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Abstract—In order to foster renewable energy integration,
improve power quality and reliability, and reduce hydrocarbon
emissions, there is a strong need to deploy energy storage systems
(ESSs), which can provide a control medium for peak hour
utility operations. ESSs are especially desirable at the residential
level, as this sector has the most untapped demand response
potential. However, considering their high acquisition, operation,
and maintenance costs, isolated deployment of ESSs is not eco-
nomically viable. Hence, this paper proposes asharing-based ESS
architecture, in which the demand of each customer is modeled
stochastically and the aggregate demand is accommodated by
a combination of power drawn from the grid and the storage
unit when the demand exceeds grid capacity. The optimal size
of energy storage systems is analyzed an analytical method is
developed for a group customers withsingle type of appliances.
This framework is also extended to any network size with
arbitrary number of customers and appliance types, where the
analytical method provides a tractable solution to the ESS sizing
problem. Finally, a detailed cost-benefit analysis is provided,
where the results indicate that sharing-based ESSs are practical
and yield significant savings in terms of ESS size.

I. I NTRODUCTION

Over the past few years, the power grids have become
more stressed due to the steady increase in peak demand and
more fragile due to the integration of intermittent renewable
energy resources. Such a negative trajectory poses a profound
threat to power grids, leads to a rise in hydrocarbon emissions,
and exposes new economic challenges. One effective solution
to mitigate the aforementioned issues, is to deploy energy
storage systems (ESSs), which can act as an energy buffer
and decouple the time of generation and demand by storing
cheaper and cleaner off-peak hour electricity and delivering it
during the peak load periods [1]. Integration of such storage
units has multi-faceted monetary benefits for different players.
For instance, end-users can enjoy the reduced electricity cost
and lessened interruptions, while utility operators can enjoy
improved grid reliability and asset utilization, and possibly
deferral of system upgrades. Moreover, policymakers benefit
from reduced hydrocarbon emissions and the mainstream

Islam Safak Bayram is with Qatar Environment and Energy Research Insti-
tute and College of Science and Technology, Hamad Bin Khalifa University,
Education City, Doha, Qatar. Email: ibayram@qf.org.qa.

Mohamed Abdallah is with the Department of Electrical and Computer
Engineering, Texas A&M University at Qatar, PO Box 23874, Education
City, Doha, Qatar and the Department of Electronics and Communications
Engineering, Cairo University, Giza, PO Box 12613, Egypt. Email: mo-
hamed.abdallah@qatar.tamu.edu

Ali Tajer is with the Department of Electrical, Computer, and Systems En-
gineering, Rensselaer Polytechnic Institute, USA, Email:tajer@ecse.rpi.edu.

Khalid Qaraqe is with the Department of Electrical and Computer Engi-
neering, Texas A&M University at Qatar, PO Box 23874, Education City,
Doha, Qatar. Email: khalid.qaraqe@qatar.tamu.edu.

integration of renewables, which are closely linked to energy
security [1] and [2].

While employing storage devices at microgrids has certain
benefits, their deployment based on the current technologies
may still not be economically viable [2]. Therefore, optimal
sizing of the storage units based on the realistic needs of the
grids is a critical step towards the efficient operation of the
grid. Specifically, over-provisioning ESS size entails costly
and underutilized assets, whereas under-provisioning reduces
its operating lifetime (e.g., frequently exceeding the allowable
depth of charge level degrades its health). Hence, there is a
strong need to develop analytical models to solve the sizing
problem. Furthermore, the sizing requirements for storage
units are usually application-dependent. For instance, energy
arbitrage applications for independent system operators require
100s mega watts (MW) in size, while storage units employed
for energy management for communities or microgrids require
10s kilo watts (kW). In this study, our main focus is on the
latter one, as the residential sector has a great potential for
peak demand reduction in the U.S. [3].

ESS sizing has received some attention in the literature. The
work in [4] presents a sizing approach forsingle industrial
customers for peak saving applications. The sizing problem
is solved by maximizing the net benefit, which is the sum of
reductions in the electricity bills minus the operation costs and
the one-time acquisition cost. Similarly, [5] proposes a sizing
framework using similar cost models for a microgrid, but it
also considers savings due to the storage of energy generated
from renewable resources. The work in [6] develops a sizing
approach based on stochastic network calculus to size the
storage units coupled with solar power generation. It employs
loss of load probabilityas the main performance metric to
provision the resources. Another probabilistic approach is
presented in [7], which couples forecasting errors in wind
generation with the storage unit and sizes the storage unit
according to a desired level of accuracy. Moreover, [8] solves
the sizing problem by using stochastic dynamic programming
to minimize the operation cost and employs the storage device
for balancing the load in a wind farm application. From
the power engineering point of view, the sizing problem is
usually solved via simulations [9]–[11]. However, simulations
techniques are usually computationally expensive, and their
accuracy depends upon the availability of data traces.

In this paper, we develop an analytical framework for
optimal energy storage sizing for sharing-based end-user ap-
plications. The proposed framework contributes to the existing
literature in the following ways:

• The existing analytical methods for storage sizing focus
on settings withone customer, or are developed for
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renewable integration and do not explore the underlying
user dynamics. The proposed framework can cope with
any network with arbitrary number of consumers with
different levels of demand. Our analytical results show
that a sharing-based design of storage units exhibits
substantial gains over user-level designs.

