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ABSTRACT

One approach to blind source separation of instantaneously

mixed, non-stationary sources involves using the generalized

eigenvalue decomposition of two estimated covariance matri-

ces. The assumption is that the source statistics change with

time whilst the mixing matrix does not. A recent generalisa-

tion of this approach to convolutive mixtures was achieved by

extending the generalized eigenvalue decomposition to poly-

nomial matrices. In this paper, we present a further investi-

gation into this broadband BSS technique. We derive some

expressions for the conditions under which source separation

is possible. The validity of our analysis is illustrated through

some computer simulations.

Index Terms— non-stationary, broadband, blind signal

separation, generalised eigenvalue decomposition.

1. INTRODUCTION

Blind source separation (BSS) is the recovery of source sig-

nals from measurements of mixtures of the signals without

any prior knowledge of the signals or mixing process. Much

effort has been devoted to developing algorithms for instanta-

neous BSS and convolutive (broadband) BSS using statistical

information about the source signals. In the case of instan-

taneously mixed, non-stationary signals, one approach uses

joint diagonalization of two “target matrices” in order to es-

timate the unknown, fixed mixing matrix [1, 2, 3]. These

(covariance) matrices are usually calculated over different

time-intervals so as to capture the non-stationarity of the

sources. The joint diagonalization is achieved using the gen-

eralized eigenvalue decomposition (GEVD). This algorithm

is for narrowband signals and so would generally not work if

the sources underwent convolutive mixing. Generalisations

of the GEVD to the polynomial domain, namely polynomial
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GEVD (PGEVD), have recently been proposed [4, 5]. They

are based on recent work on extending the eigenvalue de-

composition (EVD) to polynomial matrices, or polynomial

eigenvalue decomposition (PEVD) [6, 7]. Note that, strictly

speaking, these algorithms use Laurent polynomials. Re-

cently Weiss [8, 9] has explored the conditions under which

a PEVD exists and has shown that, in general, the decompo-

sition requires Laurent series. In this paper, we investigate

further this PGEVD-based broadband BSS approach and look

at conditions under which the source signals can be recov-

ered. First we review the (scalar) GEVD and then look the

conditions under which a PGEVD exists. We then study

the conditions under which the BSS problem can be solved.

Finally the results of a simple computer simulation are pre-

sented. We use the notation u(z) to represent a function

u : C → C. If a variable has other relevant properties (e.g.

analyticity; a Laurent polynomial) it is mentioned in the text.

Bold face variables are matrices.

2. GENERALISED EIGENVALUE DECOMPOSITION

The scalar GEVD of the two matrices {A,B} ∈ C
M×M can

be written:

AU = BUΛ (1)

where the matrix U ∈ C
M×M contains the generalised eigen-

vectors and Λ ∈ C
M×M is a diagonal matrix containing the

generalised eigenvalues. The scalar GEVD is not well defined

if both matrices are rank deficient [10]. Hence, without loss

of generality, we assume that B is invertible.

Generalising eqn. (1), the GEVD of two Laurent polyno-

mial matrices A(z) and B(z) is written as:

A(z)U(z) = B(z)U(z)Λ(z) (2)

where {A(z),B(z),U(z),Λ(z)} : C → C
M×M . Note that

for a specific value of z, eqn. (2) is just the scalar GEVD.

Hence, as above, we assume, that B(z) is invertible. So far

there seems to be no published existence proof for a Lau-

rent series GEVD. However the existence of the Laurent se-

ries EVD of a parahermitian matrix has been studied [11, 12,
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13, 8, 9] and it is known that the GEVD can be cast as the

EVD of a parahermitian matrix (cf. see eqn.(6-8) of [4]).

Specifically, since B(z) is parahermitian, invertible and an-

alytic its EVD1 is B(z) = Q(z)ΛB(z)Q
P (z), at least on

the unit circle. Also, ΛB(z) is invertible on the unit cir-

cle and admits an analytic square-root there, and so C(z) =

{L−1(z)}PA(z)L−1(z), where L(z) = Λ
1/2
B (z)QP (z), is

parahermitian, and is analytic on the unit circle. Thus, on the

unit circle eqn.(2) becomes:

C(z)V (z) = V (z)Λ(z) (3)

which is a Laurent series EVD with V (z) = L(z)U(z). Thus

we may evoke the results of Weiss et. al [8, 9] to infer the ex-

istence of the generalised eigenvalues Λ(z) and V (z). The

existence of the matrices V (z) and L−1(z) imply the exis-

tence of the generalised eigenvectors U(z).

