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ABSTRACT Given the multivariable coupling, strong nonlinearity and time-varying features in the wastew-
ater treatment processes, adaptive strategies, including just-in-time learning (JITL), time difference (TD),
and moving window (MW) methods have been chosen in this paper to enhance multi-output soft-sensor
models to ensure online prediction for a variety of hard-to-measure variables simultaneously. In the proposed
adaptive multi-output soft-sensors, multi-output partial least squares (MPLS), multi-output relevant vector
machine (MRVM) andmulti-output Gaussian process regression (MGPR) served as themulti-output models.
The integration of adaptive strategies and multi-output models not only provides a solution for multi-output
prediction, but also offers a potential to alleviate the degradation of multi-output soft-sensors. To further
improve the adaptive ability, four adaptive soft-sensors, termed TD-MW, TD-JIT, JIT-MW, and TD-JIT-MW,
have been proposed by mixing the three aforementioned adaptive strategies to upgrade multi-output soft-
sensors. All the adaptive multi-output soft-sensors are analyzed and compared in terms of simulation data
and practical industrial data, which exhibit stationary and nonstationary behaviors, respectively.

INDEX TERMS Adaptive soft sensor, multiple-output, wastewater treatment plants (WWTPs), multiple
adaptive mechanisms.

I. INTRODUCTION
Soft-sensors are generally applied in the predictions of
difficult-to-measure but quality-related variables, such as
the chemical oxygen demand (COD) and biological oxygen
demand for five days (BOD5) in wastewater treatment plants
(WWTPs), mainly due to expensive analyzer costs, hostile
working surroundings and large time delays of hardware
sensors measurement [1]. Compared with the first-principle
models, data-driven soft-sensors are easy to implement and
do not require much prior knowledge of the process, thus,
they have been widely used for decades. Many methods have
been proposed to build data-driven soft-sensors for WWTPs
and other industrial processes, such as partial least squares
(PLS) [2], [3], support vector machines (SVM) [4], relevant
vectormachines (RVM) [5], [6], andGaussian process regres-
sion (GPR) [7], [8].
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Traditionally, data-driven soft-sensors are organized as
single-output models, with historical datasets being used
to estimate a difficult-to-measure process variable [9].
However, there is always a variety of quality-relevant vari-
ables that are difficult-to-measure, such as the BOD5, COD,
total phosphorus (TP) and sludge volume index (SVI) in
WWTPs. Applying a single-output model to measure sev-
eral difficult-to-measure variables simultaneously is tedious
and inadequate. Although every single-output soft-sensor can
be constructed to estimate each difficult-to-measure variable
separately, the solution is premised on independent assump-
tions within hard-to-measure response variables, thus leading
to a deterioration of the prediction performance. Also, reserv-
ing different sets of selected samples for each model sepa-
rately is required, if every single-output soft-sensor can be
reasonably constructed to estimate each difficult-to-measure
variable separately. Generally, the multi-output regression
model not only needs to consider the potential relationships
between the input variables and targets, but also take into
account the co-relationships among the targets, aiming to
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guarantee a better interpretation and easier generalization.
With popularity of statistical learning and advancement of
automation, numerous of multiple-output regression methods
have been widely applied in recent years [10], [11], such as
multivariate partial least squares (MPLS) [2], multi-output
relevant vector machine (MRVM) [12], and multi-output
Gaussian process regression (MGPR) [8], [13] methods.
Liu et al. [8] proposed a MGPR model for multi-step pre-
diction with the results demonstrating that the proposed
methodologywas capable of predicting future SVIwith better
accuracy than a standard single-ouput GPR. Literature [12]
indicated that the performance of MRVM is better than RVM
slightly due to the consideration of correlationship among
the hard-to-measure variables. Xiao et al. [9] developed
multi-output soft-sensors using Multivariate Linear Regres-
sion model (MLR), MRVM and MGPR models aiming to
predict multiple hard-to-measure variables simultaneously
and to capture the joint distribution of the response variables.
However, these researches are usually limited in off-training
and on-line testing.

The performance of multi-output soft-sensors usually
degrades after on-line use in process industries over a period
of time [9]. The predictive accuracy of a soft-sensor is grad-
ually decreased with the negative effects of uncertainties,
including mechanic components failure, catalyst deactiva-
tion, process conditions switching, etc. Once the soft-sensors
are put into practice without receiving proper maintenance,
they will degrade gradually and could further lead to sig-
nificant losses. However, aforementioned situations will lead
to more serious degradation of the multi-output models [2].
Depending on the rate of changes and time of duration,
the drifts can be divided into gradual drifts with slow changes
and abrupt changes, wherein the concept transits immediately
from one state to another. If the model cannot effectively
adapt to the gradual drifts or abrupt changes properly in the
industrial process, the performance of the soft-sensor will
become worse. This, in turn, affects the process monitor-
ing and control performance. In this light, some adaptive
learning techniques have been proposed to maintain the pre-
dictive accuracy of soft-sensors [14]. Adaptive soft sensors
can be constructed based on the moving window (MW)
[15], just-in-time (JIT) [5], and time difference (TD) [16]
approaches. The MW method is performed by collecting the
latest or relatively long-term data, to rebuild the soft-sensor
when a new data sample arrives. It handles the drifts of
input variables effectively and provides better performance
for gradual drifting processes, but it does not handle well
the situations of process-state dependent nonlinearities and
abrupt changes well [2]. Differently, JIT-basedmodels collect
the most similar data from the historical database and are
able to adapt to slight shifting changes. However, the perfor-
mance of models using the JIT method seems unsatisfactory
in some situations because JIT does not take into account
the potential associations among process variables. Addition-
ally, both the JIT and MW methods require reconstructing
the model very frequently. Differently, the TD method not

