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ABSTRACT Process monitoring of wastewater treatment plant (WWTP) is a challenging industrial problem,
due to its exposure to the hostile working environment and significant disturbances. This paper proposed a
novel fault diagnosis method, termed as optimization forecast components-support vector machine (OFC-
SVM). The method firstly improved the forecastable component analysis (ForeCA) for feature extraction.
Secondly, in order to further enhance the method, the quadratic Grid Search (GS) algorithm is utilized to
optimize the parameters of the proposed method. Thirdly, to properly evaluate the method performance,
anew evaluation index is proposed, named Pre Alarm Rate (PAR), aiming to achieve the quantitative trade-off
between false alarm rate (FAR) and missed alarm rate(MAR). Then, the new ROC curve can be further
derived by PAR. Finally, the performance of OFC-SVM is strictly compared with other five methods as well

as validated by a Monte Carlo model and a full-scale WWTP.

INDEX TERMS Fault diagnosis, grid search (GS), feature extraction, forecastable component analysis,

support vector machine, wastewater treatment.

I. INTRODUCTION

With the increasing complexity of industrial system, pro-
cess monitoring strategy of industrial process have become a
hotspot [1]-[3]. WWTP is a complex industrial system with
mixture of physical, chemical and biological reactions. Also,
the hostile working environment and significant disturbances
further add further difficulty for process monitoring. If not
monitored well,a WWTP will not only bring about economic
losses, but also cause the secondary pollution of rivers. So we
conduct an in-depth study on monitoring the common sen-
sor fault in wastewater treatment plants. Data-driven process
monitoring is one of the most popular industrial monitoring
methods, because it does not require the prior knowledge and
can achieve better performance by comparison with math-
ematical models [4]. During recent decades, SVM receives
more and more attentions, which is based on the theory
of VC (Vapnik-Chervonenkis Theory). SVM can not only
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trade-off the complexity and learning capability in the case of
exposing to small sample [5], but also can use structural risk
minimization to effectively compensate for the over-fitting
problem [6]. Relying on the above advantages and excel-
lence generalization ability, SVM has quickly attracting the
researcher attention, thus resulting in successfully application
to the diagnosis of abnormal events in machinery, medicine
and other fields subsequently [7]-[10]. Although SVM has
been successfully applied in many different fields, it is rarely
used in wastewater treatment processes monitoring. Also,
uncertain disturbances, large time-delay and multi-variable
coupling make building an effective SVM model difficult,
mainly due to the fact that SVM is sensitive to noises.
In addition, process redundant features will not only greatly
reduce the diagnostic accuracy, but also increase the storage
overload.

In the feature-based fault diagnosis, it is necessary to
consider model performance degradation caused by useless
features [6]. Chang et al. proposed to use PCA to extract
effective features [11]. However, industrial data are generally
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non-linear, and PCA cannot effectively extract the non-linear
characteristics. Zhang et al. proposed that adaptive KPCA
to extract useful features of nonlinear data, and then com-
bined with SVM for fault diagnosis of high-voltage circuit
breaker [9]. Although KPCA can extract the non-linear char-
acteristics, the diagnosis performance will degrade when the
data do not follow Gaussian distribution. Cao et al. compared
the performance of SVM, PCA-SVM, KPCA-SVM and ICA-
SVM, showing that effective feature extraction can indeed
improve SVM performance significantly [12]. In this light,
a new feature extraction method is proposed by improved
the ForeCA, and then combine it with SVM to diagnose the
fault of WWTPs. ForeCA is a novel dimension reduction
technique able to take full use of temporally dependent sig-
nals [13]. This method firstly transforms the time domain
signal into frequency domain signal, and then uses Shannon
entropy to reformulate the optimization problem. Finally,
the optimization problem is solved by EM-like (Expectation
Maximization-like) algorithm. Due to this property, both of
time and frequency domains can be taken into account to
make the feature extraction sensitively. Also, ForeCA is able
to exploit the unpredictability of white noise which is usually
hided by other disturbances. By proper recognition of these
underlying noises, noises and disturbances can be removed
more efficiently. Traditionally, PCA is used to measure the
information according to the size of variance with the phi-
losophy that the larger the variance, the more information.
However, the variance is mainly to describe the degree of
discreteness, and cannot be directly used to capture the uncer-
tainty of information. Unlike the previous methods, ForeCA
is capable of measuring the information uncertainty by infor-
mation entropy and is not premised on the assumption that the
data follows Gaussian distribution [14], thus making feature
extraction more efficiently.

