condition

of g, h, we can obtain that

E/tTk (Vo (z(s),7(5))g(x(s), 2(gs),r(s)) P ds < oo
E/tm /ZIV(x(s_) + h(z(s7), z(gs), 7(s7),0),7(s7)) = Vi(z(s7), r(s7))[*r(dv)ds < oo.
Therefore, both N

/t V(:E(S)7T<S))g<xk<8)7$k(QS),T(S))dw(s)
/Tk / ) 4 hao(x(s™), 2(gs), 7(s7), ), m(57)) — Via(s™), r(s™ ))]N(dt dv)

are martingales. Using condition (2.2), we then derive from (2.6) that

Tk/\t Tk/\t
aElz(m AP < Hy + KlE/ |z (t)|Pdt — E/ U(z(t))dt, (2.7)

to to

where

2|

Hy = cEBlz(t)|” + /t <K1(1 + E|z(qt)|?) + KzU(x(qt)))dt

0

P 1 0 p
< cE[¢ +5E/ <K1(1+\x(t)| )+K2U(9:(t))>dt < .

qto
It then follows that
TN\
aEBlx(ms AP < Hi+ KlE/ |z (t)|Pdt
to

< H1+K1/ Ela(r A t)Pdt.

to

Since this holds for any t € [to, L] the Gronwall inequality implies

Elx(te A T)




for any k > k. In particular,

Hy X1y
Lea G0 wp > k.

Elz(m A P
oA 2P <

Ky 1
This implies kP P(7, < ;0) < Hllech(rl)tO. Letting k — oo, we hence obtain that P(7, <

) = 0, namely

P(To > —) =1 (2.9)
q
Letting £ — oo in (2.8) yields
Hy si1_ 13
Elz@t)P < Ztea a0 <t <@ (2.10)
1 q

to

Moreover, setting ¢ = £ in (2.7) yields

Tk/\?‘:J Tk/\70
E / U(e(t))dt < Hy + K.\ E / o (t)Pdt.
t

0 to
Letting k — oo, we have

to

E/ Ulz(t))dt < H, +

to C1

KlHl 1 Kl(a_l)

(= = Dtger a0 < o0, (2.11)
q

Let us now proceed to prove 7., > ;—3 a.s. given that we have shown (2.9)-(2.11). For any

k> ko and t € [to, 2—%], it follows from (2.6) that

e Ela(r A < Hy + K\ E / " Pl — B / " o, (2.12)
to to
where
Hy — cgE|x(t0)]p+E/t # (K0 (1 + laa)?) + Kol (a(qt)) )
:

— H + E/ (KU + fa(at) ) + KU () )

— éE/t (K0 (1 + la0)) + Kol (1)) )t < oo.
Consequently

t
aElx(me AP < H2+K1/ Elx(m, Nt)|Pdt.

to

9



The Gronwall inequality implies

Hy Epa t
E’$<Tk/\t)’p§_26611(12 1)to7 togtg—g.

@] q

In particular,

Hy K11
2ea @V e > gy
8]

t
ECONOTE

This implies

~+~

Hy Ei 1 _
ka(TkS—g)g 2ecl(q2 l)to.
(&1

q
Letting k¥ — oo, we then obtain that P(7., < ) = 0, namely P(7,, > ;—3) = 1. Letting

B

k — oo in (2.13) yields

Hy xia_ t
Ela(t)f < Z2ea @ g << 2
1 4q

Moreover, setting ¢ = 3 in (2.12) yields

Tk/\;% Tk/\(tl%
to to
Letting £ — oo, we have
tg
@ K{Hy 1 K1
to C1 q

Repeating this procedure, we can show that, for any integer i > 1, 7, > % a.s.,

Elo(t) < et G b

a 9 z50 S tl § -,
C1 qz
and .
e K.H; 1 K1
E/q U(x(t))dt < H; + 1 (= — Dioe ek (%= Dto < o,
to c1 ql
where

to

Hi = oBlst)f+E / " (Ba1+ lalat) ) + Ko (aat)) ) dt

to

= H,+ éE/ <K1(1 + e ()P) + KgU(x(t))>dt < .

q?

We must therefore have 7,, = 0o a.s. and the required assertion (2.4) holds as well. O

10
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Remark 2.5 In [16], the author proved that SPDSs has a unique solution x(t) under the
local Lipschitz condition and the Khasminskii-type condition. Howewver, the author added an
additional condition oy > % into the assumption Ay which has played an important role in
their proof. In fact, if we follow the idea of [16, 34], we also need an additional condition
Ky < 1 to prove Theorem 2.4. But, our new proof shows that we do not require this condition.

Hence, we improve and generalize the corresponding existence results of [16, 34].