• The existing methods for multi-consumer settings are
simulation-based. Lack of closed form expressions for
the storage size-cost model limits the applicability of the
model in optimizing the operations. The advantage of the
proposed analytical method is hat it establishes the exact
optimal sizing, and subsequently, is computationally less
expensive.

• Majority of the existing literature assumes that residen-
tial users employ storage units for energy management
applications without considering the associated costs.
However, the studies conducted by Electric Power Re-
search Institute [1] and Sandia Laboratories [2] reveal
that the cost of employing stand-alone ESS is very high1.
Hence, we provide a detailed economic analysis for ESS
applications in residential usage and show that storage
technologies can be economically viable, only if operated
in a shared manner.

Proper sizing of storage units is ultimately linked to the cus-
tomer electricity consumption model. Several measurement-
based studies [12]–[14], and [15] show that electricity con-
sumption of households can be represented by On-Off models.
For instance, the work presented in [12] measures the elec-
tricity consumption of20 households at fine-grained intervals
(every 6 second) and models the loads with continuous-
time Markov chains. Driven by this observation, we adopt a
Markovian fluid model to represent consumer’s demands, and
the analyzes rely on the stochastic theory of fluid dynamics.
We establish the interplay among the minimum amount of
storage size, the grid capacity, number of consumers, and the
stochastic guarantees on outage events.

We note that studying storage units at a network level is
of paramount significance as they are expected to become
integral to smart energy grids. More specifically, ESSs will
be employed at smart residential, business complexes, and
university campuses, to name a few, to reduce peak hour
consumption. Clearly, in such sharing-based applications, the
size of the energy storage is linked to the customer population,
the power drawn from the grid, and the load profile. This
relation is highly non-linear due to multiplexing gains which
are computed by the percentage of reduction in the required
amount of resources with respect to the baseline case of
assigning peak demand to each user.

II. SYSTEM DESCRIPTION

We consider a community of consumers in which the
demands ofN users are accommodated by the power grid
capacity along with ashared energy storage system unit,
in which capacity fluctuates over time. The grid capacity at

1The cost/benefit regime depends on different assumptions such as avail-
ability of solar rooftops, energy consumption statistics,project duration, and
utility tariffs, to name a few. See references for details

TABLE I: Notations

Parameter Description

Ct Power drawn from grid at timet.
N Number of users in the single class case.
N Vector of the number of users forK classes. Note that this is not the

number of houses since in one house there can be multiple appliances
requesting demand.

Rk Demand of a user of classk.
λk Arrival rate of charge request for classk.
µk Mean service rate for the customer demand of classk.
B Size of the energy storage unit.
S(t) ESS depletion level,0≤S(t)≤B.
Ln(t) Aggregated load on the system whenn users are On. For single class

index i is used.
Fi(x) Steady state cumulative probability distribution function of ESS

charge level.
ς Grid power allocated per source (C/N ).
κ ESS per user (B/N ).
ωk Effective demandfor customer classk.
ζ Bustiness parameter.
η Round-trip efficiency of the storage unit.

time t is denoted byCt and ESS depletion level isS(t), for
t ∈ R

+. Furthermore, the energy storage unit has the following
parameters:

• Energy ratingor the size of the storage is denoted byB
(kWh).

• Power ratingis the rate at which storage can be charged
or discharged. The charging rate is assumed to bePc ≤
Ct, ∀t, and discharge ratingPd is related to the energy
rating B since B = Pd × (desired support duration).
Desired support duration is typically equivalent to the
length of the peak hour.

• The efficiencyof a charge-discharge cycle is modeled by
η ∈ [0, 1] to capture the percentage of stored energy or
the fraction of energy that is transferred after losses are
extracted.

• Dissipation lossesrepresent a small percentage of losses
that occur due to leakage. For simplicity in notations,
dissipation losses are ignored.

• For economic analysis, we follow the standard assump-
tions made in [1] and assume that the project will be sited
for 15 years, with10% discount rate and the economic
analysis is carried out by computing the net present value
of the storage in the first year by using the cost per kW
or kWh.

Furthermore, since the consumers do not necessarily have
identical demands, we considerK customer classes, which
are distinguished by the amount of electricity demands, rep-
resented by{Rk}, whereRk denotes the energy demand per
time unit for customer typek. Let Nk denote the number of
consumers of typek and the vectorN represents the number
of consumers of each type, that isN = (N1, · · · , NK). As
established in [12], [13], [16], [17] and [15] the consumption
pattern of each consumer can be well-represented by a two-
state “On/Off” process. We define the binary variablesikt to
represent the state of consumeri of typek at timet such that

sikt =

{
1 consumeri is On
0 consumeri is Off

. (1)