Typically, the free parameters (penalize parameter C and
kernel parameter g) are set up manually, which makes it
converge into sub-optimal performance. Recently, to fur-
ther improve the performance of a diagnosis model, genetic
algorithm (GA) and particle swarm optimization (PSO) are
widely used to optimize the model parameters [10], [15], [16].
However, PSO and GA usually locate the optimal value
through iterative search procedure. This procedure could
not only lead to unacceptable uncertainty, but also easily
come to a pseudo-global optimal solution. In this light,
this paper introduces the quadratic GS algorithm to address
this issue, which can generate the corresponding “grid” by
arrangement and combination of parameters. And use the
cross-validation method to select free parameters. Unlike
previous GS, Quadratic GS sets the initial parameter interval
twice by trading off the running time and diagnosis accu-
racy. By setting the parameters by interval rather than point
sampling according to the specific data prior knowledge,
the consumed time of optimal Quadratic GS will be greatly
reduced and achieve better performance.

Based on the above discussion, ForeCA algorithm and
quadratic GS algorithm can effectively improve the SVM
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performance. So we proposed a new method of OFC-SVM
by combining the above two algorithm.

Industrial processes often evaluate the performance by
rating missed alarm rate (MAR) and false alarm rate
(FAR) [1], [17]-[20]. Although these indicators can assess
the monitoring methods from bi-direction, the costs of false
alarm and missed alarm are different. Therefore, a novel com-
prehensive evaluation index of pre-alarm rate (PAR) is pro-
posed by merging false alarm and missed alarm. The weight
parameter of PAR formulas can set by requirements. At the
same time, a new ROC (Receiver Operating Characteristic)
curve is further re-derived, which is aim to assist PAR method
to make decision.

The structured of this paper as follows. In section II,
the basic theory of SVM is introduced. Section III presents
the framework and the theories of the proposed method.
In section IV, OFC-SVM is strictly compared with five meth-
ods and validated by two experimental data sets. The experi-
mental results are analyzed and discussed in detail in section
V and the conclusions are come to Section VI.

Il. SUPPORT VECTOR MACHINE

In the 1860s, Vapnik et al. explored the relationship between
the large number theorem of general function space and the
learning process. And then proposed the SVM model [21].
The essence of SVM in the field of fault diagnosis is the use
of its classification capability. We assumed that the training
data set of X = [x1 - x.]" € R™ is linearly separable, n
represents the number of samples, k represents the number
of features. In the training set, y; = +1 respresents the
fault data label, whereas y; = —1 represents the normal
work condition data label. The SVM method needed to use
the training set to find the optimal classification hyperplane,
in such a way that the test set can be accurately classified
sequentially. Assuming that the classification hyperplane is
(w, b), and the corresponding classification formula is shown
as follows:

wixi+b>+1 y=+1 "
wix+b<—-1 y=-1
where w’ is normal vector and b is a scalar. If the sample is

closest to the hyperplane, named “‘support vector”, and the
“margin” is formulated as r = 2/||w||. To find the maximum
spacing by resorting to the hyperplane, the above solution
becomes an optimization problem.
maxy, p ——
©wll
st yiw xi +b) > 1 )

When there is a linear inseparable point in the sample,
we can relax the constraints and formulate the optimized
equations as (3).

. I _ n
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FIGURE 1. Process monitoring framework based on the proposed OFC-SVM method.

&; is the relaxation parameter and C is the regularization
parameter. When the data is not linearly separable, the kernel
function K (xi, xj) =0 (x)T¥ (x;) is used to replace x;. So the
classification decision function formula can be further get as
follows:

f(x) = sign (Z:l: | YiaiK (x.x;) + b) 4)

where 0 < a; < C, X represent the input vector.

llIl. OFC-SVM THEORY AND MONITORING FRAMEWORK
Generally, SVM is suitable to small samples issue but is very
sensitive to noise [22]. Additionally, redundant feature infor-
mation could seriously affect the SVM performance. Thus,
we proposed a novel fault monitoring framework, termed
OFC-SVM.