Theorem 2.6 Let Assumptions 2.1 and 2.2 hold except (2.3) which is replaced by
LV (z,y,i) < —a1|z[” + aaqlyl’ — a3U(z) + cuqU(y) (2.14)

for all (xz,y,1) € R" x R" x R, X S, where oy > ag > 0 and ag > a4 > 0. Then for any
given initial data &, there is a unique global solution x(t) to (2.1) ont € [tg,00). Moreover,

the solution has the property that

/OO BU(2())dt < oo. (2.15)

to

Proof. We first observe that (2.14) is stronger than (2.3). So, by Theorem 2.4, for any given
initial data &, (2.1) has a unique global solution z(t) on t > t;. Let ko be the bound for &.
For each integer k > kg, define the stopping time

T, = inf{t >ty : |x(t)| > k}. (2.16)
For any t > ty, by the It6 formula, we obtain that

V(z(me At),r(me A L))

= V(x(to),r(to))—l—/Tk LV (z(s),z(gs),r(s))ds

to

+ [k (z(s),7(s))g(2(s), z(gs), r(s))dw(s)

Ve
+ 7 /Z [V(a:(s_) + h(z(s7),z(gs),r(s7),v),7(s7)) — V(:c(s‘),r(s‘))]N(dt, dv).

t,

(2.17)

Note V(z,i) > 0 and the last two terms of (2.17) are martingales. By conditions (2.2) and

11



(2.14), we then compute

0 < EV(x(mp At),r(mi At)) = EV(x(ty),r(to)) + E/Tk LV (x(s),z(gs),r(s))ds

to

< eE|z(ty)|? + E/t k [— ay|z(s)|P + agqlz(gs)|P — asU(x(s)) + qqu(:c(qs))] ds

to

< oE||EPF+ /q E [oz2|x(s)|l’ + qu(x(s))} ds — (a3 — ay)E /tATk U(z(s))ds.

to to

This implies

5 T Ula(s))ds < — L (e + |

to a3 qto

to

E [a2|x(3)|p + cuU(x(s))} ds).
Letting k — oo and then applying the Fubini theorem, we get

[ Buttons < ——(cmr+ [

to qto

to

E {agu(s)vﬂ + a4U<x(s))} ds) .
Letting ¢t — oo yields the desired assertion (2.15). O

Remark 2.7 Likewise, without conditions aq > s > 0 and as > ay > 0, we can show the
existence and uniqueness of the solution to (2.1) by following the proof of Theorem 2.4. In
fact, these conditions are used to obtain the property (2.15).

Remark 2.8 Let us point out that the assertion ftzo EU(x(t))dt < oo obtained in Theorem
2.6 is useful. For example, if we further have U(x) > clz|? for some positive constant ¢, then
this assertion implies that ftzo E|z(t)|7dt < oo, which is known as the H.,-stability. Moreover,

this stablity will be discussed in Theorem 3.6 again.

3 Asymptotic Stability of the solution

In previous section, we obtain that (2.1) admits a unique global solution. In this section, we

will discuss the asymptotic behaviour of (2.1) by means of the M-matrix theory.

For the convenience of the reader, let us cite some useful results on M-matrix. For more
detailed information please see e.g. [20]. We will need a few more notations. If B is a vector
or matrix, by B > 0 we mean all elements of B are positive. If By and By are vectors or
matrices with same dimensions we write By > Bs if and only if B; — By > 0. Moreover, we

also adopt here the traditional notation by letting
ZNN = {A = [a]nun tai; <0, i # 5}

12



Definition 3.1 A square matriv A = [a;j]nxn is called a nonsingular M-matriz if A can be
expressed in the form A = sI — B with s > p(B) while all the elements of B are nonnegative,

where I is the identity matriz and p(B) the spectral radius of B.

It is easy to see that a nonsingular M-matrix A has non-positive off-diagonal and positive
diagonal entries, that is

a; >0 while Qi < 0, 1 7£ ]

In particular, A € Z¥*N_ There are many conditions which are equivalent to the statement
that A is a nonsingular M-matrix and we now cite some of them for the use of this paper (see

e.g. [20, 22, 23]).
Lemma 3.2 If A€ ZVN*N | then the following statements are equivalent:

(1) A is a nonsingular M-matrix.

(2) A is semi-positive; that is, there exists x > 0 in RY such that Az > 0.
(3) A™! exists and its elements are all nonnegative.

(4) All the leading principal minors of A are positive; that is

aix o Qg

>0 foreveryk=1,2,--- N.

g1 - Qkk

Lemma 3.3 (see [15]) Let A(t) be an Fi-adapted increasing processes ont > 0 with A(0) =0
a.s. Let M(t) be a real-valued local martingale with M(0) = 0 a.s. Let ¢ be a nonnegative

Fo-measurable random variable. Assume that x(t) is nonnegative semi-martingale and
x(t)=C+ A(t) + M(t) for t>0.