The results of Weiss et. al [8, 9] show that the generalised

eigenvalues in the matrix Λ(z) exist as unique and conver-

gent but likely infinite-length Laurent series provided they

are Hölder continuous on the unit circle. The columns of

the matrix V (z) can be multiplied by an arbitrary phase re-

sponse that is not defined by the matrix C(z). If the gen-

eralised eigenvalues are selected as analytic functions on the

unit circle, and if the phase response is selected such that the

elements of V (z) are Hölder continuous with α > 1 on the

unit circle, then V (z) exists as a convergent Laurent series.

If the generalised eigenvalues are analytic but the phase re-

sponse is discontinuous or if the eigenvalues are not analytic,

V (z) does not have an absolutely convergent Laurent series

solution but can generally be approximated by Laurent poly-

nomials. Analytic eigenvalues do not exist if a paraunitary

similarity transformation exists that brings C(z) into a form

with pseudo-circulant blocks on the diagonal with at least one

of a dimension greater than one. The generalised eigenvectors

are given by U(z) = L−1(z)V (z). Since B(z) is analytic so

is L(z). Thus the generalised eigenvectors U(z) can exist as

absolutely convergent Laurent series or can be approximated

by Laurent polynomials.

2.1. Integral Domains

In the absence of some constraints, the algebra of Laurent

series is a ring. Thus there could be divisors of zero. This is

problematic because, as we shall see, we will be faced with

equations of the form xy = 0 where x 6= 0 and from which

we wish to infer that y = 0. However, integral domains are

rings which have no divisors of zero and analytic functions

form an integral domain (see, e.g., p.127 of Freitag [15]). In

the following we therefore will require our functions to be

analytic.

1Here AP (z) is the paraconjugate of A(z): AP (z) = [A(1/z∗)]H [14]

i.e. the coefficients are conjugated and z is replaced by 1/z.

3. NON-STATIONARY BLIND SIGNAL SEPARATION

3.1. Signal Model and GEVD

We assume N independent sources transmitting signals sk
1 ≤ k ≤ N that propagate through some channels Hi,j(z)
1 ≤ j ≤ M to an M -element array. Further, we assume that

two datasets are collected at different times and that the mix-

ing matrix has not changed but the signal statistics have. The

received signals can be expressed as

xi(z) = si(z)H(z) 1 ≤ i ≤ 2. (4)

The associated space-time covariance matrices are thus

Ri(z) = HP (z)Si(z)H(z) 1 ≤ i ≤ 2 (5)

where Si(z) : C → C
N×N is the cross spectral density

(CSD) matrix for the i-th dataset and is diagonal by virtue

of the independence of the source signals. In the following,

we look at the connection between the GEVD of the systems

(R1(z),R2(z)) and (S1(z),S2(z)).
Assume we have calculated a Laurent series GEVD of

R1(z) and R2(z). This implies that R2(z) must be full rank

(as per section 2). Hence both H(z) and S2(z) are full rank

(cf. eqn. (5)). This in turn implies that M ≤ N i.e. there

must be at least the same number of signal sources as sensors

(or else H(z) would not be full rank). If M < N we have

an under-determined BSS problem and we will not be able to

recover the signals without extra information. Hence in the

following we assume M = N .

Taking the Laurent series GEVD of R1(z) and R2(z) we

may write, for some k ∈ {1 : M},

R1(z)uk(z) = λk(z)R2(z)uk(z). (6)

Since uk(z) is an eigenvector, it is non-zero so

det (R1(z)− λk(z)R2(z)) = 0. (7)

Now using eqn. (5), after some algebra, we find

det(H(z))2 det(S1(z)− λk(z)S2(z)) = 0. (8)

Since H(z) is full rank, det(H(z)) 6= 0 and so

det((S1(z)− λk(z)S2(z))) = 0. (9)

Hence the generalised eigenvalues of (R1(z),R2(z)) are also

generalised eigenvalues of (S1(z),S2(z)). Furthermore let

wk(z) be the generalised eigenvector for (S1(z),S2(z)) cor-

responding to λk(z) so that

(S1(z)− λk(z)S2(z))wk(z) = 0. (10)

Now, H(z) is full rank so its inverse exists and Si(z) can

be written in terms of Ri(z) (1 ≤ i ≤ 2) (cf. eqn. (5)).