As shown in Fig. 1, the main steps can be summarized as
follows: (1) Data sampling; (2) Normalization; (3) Feature
extraction (As showed in algorithm 1); (4) Fault diagnosis
(Model training and testing); (5) Evaluating model by PEI
(Performance Evaluation Index) PAR.

A. FORECASTABLE COMPONENT ANALYSIS (ForeCA)
ForeCA is a new statistical signal processing method, which
mixes the advantages of Fourier transform, spectral density,
shannon entropy and EM-like theory. The core of ForeCA is
to find the optimal forecastable transfer matrix W. Assuming
that the collected data set is X eR™*™ (n and m represent the
number of samples and the variables number, respectively),
and W € R™*™ jig the optimal transfer matrix of forecast
components.

Y = wxT (5)

where YT € R"™ ™ is the corresponding score matrix, and the
ForeCA algorithm needs to estimate the optimal W and Y by
the data set X. Goerg pointed out in his paper that the first
step is to transform the time domain signal into the frequency
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Algorithm 1 Forecastable Component Analysis

Input: Training dataset Xyrin = { x1 -+ x4 }.
m process variables, n sampling.
Control limit threshold = 90%

Process:

S1: Normalize the raw data set X4

S$2: The time domain signal is transformed into frequency

domain signal by the formula (7).

$3: The spectral density p, (1) is derived by the formula (8).

S4: Compute the Information entropy of x; by p; (1) and the

formula (9).

S5: The predictability values ®; (i = 1 --- m) and eigenvec-

tors w = {w;}]' € R" are obtained by the EM- like algorithm

and formula (10)-(12).

§6: the number of forecast principal components is computed

by the formula (14). The principal forecast components score

matrix can be further obtained.

Output: The forecast principal components number K, the
forecast components transfer matrix W. The
principal forecast components score matrix
X =wIxT e gr

domain signals [13], so we take the univariate stationary time
series z; as an example. Assuming that the corresponding
mean and variance are u; and azz, respectively. The auto-
covariance function (ACVF) can be obtained as follows.

r: () = E(zp — u)(z—1 — uz) (6)
Since the stationary time series is independent of the initial

point, 7, (/) = r, (—1I). The frequency spectrum of the univari-
ate time series can be obtained by the following formula:

P (1) = % Yo O aelmal ()
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P (1) represents the nonnegative real function, i is the imagi-
nary unit. Particularly, whenj = 0, r; (0) = azz. According to
the inverse Fourier transform, r; (1) = ["_P. (1) e"*""*d A,
so r;(0) = ff” P, (1) e%dr = 022. The standard spectral
density function can be derived as follows:

P, (x
pe(y = 2 @®)
O,

Z

pz (L) is a special spectral density function, which is used
to analogize the probability density function of random vari-
ables in a unit circle, so ffﬂ pz (X)) dXx = 1. Shannon entropy
can be used to estimate the uncertainty level of p, (1), so the
information entropy formula can be organized as follows:

T
Spa (%) = / pz (X) logapz (A)d A ©))
—TT

Remark 1: Assuming that ¢; is white noise with zero mean
and finite variance, when # 0, r. (I) = 0 and P, (L) =
(%2) /21 can be obtained by the formula (6) - (8). Generally,
the flat spectrum represents the sequence is most unpre-
dictable [13], white noise is a special flat spectrum. The time
series has the larger information entropy. so the information
entropy of &; is maximum.

The information entropy of z; is not greater than &;, so the
following formula can be obtained:

SP,a (zr) < SP,a (&r)

- / Pe (A) logape (M)d A

-7

T 1
— /;n Elogaﬁd)» = log,2m
(10)

According to formula (10), the important index for solving
forecastable transfer matrix is derived-®(-).