If limy o0 A(t) < 00 a.s. then for almost allw € Q, liny_, . x(t) < oo,, that is, x(t) converges

to finite random variables.

Let us now state our hypothesis in terms of an M-matrix.

13



Assumption 3.4 Let v > p > 2 and assume that for each © € S, there are nonnegative
numbers qa;, (vgi, Qaiy By Pois Psiy Bai and a real number ay; as well as bounded functions h;(.)

such that
N o p—=1 , - -
2" f(@y,1) + Eolg(a . ) < avlal? + andglyl® — awle] 7 4+ anglyl

and
|z 4+ h(z,y,i,0)[" < hi(v) (51i|5€|p + Baiq|y[? + Bailz|" + 54#]‘9’7)

for any x,y € R", v € Z.

Assumption 3.5 Let C), = fz hi(v)m(dv) < oo, n; = pay; + f1:Ch, and assume that
A, = —diag(ni, - ,nn) =T (3.1)
15 a nonsingular M-matriz.
In fact, by lemma 3.2 and Assumption 3.5, it follows that
0= (01, 0n) = AT >0 (3.2)

for all i € S, where T = (1,---,1)T.

Theorem 3.6 Let Assumptions 2.1, 3.4 and 3.5 hold. Assume that

meegx(pagi + 5220h1)01 <1 (33)
and
Ii%lélp(&& — ;)b > I%%X(ﬁzsi + B4i)Ch,0;. (3.4)

Then for any given initial data &, there is a unique global solution x(t) to (2.1) ont € [to, c0).
Moreover, the solution has the property that

/ " B[t < (3.5)

to

for any t > t,.
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Proof. Let us define the function V(x,i) = 60;|xz|P. Clearly, V' obeys condition (2.2) with
¢1 = mingeg 0; and ¢ = max;eg6;. To verify condition (2.14), we compute the operator LV

as follows

. _ LD _ . p(p—2 _ .
LV (2,y,i) = pbilaP?z" f(z,y,1) + §9i|w|p 2Ig(rc,y,@)l2+T)Qﬂwl” YNaTg(x,y,i))?

N
+ Z%ﬂjmp + /Z[91|.I + h(z,y,i,v))|P — 0;|zP]m(dv).
j=1

By Assumption 3.4, it follows that

N
LV (z,y,i) < <77i9i + Z%ﬂj) |2|P + pasifilzP2|y|? + BaiCh. iyl
j=1
— pagiby|z|” + BsiCh, 0| x| + BaiCh,0s|y|” + pa4i0i|x|p_2|y|7_p+2'
By the definition of 6;, we have 7;6; + Zjvzl 7i;0; = —1. Hence,

LV (z,y,0) < —|aP + aq|2[P2[y|* + daglyl? — S3|z|" + 03|

+ GaqlalP Py P+ baglyl, (3.6)

where 0y = max;eg pao;l;, 03 = min;eg past;, 04 = max;ecs pagb;, O0p = max;es BriCh,0i, k =

2,3, 4. By the elementary inequality a"b'™" < ar +b(1 —r), for any a,b > 0 and r € [0, 1], we

have
-2 2
272 lyl? < F==lal + Sy,
D p
and
-2 — 2
|x]p_2\y|7_p+2 < p_|x|7 + uwp.
Y
Inserting these two inequalities into (3.6), we get
LV(z,y,i) < —onlz” + aoqlyl” — sz + aaqly[, (3.7)

where o = 1 — 52q’%2, oy = (52§ + 52, a3 = 03 — 03 — (54q”%2, oy = 547_7”2 + by Recalling

(3.3) and (3.4), we can obtain that

p—2

2 A o
ap — Qg = 1—(52q _52]_9_52>1_52_62>O,

N -2 — 2 o N N
a3 —Qy = (53—53—54(]])7 —547 z_l_ —54>(53—53—(54—54>0.

15



That is, condition (2.14) is fulfilled. By Theorem 2.6, we can conclude that for any given
initial data &, there is a unique global solution z(¢) to (2.1) on t € [tg, 00). Moreover, we have

ftzo Elz(t)|"dt < oo for any t > to. The proof is therefore complete. O

Remark 3.7 In Theorem 3.6, we impose some conditions on the coefficients f,g,h and es-
tablish sufficient criterions (3.3) and (3.4) on Hy stability. In fact, the conditions (3.3) and
(3.4) reveal the impact of the jumps term h on the stability of (2.1). Compared with the con-
dition (2.14), it is very convenient to check the conditions (3.3) and (3.4) of Theorem 3.6
since Assumption 3.4 is explicitly related to the coefficients f,g and h. And this will be fully
tllustrated by Examples 4.1 and 4.2.