only adapts to gradual drifts of both secondary variables
and corresponding targets simultaneously, but is also not
affected by online abnormal data. Because models using
the TD method do not need to be reconstructed, they can
avoid the highly frequent model updating issue. In addition,
the lowmaintenance cost also adds more advantages for a TD
model. Kaneko and Funatsu [17] compared and discussed the
adaptive mechanisms, including MW, JIT, and TD models, in
different scenarios of model degradations. However, multiple
kinds of abnormal changes could be coupled and coexistent.
Also, these adaptive strategies still have their own pros and
cons. Any single adaptive method can fail to respond to
the complex process situation effectively. To effectively deal
with these issues, multiple adaptive mechanisms, such as
MW-JIT [18], [19], TD-MW [7] and TD-MW-JIT [3], have
been proposed to solve model degradations in industrial pro-
cesses. Qi et al. [19] proposed MW-JIT-LSSVM for com-
position quality prediction in chemical distillation processes.
Xiong et al. [7] proposed TD-MW-GPR soft-sensor to apply
to a sulfur recovery unit and an industrial debutanizer column
process. Yuan et al. [3] proposed a spatio-temporal adaptive
soft-sensor modeling framework, which called TD-MW-JIT-
LWPLS in sulfur recovery unit and blast furnace ironmaking
process. These literatures [3], [7], [18]–[20] had demon-
strated that the combination of these adaptive methods can
effectively improve the prediction ability of the model in the
face of model degradation. All the algorithms are only veri-
fied in some specific situations without a unified comparison.
Kaneko and Funatsu [20] used a PLS model for constructing
regression models to compare the adaptive strategies of TD,
MW, JIT, TD-MW and TD-JIT. However, these adaptive
mechanisms are rarely implemented to enhance multiple-
output models and to make fair comparisons in the field of
wastewater treatments plants. Due to the different kinds of
characteristics in WWTP, such as the multivariable coupling,
strong nonlinearity and time-varying features, an effective
adaptive combination method to verify the applicability of
the method under the characteristics of WWTP have not
been proposed yet. Therefore, the adaptive multi-output soft-
sensor was proposed to solve the problem combining the
adaptive strategies according to different application scenar-
ios in WWTP.

In this study, several novel adaptive multi-output soft-
sensors are proposed and applied in wastewater treatments.
The main contributions of this paper are as follows. (i) Adap-
tive strategies including JIT, TD and MW have been applied
together with MPLS, MGPR and MRVM to form adaptive
multi-output soft-sensors. (ii) We compared and discussed
the potentials to propose new adaptive strategies, including
TD-MW, TD-JIT, JIT-MW, and TD-JIT-MW, by fusing three
basic adaptive strategies, with the aim of strengthening the
pros and alleviating the cons of basic adaptive strategies.
All the proposed adaptive strategies are coordinated with the
multi-output regression models, MPLS, MGPR and MRVM
methods to enhance the adaptive ability. (iii) Three case stud-
ies, including two simulated processes and field data datasets
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from WWTPs, are used to evaluate the effectiveness of the
proposed soft-sensors.

Section II reviews the three basic adaptive methods and
three multi-output models, including MPLS, MRVM and
MGPR. In Section III, the framework of the proposed mod-
els and the structures of TD-MW, TD-JIT, JIT-MW, and
TD-JIT-MWare elaborated. In Section IV, the proposed adap-
tivemulti-output soft-sensors are applied and compared in the
simulation data and practical industrial data, which respec-
tively exhibit the stationary and non-stationary behaviors.
The comparison and discussion of the proposed soft-sensors
are elaborated in Section V. In Section VI, conclusions are
made.

II. PRELIMINARIES
In this section, the methodology of adaptive algorithms is
briefly illustrated, along with some descriptions and equa-
tions, including themovingwindows, time difference, just-in-
time learningmethods and threemultiple-output soft-sensors.
More details can be found in [3], [8], [17], [18], [21].

A. ADAPTIVE LEARNING STRATEGIES
1) MOVING WINDOWS
The MW method is commonly suitable for fitting gradual
drifts in a process. In the MW method, by adding the newest
sample to the window and removing the oldest samples,
a window of length L slides along the dataset at each step to
select the new dataset. Then, the model can be reconstructed
by using the new dataset of the window and updated to a new
process state.