Sp.a (2)
D(z) =1-— 12;2; =1—Sp 2z (z1)
a
Dz —> [0, o0] (11

® (-) is an important index for evaluating the predictability
of z;. If X; € R™ is a multivariate time series, the univariate
time series z; can be obtained by calculating z; = wl X, Butw
may not be optimal, that is, it cannot be used to maximize the
value of ®(-). Therefore, finding W becomes an optimization
problem shown as follows:

max, ® (z;) = ® (wTX,>

7 wlPx(Mw wl Px GOw
f_n Ty log, WT)éxw di
=max, | 1 +
log,2m
st w! Sxw =1 (12)

where Py (\) = 1/23°%__ Tx (j) e, I'x (j) is ACVF
of Xy, I'x (j) = 'x (—j)* . Because the number of data set is
finite. Therefore, the optimization of formula (12) requires
spectral density estimation first. In this paper, [13], [23]
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(WOSA) is used to estimate the spectral density. So the
formula can be further simplified as follows:

W = argmaxw(l/T) ZJT:_ll wl Py (a)j) w logaw! Px (a)j) w
(13)

Let L (w; @) = logaw” Px (wj) w, w* represents that the
forecastable vector is optimal. An optimal transfer matrix W
and the corresponding predictability value ® can be obtained
by cyclically calling the EM-like algorithm. Goerg gives a
detailed derivation process of the EM- like algorithm [13].

Motivated by the cumulative variance contribution rate of
PCA [24]. The cumulative predictable contribution rate is
used to determine the number of forecast principal compo-
nents.

k
T (®) = % > threshold(k < m) (14)
i @i T B

m represents the number of variables, and k represents the
number of forecast principal components. The threshold is
usually set by experience. The predictability values of &;
are arranged from large to small, therefore, Wy € R™* and
X =wlx T\ ¢ R™k can be further derived. W, € R™*
represents the optimal forecast principal components transfer
matrix, X = (W,{X T)T € R™ represents the principal

forecast components score matrix.

B. PARAMETER OPTIMIZATION-QUADRATIC

GS ALGORITHM

The classification ability of SVM is mainly affected by the
kernel parameter g and penalty parameter C [25]. So far, there
is still no generally accepted optimal algorithm. Different
from the standard GS algorithm, this paper proposed the
quadratic GS algorithm to deal with the parameters optimiza-
tion. The quadratic GS firstly sets up a large initial parameter
interval, and then performs a second adjustment according to
the verification data.

Firstly, quadratic GS divides data set into training set and
testing set. Secondly, the parameter interval are arranged
to generate the corresponding ‘“‘grid”. Thirdly, the cross-
validation method is used to select the parameter C, g. Finally,
parameters intervals are re-adjusted according to OFC-SVM
performance. In some degree, Quadratic GS algorithm can
avoid over-fitting drawback by secondary adjustment strat-
egy. However, the experiment found that more than one
group of parameters C, g can simultaneously maximize the
SVM classification accuracy. For this situation, this paper
chooses the small value of C. Since the larger value of C,
the easier occurrence of over-fitting problem [26]. Mean-
while, this paper considers the computational cost problem
and chooses the most commonly used K-fold Cross Valida-
tion (K-CV) method for cross-validation. K-CV divides the
data set into K groups equally, and establishes K models
respectively (the verification set is a set from the K group
data, and the remaining K-1 group are used as training set),
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Then, the average classification accuracy of K models is used
as the performance index of K-CV.

In order to strictly verify the performance of quadratic GS
algorithm, the parameter interval is not changed once it is
set by second adjustment. At the same time, PSO and GA
are compared with the quadratic GS algorithm in this paper.
Initial parameter of three optimization algorithm can refer to
Supplementary Information A(SIA).

C. PERFORMANCE EVALUATION INDEX-PAR

Performance evaluation index (PEI) is an important tool for
evaluating and selecting monitoring models. Although the
diagnosis accuracy can roughly evaluate the model, it cannot
meet the plant real-time requirements. For example, the actual
WWTP always use false alarm and missed alarm to evaluate
the performance of the monitoring system [17]. Because the
work intensity is directly affected by the false alarm and
missed alarm. When the FAR of WWTP is high, that is,
an alarm flood occurs under normal work conditions. The
monitoring systems will continuously false alarm commands,
which will waste a lot of manpower and resources. The
missed alarm is a more serious condition than the false alarm.
If the monitoring system missed the fault, the engineer can-
not take effective measures to troubleshoot in time. So we
proposed a comprehensive PEI of Pre-alarm rate (PAR) by
mixing false alarm and missed alarm. The formula of PAR,
MAR and Accuracy are as follows:

TP + TN
Accuracy = (15)
TP+ FP+ TN + FN
FN

Mur = Fr(N I|Fault) =—— 16
AR r(Normal|Fault) FN £ 7P (16)
F Fr(Fault|Normal) FP 17

= Fr(Fau r =

AR FP+ 1IN

Note that the “Normal’’ represents the normal work con-
ditions. Fr(]) represents the conditional frequency. TP is true
positive, this article represents the sample correctly classified
as fault. TN is true negative, and it represents the sample cor-
rectly classified as normal. FP (False Positive) indicates that
the sample incorrectly classified as normal. Mg represents
the formula of MAR, F4r represents the formula of FAR. The
formula of PAR as follows:

Ppr = yMag + (1 — y)Far (18)

y represents the weight parameter (0 < y < 1), the plant
can adjust y according to the demand signal.

Definition 1 (PAR in Some Different Situations):

1. When y = 0, Psg = Far. PAR degenerates into FAR,
so let Type I PAR = FAR.

2. When y = 1, Pap = Mug. PAR degenerates into MAR,
so let Type II PAR = MAR.

3. When y > 0.5, the missed alarm is more important for
plant.

4. When y < 0.5, the plant is more value its false alarm.

In the experiment, we find a special scenario that the
several methods have the same PAR value. To solve this
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FIGURE 2. The data box-plot.

problem, Type-I PAR and Type-II PAR are used to derive the
corresponding ROC curve, and then using this index to assist
making decision. ROC is originated from the radar signal
detection, which is a powerful tool for evaluating the learner
generalization performance [27]. The x-axis and y-axis of
ROC curve are composed of false positive rate (FPR) and
true positive rate (TPR), respectively. In statistics, the FPR
is equal to the Type-I PAR. The TPR and the Type-II PAR
can be linked, TPR formula is Tpg = TP / (FN + TP), which
indicates the proportion of predicted correctly under the fault
condition. Therefore, the Mag = 1 — Tpg can be further
derived. As given above, the ROC curve can be derived by
Type-I PAR and Type-II PAR. If the ROC curve of a method
completely covers another, it can directly assert that the for-
mer is superior. But when the two curves intersect, we need
to calculate the area. So the area of ROC curve is as follows:

1 m—1
AUC =23 P =7+ a9)
(foR, yf)AR) represents the coordinate points of ROC

curve. Generally, the larger area under ROC curve indicates
the stronger generalization performance

Remark 2: In this paper, ROC curve is derived by Type-I
PAR and Type-II PAR. A special point needed to be stress,
ROC curve in this paper is not a global evaluate index, but an
auxiliary PAR to evaluate the performance of the monitoring
model.

IV. CASE STUDY
A. CASE 1: MONTE CARLO SIMULATION
1) BACKGROUNDS AND SCENARIO DEFINITION

Monte Carlo model is a numerical simulation widely used
in the field of processes monitoring. More information about
this model can referred to [28], [29]. In this paper, the sensor
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TABLE 1. Diagnosis results of X4.

Evaluation X4
Index SVM PCA-SVM__ ForeCA-SVM___OFC-SVM_ ForeCA-GA-SVM__ ForeCA-PSO-SVM
Type-I PAR 8.000% 6.500% 5.500% 3.500% 4.000% 3.500%
Type-II PAR 18.000% 19.000% 17.000% 15.000% 28.000% 16.000%
PAR 12.000% 11.500% 10.100% 8.100% 13.600% 8.500%
Accuracy 88.667% 89.333% 90.667% 92.667% 88.000% 92.333%
(266/300) (268/300) (272/300) (278/300) (264/300) (277/300)
¢ Parameter selection result plot(Contour)
O bestc=32
6L bestg=0.0625 , 203.2863
200 A
4+ |
2l J 165.3164
: []
on OF b 2150 5.0300
g :
__Q 2+ | =
4t 1

log2c

FIGURE 3. Quadratic GS parameter optimal results plot.

fault is simulation by the following Monte Carlo model:

X1 151

= A1gx6 * + Waoise (20)