When a customer is in the “On” state, it initiates an energy de-
mand. The duration of demand is modeled statistically, which
is adopted to capture the variety types of consumers’ demands.
Specifically, the duration of typek customer’s demand is
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assumed to be exponentially distributed with parameterµk.
Furthermore, we assume that the requests, that are transitions
from “Off” to “On”, are generated randomly and according
to a Poisson process with parameterλk. Hence, for each
consumeri of type k at any timet we have

P(sikt = 1) =
λk

λk + µk
. (2)

In order to formalize the dynamics of ESS, we defineLik(t)
as the charge request of consumeri of typek. Then, there are
exactly three cases that define the rate of change in the storage
unit: (i) the storage can be in the fully charged state, and the
aggregate demand is less than grid powerCt; (ii) the storage
can be completely discharged, and the aggregate demand is
more than the grid powerCt; and (iii) any partially charged
state with any customer demand. Therefore, for the rate of
change in the storage level of the ESS, we have

dS(t)

dt
=











































0, if S(t) = B &
K
∑

k=1

Nk
∑

i=1

ηLik(t) < Ct

0, if S(t) = 0 &
K
∑

k=1

Nk
∑

i=1

ηLik(t) > Ct

η(Ct −

∑

k

∑

i

Lik(t)), otherwise

.

(3)
Due to stochasticities involved (in consumption and gener-

ation), by choosing any storage capacityB, only stochastic
guarantees can be provided for the reliability of the system
and always there exists a chance of outage, which occurs
when available resources fall below the aggregate demands
by the consumers. By noting thatS(t) denotes the energy
level that the storage unit needs to feed into the grid to avoid
outage, an outage event occurs when the necessary load from
the storage unit exceeds the maximum availableB. Hence,
we defineε-outage storage capacity, denoted byB(ε), as the
smallest choice ofB corresponding to which the probability
of outage does not exceedε ∈ (0, 1), i.e.,

B(ε) =

{

min B
s.t. P(St ≥ B) ≤ ε

. (4)

Our goal is to determine theε-outage storage capacityB(ε)
based on grid capacityCt, the number of usersN , and
their associated consumption dynamics. For the simplicityof
mathematical expressions, we scale the storage parametersand
instead ofB/η we redefineB as the maximum amount of
energy that can be stored, and similarlyPd andPc represent
the actual power ratings. The notations are summarized in
Table I. We start our analysis for derivingB(ε) for a single
class case.

III. STORAGE CAPACITY ANALYSIS FOR SINGLE CLASS

CUSTOMERS(K = 1)

A. Storage Access Dynamics

When the grid can serve all the consumers’ demands, there
will be no consumer served by the storage unit. On the
other hand, when the grid capacity falls below the aggregate
demand, the consumers access the storage unit. Since the
requests of the consumers arrive randomly, the number of
consumers accessing the unit also varies randomly.

0 1 2 · · · N

Rp 2Rp NRp

Nλ

µ

(N − 1)λ

2µ

(N − 2)λ

3µ

λ

Nµ

Fig. 1: Composite model forN independent users for single user
type (k=1). Each user becomes active (“On”) at rateλ and becomes
inactive (“Off”) at rate µ. The aggregate demand depends on the
active number of users.

Since we haveN independentconsumers each with a two-
state model, by taking into account their underlying arrival
and consumption processes, the composite model counting
the number of users accessing the storage unit at a given
time can be modeled as acontinuous-time birth-death process.
Specifically, this process consists of(N + 1) states, in which
staten ∈ {0, . . . , N} modelsn consumers being active and
accessing the storage unit, i.e.,

state at timet is n if
N∑

i=1

sit = n , (5)

and drawingnRp units of power from the storage unit. As
depicted in Fig.1, the transition rate from staten to staten+1
is (N − n)λ and, conversely, the transition from staten + 1
to staten is (n+ 1)µ. Hence, for the associated infinitesimal
generator matrixM , in which the row elements sum to zero,
for i, n ∈ {0, . . . , N} we have

M [i, n] =











−((N − i)λ+ iµ) n = i
iµ n = i− 1 & i > 0
(N − i)λ n = i+ 1 & i < N
0 otherwise

. (6)

By denoting the stationary probabilities of staten ∈
{0, . . . , N} byπn and according definingπ = [π0, π1, ..., πN ],
these stationary probability values satisfyπM = 0.

B. Analyzing Distributions

Given the dynamics of accessing the storage unit, in the next
step we analyze the statistical behavior of the ESS charge level.
Specifically, we defineFi(t, x) as the cumulative distribution
function (cdf) of the ESS charge level wheni ∈ {0, . . . , N}
consumers are depleting the storage unit at timet, i.e.,

Fi(t, x) = P(S(t) ≤ x and
N∑

j=1

sjt = i) . (7)

Accordingly, we define the vector of cdfs as

F (t, x) , [F0(t, x) , F1(t, x) , ... , FN (t, x)] . (8)

Based on this definition, the next lemma delineates a differ-
ential equation which admits the cdf vector as its solution and
is instrumental for analyzing the probability of outage events,
i.e., P(

∑N
i= Li(t) > Ct +B).

Lemma 1. The cdf vectorF (t, x) satisfies

dF (t, x)

dx
·D = F (t, x) ·M , (9)
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whereD is a diagonal matrix defined as

D , diag[−Ctµ , (1− Ct)µ , ... , (N − Ct)µ] , (10)

and matrixM is defined in(6).