In the MW method, the selections of the window length L
and step size are important procedures. Therefore, abundant
features can be included to promote model construction by
setting a suitable length of the window. In contrast, if the
parameters are too large or too small, this can lead to degra-
dation [14]. Generally, one sampling interval is preferred for
the step size [3].

2) JUST-IN-TIME LEARNING
Just-in-time learning is also called lazy learning [22], or a
local learning strategy. This method requires updating at each
step to predict outputs. Since only the most similar samples
are used to develop the online model in JITL, the local model
is able to capture process dynamics. When a new query sam-
ple arrives, the desired output can be estimated by building
a local model depending on the most relevant data in the
database.

In the JIT technology, the Euclidean norm of the distance
measurement is used to select the dataset corresponding to
x(tnew). The distance can be used to evaluate the similarity
between x(tnew) and x(t) can be calculated as follows

dj =
∥∥x(tnew), xj∥∥2 , j = 1, 2, . . . , n (1)

Then, the JIT local model is constructed using the relevant
dataset depending on the similarity factor dj.

3) TIME DIFFERENCE MODEL
There are two sets of n rows data, x(t) ∈ Rn×m (with m
columns of input variables) and y(t) ∈ Rn×l(with l columns
of outputs), representing input and output variables at the
time t , respectively. Typically, once new data x(tnew) ∈ R1×m

is incoming, the trained model is used to predict the value of
y(tnew).
In TD modeling, we first calculate 1x(t) and 1y(t) as

1x(t) = x(t)− x(t − i) (2)

1y(t) = y(t)− y(t − i) (3)

Then, the relationship between1x(t) and1y(t) can be mod-
eled using a regression method as follows

1y(t) = f (1x(t))+ e (4)

where f (·) is amodel using the TDmethod and e ∈ Rn×1 is the
calculation error vector. Then, the model can be trained with
sufficient training data. The time difference between inputs
can be calculated with the new sample data x(tnew) as follows

1x(tnew) = x(tnew)− x(tnew − 1) (5)

The output of the TD model can be predicted with the
1x(tnew) as

1y(tnew) = f (1x(tnew)) (6)

Then, the predicted output is

y(tnew) = 1y(tnew)+ y(tnew − 1) (7)

B. MULTI-OUTPUT MODELS
Since PLS is essentially a multi-input and multi-output mod-
eling method. Therefore, the derivation of MPLS model can
be seen from PLS [2]. The other two multi-output models are
illustrated in this section. A set of n observations consisting
of input-target vector pairs {xi, yi|

n
i=1} exists, where x ∈ R

m

is an input vector and y ∈ Rl is an output target vector.
The input and output data matrices are denoted by X =
[x1, x2, · · · , xn]T ∈ Rn×m and Y = [y1, y2, · · · , yn]

T
∈

Rn×l , respectively.

1) MULTI-OUTPUT RELEVANT VECTOR MACHINE (MRVM)
Essentially, the RVM is a Bayesian regression framework
model developed from the SVM [6]. It was originally only a
single-output model. Since then, the RVM has been extended
to multivariate outputs by Thayananthan [21] and has been
formulated as a general multivariate regression tool. The
dependence between input variables x and the target variables
y can be formulated as follows:

y = 8(x)W + ε (8)

where 8(x) is the N × (N + 1) matrix with 8(x) =
[φ(x1), φ(x2), . . . , φ(xN )]T , wherein φ(xi) = [1, k(xi, x1),
k(xi, x2), . . . , k(xi, xN )]T. W is the weight matrix W =

(ω0,ω1, . . . ,ωl)T , which is dominated by a set of hyperpa-
rameters. ε is a vector of the sample noise and is assumed
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to be mean-zero Gaussian with a diagonal covariance matrix
S = diag(σ 2

1 , . . . , σ
2
l ). To guarantee the optimal fit of the

parameters, A = diag(α−20 , α−21 , . . . , α−2G )T is defined as
a diagonal matrix including all the hyperparameters α =
{αr }

G
r=1.

The predictive distribution of every new input xnew can be
calculated as follows:

p(y∗|y,αopt , (σ opt )2)

=

∫
p(y∗|W , (σ opt )2)p(W |y,αopt , (σ opt )2)dW (9)

where the optimal values of the hyperparameters αopt =
{α

opt
r }

G
r=1 and noise parameters σ opt = {σ optr }

l
r=1 are esti-

mated by maximizing the marginal likelihood. Since both
terms of the integrand are Gaussian, the Eq. (9) can be cal-
culated as

p(y∗|y,αopt , (σ opt )2) = N (y∗|z∗, (σ ∗)2) (10)

where z∗ = [z∗1, . . . z
∗
r , . . . , z

∗
l ]
T is the predictive mean with

z∗r = (µoptr )T8(x∗) and (σ ∗)2 = [(σ ∗1 )
2, . . . , (σ ∗r )

2, . . . ,

(σ ∗l )
2]T is the predictive variance with (σ ∗r )

2
= (σ optr )2 +

8(x∗)T6opt
r 8(x∗). More details of the MRVM model can be

found in [21] and [23].