Inserting this into eqn. (10) we get, after some algebra,

(R1(z)− λk(z)R2(z))H
−1(z)wk(z) = 0 (11)



thus H−1(z)wk(z) is the generalised eigenvector of the sys-

tem (R1(z),R2(z)) corresponding to λk(z). Thus

U(z) = H−1(z)W (z). (12)

Hence the generalised eigenvalues of (R1(z),R2(z)) are the

ratios of the power spectral densities (PSD) of the source sig-

nals, and the generalised eigenvectors are related to the gen-

eralised eigenvalues of (S1(z),S2(z)) by the matrix H(z).

3.2. Signal Recovery

In the following we show that W (z) can be a permuted di-

agonal matrix. This leads to the conclusion that U(z) can be

used to recover the source signals from the received data.

Since Si(z) i = 1, 2 are diagonal, we have from eqn. (10)

that, for j ∈ {1 : M}

(S1,j(z)− λk(z)S2,j(z))wk,j(z) = 0 (13)

We assume that all the functions in eqn. (13) are analytic, at

least on the unit circle. In this case (see section 2.1), either

(S1,j(z) − λk(z)S2,j(z)) ≡ 0 or wk,j(z) ≡ 0 in the do-

main of analyticity (which includes the unit circle). For every

fixed z = ejΩ0 eqn. (10) is a Hermitian definite scalar GEVD,

wk(e
jΩ0) is not the zero vector and at least one element, say

the j0-th, is non-zero. Although it is possible that wk,j0(e
jΩ)

is zero at some other value Ω1, since it is analytic, it can only

be zero at isolated points. It follows that

S1,j0(z)− λk(z)S2,j0(z) ≡ 0. (14)

Thus, there must be at least one index j0 such that eqn. (14)

holds. As S2(z) is analytic, full rank, and diagonal, we there-

fore have:

λk(z) = S1,j0(z)/S2,j0(z) (15)

i.e. the generalized eigenvalues are the ratio of the source

PSDs. If, in addition, there is another index j1 6= j0 such that

wk,j1(z) is also non-zero, then S1,j1(z) − λk(z)S2,j1(z) ≡
0 and we have λk(z) = S1,j1(z)/S2,j1(z). From eqn. (15)

we see that two of the PSD ratios are equal, and λk(z) is an

eigenvalue with algebraic multiplicity greater than one.

If we assume, for the moment, that there are no identical

PSD ratios, then only wk,j0(z) is nonzero i.e.

wk,j(z) = 0 j 6= j0 (16)

and the rows of the matrix W (z) contain one non-zero el-

ement (the j0-th one). Now consider the row m 6= k. We

have

(S1(z)− λm(z)S2(z))wm(z) = 0. (17)

As we are assuming that the generalised eigenvalues all have

an algebraic multiplicity of one, the vector wm(z) contains

only one non-zero element (cf. eqn. (16)). Assume it is also

the j0-th one. Then eqn. (17) gives us

λm(z) = S1,j0(z)/S2,j0(z) = λk(z). (18)

But by assumption λm(z) 6= λk(z) hence the non-zero ele-

ment of the vector wm(z) cannot be the j0-th one. Thus the

columns of the matrix W (z) contain only one non-zero el-

ement. Hence the matrix of generalized eigenvectors can be

written as

W (z) = D(z)Π (19)

where D(z) contains the non-zero elements of the matrix

W (z) on its diagonal and Π is a permutation. Thus, using

eqns. (4) and (12), we have

x(z)U(z) = s(z)D(z)Π (20)

and, up to scaling and permutations, we have recovered the

source signals from the received data.

On the other hand if we have eigenvalues with an alge-

braic multiplicity greater than one (i.e. equal PSD ratios)

then the rows of the matrix W (z) contain more than one

non-zero element. The number of non-zero elements will

be equal to the algebraic multiplicity of the corresponding

eigenvalue. Furthermore the columns of the matrix W (z)
will also contain the same number of non-zero elements.