Proof:
In order to compute the probability density functions, we

find the expansion ofFi(t, x) for an incremental change∆t
in t, i.e,Fi(t+∆t, x). Note that during incremental time∆t,
three elementary events can occur:

1) one inactive consumer might become active, i.e.,i
increases toi+ 1;

2) one active consumer becomes inactive, i.e.,i reduces to
i− 1; or

3) the number of active consumers remains unchanged.

Since the durations of arrival and departure of consumers are
exponentially distributed as cdfFi(t, x) can be expanded

Fi(t+∆t, x)

= [N − (i − 1)] · (λ∆t) · Fi−1(t, x)
︸ ︷︷ ︸

one consumer added

+ [i+ 1] · (µ∆t) · Fi+1(t, x)
︸ ︷︷ ︸

one consumer removed

+ [1− ((N − i)λ+ iµ)∆t] · Fi(t, x− (i − Ct) · µ∆t)
︸ ︷︷ ︸

no change

+ o
(
∆t2

)
, (11)

whereo
(
∆t2

)
represents the probabilities of the compound

events and tends to zero more rapidly than∆t2 (and∆t) as
∆t → 0. Next, by passing the limit

lim
∆t→0

Fi(t+∆t, x)

∆t

it can be readily verified that (11) simplifies to

∂Fi(x, t)

∂t
= [N − (i − 1)] · (λ) · Fi−1(t, x)

+ [i+ 1] · (µ) · Fi+1(t, x)

− [(N − i)λ+ iµ] · Fi(t, x)

− (i− Ct) · (µ) ·
∂Fi(t, x)

∂x
, (12)

where we have definedF−1(t, x) = FN+1(t, x) = 0. By
recalling that the design is intended gor a long-term steady-
state operation we have∂Fi(x, t)/∂t = 0. Hence, (12) can be
rewritten as

(i− Ct) · (µ) ·
∂Fi(t, x)

∂x
= [N − (i− 1)] · (λ) · Fi−1(t, x)

+ [i+ 1] · (µ) · Fi+1(t, x)

− [(N − i)λ+ iµ] · Fi(t, x) . (13)

By concatenating all the equations (13) for alli ∈ {0, . . . , N}
we obtain the compact form

dF (t, x)

dx
·D = F (t, x) ·M . (14)

The solution of the first order differential equation given
in (14) can be expressed as a sum of exponential terms. The
general solution requires computing(N + 1) eigenvalues of
the matrixMD−1 and the general solution can be expressed
as [18]:

F (t, x) =
N∑

i=0

αi φi exp(zix) , (15)

wherezi is the ith eigenvalue ofMD−1 with the associated
eigenvectorφi, which satisfyziφiD = φiM . The coefficients
{α0, . . . , αN} are determined by the boundary conditions, e.g.,
Fi(t, 0) = 0 andFi(t,∞) = 1.

In order to compute the probability distribution in (15), we
need to determine the eigenvalues ofMD−1, the eigenvectors
{φi}, and coefficients{αi}. Note that, sincex ≥ 0 and
Fj(t, x) is upper bounded by1, all of the positive eigenvalues
and the correspondingαi must be set to zero, hence this
reduces the computational complexity and (15) simplifies to:

F (t, x) =
∑

i:Re[zi≤0]

αi φi exp(zix) . (16)

It can be further observed that sinceziφiD = φiM , one of
the eigenvalues must be zero. Then by settingz0 = 0, the cor-
responding eigenvector can be computed fromφ0M = 0. We
also earlier showed that the steady state probability distribution
π of theN +1 state Markov chain can be computed from the
same equation, that isπM = 0. Since, the eigenvectorφ0 is
known and one of the eigenvalues isz0 = 0, we can write
φ0 = π. Therefore, (16) further simplifies to [19]:

F (t, x) = π +
∑

i:Re[zi<0]

αi φi exp(zix) . (17)

C. Single User Storage Capacity (K = 1, N = 1)

For computing the desiredε-outage storage capacityB(ε)
by leveraging the cdf vector found in (17) we start by a simple
network with one user (N = 1). The insights gained can be
leveraged to generalize the approach for networks with any
arbitrary sizeN . When N = 1 the infinitesimal generator
matrix M defined in (6) is

M =

[
−λ λ
µ −µ

]

. (18)

For finding the expansion ofF (t, x) as given in (15) we need
to find the eigenvalues ofMD−1, i.e. z0 andz1, whereD is
defined in (10). Based on (10) we find that

MD−1 =

[ 1
Ct

· λ
µ − 1

1−Ct

· λ
µ

− 1
Ct

− 1
1−Ct

]

. (19)

Hence, the eigenvalues are

z0 = 0 and z1 =
χ

Ct
−

1

1− Ct
, (20)

where we have definedχ , λ
µ . It can be readily verified that

the eigenvector associated withz1 is φ1 = [1 − Ct , Ct].
Therefore, according to (17) we have

F (t, x) = π + α1 φ1 exp(z1x) . (21)
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Finally, by finding the coefficientα1 we can fully characterize
F (t, x). This can be facilitated by leveraging the boundary
conditionF1(t, 0) = 0, which yields

F1(t, 0) = π1 + α1 Ct = 0 , (22)

where we have thatπ1 = λ
λ+µ . Therefore

α1 = −
χ

Ct(1 + χ)
, (23)

which, subsequently, fully characterizes both cdfsF0(t, x) and
F1(t, x) according to

F0(t, x) = π0 + α1(1− Ct) exp(z1x),

and F1(t, x) = π1 + α1Ct exp(z1x) .