X18 Ie

where x; (i=1---18) represents different types of sen-
sors and t; i = 1---6) represents the input variable which
subject to normal distribution, (t; ~ N(16,0.3),t ~
N(18,0.6),t3 ~ N (13,0.5),t4 ~ N(15,0.1),t5 ~
N (16,0.4)ts ~ N(8,0.6). The noise of W,,y;s in this pro-
cess is assumed to be normally distributed with the mean
of zero and the standard deviation of 0.2. To obtain the
suitable data set, the simulation period is set to 1000 and
the sampling interval is 1 sec. A sensor fault is hap-
pened after the 600th sample and the fault amplitude is
0.35. The matrix of Ajgxe can refer to Supplementary
Information B.

2) EXPERIMENTAL VERIFICATION

To demonstrate the effectiveness of the proposed method,
the original random noise is expanded four times randomly
and the fault sensor X4 is selected. OFC-SVM and another
five methods are trained by the raw data of 1-300 samples
and 601-900 samples, which is from the normal working
condition and the fault working condition respectively. The
remaining data are used to train the model. Both of PCA
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and ForeCA have the same control limit 0.9.The core ini-
tial parameters of the six methods can refer to Table S1-S4
(Table S1-S4 in the Supplementary Information A)

Table 1 shows the six methods fault diagnosis results. The
PAR weight parameter is y = 0.6. We can see that the
OFC-SVM method achieves the lowest PAR value, which
reduces the PAR value of SVM method by 32.5%. At the
same time, the OFC-SVM diagnosis accuracy is 92.667%,
which is much higher than that of other five methods. It is
important to notice that ForeCA-GA-SVM PAR value is
larger than ForeCA-SVM and SVM. Due to the performance
of GA is heavily sensitive the initial parameters setting, thus
leading to obvious uncertainty and then resulting in the worse
classification relatively. As tabulated in Table 1, ForeCA
and PCA can improve the SVM performance by effectively
extracting features. Moreover, the program running time
is greatly reduced after feature extraction. Fig. S1 shows
the six methods program running time (Supplementary
Information D) after the feature extraction, SVM running
time is 0.34 sec. The feature is extracted effectively by
ForeCA algorithm, the program running time is shortened
by 35.3% with it being 0.22 sec. Since the optimization
algorithm is very time consuming, the ForeCA-GA-SVM
and ForeCA-PSO-SVM programs run with the consumed
time being 278.94 sec and 222.98 sec, respectively. But the
proposed OFC-SVM running time only costs 5.67 sec.
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BSM1.

B. CASE 2: A FULL-SCALE WWTPs

1) BACKGROUNDS

A widely recognized full-scale wastewater treatment plat-
form (benchmark simulation model 1 BSM1) is selected in
this paper, as depicted in Fig. 6. It is proposed within the
framework of COST Actions 682/ 624 by the IWA (Inter-
national Water Association), aiming to remove C/N. The
BSM1 wastewater treatment plant full considers the com-
plexity of biochemical reactions and physical phenomena,
so it is design five biochemical reactions and a complete
settler tanks. BSM1 is set three weather event (dry weather,
rain weather, storm weather) and some default parameters,
every weather event simulation last 14 days. Also, the data is
collected every 15 min. The detailed introduction can refer to
the website (http://www.benchmarkWWTP.org).

2) SCENARIO DEFINITION AND MONITORING VARIABLES
SELECTION
In this case study, the raw data set is collected on dry weather
days in BSM1, consisting of 37 process variables. (Variables
are depicted in Table S5 of the Supplementary Information
C). The empirically selected monitoring variables cover the
entire process of the WWTP.

To verify the effectiveness of the method, the faulty sensor
is selected according to the following two principles: (1) The
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selected fault sensor must envelop the whole WWTP process,
i.e., including influent wastewater, five biochemical reaction
tanks, and secondary settling tank and effluent wastewater.
(2) The variables selected are based on the importance of the
variables to WWTP and the frequency of failures.