By using the M-matrix theory, the above theorem gives a criterion on H.-stability in L7.
However, it does not follow from (3.5) that lim; ., F|z(¢)|” = 0. To show this result, we will

need some additional conditions.

Theorem 3.8 Let the conditions of Theorem 3.6 hold. Assume that there exists a constant

L > 0 such that
N v—1 .
.%Tf<l',y, Z) + T|g<x7y72)’2 < L(’%P + Q‘yP) (38)

and

|2+ h(z,y,i,0)]" < Lhi(v) (2" + qly["). (3.9)

Then the solution of (2.1) satisfies that

lim E|z(t)]" =0 (3.10)

t—o0

for any initial data &.

Proof. Fix any initial data & € Dﬂ’rto([qto,to]; R™). If (3.10) is not true, then there is some

e > 0 and a sequence of positive numbers {¢,},>; such that ¢, — oo as n — oo and
Elz(t,)]" > 2, Yn>1 (3.11)

Without loss of generality, we may set t; > ¢ 2ty and t,,1 > ¢ %t,. By (3.5), we obtain

o0 tn e
Z/ Ela(s)['ds g/ Ela(s)['ds < oo,
n=1 q2tn

to

16



Consequently, there exists a ng such that

tn
qe
Bla(s)ds < — 2 v >n, 3.12
/qztn [#(s)] S—4L7+2Lch =" (3.12)

For any k > ko, n > ng and t € [qt,, t,], by the generalized 1t6 formula, we have
|z (ty A1) — |t A T3)]Y

/tn Tk7|:1:(8)|7*2 (SC(S)Tf(:U(S),x(QS),T(S)) + 7T_1|9(""(5)’x(q$)’r(s))‘Q)dS

ATk

IN

e [ [ (1) el tas). (7)o = fals ) (s

t/\T]C

N /jn%vim 72 (a(5)T £ (), 2(gs), (5)) ) o)

A

[ (1) Bals).atas). 7)o = el ) V. o),

t/\T]C

where 75, is defined as (2.15). Note that the last two terms are martingales. Take the expec-

tation, we get
Elz(t, ANmip)|” — Elx(t A 1g)|”

< E/t " Tk’Y!x(S)h2(:U(S)Tf(x(8),:v(qS),T’(S)) + %W(f’:(‘g)’x(qs)’r<3))|2>ds

ATk

+ E/ttnATk/ (x(s7),x(gqs),r(s™),v))|" — |$(s_)|7>7r(dv)ds.

A

By the conditions (3.8) and (3.9), we obtain

Elz(t, AN1i)|" — Elx(t A g)]”

tn/\T].C
< B[ Dl (oo + alofes) s
tAT,
tnlj\Tk
+ [ (L0 lals)P + alalas)) ~ ()" mlado)ds
tATE Z
tn/\Tk
< L@y G [ B + falas) s
tAT,
tnlj\Tk L qtn ATy
< L(2v+Cy,) / Elx(s)["ds + — (27 + Ch,) / Elz(s)|"ds
atn ATk q @ tn ATk
2L tn A\Tg
< —(2v+Cy) / E|z(s)|"ds. (3.13)
q Q2 tn ATy
Letting k — oo, we obtain from (3.12) and (3.13) that
2L tn
Elx(t,)]" < Elz@)|" + 7(27+Chi)/ Elx(s)["ds
7?tn
< Elz(t)]” +e. (3.14)

17



Hence, for any t € [gt,, t,], it follows from (3.11) and (3.14) that

Elz()]' > E|lz(t,)]" — e > <.

Thus
/ Bla(s)'ds 2 ) / Bla(s)'ds 2 ) e(l=o)ta 2 (1= )t Y, ()" = 0.
© n=no atn n=no n=ng

That is to say, (2.1) is asymptotically stable in yth moment. Then the proof of Theorem 3.8

is completed. O

Remark 3.9 As is known to all, most of the literatures focus on the moment asymptotic sta-
bility of SDEs driven by Brownian motion, but there are few works on the moment stability of
SDEs with jumps. In order to fill this gap, Zhu [38] first extended some results on the moment
asymptotic stability of SDEs driven by Brownian motion [20] to the case of SDEs with jumps.
Mao et al. [17] studied the moment asymptotic stability of hybrid SDEs with jumps under
highly nonlinear growth condition. Now, by Theorem 3.8, we obtain that hybrid stochastic
systems with pantograph delay and jumps (2.1) is asymptotically stable in yth moment under

highly nonlinear growth condition.

In general, we cannot imply limy_, |z(t)| = 0 a.s. from limy ., E|xz(t)|” = 0. But in our
case, this is possible. Next, we will show this result under the same conditions of Theorem

3.6 without any additional condition.