Hence the matrix of generalized eigenvectors can be written

as W (z) = ∆(z)Π where ∆(z) is a block-diagonal matrix

that contains the non-zero elements of the matrix W (z) and

Π is a permutation. Taking the Laurent series SVD of the

blocks of ∆(z), we see the effect of W (z) (cf. eqn. (20)) is

to apply a parunitary mixing to the signals that have identical

PSD ratios as well as scaling and permuting them.

4. SIMULATIONS

The two published algorithms for computing a ‘broadband’

GEVD [4, 5] use the ideas behind a PEVD algorithm [7].

The latter tends to produce eigenvalues that are spectrally

majorised [16] and so are only analytic in special cases, and

hence violate the requirements derived in section 2. Clearly,

if the source PSD ratios are majorised, these two algorithms

would work (e.g. see [5]). In the absence of a genuine Laurent

series GEVD algorithm, the simulations below are based on

a pseudo-algorithm which requires human intervention: The

PGEVD algorithm in [5] is first applied directly to the two

matrices R1(z) and R2(z). The polynomial matrix of ma-

jorised eigenvalues output from this algorithm is then trans-

formed to the frequency domain. From a plot of the magni-

tude of the eigenvalues, the permutation that makes the eigen-

values a smooth function of frequency is determined; this is

applied to the eigenvalues and eigenvectors which are then

transformed to the time domain producing U(z) and Λ(z).
Due to lack of space, we only present results for two ex-

periments. Using an invertible, FIR mixing matrix A, of or-

der 3, we generate two sets of four convolutively mixed sig-

nals with corresponding CSD matrices R1(z) and R2(z). In

the first experiment, the CSD matrices are generated from
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(b) Signal Separation Matrix H(z)U(z).

Fig. 1. Expt. 1: Distinct Spectrally Unmajorised Sources.

the source model of [7] modified such that the sources cor-

responding to R1(z) are not spectral majorised. This repre-

sents conditions in which good signal separation performance

should be achievable but which cause problems for the exist-

ing PGEVD algorithms (which cannot recover unmajorised

signals). In the second experiment, the source model is mod-

ified to produce some very similar PSD ratios. This tests the

main limitation of the approach.

For experiment 1, the PSD ratios are shown in Fig. 1(a)

along with the generalised eigenvalues obtained using the al-

gorithm of Redif [5]. Note how this algorithm majorises the

eigenvalues and hence will not recover the source signals.

Using the pseudo-Laurent series GEVD algorithm outlined

above, we obtained eigenvalues identical to the PSD ratio

matrix shown in Fig. 1(a)(bottom). Fig. 1(b) shows the sig-

nal separation matrix (i.e. H(z)U(z) cf. eqn.(20)) using the

pseudo-Laurent series GEVD algorithm. The separation ma-

trix turns out to be diagonal and shows that the source signals

would be successfully recovered (up to a polynomial scaling

which is equivalent to a convolution). For experiment 2, the

eigenvalues from the pseudo-algorithm and the PSD ratio ma-

trix are shown in Fig. 2(a). We see that the eigenvalues are not
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Fig. 2. Expt. 2: Indistinct Sources.

particularly good estimates of the PSD ratios and hence signal

separation is likely to be poor. Fig. 2(b) shows the signal sep-

aration matrix which has off-diagonal terms indicating that

the signals will not be completely unmixed.

5. CONCLUSIONS

We have presented an analysis of a Laurent series GEVD

approach to broadband non-stationary BSS. This involves

gathering two sets of data such that the signal CSD matrix

changes between measurements but the mixing matrix does

not. The conditions under which the signals can be separated

and uniqueness of the results are given. Specifically if the

PSD ratios are analytic on the unit circle; the mixing matrix

and the CSD matrix of at least one measurement are full rank;

and the matrix C(z) is not similar to a pseudo-circulant; then

the source signals can be recovered up to a permutation and a

frequency dependent scaling, and possibly a paraunitary mix-

ing. The paraunitary mixing only occurs if the measurements

of two or more sources have identical PSD ratios. Recov-

ery of the signals requires an analytic Laurent series GEVD

algorithm.
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