As a result, by recalling the definition ofFi(t, x) in (7), the
probability that the storage levelSt falls below a target level
x is given by

P(St ≤ x) = F0(x) + F1(x) = 1 + α1 exp(z1x) . (24)

Given this closed-form characterization for the distribution of
St, we can now evaluate the probability term

P(St > B) , (25)

which is the core constraint in the storage sizing problem for-
malized in (4). Specifically, for any instantaneous realization
of Ct denoted byc we have

P(St > B) =

∫

Ct

P(St > B | Ct = c) fCt
(c) dc

= −

∫

Ct

α1 exp(z1B) fCt
(c) dc

=

∫

Ct

χ

c(1 + χ)
exp

(
Bχ

c
−

B

1− c

)

fCt
(c) dc .

Therefore, by noting thatz1 = χ
c − 1

1−c is negative, the
probability termP(St > B) becomes strictly decreasing in
B. Hence, the smallest storage capacityB that satisfies the
stochastic guaranteeP(St > B) ≤ ε has a unique solution
corresponding to which this constraint holds with equality. In
the simplest settings in which grid capacityCt is constantc
we find

B(ε) =
c(1− c)

χ− χc− c
· log

εc(1 + χ)

χ
. (26)

D. Multiuser Storage Capacity (K = 1, N > 1)

In this subsection we provide a closed-form for the prob-
ability term P(St ≤ x) for arbitrary values ofN , which we
denote byFN (x). Computing allFN (x) terms through com-
puting their constituent termsFi(t, x), especially asN grows,
becomes computationally expensive, and possibly prohibitive
as it involves computing the eigenvalues and eigenvectors
of MD−1. By capitalizing on the observation that for large
number of usersN ≫ 1, the largest eigenvalues are the main

contributors to the probability distribution, [20] shows that,
the asymptotic expression forFN (x) is given by

FN (x) =
1

2

√
u

πf(ς)(ς + λ(1 − ς))N
(27)

× exp(−Nϕ(ς)− g(ς)x)

× exp(−2
√

{f(ς)(ς + λ(1 − ς))Nx}),

where,

f(ς) , log

(

ς

λ(1− ς)

)

− 2
ς(1 + λ)− λ

ς + λ(1− ς)
,

u ,
ς(1 + λ)− λ

ς(1− λ)
,

ϕ(ς) , ς log(ς) + (1− ς) log(1− ς)− ς log(ς) + log(1 + λ) ,

g(ς) , z + 0.5 (ς + λ(1− ς))
ψ(1− ς)

f(ς)
,

z , (1− λ) +
λ(1− 2ς)

(ς + λ(1− ς))
,

andψ ,
(2ς − 1)(ς(1 + λ)− λ)3

ς(1− ς)2(ς + λ(1− ς))3
.

In this set of equations, time is measured in units of a single
average “On” time (1/µ). Furthermore,κ and ς are defined
as the ESS per user (B/N ) and the grid power allocated per
one source, respectively. Furthermore, we denote the variable
υ as the power above the mean demand allocated per user as
υ = ς − λ

1+λ .

IV. STORAGE CAPACITY ANALYSIS FOR MULTI -CLASS

CUSTOMERS(K > 1, N > 1)

In this section, we consider the case where the storage serves
more than one customer type. We start our analysis by noting
that the continuous-time Markov chain model presented in
Fig. 1, becomes aK dimensional Markov process. Recall
that total number of users of each class is represented by
N = (N1, · · · , NK) and we letn(t) = [n1(t) . . . nk(t)]
represent the number of sources of typek that are On at
time t. Furthermore,n(t) represents the state space of the
Markov process and similar to single class case given in (6),
the transitions can occur between neighboring states, and the
transition matrixM̄ =

{
M̄(i, n)

}
is given by,

M̄(n,∆+
k (n)) = (Nk − nk)λk, (28)

M̄(n,∆−
k (n)) = nkµk, (29)

M̄(n,n′) = 0, otherwise. (30)

where

∆+
k (n1, · · · , nk, · · · , nK) = (n1, · · · , nk + 1, · · · , nK)

∆−
k (n1, · · · , nk, · · · , nK) = (n1, · · · , nk − 1, · · · , nK).

In the single class case, the transitions can only occur be-
tween2 neighboring states. In the multi-class case, however,
the transitions can occur in2 × k different neighbors. For
instance, assume that there are two classes,k = 2, and the
Markov chain is in state(1, 1) (i.e., one active user from
each class). Therefore, there exists four possible transitions



6

(1, 0), (0, 1), (2, 1) and (2, 2), and the transition rates depend
on the(λk, µk) pairs. To that end, the transition rates given in
(28) represent customer arrivals, whereas the transitionsrates
in (29) account for new customer arrivals, and similar to single
class case there can not be any transitions beyond neighboring
states. This is given in (30).