Theorem 3.10 Let all the conditions of Theorem 3.6 hold. For any initial data &, the solution
of (2.1) satisfies that
lim |z(t)] =0 a.s. (3.15)

t—00

Proof. We divide the proof into two steps.

Step 1. By (3.5) and the Funibi theorem, it follows that ftzo |z(t)|"dt < oo a.s. This

implies
liminf [z(t)] =0 a.s. (3.16)
t—r00
Now, we will claim that the assertion (3.15). If this is false, then

P{ lim sup |z(t)| > 0} > 0.

t—o00

18



Hence, there is a number £ > 0 such that
P(y) > ¢, (3.17)

where ) = {limsup,_,. |z(t)] > 2¢}. On the other hand, by (3.7), we can obtain that

to

sBle(t AP < coBlelP + [

qto

E[a2|x(s)yp + a4|x(s)]7)}ds, V>t

where 7, is defined as (2.16). So

to

ka(Tk S t) S CgEH&Hp‘i‘/

qto

E |:C¥2’$(8)|p + oa4|x(s)|7)} ds.

Letting ¢ — oo and choosing k sufficiently large, we have P (7, < oo) < e. This means that
P(Qs) >1—¢, (3.18)

where Qo = {|x(t)| < k for all t > qto}. It then follows easily from (3.16) and (3.17) that

Step 2. Let us now define the stopping process X (t) = z(t A 1) for t > gto. Obviously,

X(t) is an Ito process of the form

dX(t) = [f(x(t),z(qt),r(t))ito,m) )dt + g(x(t), 2(qt), () Lto,m) () duw(?)
+ /Zh(x(t_),x(qt),r(t_),v)][toﬁk)(t)]\f(dt,dv). (3.20)

By Assumption 2.1, we see that
[f(@(t), 2(qt), () Lty (O V 1g(2(t), 2(at), 7 (1)) Tjrg.m) (1) < M (3.21)

and

/ (@t ), 2(qt), r (), 0) Ty (D2 (dv) < M, (3.22)
z
for all € S and t > t;. Define a sequence of stopping times

p1 = inf{t >ty |X(t)]* > 2},
P2i = mf{t Z P2i—1 : |X(t)|2 S 5}, 1= ]_,2, e,
P2i+1 = 1nf{t Z P2i - |X(t)|2 2 26}7 1= 172, cee
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By (3.16) and the definitions of §2; and €, we have
Ql N QQ C ﬂ;’il{pj < OO} (323)
Choose a positive number A and a positive integer jo such that
SMy[12X + (1 +27(Z2))NY] < € and M, < Ae3 ™1y, (3.24)

where My = Ej;zo |z(t)|7dt. By (3.19) and (3.23), we can further choose a sufficiently large

number 1" for
P(pajy <T) > 2e. (3.25)

In fact, if poj, < T, X(p2j,) = €. By the definition of X (), we have pyj, < 7. For any
to <t < paj, and w € {pq;, < T}, we get

X (t,w) = z(t,w). (3.26)

Now, by the Holder inequality and the Burkholder-Davis-Gundy inequality, we can obtain
that, for 1 < 5 < 7o,

E( sup | X (p2j—1 AT +1t) — X(paj—1 N T)|2>

to<t<A
p2; 1 NT+t
< 35( sw | F((5), 2(45),7(5)) Tt (5)75[2)
to<t<A p2j,1/\T
p2; 1 NT+t
+ 35( swp | 9(w(5), 2(a5), 7(5) T () duo(5)
to<t<A p2j—1AT
P21 NT+t
+ 38( sup | [ M), l05).r(57), 0y ()N (s, o))
to<t<A p2j—1 AT Z

p2; 1 NT+A
< B[ () 0(a5) (5D D (5) s

25 —1 AT

p2; 1 ANTHA
#1228 [ glals).alas),r(5) oy (9) s + Q. (327
p

251 AT

By the Doob-Meyer’s decomposition theorem and the basic inequality |a + b|? < 2|a|* + 2|b|?,
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we have

p2j—1NT+t
Q < 6E< sup | /h(x(s
to<t<A p2; 1 AT Z
p2j—1NT+t
+ 6E< sup | /h(x(s
to<t<A pgjfl/\T Z
p2;—1ANTHAX
< 24E/ /|h(x(s x(gs),
p2j—1NT A
p2;—1AT+A
+ 6)\E/ ]/h x(s
p2j—1 AT
p2; 1 NT+A
< 24+ 6A(2)]E / / Ih(z

P25 — 1AT

T(S_)’

15),7(57), 0) g (5) NV (ds, dv) )
$),7(57), V) g,m) (8)7T(d1))d8|2>

V) j1g,m) (8) 7 (dv)ds

qs),r(s7), U)[[toﬂ'k) (s)m(dv) ’2ds

gs),r(s”),

Inserting (3.28) into (3.27), it follows from (3.21) and (3.22) that

sup |X(p2j—1 AT +1)
to<t<A

(

By the Chebyshev inequality and (3.24), we have

P(
to<t<\

1
=5(

to<t<A

sup | X(p2j—1 AT +1t)

sup | X(p2j_1 AT +1t)

— X(paj_1 A T)|2> < SM[12) + (1 + 27(2))A2).