2) MULTI-OUTPUT GAUSSIAN PROCESS
REGRESSION (MGPR)
The multi-output Gaussian processes model has been used to
develop linear and nonlinear regression models in dynamic
processes. It induces the dependencies of latent variables in a
highly correlated model to efficiently approach accurate GPR
models [8].

The MGPR model predicts the outputs through a weighted
combination of an individual latent function {fh}Hh=1 and a
number O of shared latent functions {g}Oj=1, which have the
independent Gaussian process priors gj(x) ∼ GP(0, kj(·, ·)).
As mentioned above, with the input x and noisy outputs y,
each single latent function of an output also has aGP prior like
fh(x) ∼ GP(0, k fh (·, ·)). To appoint these processes, a shared
group of inducing variables bj is used to induce each gj(x).
The collective variables are as follows: g = {gj}, f = {fh},

b = {bj}, o = {oj}, B = {Bj}, and Bf = {B
f
h}, where gj =

{gj(xi)} and fh = {fh(xi)}. The subscript h = (1, . . . ,H ) is the
index of the outputs for each corresponding processes, j =
(1, . . . ,O) denotes the index of the shared latent processes,
and i = (1, . . . ,N ) is the index of the inputs.
Given the predictive distribution the h-th output with the

new sample data x∗ as follows:

p(y∗ |y , x∗)

= N (y∗;
O∑
j=1

whjµj∗ + µ
f
h∗,

O∑
j=1

w2
hjsj∗ + s

f
h∗) (11)

where µj∗ and sj∗ are the mean and variance of the prediction
for gj∗ = gj(x∗), i.e., p(gj|y, x∗) = N (gj∗;µj∗, sj∗). Similarly,
the mean and variance of the prediction for fh∗ = fh(x∗)

FIGURE 1. The framework of general technology.

are µfh∗ and sfh∗, i.e., p(fh∗|y, x∗) = N (fh∗;µj∗, sj∗). Finally,
the predictions of the mean and variances can be calculated as

µh∗ =

Q∑
j=1

whjµj∗ + µ
f
h∗ (12)

sh∗ =
Q∑
j=1

(w2
hjsj∗ + s

f
h∗) (13)

III. FRAMEWORK OF ADAPTIVE MULTI-OUTPUT
SOFT-SENSOR MODELING
To reduce the data gradual drifts or abrupt changes of the
industrial processes, three adaptive strategies (TD, MW and
JIT) are used to formulate the adaptive capacity of the MPLS
model, MRVM and MGPR models. As shown in Fig. 1,
the general technical framework is implemented as follows.
(1) Three basic adaptive technologies including TD, MW and
JIT, are mixed and formulated into four hybrid methods: TD
+MW, TD + JIT, JIT +MW, and TD + JIT +MW, which
are detailed in the subsequent sections. (2) These methods are
combined with the three multi-output models to build online
multi-output models. (3) The performances of all adaptive
multi-output models are compared for both simulation data
and practical industrial data.

A. TD-MW-MODELS
In this section, TD-MW models are mixed using two adap-
tive technologies, aiming to reinforce the reliability of soft-
sensors to deal with the dynamics of processes. Fig. 2 displays
the training and prediction process of the soft-sensor model
based on the TD-MW method. The main steps of the model-
ing process are illustrated as follows:
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FIGURE 2. The schematic of the TD-MW model.

FIGURE 3. The schematic of the TD-JIT model.

a) Both input and output variables are converted into 1x(t)
and 1y(t) using Eq. (2)-(3).

b) The model is then trained by an initial moving window,
which contains L samples according to the TDs dataset.

c) Once a new sample arrives (query data), t can be cal-
culated by formula (5). Then, the model can predict the
time-differenced outputs 1ŷ(tnew) by using Eq. (4). The
predictive output ŷ(tnew) can obtain by (7).

d) After the output y(tnew) of lab analysis has obtained,
1y(tnew) can be calculated by the TD process.

e) The model is rebuilt according to the updated window
by including the newly sample 1x(tnew) and 1y(tnew),
while dropping the oldest sample, and the process is then
repeated (c) until the query data ends [20].

B. TD-JIT-MODELS
The TD-JIT model is to combine the TD and JIT tech-
niques. Even though literature [20] has established this mixed
model, it has not given a specific framework and process.
Fig. 3 is represented the schematic of the TD-JIT model.
As shown in Fig. 3, the historical dataset has been formed
by TD processing. When a new sample comes, the historical

FIGURE 4. The schematic of the JIT-MW model.

data that are mostly similar to the query data put into a
new database, which is used to train the model sequentially.
We use the Euclidian distance as the similarity index (Eq. (1)).
Then, the trained model uses the new data for prediction and
derives the time-differenced outputs1ŷ(tnew). The prediction
of the output ŷ(tnew) can be estimated by Eq. (7). After the
lab analysis output is obtained, the historical dataset can be
updated with the new measurement data x(tnew) and the new
lab analysis data y(tnew).