A. Effective Demand

The analysis in Section III-B provided for the single-
class settings is also valid for the multi-class case. However,
computing the eigenvalues becomes infeasible whenK > 1.
Hence, we follow the decomposition method proposed in [21]
to efficiently evaluate the eigenvalueszi and the coefficients
αi. Our goal in this section is to computeωk which is a
deterministic quantity acting as a surrogate for the actual
aggregate stochastic demand [22]. In other words, assigning
ωk amount of resources to each customer class will satisfy (4).

We define parameterξ = 1 − ε1/B ∈ [0, 1] to account for
the susceptibility of the storage to customer demand pattern.
This parameter will be an essential part ofωk. First we
will consider large storage units, then we will show that the
proposed scheme is also valid for any storage size. Assume
that we are able to chooseN = (N1, · · · , NK) in a way that
ensuresP(St > B) ≤ ε for small ε and the eigenvalues are
relabeled such thatz0 ≥ z1 ≥ . . . ≥ 0, then the following
theorem holds.

Theorem 2. Let B(B, ε) = {N : P(St ≥ B) ≤ ε}. For large
storage sizeB and for smallε, we have,

lim
B=∞,ε→0

log ε

B
→ ζ ∈ [−∞, 0]

Furthermore, let

B̃ =

{

N :
∑

k

ωk(ξ)Nk < C

}

,

and,

B̄ =

{

N :
∑

k

ωk(ζ)Nk ≤ C

}

,

where effective demand can be computed by [21],

ωk(ζ) =
ζRk + µk + λk −

√

(ζRk + µk − λk)
2
+ 4λkµk

2ζ
·

(31)
Then,B̃ ⊆ B(B, ε) ⊆ B̄.

Proof: For a given set of users,N , the following holds.

P(St ≥ B)

ε
=

∑

k αk(1
Tφk)exp(zkB)

ε
,

where zk ’s are the non-positive eigenvalues of̄MD−1, φk

are the corresponding eigenvectors, and1T = [1, 1, · · · , 1].
Recall that, the coefficientsαk can be obtained by solving the
following set of equations.







∑

k αkφk = 0, if Dk > 0,
αk = 0, if zk > 0,

α01
Tφ0 = 1, otherwise.

TABLE II: Cost of poor power quality. [24]

$/kW Average High

Residential $0.10 $0.60
Small C&I $0.42 $2.52
Large C&I $1.42 $14.00

TABLE III: Average outage cost [25]

$/kW 15 Min. 30 Min. 1 Hour 2 Hours

Residential $0.05 $0.60 $2.60 $3.95
Small C&I $8.65 $16.01 $23.37 $48.91
Large C&I $4.79 $7.46 $10.12 $17.96

In [23], it is shown thatz0 > zk, for ∀k ≥ 1, andz0 satisfies
C =

∑

k αk(z0)Nk. Then the following holds,

P(St ≥ B)

ε
= α01

Tφ0exp
(z0−ζ)B(1 + o(1)), (32)

asB → ∞. Differentiation shows that, effective demandωk(y)
decreases asy increases. Thus, forN ∈ B, z0 < ζ and
P(St≥B)

ε → 0 asB → ∞, which indicates thatN ∈ B(B, ε).
In a similar manner, whenN /∈ B̄, then z0 > ζ and
P(St≥B)

ε → ∞, and thereforeN /∈ B(B, ε). This completes
the proof.

The interpretation of Theorem 2 is that (4) holds if and only
if
∑

k

ωk(ζ)Nk ≤ C. Furthermore, the following remarks hold.

Remark 2.1. The corresponding effective demand forζ =
0 is ωk(ζ) = λkRk

λk+µk

, which is the mean customer demand
for each class. Another interpretation of this result is that,
before an outage event occurs at the storage, each customer
turns “On” and “Off” their appliances many times that the
aggregated demand equals to the mean customer demand. This
result serves as a lower bound for the effective demand.

Remark 2.2. At the other boundary, the corresponding effec-
tive demand forζ = z is its peak demandRk. In this case,
each user is at “On” at all times, hence peak demand must
be allocated.

Remarks given above suggest that the system is more
susceptible to bustiness (longer “On” durations) for larger ζ
values. Also, similar to the multi-class case, the largest con-
tributor to the probability distribution is the largest eigenvalue,
i.e., z0.

V. ECONOMIES OFESS DEPLOYMENT

The proposed framework targets enhancing energy manage-
ment via deploying for end users and the monetary associated
benefits of ESS deployment [1].

1) Improved power qualityrefers to voltage sags and out-
ages experienced by customers, which in many cases
remains unnoticed. However if occur for sufficiently
large durations, they damage customers’ appliances. The
costs of momentary outages, according to a survey study
conducted in [24], are summarized in Table II.