— X(p2j-1 AT)| = 5)

— X(p2j—1 A T)\2> <e.

Noting that poj_1 < T if pyj, < T, it follows from (3.24) and (3.28) that

P<{p2j0 STy { sup [X(pzj1+1)

to<t<A

= P(py, <T) - P(

This implies that

sup [ X (p2j—1 +1)

to<t<A

- X(poj-1)| <<})

— X(p2j-1)| = 5) > €.

P<{102j0 STy {poj — p2j1 > /\}> > €

Finally, by (3.25) and (3.30), we have

ZE( [

P25 —

My, >

v

Jj=1
Jo

Y]

Jj=1
X .
Ae2 +1j0.

v

21

Jo

X)) dtl{p2]0<T}> > € 3 Z E((ﬂzj - szfl)]{pszST}>

Jj=1

J
£? Z E((PZJ‘ - p2j*1)I{P2j_P2j—1Z>\}I{P2j0ST}>

At Y P({s = pasa 2 A0 (o, < TY)

V) j1o.m) (8)°7(dv)ds. (3.28)



But this contradicts (3.24). Hence, (3.15) must hold. The proof is therefore complete. O

In the previous argument, we have discussed two kinds of asymptotic stabilities of the
solution to (2.1). However, these two stabilities do not reveal the rate at which the solution

tends to zero. Next, we will discuss the polynomial stablity under conditions of Theorem 3.6.

Theorem 3.11 Let conditions of Theorem 3.6 hold. Then for any given initial data &, the
unique solution x(t) to (2.1) has the properties that

log(Elx(t)[")

li — < — 3.31
msup e S (3.31)
and
1 t
lim supM < _ as (3.32)
tsoo  logt P
where € = €1 N\ €9 while 1 = —log %i/logq and g9 > 0 is the unique root to the following

equation ay = CoEg + ag™ 2.

Proof. By Theorem 3.6, for any given initial data £, (2.1) has a unique global solution z(¢) on
t > to. Let the stopping time 75, be the same as defined in the proof of Theorem 2.6. Define
the function V(z,4) = 6;|z|P. By the generalized 1t6 formula, we have that, for any ¢ > ¢,

TN\
(AT ol ADP = (Lt Opletto)+ [ (o145 ol

to

+ (1+s)°LV(z(s),x(gs), r(s)))ds + Mt A7), (3.33)

where
TN\t

M(t Amy) = / (1+ 8)pbr(s) |2 ()22 (s) " g(a(s), x(as), 7 (s))dw(s)

to

+ / J 09 (B fols7) + hlals)n(as), (57 00 = (s ) N, o)

is a martingale with the initial value M (¢y) = 0. Taking expectation on both sides of (3.33),

we have

TN\
E[(l +tA Tk)eer(m/\t)h}(ﬂg N t)|p] = (1 + to)ser(tO)E\x(to)P + E/ (8(1 + 8)671@(5)‘1’(5)’]0

to

v+ S)ELV(x(s),x(qs),r(s)))ds, (3.34)
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where EM (t A 1,) = EM (ty) = 0. In the same way as (3.7) was proved, we can show that

TN\
AB((L+ ARl ADP) < B+l BEP 4B [ [0+ s ala(o)p

to

+ (149 (— () + azglalas)

— aslz(s)]” + a4q\x(qs)|7>} ds. (3.35)

Now, we compute

TEAL 1 q(TEAt)
E / (1+ ) qa(gs)Pds < — / (1 + sFEla(s)Pds
‘ qto

to

IA

1 to 1 TN\t
—(1+ to)s/ E|z(s)|Pds + —/ (14 s)°Elz(s)Pds
qg q qE to

to
and, similarly
to

1 TN\
Ela(s)['ds + EE/ (14 s)°|2(s)[ds.

to

TN\ 1
E/ (14 8)qla(gs)['ds < E(1+t0)€E/

to qto

Substituting these into (3.35) gives

Tk/\t
CIE((1 AT |2 /\t)|p> < O —(a;—ccs— %)E/ (1 + 8)°|z(s)|Pds
to

— (a3 — E)E'/t0 (1+ s)%|z(s)|"ds, (3.36)

where C' = co(1 + o) E||&||P + (1 + to)°F f;fo(oz2|x(s)|p + ay|z(s)|?)ds. By the definitions of