C. MW-JIT-MODELS
As increasing amounts of historical data contained in the
dataset, it will become very time-consuming because the JIT
method has to select a relevant dataset from the database
based on predefined similarity criteria. In addition, it is well
recognized that the JIT strategy is only effective for the oper-
ating conditions described by the current local query data.
In this light, it is very inefficient if we construct a similar set
by searching all the data from the database [19]. Therefore,
a MW-JIT model structure can be built as seen in Fig. 4.

As shown in Fig. 4, first, the window length and the data
size inside the window are set up. When a new sample arrives
(query data), Eq. (1) is used to compare it with the current
window data to obtain the relevant dataset. Then, the model
uses the most similar data in the current window for training.
The new data will be delivered to the trained model for pre-
diction. After the lab analysis output is obtained, the window
can be updated with 1x(tnew) and 1y(tnew), while dropping
the oldest data. Then, the model can be rebuilt by using the
most relevant data according to the updated window.

D. TD-JIT-MW-MODELS
As in the JIT-MW part of the TD-JIT-MWmodel in the previ-
ous section, the JIT-MW model performs the same function
in the model, while TD processing is added to the JIT-MW
model as the preprocessing procedure (Fig. 5).

Since JIT and MW are both online training models,
there are few studies that combine the JIT and MW meth-
ods [18], [19]. At present, no one has combined these three
adaptive strategies into a single model. This paper attempts to
compare the predictive performances of the three combined
models.
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FIGURE 5. The schematic of the TD-JIT-MW model.

TABLE 1. The list of the compared models.

IV. CASE STUDY
The prediction performance is assessed in three cases studies
consisting of two simulation studies and a practical indus-
trial dataset. The comparative models are tabulated as shown
in Table 1.

Two commonly used indexes, namely the root mean square
error (RMSE) and the correlation coefficient (r), are used to
measure the fit of each output. In addition, the root-mean sum
of squares of the diagonal (RMSSD) and multiple correlation
coefficient (MR) served as the criteria inmulti-outputmodels.
The formulas of those evaluation criteria are shown in the
Supplementary Material A.

The computer configuration is: OS - Windows 7 (64 bit),
CPU - i5, RAM - 8G, and MATLAB 2012a.

A. THE SIMULATION DATA
Two simulation studies that named Benchmark Simula-
tion Model No. 1 (BSM1) and Benchmark Simulation

FIGURE 6. General overview of the BSM1.

Model No. 2 (BSM2), respectively, are presented in this
section to assess the performance of the proposed adap-
tive multi-output soft-sensors. The simulation platforms are
developed by the first International Association Water Qual-
ity Task Group (http://www.benchmarkwwtp.org/) to offer
an unbiased benchmarking wastewater treatment model for
comparing the performances of different control strategies.

1) BENCHMARK SIMULATION MODEL NO.1
The platform of the first case study is BSM1, which is a
sophisticated dynamic mathematical model that can simulate
the biological, chemical and physical processes of a WWTP.
As shown in Fig.6, the platform consists of five compartment
biological tanks (including two anoxic sections and three
aerated sections) and a 10-layered secondary settler. The aim
of this process is to remove organic matter and to perform
nitrification and denitrification. It is designed for an average
flow of 20,000m3 per day and an average COD concentration
of 300 mg/L.

The purpose of this study is to establish adaptive multi-
output soft-sensors to simultaneously estimate the COD,
BOD5, total nitrogen (TN) and total amount of solids (TSS),
which are typically difficult-to-measure online and can indi-
cate the performance of a WWTP. In BSM1, the simulated
data covering 14 days and sampled every 15 minutes in
stormy weather were chose. The selection of input variables
is shown in Table S1 (Supplementary Material B). Half of
the selected samples are used for training, and the remaining
samples are used for online predictive testing. The influ-
ent flow rate, BOD5, etc. under stormy weather conditions
change dramatically [24]. Because the dramatic changes of
the BOD5, COD, etc. imposes an enormous challenge on the
performance of an adaptive soft-sensor.We try to compare the
performance of the multi-output models with different adap-
tive strategies under the same conditions. Therefore, the same
Gaussian kernel function and the same kernel parameters
are selected, even though the choice of the kernel function
and the setting of the width parameter greatly affect the
prediction performance of the MRVM model. The setting of
these parameters is not necessarily optimal for every model,
but these parameters are necessary to set up identically and
optimally relatively if using the same models. In this light,
it is fair to show the pros and cons of each method. The main
parameters of the compared models are given in Table S2
(Supplementary Material B).
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TABLE 2. The comparation of the RMSSD between the adaptive multi-output models in BSM1.