2) Improved power reliabilityrefers to the usage of storage
units during outages and blackouts. In order to quantify
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TABLE IV: Average Time Of Use (TOU) rates in the United States
[1]

Summer Winter

$/kWh Peak Off-Peak Peak Off-Peak

Residential $0.25 $0.06 $0.13 $0.06
Small C&I $0.18 $0.05 $0.12 $0.05
Large C&I $0.06 $0.04 $0.05 $0.04

TABLE V: Demand Charges

Summer Winter

$/kW-Month Peak Off-Peak Peak Off-Peak

Residential $0.00 $0.00 $0.00 $0.00
Small C&I $15.00 $15.00 $8.00 $8.00
Large C&I $12.00 $12.00 $10.00 $10.00

the cost of power reliability, we adopt the measure
used in [25], i.e., the cost per kW shown in Table III.
Obviously the impact of the outages depends on the
duration and the frequency of the events. We adopt the
statistics conducted by [1] and assume that the consumer
average interruption duration in one year is88 minutes.

3) Reduced Time of Use (TOU) chargesinclude the savings
occurred by eliminating the use of peak hour electricity,
and using storage units. “Time Of Use” tariffs may vary
in different territories and for different seasons. In Table
IV, we present the average TOU tariffs in the U.S.

4) Demand chargesis a significant portion of the commer-
cial and industrial customers’ bill. Some utilities also
apply these charges to residential customers. It is usually
computed by the amount and the duration of the peak
usage [4]. Since it is not easy to compute these charges
without knowing the load profile, we did not consider
this in our calculations. An overview of demand charges
is presented in Table V.

It is noteworthy that our goal in discussing this example sce-
nario is to show how our framework can make the ESS deploy-
ment economically viable. Using ESSs is mostly application-
dependent and there can more benefits if storage is coupled
with distributed generation options. Additional benefits will
include profits by energy trading and reduced electricity
bills. Also, the cost of carbon emission decreases (due to
the elimination of peaking generators). The exact amount of
savings depends on the specific policies and regulations. For
commercial and industrial customers, there will be additional
benefits due to demand charges.

VI. N UMERICAL EXAMPLES

A. Single Class Customers

In this section, we provide numerical examples to explain
the system dynamics and show how the proposed framework
can be used in typical peak shaving applications. In the first
group of setting, uniform customer demand is considered
(K = 1). We use the aforementioned normalized values (unit
time is measured inµ−1 and unit demand is measured in peak
demand -Rp). We start by exploring the relationships between
the number of users (N ), ESS size (inRpµ

−1 units) and

the corresponding underflow probability for a given system
capacity, which remains constant over time,C. Charge request
rate per single userλ is set to0.3, and the mean capacity above
the mean demand per user is set toυ = 0.035 (assumptions
are valid for all single class case studies). Therefore, thetotal
system capacity becomesC = 0.2658N units. In Fig. 2(a),
sizing problem is evaluated for user populationN ranging
from 100 to 350. Considering the fact that, one household
can employ10 − 12 appliances, this interval is chosen to
represent a multi-dwelling building or a typical building on a
university campus. These findings can be used in the following
ways. First, system operators can provision the storage units
and provide statistical guarantees (underflow probability) to
their customers for a given user populationN . For example,
for a large-scale electric vehicle charging lot (e.g., located in
shopping mall or airports [26]) withN = 350 charging slots
in order to accommodate99.95% of the customer demand
the ESS size should be selected asB = 7 × Rp × µ−1 =
7× 6.6× 2 = 92.4 kWh (considering level-II chargers and30
minutes as the unit time). It is noteworthy that the required
storage size decreases as the user population increases.

Next, we consider the case where the system operator
employs an already acquired ESS of sizesB = 10kWh,
15kWh, or20kWh. In this case, the critical step is to calculate
the minimum amount of power to draw from the grid so
that performance guarantees can be achieved. This case is
evaluated in in Fig. 2(b) forN = 200 appliances. For instance,
suppose ESS sizeB = 10kWh is already acquired and
the goal is to meet95% of the demand, and then system
operator should draw0.26× 200 = 52kW from the grid. The
primary motivation for the employment of the ESS is to reduce
the stress on the grid and improve the utilization of power
system components in a cost effective manner. Hence, our
last evaluation is on computing the amount of savings in ESS
size with respect to current common sizing practice, allocating
peak demand. The results are depicted in Fig. 2(c) show that
instead of sizing the ESS to meet the entire customer demand,
just by rejecting a few percentage of customers, considerable
savings in the storage size can be achieved.