€1 and €9, we have

o o
al—acg——jzo and 043——;120.
q q

Therefore,
clE<(1 AT (e A t)|”) < C (3.37)
Letting k — oo, we obtain that

(1+t)fElz@)) < Cg Yt >t
1

Dividing both sides by (1 + ¢)¢ and letting t — oo, we get the assertion (3.31). Similar to

(3.36), we can show in the same way as before that
ci(L+t)|x(t)|P < C+ M(t),
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for any ¢t > t, where M (¢) is the same as defined in (3.33). By lemma 3.3, we obtain that
limsup i (1 4 ¢)°|z(t) P < o0 a.s.
t—r00

which implies the assertion (3.32). The proof is therefore complete. O

Remark 3.12 In particular, when p = 2, we have that (2.1) are polynomially stable in mean-
square and almost sure polynomially stable. Compared with Appleby and Buckwar [2], we study
the polynomial stability of hybrid stochastic systems with pantograph delay and non-Gaussian
Lévy noise (2.1) under nonlinear growth conditions. Due to the nonlinearity of the coefficients

to (2.1), some results of [2] on the polynomial stability are improved and generalized.

4 Examples
In this section, we will discuss two examples to illustrate our results.

Example 4.1 Let r(t) be a right-continuous Markov chain taking values in S = {1,2,3} with

the generator

-2 1 1
I'= 3 -4 1
1 1 =2

Let N(dt,dv) be a Poisson random measures and o-finite measure w(dv) is given by 7(dv) =

e~ zdv, —oo < v < +oo. Assume that N(dt,dv) and r(t) are independent.

it

2m
Consider the following scalar hybrid stochastic systems with pantograph delay and pure
Lévy jumps
dx(t) = f(a:(t),r(t))dt~|—/ h(x(0.2t7),r(t™),v)N(dt, dv), (4.1)
0

with initial data (t) =z (0.2 <t <1) and r(1) = 1. Here
f(fL’, ]-) = —3z — 2‘7337 h<y7 177]) = Plﬁy27

f(x,2) = 0.5z —32°,  h(y,2,v) = pavy?,
f(]f, 3) = —2x — xS’ h(y7 370) = 0302y2>

for x € R, but p1, pa and ps are unknown parameters. Obviously, the coefficients f,h satisfy

the local Lipschitz condition but they do mot satisfy the linear growth condition. Through a
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straight computation, we can have

o' f(x, 1) < =3|z)? = 2|z*, 2" f(x,2) < 0.5|z|* — 3|z|*, (4.2)
el f(x,3) < =20z — [zf*, |+ h(z,1,0)]* < (2+0)(05]z]* + pFlyl"),  (4.3)
|z + h(z,2,0)* < (1.25 + 0.50)(0.8]z|* + 2p5|y[*), (4.4)
|z + h(z,3,0)* < (14 0.20%)(Jz* + 5p§|y|4) (4.5)
where
app = —3,a01 = 0,31 = 2,041 = 0,12 = 0.5, 99 = 0, 030 = 3, a4 = 0,
a3 = —2,003 = 0,33 = 1,43 = 0, B11 = 0.5, Bo1 = 0, B31 = 0, B41 = 5p%,
Bra = 0.8, 822 =0, B32 = 0, Bao = 10p3, B13 = 1, B3 = 0, B33 = 0, Ba3 = 2503
and

v =4,h1(v) = 2+ v, hy(v) = 1.25 + 0.50% hz(v) = 1+ 0.2v",

So the inequalities (4.2)-(4.5) show that Assumption 3.4 holds. Moreover, we can compute
that

e~ 7 dv = 1.3989,

N

Chy, = / (1.25 4+ 0.50%) —=e~ 2 dv = 0.875,
0

2m
> 1 v2
Chy = /0 (1+ 0.2214)\/§6_7dv =0.8. (4.6)
On the one hand, the matriz As defined by (3.1) is
7.3006 -1 -1
Az = -3 23 -1
-1 -1 5.2

It is easy to compute

0.188596 0.106687 0.056785
At = 0.285648 0.636042 0.177248
0.091201 0.142832 0.237315
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By lemma 3.2, we see that Asz is a nonsingular M-matriz. Compute
(01,05,03)" = Agl? = (0.352068, 1.098938, 0.471348) "
Conditions (3.3) and (3.4) become
min{1.408272, 6.593628, 0.942696} > max{2.462539p7,9.615707p5,9.426963 }
1.€.,
p? < 0.382814, p3 < 0.098037, p3 < 0.1. (4.7)

By Theorems 3.6 and 3.10, we can conclude that if the parameters p;,i = 1,2, 3 satisfy (4.7),
then for any initial data o, there is a unique global solution x(t) to (4.1) on t € [1,00).