The prediction performances of 24 models are displayed
in Table 2. The results of four outputs are showed in the
Table S3 (Supplementary Material B). It is obvious that all
basic models (MPLS,MRVMandMGPR) achieved poor pre-
dictions in terms of the RMSSD. This was mainly because the
basic models cannot adapt to the dramatic changes that occur
in stormy weather, which results in performance degradation.
Additionally, multivariate coupling adds more potentials for
the prediction degradation. The basic MGPR produced better
performance than the other two basic models, MPLS and
MRVM, in terms of the RMSSD and MR. As tabulated
in Table 2, the TD-JIT-MRVM model achieved the best per-
formancewith the RMSSDbeing 0.33. TheRMSSDvalues of
models with TD were significantly lower than those models
without TD. Both the TD models and the TD-JIT models
yielded a better prediction performance compared to other
models. The TD-JITmodels provided the best performance in
the MRVM and MGPR. In contrast, the TD-MPLS achieved
the best performance in the MPLS models. To further explain
the performances of the proposed models, the predicted
results of the BOD5 and COD are profiled in Fig. 7, by com-
paring the MPLS, MRVM, and MGPR under seven adaptive
strategies: TD, JIT, MW, TD-MW, TD-JIT, MW-JIT and
TD-MW-JIT. As seen in Fig. 7, the models based on TD
method fitted the real value effectively, illustrating that the
TDmethod can enhance the prediction performance of multi-
output models effectively. It is important to note that the
JIT models achieved approximately the worst performance.
At the same time, the MW-JIT models produced better per-
formance than that of the JIT models, but the effect reflected
in the peak is not as good as that produced by mixed TD
models. The main factor that compromises the performance
of the models using JIT and MW is the fact that the JIT
models cannot capture the process dynamics effectively with
uniform parameter settings under the dramatic changes of
process variable in stormy weather.

2) BENCHMARK SIMULATION MODEL NO.2
The BSM2 is the platform of the second case study, includ-
ing the biological treatment processing of wastewater of
BSM1 and the sludge treatment process. As shown in
Fig. 8 [25], it not only includes a biological reactor and a
secondary clarifier like BSM1 but also includes a primary

FIGURE 7. Predicted results of the MPLS, MRVM and MGPR with the four
adaptive strategies for the BOD5 and COD in the BSM1.

FIGURE 8. The General overview of the BSM2.

clarifier, a secondary thickener for the sludge wasted from the
BSM1 clarifier, a dewatering unit, and different possible con-
trol handles [26]. Unlike BSM1, BSM2 has influent dynamics
covering 609 days, which include the effects of rainfall and
temperature over the entire year. The first part of the influent
data (254 days) has been used to attain a pseudo-steady state.
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TABLE 3. The comparation of the RMSSD between the adaptive multi-output models in the BSM2.

The last 355 days are used to evaluate the performance of the
plant.

In this case study, the purpose is to compare the perfor-
mances of adaptivemulti-output soft-sensors when the sludge
bulking has occurred. The phenomenon of sludge bulking is
caused by the excessive proliferation of filamentous bacteria
in sludge. It will lead to a decline of the effluent quality
and endanger the operation of the whole biochemical system.
To simulate sludge bulking in BSM2, the settling velocity in
the layer should be reduced [27]. Therefore, we simulated
the sludge bulking process by modifying the five settler
parameters at the time of initializing the second settler, as
shown in Table S4 (Supplementary Material B). The initial-
ization file of the second settler is settler1dinit_ bsm2.m,
which can be found in the benchmark files of BSM2. When
the sludge bulking occurs, the inputs and outputs data drift
slowly. Through this case study, we can compare the pre-
diction performances of adaptive multi-output soft-sensors
for the COD, BOD5, TN and TSS. All input variables used
for the model construction are sampled every 15 minutes
and tabulated in Table S5 (Supplementary Material B). The
parameters of the compared models are defined in Table S6 in
Supplementary Material B.

The results of four outputs of all models are showed in the
Table S7 (Supplementary Material B). The comparation of
the RMSSD between the adaptive multi-output models are
profiled in Table 3. As the table shown, all basic models
produce the lowest predictive results in terms of the RMSSD.
This is mainly because the general models cannot adapt to
drifting changes between secondary and quality variables
under the condition of sludge bulking which results in per-
formance degradation. It is recognizable that the linear model
MPLS has better performance than the other two nonlinear
models in terms of the RMSSD and MR. This is mainly
because that the MPLS can approach a moderate nonlin-
ear process with local linearity. As shown in the table, the
TD-JIT-MPLS model produces the best performance com-
pared with all other models with the RMSSD being 0.0401.
The RMSSD value of the model with TD is significantly
lower than that of the models without TD in this case. The
TD-JIT models yielded the best performance in the MRVM
andMGPR. Differently, the TD-MW-JIT-MPLS achieved the
best performance in the MPLS models. This demonstrates

FIGURE 9. Predicted results of the MPLS, MRVM and MGPR with the four
adaptive strategies for the BOD5 and COD in BSM2.

that the TD method not only can adapt to the drifts among
input variables and corresponding variables with high sta-
bility but can also enhance the performance of multi-output
models effectively. To better confirm the performance of the
MPLS, MRVM, and MGPR under the four adaptive strate-
gies, the predicted results of the BOD5 and COD are shown
in Fig. 9. As displayed in Fig. 9, the MW-RVM and MW-
JIT-RVM produced jagged curves due to the improper kernel
parameters of the MRVM model. At the same time, we can
also see that the JITmodels achieved the worst predictive per-
formance. The performance of the models with JIT method is
not always satisfactory because the JITmodel ismore suitable
for stable processes.