3) EXPERIMENTAL VERIFICATION

In this section, the faulty senor So — 1 is taken into account.
So — 1 sensor is usually used to measure oxygen content
in No. 1 anoxic tank, which is an important indicate if the
denitrification reaction can proceed normally in anoxic tank.
By analyzing the data box-plot in Fig. 2, we can easily find
that the data need to be normalized. Table 2 shows diagnosis
results of six methods after data normalization. The PAR
weight parameter is ¥ = 0.6, which is based on the fact that
missed alarm will bring about more serious losses to WWTP.
The other important parameters are consistent with Case 1.
The result of quadratic GS parameter optimization is profiled
as Fig. 3. The optimal parameters are C = 32, g = 0.0625.

From the diagnostic results of Table 2, we can see that
the PAR value with respect to ForeCA-SVM is significantly
lower than SVM, which is reduced by 67.294% compared
with the PAR value of SVM. This demonstrates that the per-
formance of SVM can be indeed improved by using ForeCA
algorithm to feature extraction. But the PCA-SVM PAR value
is significantly higher than SVM. This is mainly because not
all the data collected by WWTPs follow normal distribution.
In addition, the PCA-SVM method is better than SVM from
the result of Case 1, this is mainly due to the data obey normal
distribution.

To further assess the performance, the running time for
each algorithm is also considered. Fig. 4 shows program
running time of six methods. ForeCA-SVM indicates that
the SVM running time after feature extraction is 0.177 sec,
whereas the SVM running time without feature extraction
is 0.3817 sec. The feature extraction can indeed reduce the
consuming time. OFC-SVM diagnosis accuracy is 100%,
which achieve the best performance than the remaining five
methods. At the same time, the time consuming is much lower
than ForeCA-GS-SVM and ForeCA-PSO-SVM.

In addition, the diagnosis results with respect to six mon-
itoring methods are given in Fig. 7. To make the diagnosis
more visual, we have added three units to the predict label.
It can be seen directly that the OFC-SVM performs best. And
the six methods ROC curve in Fig. 5 further confirms the
proposed method is superior.

V. RESULTS AND DISCUSSION

Through comparing the PAR values of case 1 with case 2,
we can make an initial conclusion that the OFC-SVM method
is optimal. However, the following two special scenarios have
happened in the experiment:

a). As shown in section III-C, PAR formula is constructed
by the FAR and MAR. So there are two special conditions
can make several methods have the same PAR values. Firstly,
when Mip = M, Fip = Flpi#jandije{l---6},
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TABLE 2. Diagnosis results of Sg — 1.

Evaluation So-1
Index SVM PCA-SVM  ForeCA-SVM OFC-SVM ForeCA-GA-SVM  ForeCA-PSO-SVM
Type-1 PAR 6.000% 8.286% 1.429% 0.000% 2.857% 0.000%
Type-1I PAR 23.529% 68.731% 8.050% 0.000% 19.195% 0.000%
PAR 16.517% 44.553% 5.401% 0.000% 12.660% 0.000%
Accuracy 85.587% 62.704% 95.394% 100% 89.302% 100%
(576/673) (422/673) (642/673) (673/673) (601/673) (673/673)
5 St 5 FEASWM 5 FoeCASVM Receiver operating characteristic
A ] e N ' ' '
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FIGURE 7. SO-1 diagnosis results visual plot.

the PAR have the same values. Secondly, when M/i R >
Mg, Figp < Fyp, or Mip < My, Fip > F)p, at the same
time, the weight parameter y (0 < y < 1) make several
different methods occurred the situation of PA R= Pg R

b). The proposed OFC-SVM method and the five basic
methods are presented to monitor the industrial process,
as discussed above, the industrial system mix physical, chem-
ical and biological reactions. Also, the significant disturbance
is further added the difficult of processes monitoring. So the
same method will show inconsistent performance when it
under the different working conditions. At the same time,
GA and PSO algorithms have uncertainty in finding parame-
ters [16]. As showed in case 1, the performance of ForeCA-
GA-SVM method is weaker than ForeCA-SVM. But in some
special conditions, the parameters are searched by GA algo-
rithm will be better than GS and PSO algorithm (The special
conditions can refer the supplement information D-Table S6
(the fault sensor of X6)). So the performance of OFC-SVM
needed to be further strictly confirmed.