B. Multi-Class Customers

Next, we consider the case where customers can request
different demand levels, hence different customer classes. In
this subsection, our main objective is to compute theωk

(effective demand) parameter for each class such thatωk

replacesRk and the overflow probability targets are met. We
start by discussing a toy example. Suppose that users can
generate four different levels of demands, with the following
parametersλ = {0.3, 0.5, 0.7, 0.9} , µ = {1, 1, 1, 1}, and
Rk = 0.2, 0.4, 0.6, 0.8 (in kW). Then for the target outageε =
10−4, and ESS sizeB = 10kWh, the correspondingeffective
demandbecomesω = {0.0515, 0.1567, 0.2958, 0.4550}.
Alternatively, the system operator can find the minimum stor-
age size with respect to the available grid resources and target
performance metric. For the simplicity of presentation, the
remaining numerical results consider two classes of customers
with the following parametersλ1 = 0.5, µ1 = 1, R1 = 0.5kW
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Fig. 3: Evaluation of multi-class case.

andλ2 = 0.7, µ2 = 1, R2 = 1kW. Our first evaluation shows
the admission set forC = 50kW andB = 10kWh, for a target
overflow probability ofε = 0.001. Results presented in Fig.
3(a) shows that station operator can choose from any set of
customer numbers from the shaded region. Obviously, since
the demand for Class1 customers is less than the other class,
the system operator can accept more customers from Class1.
As a second evaluation, we calculate theEffective Demandfor
varying storage size. This time the target underflow probability
is set asε = 0.0005 and the customer population is chosen
asN1 = 100 andN2 = 45. The results depicted in Fig. 3(b)
shows that instead of provisioning the system according to
peak demand (R1 = 0.6kW , R2 = 1kW), the use ofeffective
demands(e.g., forB = 10kWh, ω1 = 0.25 and ω2 = 0.5)
reduces the provisioning of resources tremendously. Our final
results are on the ESS sizing for multi classes. For the same
set of parameters, we evaluate the storage size with respectto
power drawn from the grid. Similar to the single class case,
this result can be used to size the storage unit for a given grid
power, or it can be used to compute the required grid resources
for a given storage size.

C. ESS Economic Analysis

In this subsection, we provide several numerical examples
with actual real-world scenarios to show how the proposed
framework reduces the cost of the customers. In our eval-
uations, we choose the average cost per residential customer.
We assume that peak appliance demand is set toR1 = 1.2kW,

each user employs15 appliances, and there are250 days of
peak usage in one year. For simplicity, the peak hour duration
is assumed to 1 hour. All the cost/benefit calculations are
normalized to peak hour demand. We consider three cases and
compare the cost of system operation for different customer
population and the frequency of appliance usage.

• Case 1 - Grid Power Only:In this setting, all of the
peak hour demand is met by the power demand. This
case reflects the current state of affairs. The cost includes
the cost of peak charging ($0.25kWh) and all of the
listed benefits except the demand charges. Obviously,
since there is no storage unit, users suffer from power
quality and reliability, and high peak-hour charges.

• Case 2 - ESS Only:In this case, we consider the case
where all of the peak hour demand is met by the storage
unit. The cost includes the cost of off-peak hour charging
and the storage cost. In this case, all of the listed benefits
except the demand charges contribute to reducing the total
cost of the system.

• Case 3 - Proposed Framework:This is the case where
we compute the storage size based on the mathematical
proposed framework. We set the probability target as
ε = 0.001. By noting that, there can be more than one
(C,B) combinations that satisfy the overflow targets for
the evaluations, we assume that grid power is20% more
than the average customer demand.

According to Electric Power Research Institute [1], the greatest
cost of such of energy management and Time-Of-Use pricing
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Fig. 4: Economical evaluation and cost analysis of the proposed framework in US Dollars ($) per user per one month.

applications stems from the acquisition and the Operation &
Management costs of the storage units2. Generally, the lifetime
of a storage unit is assumed to be15 years with10% discount
rate3. In this paper, we assume that the unit cost of the storage
unit per year is $1500, which is the typical cost for a Li-ion
battery.

We compute the aggregate cost of each case per user per
month for three different demand frequenciesλ = 0.25,
λ = 0.45, andλ = 0.65. The results depicted in Fig. 4 have the
following interpretations. Since the cost of ESS technologies is
high, the stand-alone ESS setting (case 2) is extremely costly
and not useful practically, which is in line with the conclusion
of EPRI [1] and SANDIA [2] studies. On the other hand,
users can enjoy the aforementioned benefits by sharing the
storage (e.g., in a neighborhood or on a campus etc.), as
more users share the same resource pool, the cost per user
decreases. Obviously, the population of users who share the
same ESS depends on the physical deployments. For instance,
100 apartments in highly dense regions can be fed by the
same storage, while this may not be possible in a wide area
due to losses. Further, as the storage usage increases (higherλ)
the economic benefits improve faster. These evaluations show
that, it may be practical to share the same storage unit so that
the total cost of ownership reduces, and customers enjoy a
variety of benefits. One final note is that the same analysis can
be applied to the multi-class case by computing theeffective
demandsand the corresponding storage size. However, our
main goal is to conduct the economic analysis per user based.

VII. C ONCLUSION

In this paper, we have developed a stochastic analytical
framework to provision a sharing-based energy storage units,
which are expected to be employed in peak hour energy
management systems for residential customers. The analysis
establishes the interplay among dynamic grid capacity, the
number of consumers, different appliances types, and the
guarantee levels for avoiding outage events. We have provided
a detailed economical analysis and have shown that ESS at

2Another highly relevant report is presented in [2], howeverwe consider
[1] as it is more recent.

3This is used to compute the Net Present Value of the ESS. See [1] for
further details.

residential level is economically beneficial if employed ina
sharing-based architecture.
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