B. PRACTICAL INDUSTRIAL DATA
Different from the previous two simulation cases, a practical
WWTP is considered in this section with a bulking sludge
phenomenon. The final scenario is a full-scale WWTP in
Beijing, China, which uses an oxidation ditch (OD) process
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TABLE 4. The comparation of RMSSD between the adaptive multi-output models in Beijing.

FIGURE 10. The wastewater plant for validation.

to treat municipal wastewater. Fig. 10 shows the structure of
the OD process for the plants, and the more details can be
seen in [8]. Filamentous bulking sludge was observed due to
the low COD loading rate of the influent. In total, 212 data
points are sampled from the process at one-day intervals. The
first 112 of those data for samples are used for training, while
the remaining data are used for testing to develop and validate
the model in this study.

The purpose of this case study is to develop a multi-output
soft-sensor to estimate the prediction for the COD, BOD5,
total phosphorus (TP) and SVI. The SVI is a difficult-to-
measure variable and an empirical index used for character-
izing the sludge bulking problem. Since the phenomenon of
bulking sludge existed for around half a year in this plant,
the input and output data collected from the field exhibits
slow drifting, as seen in the second case, which affects the
prediction performance among the adaptive multi-output soft
sensors. For the MRVM models, ‘‘Gaussian’’ is selected as
the kernel function, the setting of the width parameter is ‘‘5’’,
and the maxIts is set to 100. The similarity factor of the JIT
models dj is set to 10. Other parameters are defined as the
same as in the previous case.

The prediction performances of 24 models are shown
in Table 4. The results of four outputs of all models are

showed in the Table S8 (Supplementary Material B). Due to
process change, it is obvious that all basic models produce
relatively poor predictions in terms of the RMSSD. As in the
case of BSM1, the basic MGPR yielded better performance
than other two basic models in terms of the RMSSD and
MR. As shown in Table 4, among all the models, the best
prediction result is obtained from the TD-MW-MPLS model,
with the RMSSD being 7.6779. In the MPLS and MGPR,
the TD-MW models achieved the best performance, whereas
the TD-JIT yielded the best performance when using the
MRVM models. At the same time, we can also see that
the JIT models achieved the lowest prediction performance
among all models. The models using the TD method pro-
vide a relatively better prediction performance than either
of the nonlinear models, MRVM and MGPR, without TD.
In addition, the TD-MRVM can provide better performance
improvement than the TD-MGPR. However, in the MPLS,
the TD-MW yielded the best performance, whereas the
MW-JIT andMW provided better performance than the other
adaptive algorithms using TD models. To further explain
this situation, the predicted results of the BOD5 and SVI
are displayed in Fig. 11, with the comparison of the MPLS,
MRVM, and MGPR under the seven adaptive strategies. For
the TD-JIT-MPLS model, the prediction deviation occurs
in the result of the BOD5. This is mainly due to the time
delay caused by the correlation among the hard-to-measure
variables. Therefore, the RMSSD of the TD-JIT-MPLS has
been reduced. We can also see that the drifting pattern of the
SVI is not tracked well by the JIT models.

V. COMPARISON AND DISCUSSION
This section aims to compare and discuss the specific charac-
teristics and differences of the three cases (Table S9 in Sup-
plementary Material) for different multi-output soft-sensors.
In BSM1, due to the significant dynamics (stormy weather),
the dramatic changes lead to a heavily nonlinear evolution
of the output variables. The basic MGPR achieves the best
performance in BSM1 compared to the remaining two basic
models, MPLS and MRVM. This is mainly because the
prediction distribution of the MGPR at a set of test points
is simply assumed to be a multivariate Gaussian distribu-
tion, so the MGPR has better nonlinear predictive and adap-
tive abilities for abrupt changes in processes than the other
two models. BSM2 is a simulated sludge bulking process
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FIGURE 11. Predicted results of the MPLS, MRVM and MGPR with the
four adaptive strategies for the BOD5 and SVI in Beijing.

achieved through the artificial changes of the sedimenta-
tion coefficient, which can cause the data to drift slowly.
In the BSM2 case study, it can be found that although the
corresponding variables gradually drift, the data exhibits a
globally linear growth. As a linear model, the MPLS can
provide better performance than the other two basic models in
terms of the RMSSD by utilizing the linear correlation among
the response variables. The linear correlation adds further
sensitiveness to the predictive model. Therefore, the MPLS
is suitable for slowly drifting scenarios. However, the basic
MPLS may not be applicable when the data drift severely.
In contrast, the MRVM, as a nonlinear model, yielded the
worst performance in the simulated cases. This is most likely
due to an improper kernel parameter. Different from the
simulated sludge bulking, the scenario in the last case study
is sludge bulking from a Beijing WWTP with a fault lasting
for over half a year. Nonlinearity, heavily dynamics, sig-
nificant uncertainty (including changes of the process input
(raw) materials, wear of mechanical components, changes in
the external environment, etc.) and multiple time scales add
further complexity for modeling. At this time, the MGPR
still achieved better performance. It is recognizable that the
MGPR is used for modeling dynamic processes of both lin-
ear and nonlinear systems, and can handle cases of abrupt
changes and gradual drift better.