A. SCENARIO 1: SEVERAL METHODS HAVE THE SAME
PAR VALUES

To solve the problem that several methods have the same
PAR values, a novel ROC curve is developed to assist PAR
decision-making. Taking the Sapk-5 fault as an example,

VOLUME 7, 2019

=

0.8 B

1-Type-Il PAR
o
[=2
L

o
=
L

—— SVM (AUC=0.989)

—— PCA-SVM (AUC=0.949)
0.2 ForeCA-SVM (AUC=0.962) 1
OFC-SVM (AUC=0.982) ]
ForeCA-GA-SVM (AUC=0.984) |]
ForeCA-PSO-SVM (AUC=0.992) [{

0.0 L L
0.0 0.2 0.4 0.6 0.8 1.0

Type-I PAR

FIGURE 8. ROC curve plot of SALK-5.

OFC-SVM, ForeCA-GA-SVM and ForeCA-PSO-SVM PAR
values are 5%, 4%, and 4%, respectively. ForeCA-GA-SVM
and ForeCA-PSO-SVM have the same PAR values, the per-
formance of the two methods cannot be judged by the PAR
values. So the ROC curve derived by type I PAR and Type
IT as shown in Fig. 8, the AUC of ForeCA-PSO- SVM
(AUC = 0.992) is larger than that of ForeCA-GA-SVM
(AUC = 0.984). So the ForeCA-PSO-SVM method is much
better than ForeCA-GA -SVM, which is consistent with the
diagnosis accuracy (96.73% > 96.29%).

B. SCENARIO 2: OFC-SVM METHOD IS NOT

ALWAYS OPTIMAL

As shown in Scenario 1, the PAR value of OFC-SVM is large
than ForeCA-GA-SVM and ForeCA-PSO-SVM. Since the
quadratic GS sets the parameter interval by trading off the
running time and diagnosis accuracy, the optimal parameter
may be outside the set interval. In order to rigorously verify
the method performance, the 10 sensor fault diagnosis results
of the Monte Carlo model show in Table S6. Table S7 presents
the 20 sensor faults diagnosis results of WWTP (Table S6-S7
in the Supplementary Information D). The PAR weight
parameter is still set 0.6, and all parameters are consistent
with the previous setting. Fig. 9 and Fig. 10 are the averaging
PAR and average diagnostic accuracy for Tables S6 and S7.
It can be seen from the Fig 8 and Fig 9 that the OFC-SVM
average PAR is the lowest on all platforms. Taking Fig. 10 as
an example, the proposed OFC-SVM method average PAR
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FIGURE 9. Fault diagnosis results of Monte carlo model.
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FIGURE 10. Fault diagnosis results of WWTP.

value is 3.67%, which is lower than the SVM by 80.8%.
It is also lower than ForeCA-SVM (65.5%). Moreover, the
OFC-SVM diagnosis accuracy is the highest among the six
methods, which is 6.1% higher than ForeCA-SVM method
and 13.76% higher than SVM method. Therefore, the average
PAR and diagnosis accuracy simultaneously verify that the
OFC-SVM method is optimal.

VI. CONCLUSION

In this work, a novel fault diagnosis method namely
OFC-SVM together with a following comprehensive per-
formance evaluation index PAR is proposed. The contri-
bution herein mainly includes the following three aspects:
Firstly, ForeCA algorithm is improved to extract the feature,
the ForeCA algorithm can compensate for the weakness of
PCA under Non-Gaussian data. Also, use of ForeCA algo-
rithm for feature extraction can effectively reduce the time
consumption of SVM model. Secondly, to further improve
the model performance, a simple quadratic GS algorithm is
used to derive the optimal parameters. The quadratic GS is
able to achieve better results through seeking parameters than
PSO and GA with less time consumption. Thirdly, a novel
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comprehensive index PAR is proposed. And further deriva-
tion a new ROC curve to assist PAR decision. The proposed
OFC-SVM method is compared with SVM, PCA-SVM,
ForeCA-SVM, ForeCA-GA-SVM, ForeCA-PSO-SVM, with
being validated by Monte Carlo model and a full-scale
WWTP. By compare the results of all methods, OFC-SVM
is more superior in terms of PAR values. In the meanwhile,
the diagnostic accuracy further validates the conclusion.
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