Moreover, the solution has the properties that [ E|x(t)[*dt < oo and limy_ |z(t)| = 0 a.s..
Example 4.2 Let w(t) is a scalar Brownian motion. Let r(t) be a right-continuous Markov
chain taking values in S = {1,2} with the generator

-1 1
4 —4

I =

Let N(dt,dv) be a Poisson random measures and o-finite measure w(dv) is given by 7(dv) =
,U2
\/%e_Tdv, —00 < v < +00. Of course, w(t), N(dt,dv) and r(t) are assumed to be indepen-

dent.

Consider the following scalar hybrid stochastic systems with pantograph delay and non-

Gaussian Lévy noise

dr(t) = f(z(t), r(£))dt + g(z(0.5¢), r(t))dw(t) + /O Coh(@(05), r(E)N(dE dv),  (4.8)

with initial data £(t) =z (0.5 <t <1) and r(1) = 1. Here
fl@,1) = =22 = 32°, g(y,1) =0.5(y +y°), h(y,1) = 0.2y,
for any z,y € R. We note that (4.8) can be regarded as the result of the two equations

de(t) = (—22(t) — 32°(t))dt + 0.5<x(0.5t) + x2(0.5t))dw(t)

+ 0.2/0011:1:2(0.515)N(dt,dv), (4.9)
de(t) — (0.2595(2&)—2x3(t))dt+%x(0.5t)dw(t)
+ o0l / " o (0.50—)N(dt, dv), (4.10)
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switching among each other according to the movement of the Markov chain r(t). It is easy
to see that subsystem (4.9) is polynomially stable but subsystem (4.10) is unstable. However,
we shall see that due to the Markovian switching, the overall system (4.8) will be polynomially
stable. In fact, the coefficients f, g and h satisfy the local Lipschitz condition but they do not

satisfy the linear growth condition. Through a straight computation, we can obtain

1
o' f(z, 1) + =|g(y, 1)]* < =2|z|> + 0.15625|y|* — 3|z|* 4 0.625|y|* (4.11)

2
1 1
e F2) + 5lo(y, 2 < 025l + glyl? ~ alal’, (112)
2+ oh(y, D < (1+0.040%) (2l + [y, (4.13)
|z + vh(y,2)]* < (14 0.050%)(|z]> + 0.2]y[?) (4.14)
where
app = —2, ag; = 0.3125, az1 =3, an = 1.25, a1 =0.25, axn = %; azp =4, ag =0,
Pri=1, o1 =0, B51=0, By =2, Bra=1, B =04, B35 =0, B2 =0
and

y=4, hi(v) =1+0.040%, hy(v) =1+ 0.050%

So the inequalities (4.11)-(4.14) show that the Assumption 3.4 holds. Moreover, by the property

of normal distribute, we can obtain that

* 1 2
Cp, = / 1 + 0.040? e” zdv = 0.52,
h i ( ) o
> 1 2
Chy, = 1+ 0.050* e 2 dv = 0.525.
ha /0 ( )\/%
By (3.1), we get the matriz As
Ay = —diag(2a11 + 611Chy, 20010 + 6120}12) -T
- 4.48 -1
—4 2975

It 1s easy to compute
0.318932 0.107204

Ayt =
0.428816 0.480274
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By Lemma 3.2, we see that Ay is a non-singular M-matriz. Compute
(61,0,)" = A7'T = (0.426136,0.90909)”
and

Qg = H_léli}Q{ (20&21"91' + 6220}%91) = 0796963, g = II_l}I% ([20&3191 - 6310}%@) = 2556816,

Hence, we conclude that the conditions (3.3) and (3.4) hold. By Theorem 3.11, we can obtain

that
log(E|xz(t)]*)

limsup ———— < —«¢
t—o0 logt
and
1 t
limsupM < _% as
t—00 logt 2

where ¢ = 0.136399 is the unique root of 1 = 0.90909¢ + 0.796963 x 0.57¢. That is to say, the
solution of (4.8) decays at the polynomial rate of at least 0.068199.

5 Conclusion

This paper is devoted to the asymptotic stability and polynomial stability of hybrid stochastic
systems with pantograph delay and non-Gaussian Lévy noise (HSSwPDLNs). The Lyapunov
functions and M-matrix theory are used to derive sufficient conditions for stabilities of non-
linear HSSwPDLNs. Moreover, as illustrated by two examples, it has been shown that even
if some subsystems are not stable, the overall hybrid system may still be stable as long as

certain conditions are satisfied.
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