In addition, the prediction results of the adaptive strategies
for each multi-output model under the three cases are com-
pared. As seen in Table S10, Table S11, and Table S12 in
the Supplementary Material, the comparisons of the three
cases of the MPLS, MRVM, and MGPR, are shown respec-
tively. The performances of the seven adaptive strategies
(including the TD, MW, JIT, TD-MW, TD-JIT, MW-JIT and

TD-MW-JIT strategies) for theMPLSmodel and basicMPLS
model under the three scenarios are displayed in Table S10.

JIT-MPLS yielded the lowest prediction performance in
the three cases. At the same time, the JIT-MRVM and
JIT-MGPR also produce the lowest predicted performances
in all of the three cases. It is recognizable that the basic JIT
strategy cannot adapt to the dynamic characteristics of abrupt
changes and drifting processes effectively under the frame-
work of multi-output models. In contrast, the models using
the TD method have better performances than the models
using the MW and JIT strategies for the simulation occasion.
This is mainly because variables after TD processing not
only can present a stable state but also do not affect the
inherent distribution among the input and output. Meanwhile,
the multi-output structure considers the correlations among
the targets, which improves the prediction performance of
models using the TD method. Therefore, the TD method is
more suitable for multi-output models than the JIT method.
On the other hand, the models using the TD method can be
considered as a special type of MW-based model with the
window length being 1. In addition, the default time lag is set
as 1 without requiring any further parameters. However, some
models using the TD method underperform for real cases.
As shown in Table S10 and Table S12, the MW-MPLS and
MW-MGPR achieve better performances than the TD-MPLS
and TD-MGPR in the third case. This shows that the
MW method can adapt to the drifting situation when cou-
pled with the linear multi-output model better. Additionally,
both MW and JIT are limited in the setting of the win-
dow size and similarity parameter; thus, parameters setting
research is usually needed for special data to achieve the best
performance.

The combination of TD with MW or TD with JIT can
improve the adaptive ability of the basic MW and JIT strate-
gies significantly, through the more stable data produced
after TD processing. Although JIT-based models always
produce the worst performance, after TD processing, the
TD-JIT models provide very high-quality performance in
dealing with data drifting and abrupt changes. As the results
shown, both the TD-MW and TD-JIT mixed methods can
adapt to data drifting and abrupt changes effectively. The
difference between these two hybrid methods is that they
are applicable to different multi-output models. For nonlinear
models (MRVM andMGPR), the TD-JIT models are the best
choice for both simulated data and actual data. Meanwhile,
the TD-MW combined models are more practical for linear
models such as the MPLS. However, since both MW and
JIT are more suitable for gradual data drifting, the perfor-
mances of models based on MW-JIT under the situations
with abrupt changes are not as good as those of mixed TD
models. The TD-MW-JIT models did not show an abso-
lute excellent performance in all experiments, and only the
TD-MW-JIT-MPLS obtained the optimal performance com-
pared with other models in the BSM2 case. It can be found
that ‘‘the more combinations of adaptive strategies, the better
the performance’’ is a false cognizance.
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In a summary, we can choose appropriate adaptive strate-
gies and multi-output models according to different applica-
tion scenarios through the following guidelines:

1) In the process with data drifting slowly, it is better
to choose the linear model MPLS based on TD-MW
method. TD-MW-MPLS can achieved the better perfor-
mance than other two nonlinear multi-output models.

2) In the process with data abrupt changes, nonlinear multi-
output models such as MRVM base on TD-JIT will be
the better choice.

3) In the process with a mixture of data drifting and
abrupt changes, it is necessary to justify that the drift-
ing or abrupt changes govern the major patterns. Then,
the proper combination of adaptive strategies and multi-
output models can be chose accordingly.

Finally, it is important to notice that the multi-output
model has more important requirements than the single-
output model, considering not only the relationships between
the features of input variables and targets but also the rela-
tionships among the outputs. However, it only applies the
same sets of input features to predict all the responses
simultaneously in this study. Therefore, all of the results
are not satisfactory compared with those of single-output
models or offline models. In further research, the interaction
between variables will be taken into consideration, and the
variables will be selected carefully before using multiple
outputs prediction.

VI. CONCLUSION
In this paper, two bunches of adaptive multi-output soft
sensors are proposed and applied in the wastewater treat-
ments. Furthermore, the mixtures of different adaptive strate-
gies, including the TD-MW, TD-JIT, JIT-MW, TD-JIT-MW
with the three basic adaptive strategies, are coordinated
with the multi-output regression models, the MPLS, MRVM,
and MGPR methods to form 24 adaptive multi-output soft-
sensors. By means of three case studies (two simulated pro-
cesses and a field data sets from WWTPs), all the proposed
soft-sensors are compared in terms of the RMSSD and MR.
In conclusion, this paper provides a reference for applying
different adaptive combinatorial multi-output models in dif-
ferent scenarios.
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